LINUX PLUMBERS CONFERENCE | SEPTEMBER 20-24, 2021 \ / \

Analyzing historical DejaGNU test result
data with the Bunsen toolkit

\

Serhel Makarov/
<me@serheil.10>
for LPC/GNUTools Track
September 20, 2021\

| AR

-~

About me

» Software Engineer, Red Hat (~3.5yrs)
* Working on the SystemTap project (~5yrs)

* Working on tools to get a handle on our testing situation:

— Similar to other tools projects: small development team, large
DejaGNU testsuite, Buildbots for Cl, changing dependencies

- SystemTap is fairly robust to regressions causing fatal errors,
but non-fatal functionality degradation creeps in over time....

In this talk

* Why keep a historical archive of test results?
* Overview of the Bunsen toolkit

* Examples of analysis on historical data:
- Filtering recent regressions
- Finding the origin of a regression

- ldentifying ‘flaky’ testcases

LINU)(September 20-24, 2021
Q PLUMBERS
CONFERENCE

Overview of the problem

Why keep a historical archive of test results?

Overview of the problem

Why keep a historical archive of test results?

Typical CI blueprint: | Tost Resuts |[+—_

;

- Automatically test proposed patch Verdict Buidbots
— Compare result to ‘known-good’ version 9 g |
— Accept or reject based on regressions o i

Accept or reject decision is very basic

Patch

No need for long-term storage (>~2months) 'i| "

Solves a different problem from ours:
- Reduce a firehose of incoming patches

Overview of the problem

e Can basic Cl guard against regressions creeping in long-term?

 Based on several assumptions:
— Testsuite is clean (no spurious failures, no nondeterministic behaviour)
— CI covers all relevant system configurations

- Regressions aren’t caused by changes in OS and dependencies

 May not be true for some projects as they are now

GCC glibc GDB, SystemTap

- >
More strict More unpredictable

LINU)(September 20-24, 2021
Q PLUMBERS
CONFERENCE

Overview of the Bunsen toolkit

Collect, store, and analyze DejaGNU test result data

Bunsen toolkit

Collect DejaGNU test results, parse them, produce a JSON index
Store the test results and index in a Git repo

Use Git de-duplication to achieve a high compression factor

- 2019, GDB: 8758 testruns to 3.2GB (~200x from 648GB raw)

- 2019, SystemTap: 1562 testruns to 2.7GB (~38x from 103GB raw)
- 2021, SystemTap: 4158 testruns in 7.8GB (~42x from ~333GB raw)

Python library for querying the indexed test results

This talk: Analysis scripts to extract information from the Bunsen repo

Bunsen data model

« Each testrun has commit IDs, a system configuration and a list of testcases
- version or source_commit: Git commit id of source code in project repo
* Optional -- could be replaced by ID of submission in a ClI system.
« Or any other version that allows us to sort project versions chronologically.
- bunsen_commit_id: Git commit id of test results in Bunsen Git repo
* Commit stores the original DejaGNU .sum and .log uploaded to Bunsen
* Together with auxiliary log files (e.g. system diagnostics, dmesg)
« System configuration is a set of key-value pairs, most commonly:
- osver: Linux distribution (fedora-35-rawhide, fedora-34, ubuntu-20.04, etc.)
- arch: hardware architecture (x86_64, aarch64, ppc64le, etc.)

- ldeally also: versions of dependent components (kernel_ver, gcc_ver, etc.) 9

Bunsen data model

Each testrun has commit IDs, a system configuration and a list of testcases

» Testcases are (name, outcome, subtest) tuples matching DejaGNU semantics

- name is the name of the .exp testcase
- subtest is the string “identifying” the subtest (ambiguous in many testsuites)

- outcome is PASS, FAIL, XPASS, XFAIL, etc.

* Two options for storing testcase data: full, and compact
- Full format stores a testcase entry for every subtest of every testcase

- Compact format stores only FAIL subtests separately, and consolidates any .exp
testcase with a PASS outcome into a single entry

- In general, analysis assumes “absence of failure” means “no problem”

10

Why historical analysis?

