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About me

» Software Engineer, Red Hat (~3.5yrs)
* Working on the SystemTap project (~5yrs)

* Working on tools to get a handle on our testing situation:

— Similar to other tools projects: small development team, large
DejaGNU testsuite, Buildbots for Cl, changing dependencies

- SystemTap is fairly robust to regressions causing fatal errors,
but non-fatal functionality degradation creeps in over time....



In this talk

* Why keep a historical archive of test results?
* Overview of the Bunsen toolkit

* Examples of analysis on historical data:
- Filtering recent regressions
- Finding the origin of a regression

- ldentifying ‘flaky’ testcases
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Overview of the problem

Why keep a historical archive of test results?

Typical CI blueprint: | Tost Resuts |[+—_

# ;

- Automatically test proposed patch Verdict Buidbots
— Compare result to ‘known-good’ version 9 g ......... |
— Accept or reject based on regressions o i

Accept or reject decision is very basic

Patch

No need for long-term storage (>~2months) 'i| "

Solves a different problem from ours:
- Reduce a firehose of incoming patches



Overview of the problem

e Can basic Cl guard against regressions creeping in long-term?

 Based on several assumptions:
— Testsuite is clean (no spurious failures, no nondeterministic behaviour)
— CI covers all relevant system configurations

- Regressions aren’t caused by changes in OS and dependencies

 May not be true for some projects as they are now

GCC glibc GDB, SystemTap

- >
More strict More unpredictable
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Overview of the Bunsen toolkit

Collect, store, and analyze DejaGNU test result data




Bunsen toolkit

Collect DejaGNU test results, parse them, produce a JSON index
Store the test results and index in a Git repo

Use Git de-duplication to achieve a high compression factor

- 2019, GDB: 8758 testruns to 3.2GB (~200x from 648GB raw)

- 2019, SystemTap: 1562 testruns to 2.7GB (~38x from 103GB raw)
- 2021, SystemTap: 4158 testruns in 7.8GB (~42x from ~333GB raw)

Python library for querying the indexed test results

This talk: Analysis scripts to extract information from the Bunsen repo



Bunsen data model

« Each testrun has commit IDs, a system configuration and a list of testcases
- version or source_commit: Git commit id of source code in project repo
* Optional -- could be replaced by ID of submission in a ClI system.
« Or any other version that allows us to sort project versions chronologically.
- bunsen_commit_id: Git commit id of test results in Bunsen Git repo
* Commit stores the original DejaGNU .sum and .log uploaded to Bunsen
* Together with auxiliary log files (e.g. system diagnostics, dmesg)
« System configuration is a set of key-value pairs, most commonly:
- osver: Linux distribution (fedora-35-rawhide, fedora-34, ubuntu-20.04, etc.)
- arch: hardware architecture (x86_64, aarch64, ppc64le, etc.)

- ldeally also: versions of dependent components (kernel_ver, gcc_ver, etc.) 9



Bunsen data model

Each testrun has commit IDs, a system configuration and a list of testcases

» Testcases are (name, outcome, subtest) tuples matching DejaGNU semantics

- name is the name of the .exp testcase
- subtest is the string “identifying” the subtest (ambiguous in many testsuites)

- outcome is PASS, FAIL, XPASS, XFAIL, etc.

* Two options for storing testcase data: full, and compact
- Full format stores a testcase entry for every subtest of every testcase

- Compact format stores only FAIL subtests separately, and consolidates any .exp
testcase with a PASS outcome into a single entry

- In general, analysis assumes “absence of failure” means “no problem”

10



Why historical analysis?

* There are simple utilities that diff a pair of DejaGNU test results

* But diffing against a ‘known-good’ version doesn’t give a full picture:
- No ‘known-good’ version with a clean testsuite
— Regression occurs on configuration that isn’t tested regularly
— Regression caused by changes in OS and dependencies

* Results must be interpreted against historical context

11
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Filtering recent regressions



Level 1: ‘grid view’ analysis

Based on earlier scripting developed by Martin Cermak:

* For each .exp testcase in the testsuite

- For each system configuration
« For each source_commit /version in specified range
- Report + if the testcase outcome is PASS (for all subtests)
- Report - if the testcase outcome is FAIL (for some subtest)
- Report ? if this combination was not tested

— Output the result as a table (configuration x source_commit)

