
Analyzing historical DejaGNU test result
data with the Bunsen toolkit

Serhei Makarov
<me@serhei.io>

for LPC/GNUTools Track
September 20, 2021

 2

About me
● Software Engineer, Red Hat (~3.5yrs)
● Working on the SystemTap project (~5yrs)
● Working on tools to get a handle on our testing situation:

– Similar to other tools projects: small development team, large
DejaGNU testsuite, Buildbots for CI, changing dependencies

– SystemTap is fairly robust to regressions causing fatal errors,
but non-fatal functionality degradation creeps in over time….

 3

● Why keep a historical archive of test results?
● Overview of the Bunsen toolkit
● Examples of analysis on historical data:

– Filtering recent regressions
– Finding the origin of a regression
– Identifying ‘flaky’ testcases

In this talk

 4

Overview of the problem

Why keep a historical archive of test results?

 5

● Why keep a historical archive of test results?

● Typical CI blueprint:

– Automatically test proposed patch

– Compare result to ‘known-good’ version

– Accept or reject based on regressions

● Accept or reject decision is very basic

● No need for long-term storage (>~2months)

● Solves a different problem from ours:

– Reduce a firehose of incoming patches

Overview of the problem

 6

Overview of the problem
● Can basic CI guard against regressions creeping in long-term?

● Based on several assumptions:

– Testsuite is clean (no spurious failures, no nondeterministic behaviour)

– CI covers all relevant system configurations

– Regressions aren’t caused by changes in OS and dependencies

● May not be true for some projects as they are now

 7

Overview of the Bunsen toolkit

Collect, store, and analyze DejaGNU test result data

 8

● Collect DejaGNU test results, parse them, produce a JSON index

● Store the test results and index in a Git repo

● Use Git de-duplication to achieve a high compression factor

– 2019, GDB: 8758 testruns to 3.2GB (~200x from 648GB raw)

– 2019, SystemTap: 1562 testruns to 2.7GB (~38x from 103GB raw)

– 2021, SystemTap: 4158 testruns in 7.8GB (~42x from ~333GB raw)

● Python library for querying the indexed test results

● This talk: Analysis scripts to extract information from the Bunsen repo

Bunsen toolkit

 9

● Each testrun has commit IDs, a system configuration and a list of testcases

– version or source_commit: Git commit id of source code in project repo
● Optional -- could be replaced by ID of submission in a CI system.
● Or any other version that allows us to sort project versions chronologically.

– bunsen_commit_id: Git commit id of test results in Bunsen Git repo
● Commit stores the original DejaGNU .sum and .log uploaded to Bunsen
● Together with auxiliary log files (e.g. system diagnostics, dmesg)

● System configuration is a set of key-value pairs, most commonly:

– osver: Linux distribution (fedora-35-rawhide, fedora-34, ubuntu-20.04, etc.)

– arch: hardware architecture (x86_64, aarch64, ppc64le, etc.)

– Ideally also: versions of dependent components (kernel_ver, gcc_ver, etc.)

Bunsen data model

 10

● Each testrun has commit IDs, a system configuration and a list of testcases

● Testcases are (name, outcome, subtest) tuples matching DejaGNU semantics

– name is the name of the .exp testcase

– subtest is the string “identifying” the subtest (ambiguous in many testsuites)

– outcome is PASS, FAIL, XPASS, XFAIL, etc.

● Two options for storing testcase data: full, and compact

– Full format stores a testcase entry for every subtest of every testcase

– Compact format stores only FAIL subtests separately, and consolidates any .exp
testcase with a PASS outcome into a single entry

– In general, analysis assumes “absence of failure” means “no problem”

Bunsen data model

 11

● There are simple utilities that diff a pair of DejaGNU test results

● But diffing against a ‘known-good’ version doesn’t give a full picture:

– No ‘known-good’ version with a clean testsuite

– Regression occurs on configuration that isn’t tested regularly

– Regression caused by changes in OS and dependencies

● Results must be interpreted against historical context

Why historical analysis?

 12

Example analysis
Filtering recent regressions

 13

Based on earlier scripting developed by Martin Cermak:

● For each .exp testcase in the testsuite

– For each system configuration
● For each source_commit / version in specified range

– Report + if the testcase outcome is PASS (for all subtests)
– Report - if the testcase outcome is FAIL (for some subtest)
– Report ? if this combination was not tested

– Output the result as a table (configuration x source_commit)

Level 1: ‘grid view’ analysis

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)

 14

Level 1: ‘grid view’ analysis

…

 15

Grid view required lots of scrolling and coffee to assess all testcases.