* There are simple utilities that diff a pair of DejaGNU test results

* But diffing against a ‘known-good’ version doesn’t give a full picture:
- No ‘known-good’ version with a clean testsuite
— Regression occurs on configuration that isn’t tested regularly
— Regression caused by changes in OS and dependencies

* Results must be interpreted against historical context

11

LINU)(September 20-24, 2021
Q PLUMBERS
CONFERENCE

Example analysis

Filtering recent regressions

Level 1: ‘grid view’ analysis

Based on earlier scripting developed by Martin Cermak:

* For each .exp testcase in the testsuite

- For each system configuration
« For each source_commit /version in specified range
- Report + if the testcase outcome is PASS (for all subtests)
- Report - if the testcase outcome is FAIL (for some subtest)
- Report ? if this combination was not tested

— Output the result as a table (configuration x source_commit)

13

Level 1: ‘grid view’ analysis

systemtap.syscall/syscall consistency.exp

3 $ |32 |[olEalg |z (g9|s
+|+ |x86 64 |None
+|+ |x86 64 |rhel-8 + + +
- + x86 64 |thel-7 -77 =77
+| +|x86 64 ig‘:fﬁ%:E
+|+ |x86 64 |fedora-31 + +
+|+ |x86 64 fedora-34 + +
- +/s390x |rhel-8 -74
- | +|i686 rhel-6 -65 -65
+|+ |aarch64 rhel-8 + + |+
+|+|x86 64 fedora-33 + + + +
- |+ | ppc6dle |rthel-8
- +|i686 fedora-30
- +/x86 64 |ubuntu-18-04|-78 |-78 -78-78
- + x86 64 |rhel-6 -70-70

HEREHEEHEHEHHEHEHEHHEEEE
+| |+ ++
+ |+ + |+ |+ +| |+ + |+ |+
7|-77(-77 + +|+ +| |+ + |+ |+
+|+ +| |+ + |+ |+
+ +
74|-74 -74 + 4+ + +
65 -65 -65 + 4+ [+ + [+ +
ol o+ + |+ |+ +
+ 0+ |+ + ++ + |+ +|+ |+
7474 -74 i E e
+ +|+ |+
-78|-78|-78 + |+ |+ +| |+
-70 -70 -70 + 4+ [+ + [+ +

Level 2: ‘time cube’ filtering

Grid view required lots of scrolling and coffee to assess all testcases.
* For improved filtering, assemble a grid as in the previous script
- keys - (testcase xconfig x version)

- values (+-?) - set(hame x outcome x subtest)

 For each (testcase x config x version) in chronological order:
— “Use prior history to decide If this test result is noteworthy”
 For each testcase with noteworthy test results:

- List (config x version) - (name x outcome x subtest)in
reverse chronological order

Level 2: ‘time cube’ filtering

Detall of ‘time cube’ data structure:

Timecube:)
__init__(self,...): Versions

self.outcomes_grid = {} # grid_keuy -> PASS,FAIL é?
self.subtests_grid = {} # grid_keuy -> set of (name,outcome,subtest) ‘S?
self.prev_tested = {} # grid_key -> grid_key for prev tested version éﬁ?
self.next_tested = {} # grid_keuy -> grid_key for next tested version KL

grid_key(self, testcase, configuration, commit):

scan_commits(self):

iter_scan_commits(self):

iter _commits(self):

Configurations

iter_testcases(sel f):

commit_dist(self, v1, v2):

Current scanning performance: slightly tolerable (~454*15*143 cells in ~76sec)

“Use prior history to decide if the test result is noteworthy”. some options:

Level 2: ‘time cube’ filtering

Report every change PASS - FAIL (too much information)
Report first change PASS - FAIL and last change FAIL - PASS

Consider changes between consecutive runs of PASS/FAIL and in-
between ‘flaky’ periods where changes are more frequent

- When encountering a change, update the last ‘solid’ period of
identical results, and the prior ‘flaky’ period of unstable results

Other options that correlate results across different configurations?

17

Level 2: ‘time cube’ filtering

systemtap.syscall/syscall consistency.exp

commit_id: 90f9123bb1406aca27c8135b99549f6c1ed8d42c
summary: PR26015: Make syscall arguments writable again
gitweb_info: commit, commitdiff

B g g "

FAIL |PASS |systemtap.apps/busybox.exp iii%;&lr;uons
INIT |PASS |systemtap.base/probewrite.exp ziiggfllrgtions
FAIL. PASS | systemtap.base/proc exec.exp iﬁi%;&lr;uons
PASS |FAIL systemtap.base/target set.exp iﬁi%;&lrguons
FAIL |PASS systemtap.base/temp-directory.exp ziiggtlllr;tions
PASS |FAIL systemtap.basefutrace p5.exp ziiggfllr;tions
PASS [FAIL |systemtap.base/vma vdso.exp iiiggllllrgtions
PASS [FAIL systemtap.context/usymbols.exp if)iggtlllrgtions
PASS |FAIL | systemtap.printf/print user buffer.exp ziiggtlllrgtions
FAIL |PASS |systemtap.server/client.exp zﬁiIfll;:llr;tions