13



Level 1: ‘grid view’ analysis

systemtap.syscall/syscall consistency.exp

3 $ |32 |[olEalg |z (g9|s
+|+ |x86 64 |None
+|+ |x86 64 |rhel-8 + + +
- + x86 64 |thel-7 -77 =77
+| +|x86 64 ig‘:fﬁ%:E
+|+ |x86 64 |fedora-31 + +
+|+ |x86 64 fedora-34 + +
- +/s390x |rhel-8 -74
- | +|i686 rhel-6 -65 -65
+|+ |aarch64 rhel-8 + + |+
+|+|x86 64 fedora-33 + + + +
- |+ | ppc6dle |rthel-8
-  +|i686 fedora-30
- +/x86 64 |ubuntu-18-04|-78 |-78 -78-78
- + x86 64 |rhel-6 -70-70

HEREHEEHEHEHHEHEHEHHEEEE
+| |+ ++
+ |+ + |+ |+ +| |+ + |+ |+
7|-77(-77 + +|+ +| |+ + |+ |+
+|+ +| |+ + |+ |+
+ +
74|-74 -74 + 4+ + +
65 -65 -65 + 4+ [+ + [+ +
ol o+ + |+ |+ +
+ 0+ |+ + ++ + |+ +|+ |+
7474 -74 i E e
+ +|+ |+
-78|-78|-78 + |+ |+ +| |+
-70 -70 -70 + 4+ [+ + [+ +




Level 2: ‘time cube’ filtering

Grid view required lots of scrolling and coffee to assess all testcases.
* For improved filtering, assemble a grid as in the previous script
- keys - (testcase xconfig x version)

- values (+-?) - set(hame x outcome x subtest)

 For each (testcase x config x version) in chronological order:
— “Use prior history to decide If this test result is noteworthy”
 For each testcase with noteworthy test results:

- List (config x version) - (name x outcome x subtest)in
reverse chronological order



Level 2: ‘time cube’ filtering

Detall of ‘time cube’ data structure:

Timecube: )
__init__(self,...): Versions

self.outcomes_grid = {} # grid_keuy -> PASS,FAIL é?
self.subtests_grid = {} # grid_keuy -> set of (name,outcome,subtest) ‘S?
self.prev_tested = {} # grid_key -> grid_key for prev tested version éﬁ?
self.next_tested = {} # grid_keuy -> grid_key for next tested version KL

grid_key(self, testcase, configuration, commit):

scan_commits(self):

iter_scan_commits(self):

iter _commits(self):

Configurations

iter_testcases(sel f):

commit_dist(self, v1, v2):

Current scanning performance: slightly tolerable (~454*15*143 cells in ~76sec)



“Use prior history to decide if the test result is noteworthy”. some options:

Level 2: ‘time cube’ filtering

Report every change PASS - FAIL (too much information)
Report first change PASS - FAIL and last change FAIL - PASS

Consider changes between consecutive runs of PASS/FAIL and in-
between ‘flaky’ periods where changes are more frequent

- When encountering a change, update the last ‘solid’ period of
identical results, and the prior ‘flaky’ period of unstable results

Other options that correlate results across different configurations?

17



Level 2: ‘time cube’ filtering

systemtap.syscall/syscall consistency.exp

commit_id: 90f9123bb1406aca27c8135b99549f6c1ed8d42c
summary: PR26015: Make syscall arguments writable again
gitweb_info: commit, commitdiff

B g g "

FAIL |PASS |systemtap.apps/busybox.exp iii%;&lr;uons
INIT |PASS |systemtap.base/probewrite.exp ziiggfllrgtions
FAIL. PASS | systemtap.base/proc exec.exp iﬁi%;&lr;uons
PASS |FAIL systemtap.base/target set.exp iﬁi%;&lrguons
FAIL |PASS systemtap.base/temp-directory.exp ziiggtlllr;tions
PASS |FAIL systemtap.basefutrace p5.exp ziiggfllr;tions
PASS [FAIL |systemtap.base/vma vdso.exp iiiggllllrgtions
PASS [FAIL  systemtap.context/usymbols.exp if)iggtlllrgtions
PASS |FAIL | systemtap.printf/print user buffer.exp ziiggtlllrgtions
FAIL |PASS |systemtap.server/client.exp zﬁiIfll;:llr;tions

