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About me
● Software Engineer, Red Hat (~3.5yrs)
● Working on the SystemTap project (~5yrs)
● Working on tools to get a handle on our testing situation:

– Similar to other tools projects: small development team, large 
DejaGNU testsuite, Buildbots for CI, changing dependencies

– SystemTap is fairly robust to regressions causing fatal errors, 
but non-fatal functionality degradation creeps in over time….
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● Why keep a historical archive of test results?
● Overview of the Bunsen toolkit
● Examples of analysis on historical data:

– Filtering recent regressions
– Finding the origin of a regression
– Identifying ‘flaky’ testcases

In this talk
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Overview of the problem

Why keep a historical archive of test results? 
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● Why keep a historical archive of test results?

● Typical CI blueprint:

– Automatically test proposed patch

– Compare result to ‘known-good’ version

– Accept or reject based on regressions

● Accept or reject decision is very basic

● No need for long-term storage (>~2months)

● Solves a different problem from ours:

– Reduce a firehose of incoming patches

Overview of the problem
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Overview of the problem
● Can basic CI guard against regressions creeping in long-term?

● Based on several assumptions:

– Testsuite is clean (no spurious failures, no nondeterministic behaviour)

– CI covers all relevant system configurations

– Regressions aren’t caused by changes in OS and dependencies

● May not be true for some projects as they are now
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Overview of the Bunsen toolkit

Collect, store, and analyze DejaGNU test result data 
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● Collect DejaGNU test results, parse them, produce a JSON index

● Store the test results and index in a Git repo

● Use Git de-duplication to achieve a high compression factor

– 2019, GDB: 8758 testruns to 3.2GB (~200x from 648GB raw)

– 2019, SystemTap: 1562 testruns to 2.7GB (~38x from 103GB raw)

– 2021, SystemTap: 4158 testruns in 7.8GB (~42x from ~333GB raw)

● Python library for querying the indexed test results

● This talk: Analysis scripts to extract information from the Bunsen repo

Bunsen toolkit
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● Each testrun has commit IDs, a system configuration and a list of testcases

– version or source_commit: Git commit id of source code in project repo
● Optional -- could be replaced by ID of submission in a CI system.
● Or any other version that allows us to sort project versions chronologically.

– bunsen_commit_id: Git commit id of test results in Bunsen Git repo
● Commit stores the original DejaGNU .sum and .log uploaded to Bunsen
● Together with auxiliary log files (e.g. system diagnostics, dmesg)

● System configuration is a set of key-value pairs, most commonly:

– osver: Linux distribution (fedora-35-rawhide, fedora-34, ubuntu-20.04, etc.)

– arch: hardware architecture (x86_64, aarch64, ppc64le, etc.)

– Ideally also: versions of dependent components (kernel_ver, gcc_ver, etc.)

Bunsen data model
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● Each testrun has commit IDs, a system configuration and a list of testcases

● Testcases are (name, outcome, subtest) tuples matching DejaGNU semantics

– name is the name of the .exp testcase

– subtest is the string “identifying” the subtest (ambiguous in many testsuites)

– outcome is PASS, FAIL, XPASS, XFAIL, etc.

● Two options for storing testcase data: full, and compact

– Full format stores a testcase entry for every subtest of every testcase

– Compact format stores only FAIL subtests separately, and consolidates any .exp 
testcase with a PASS outcome into a single entry

– In general, analysis assumes “absence of failure” means “no problem”

Bunsen data model
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● There are simple utilities that diff a pair of DejaGNU test results

● But diffing against a ‘known-good’ version doesn’t give a full picture:

– No ‘known-good’ version with a clean testsuite

– Regression occurs on configuration that isn’t tested regularly

– Regression caused by changes in OS and dependencies

● Results must be interpreted against historical context

Why historical analysis?
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Example analysis
Filtering recent regressions
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Based on earlier scripting developed by Martin Cermak:

● For each .exp testcase in the testsuite

– For each system configuration
● For each source_commit / version in specified range

– Report + if the testcase outcome is PASS (for all subtests)
– Report - if the testcase outcome is FAIL (for some subtest)
– Report ? if this combination was not tested

– Output the result as a table (configuration x source_commit)

Level 1: ‘grid view’ analysis

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)
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Level 1: ‘grid view’ analysis

…
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Grid view required lots of scrolling and coffee to assess all testcases.