g _ g g
: P | : 2
E - Ia fir |
stp_task work: don't seen on 1
PASS |[FLAKE|acd978b |busy poll in f H
stp_task work exit() conhigurations
PR26015: Make 6
PASS |[FAIL. (90f9123 |syscall arguments seerﬁ ono .
writable again configurations
testsuite: fix buildok |seenonl
I 4960288 perms configurations
PR26755 temporary
kprobes onthefly.exp: |seen on 2
L g 8-1dc also disable m* on configurations
PPpPc
PR26755
kprobes_onthefly.exp: seen on 2
INIT |PASS |2f7e379 |skip lock * fi H
tracepoints pending conhigurations
investigation
stapbpf: fix module |seenon 1
INIT PASS |aad9ale name confiqurations
RHBZ1847676
cont'd: one more 1
INIT |PASS |046fa0l |uprobes- iﬁf}% “Sraﬂons
inode/onthefly g

18

LINU)(September 20-24, 2021
Q PLUMBERS
CONFERENCE

Example analysis

Finding the origin of a regression

Finding the origin of a regression

If we are interested in the history of a particular testcase:

« Foreach (testcase x config x version) in chronological order:

« Assemble the time cube for one testcase only:

- keys - (config x version)

- values (+-?) - set(hame x outcome x subtest)
« For version in reverse chronological order

- Report any changes compared to the earlier version.

20

LINU)(September 20-24, 2021
Q PLUMBERS
CONFERENCE

Example analysis

ldentifying ‘flaky’ testcases

ldentifying ‘flaky’ testcases

Use (source_commit x configuration) tuples for which there are multiple testruns
In the Bunsen repo to identify nondeterministic testcases:

 Foreach (source_commit x configuration) inthe Bunsen repo
- all_testcases = {}

- For each testrun matching (source_commit x configuration)

« For each (name x subtest x outcome) tuple in testrun
- Append testruntoall_testcases[name x subtest x outcome]

- For each (name x subtest x outcome) tuple in all_testcases
 [f tuple didn’t appear in all Testruns, flag name as nondeterministic
« Output the list of testcase names that were flagged

22

Conclusions

» Historical analysis gives clarity about the state of the testsuite

* More & nastier development work needed to make Bunsen adaptable

* Bunsen development roadmap:

High priority — more work on the DejaGNU parser(s)

High priority — more options for getting logs into the Bunsen repo
High priority — more configurations (no ‘modify script to configure’)
High priority — repo bookkeeping (update/delete/gc testruns)
Medium priority — email reporting

Medium priority — better web interface (with Flask framework)
Low priority — hardening the web interface

23

Conclusions & Questions

* Brief overview of parser & test result availability for projects:

- SystemTap: solid parser; (private) Cl active; (private) archives.
« Some info on our CI system in blog post 1, blog post 2

- GDB: solid parser (thanks to Keith Seitz); ClI defunct; no archives.

* https://gdb-buildbot.osci.io/#/

— glibc: no parser; Cl in-progress; no archives.
» https://sourceware.org/glibc/wiki/CICDDesign

— gcc: no parser; Cl active; no archives.
» https://gcc.gnu.org/jenkins — huge firehose of data.

* ‘Best practice’ for extracting data from CI on ongoing basis?

» Usefulness of retroactive testing?

24

https://developers.redhat.com/blog/2021/05/06/automating-the-testing-process-for-systemtap-part-1-test-automation-with-libvirt-and-buildbot
https://developers.redhat.com/blog/2021/05/10/automating-the-testing-process-for-systemtap-part-2-test-result-analysis-with-bunsen
https://gdb-buildbot.osci.io/#/
https://sourceware.org/glibc/wiki/CICDDesign
https://gcc.gnu.org/jenkins

LINUX September 20-24, 2021
Q PLUMBERS Thank YOU

CONFERENCE

* Bunsen project
- Examples for this talk — https://people.redhat.com/~smakarov/2021-Ipc-talk/
- https://sourceware.org/qgit/?p=bunsen.git;a=summary
- mailto:bunsen@sourceware.org

— https://github.com/serhei/bunsen

« SystemTap project
- https://sourceware.org/systemtap/
- https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary
- #systemtap on OFTC

» Special thanks to: Keith Seitz, Frank Ch. Eigler, Martin Cermak

https://people.redhat.com/~smakarov/2021-lpc-talk/
https://sourceware.org/git/?p=bunsen.git;a=summary
mailto:bunsen@sourceware.org
https://github.com/serhei/bunsen
https://sourceware.org/systemtap/
https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