g _ g g
: P | : 2
E - Ia fir |
stp_task work: don't seen on 1
PASS |[FLAKE|acd978b |busy poll in f H
stp_task work exit() conhigurations
PR26015: Make 6
PASS |[FAIL. (90f9123 |syscall arguments seerﬁ ono .
writable again configurations
testsuite: fix buildok |seenonl
I 4960288 perms configurations
PR26755 temporary
kprobes onthefly.exp: |seen on 2
L g 8-1dc also disable m* on configurations
PPpPc
PR26755
kprobes_onthefly.exp: seen on 2
INIT |PASS |2f7e379 |skip lock * fi H
tracepoints pending conhigurations
investigation
stapbpf: fix module |seenon 1
INIT PASS |aad9ale name confiqurations
RHBZ1847676
cont'd: one more 1
INIT |PASS |046fa0l |uprobes- iﬁf}% “Sraﬂons
inode/onthefly g

18
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Finding the origin of a regression



Finding the origin of a regression

If we are interested in the history of a particular testcase:

« Foreach (testcase x config x version) in chronological order:

« Assemble the time cube for one testcase only:

- keys - (config x version)

- values (+-?) - set(hame x outcome x subtest)
« For version in reverse chronological order

- Report any changes compared to the earlier version.

20
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ldentifying ‘flaky’ testcases

Use (source_commit x configuration) tuples for which there are multiple testruns
In the Bunsen repo to identify nondeterministic testcases:

 Foreach (source_commit x configuration) inthe Bunsen repo
- all_testcases = {}

- For each testrun matching (source_commit x configuration)

« For each (name x subtest x outcome) tuple in testrun
- Append testruntoall_testcases[name x subtest x outcome]

- For each (name x subtest x outcome) tuple in all_testcases
 [f tuple didn’t appear in all Testruns, flag name as nondeterministic
« Output the list of testcase names that were flagged

22



Conclusions

» Historical analysis gives clarity about the state of the testsuite

* More & nastier development work needed to make Bunsen adaptable

* Bunsen development roadmap:

High priority — more work on the DejaGNU parser(s)

High priority — more options for getting logs into the Bunsen repo
High priority — more configurations (no ‘modify script to configure’)
High priority — repo bookkeeping (update/delete/gc testruns)
Medium priority — email reporting

Medium priority — better web interface (with Flask framework)
Low priority — hardening the web interface

23



Conclusions & Questions

* Brief overview of parser & test result availability for projects:

- SystemTap: solid parser; (private) Cl active; (private) archives.
« Some info on our CI system in blog post 1, blog post 2

- GDB: solid parser (thanks to Keith Seitz); ClI defunct; no archives.

* https://gdb-buildbot.osci.io/#/

— glibc: no parser; Cl in-progress; no archives.
» https://sourceware.org/glibc/wiki/CICDDesign

— gcc: no parser; Cl active; no archives.
» https://gcc.gnu.org/jenkins — huge firehose of data.

* ‘Best practice’ for extracting data from CI on ongoing basis?

» Usefulness of retroactive testing?

24


https://developers.redhat.com/blog/2021/05/06/automating-the-testing-process-for-systemtap-part-1-test-automation-with-libvirt-and-buildbot
https://developers.redhat.com/blog/2021/05/10/automating-the-testing-process-for-systemtap-part-2-test-result-analysis-with-bunsen
https://gdb-buildbot.osci.io/#/
https://sourceware.org/glibc/wiki/CICDDesign
https://gcc.gnu.org/jenkins
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* Bunsen project
- Examples for this talk — https://people.redhat.com/~smakarov/2021-Ipc-talk/
- https://sourceware.org/qgit/?p=bunsen.git;a=summary
- mailto:bunsen@sourceware.org

— https://github.com/serhei/bunsen

« SystemTap project
- https://sourceware.org/systemtap/
- https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary
- #systemtap on OFTC

» Special thanks to: Keith Seitz, Frank Ch. Eigler, Martin Cermak



https://people.redhat.com/~smakarov/2021-lpc-talk/
https://sourceware.org/git/?p=bunsen.git;a=summary
mailto:bunsen@sourceware.org
https://github.com/serhei/bunsen
https://sourceware.org/systemtap/
https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary
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