● For improved filtering, assemble a grid as in the previous script

– keys → (testcase x config x version)

– values (+-?) → set(name x outcome x subtest) 

● For each (testcase x config x version) in chronological order:

– “Use prior history to decide if this test result is noteworthy”

● For each testcase with noteworthy test results:

– List (config x version) → (name x outcome x subtest) in 
reverse chronological order

Level 2: ‘time cube’ filtering

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)
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Level 2: ‘time cube’ filtering
Detail of ‘time cube’ data structure:

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)

Versions
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Current scanning performance: slightly tolerable (~454*15*143 cells in ~76sec)
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“Use prior history to decide if the test result is noteworthy”: some options:

● Report every change PASS ↔ FAIL (too much information)

● Report first change PASS → FAIL and last change FAIL → PASS

● Consider changes between consecutive runs of PASS/FAIL and in-
between ‘flaky’ periods where changes are more frequent

– When encountering a change, update the last ‘solid’ period of 
identical results, and the prior ‘flaky’ period of unstable results

● Other options that correlate results across different configurations?

Level 2: ‘time cube’ filtering

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)
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Level 2: ‘time cube’ filtering
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Example analysis
Finding the origin of a regression
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If we are interested in the history of a particular testcase:

● For each (testcase x config x version) in chronological order:

● Assemble the time cube for one testcase only:

– keys → (config x version)

– values (+-?) → set(name x outcome x subtest)

● For version in reverse chronological order

– Report any changes compared to the earlier version.

Finding the origin of a regression

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)
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Example analysis
Identifying ‘flaky’ testcases
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Use (source_commit x configuration) tuples for which there are multiple testruns 
in the Bunsen repo to identify nondeterministic testcases:

● For each (source_commit x configuration) in the Bunsen repo

– all_testcases = {}

– For each testrun matching (source_commit x configuration)

● For each (name x subtest x outcome) tuple in testrun
– Append testrun to all_testcases[name x subtest x outcome]

– For each (name x subtest x outcome) tuple in all_testcases
● If tuple didn’t appear in all Testruns, flag name as nondeterministic

● Output the list of testcase names that were flagged

Identifying ‘flaky’ testcases

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)
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● Historical analysis gives clarity about the state of the testsuite

● More & nastier development work needed to make Bunsen adaptable

● Bunsen development roadmap:

– High priority – more work on the DejaGNU parser(s)

– High priority – more options for getting logs into the Bunsen repo

– High priority – more configurations (no ‘modify script to configure’)

– High priority – repo bookkeeping (update/delete/gc testruns)

– Medium priority – email reporting

– Medium priority – better web interface (with Flask framework)

– Low priority – hardening the web interface

Conclusions
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● Brief overview of parser & test result availability for projects:

– SystemTap: solid parser; (private) CI active; (private) archives.
● Some info on our CI system in blog post 1, blog post 2

– GDB: solid parser (thanks to Keith Seitz); CI defunct; no archives.
● https://gdb-buildbot.osci.io/#/

– glibc: no parser; CI in-progress; no archives.
● https://sourceware.org/glibc/wiki/CICDDesign

– gcc: no parser; CI active; no archives.
● https://gcc.gnu.org/jenkins → huge firehose of data.

● ‘Best practice’ for extracting data from CI on ongoing basis?

● Usefulness of retroactive testing?

Conclusions & Questions

https://developers.redhat.com/blog/2021/05/06/automating-the-testing-process-for-systemtap-part-1-test-automation-with-libvirt-and-buildbot
https://developers.redhat.com/blog/2021/05/10/automating-the-testing-process-for-systemtap-part-2-test-result-analysis-with-bunsen
https://gdb-buildbot.osci.io/#/
https://sourceware.org/glibc/wiki/CICDDesign
https://gcc.gnu.org/jenkins
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● Bunsen project

– Examples for this talk → https://people.redhat.com/~smakarov/2021-lpc-talk/

– https://sourceware.org/git/?p=bunsen.git;a=summary

– mailto:bunsen@sourceware.org

– https://github.com/serhei/bunsen

● SystemTap project

– https://sourceware.org/systemtap/

– https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary

– #systemtap on OFTC

● Special thanks to: Keith Seitz, Frank Ch. Eigler, Martin Cermak

Thank You

https://people.redhat.com/~smakarov/2021-lpc-talk/
https://sourceware.org/git/?p=bunsen.git;a=summary
mailto:bunsen@sourceware.org
https://github.com/serhei/bunsen
https://sourceware.org/systemtap/
https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary
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