● For improved filtering, assemble a grid as in the previous script

– keys → (testcase x config x version)

– values (+-?) → set(name x outcome x subtest)

● For each (testcase x config x version) in chronological order:

– “Use prior history to decide if this test result is noteworthy”

● For each testcase with noteworthy test results:

– List (config x version) → (name x outcome x subtest) in
reverse chronological order

Level 2: ‘time cube’ filtering

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)

 16

Level 2: ‘time cube’ filtering
Detail of ‘time cube’ data structure:

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)

Versions

Te
stc

as
es

C
on

fig
ur

at
io

ns

Current scanning performance: slightly tolerable (~454*15*143 cells in ~76sec)

 17

“Use prior history to decide if the test result is noteworthy”: some options:

● Report every change PASS ↔ FAIL (too much information)

● Report first change PASS → FAIL and last change FAIL → PASS

● Consider changes between consecutive runs of PASS/FAIL and in-
between ‘flaky’ periods where changes are more frequent

– When encountering a change, update the last ‘solid’ period of
identical results, and the prior ‘flaky’ period of unstable results

● Other options that correlate results across different configurations?

Level 2: ‘time cube’ filtering

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)

 18

Level 2: ‘time cube’ filtering

 19

Example analysis
Finding the origin of a regression

 20

If we are interested in the history of a particular testcase:

● For each (testcase x config x version) in chronological order:

● Assemble the time cube for one testcase only:

– keys → (config x version)

– values (+-?) → set(name x outcome x subtest)

● For version in reverse chronological order

– Report any changes compared to the earlier version.

Finding the origin of a regression

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)

 21

Example analysis
Identifying ‘flaky’ testcases

 22

Use (source_commit x configuration) tuples for which there are multiple testruns
in the Bunsen repo to identify nondeterministic testcases:

● For each (source_commit x configuration) in the Bunsen repo

– all_testcases = {}

– For each testrun matching (source_commit x configuration)

● For each (name x subtest x outcome) tuple in testrun
– Append testrun to all_testcases[name x subtest x outcome]

– For each (name x subtest x outcome) tuple in all_testcases
● If tuple didn’t appear in all Testruns, flag name as nondeterministic

● Output the list of testcase names that were flagged

Identifying ‘flaky’ testcases

Special thanks to Edsger W. Dijkstra’s “A Discipline of Programming” (1976)

 23

● Historical analysis gives clarity about the state of the testsuite

● More & nastier development work needed to make Bunsen adaptable

● Bunsen development roadmap:

– High priority – more work on the DejaGNU parser(s)

– High priority – more options for getting logs into the Bunsen repo

– High priority – more configurations (no ‘modify script to configure’)

– High priority – repo bookkeeping (update/delete/gc testruns)

– Medium priority – email reporting

– Medium priority – better web interface (with Flask framework)

– Low priority – hardening the web interface

Conclusions

 24

● Brief overview of parser & test result availability for projects:

– SystemTap: solid parser; (private) CI active; (private) archives.
● Some info on our CI system in blog post 1, blog post 2

– GDB: solid parser (thanks to Keith Seitz); CI defunct; no archives.
● https://gdb-buildbot.osci.io/#/

– glibc: no parser; CI in-progress; no archives.
● https://sourceware.org/glibc/wiki/CICDDesign

– gcc: no parser; CI active; no archives.
● https://gcc.gnu.org/jenkins → huge firehose of data.

● ‘Best practice’ for extracting data from CI on ongoing basis?

● Usefulness of retroactive testing?

Conclusions & Questions

https://developers.redhat.com/blog/2021/05/06/automating-the-testing-process-for-systemtap-part-1-test-automation-with-libvirt-and-buildbot
https://developers.redhat.com/blog/2021/05/10/automating-the-testing-process-for-systemtap-part-2-test-result-analysis-with-bunsen
https://gdb-buildbot.osci.io/#/
https://sourceware.org/glibc/wiki/CICDDesign
https://gcc.gnu.org/jenkins

 25

● Bunsen project

– Examples for this talk → https://people.redhat.com/~smakarov/2021-lpc-talk/

– https://sourceware.org/git/?p=bunsen.git;a=summary

– mailto:bunsen@sourceware.org

– https://github.com/serhei/bunsen

● SystemTap project

– https://sourceware.org/systemtap/

– https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary

– #systemtap on OFTC

● Special thanks to: Keith Seitz, Frank Ch. Eigler, Martin Cermak

Thank You

https://people.redhat.com/~smakarov/2021-lpc-talk/
https://sourceware.org/git/?p=bunsen.git;a=summary
mailto:bunsen@sourceware.org
https://github.com/serhei/bunsen
https://sourceware.org/systemtap/
https://sourceware.org/git/gitweb.cgi?p=systemtap.git;a=summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

