
Deterministic Storage Performance

'The AWS way' for Capacity Based QoS with OpenStack and Ceph

Kyle Bader - Senior Solution Architect, Red Hat
Sean Cohen - A. Manager, Product Management, OpenStack, Red Hat
Federico Lucifredi - Product Management Director, Ceph , Red Hat

May 2, 2017

Block Storage QoS in the public cloud

WHY DOES IT MATTER?

Every Telco workload in OpenStack today has a DBMS dimension to it

QoS is an essential building block for DBMS deployment

Public Cloud has established capacity-based QoS as a de-facto standard

It’s what the user wants

PROBLEM STATEMENT
Deterministic storage performance

● Some workloads need deterministic performance from block storage volumes

● Workloads benefit from Isolation from “noisy neighbors”

● Operators need to know how to plan capacity

BLOCK STORAGE IN A PUBLIC CLOUD

● Ephemeral / Scratch Disks
○ Local disks connected directly to hypervisor host

● Persistent Disks
○ Remote disks connected over a dedicated network

● Boot volume type depends on instance type
● Additional volumes can be attached to an instance

The basics

THE AWS WAY

● AWS EBS
○ EBS-backed instances
○ SSD-backed volumes
○ HDD-backed volumes

● Dynamically re-configurable at runtime
○ Mount (boot or runtime)
○ Resize

● Monitoring
○ CloudWatch metrics

● Automation
○ CloudFormation

Elastic Block Storage

EBS Volumes: an example

● I/O Provisioned gp2 volume
○ Baseline: 100 IOPS

■ + 3 IOPS per GB (up to 10,000 IOPS)
○ Burst: 3,000 IOPS (up to 1 TB)
○ Thruput: 160 MB/s
○ Latency: single-digit ms
○ Capacity: 1 GB to 16 TB

General purpose SSD

THE AWS WAY

● Flavors
○ Magnetic ~100 IOPS and 40 MB/s per volume
○ General Purpose SSD (3 IOPS/GB)
○ Provisioned IOPS (30 IOPS/GB)

● Elastic Volumes
○ gp2, io1, st1, sc1 volume types
○ increase volume size (cannot shrink!)
○ Change provisioned IOPS
○ Change volume type

● Single dimension of provisioning: amount of storage also provisions IOPS

Elastic Block Storage

THE GOOGLE WAY

● Google Compute
○ Baseline + capacity-based IOPS model
○ Can resize volumes live
○ IOPS and throughput limits

■ Instance limits
■ Volume limits

● Media types
○ Standard Persistent Disk - Spinning Media (0.75r/1.5w IOPS/GB)
○ SSD Persistent Disk - All Flash (30 IOPS/GB)

Persistent Disk

WHY
We can build you a private cloud like the big boys’

● AWS EBS provides a deterministic number of IOPS based on the capacity of the
provisioned volume with Provisioned IOPS. Similarly, the newly announced throughput
optimized volumes provide deterministic throughput based on the capacity of the
provisioned volume.

● Flatten two different scaling factors into a single dimension (GB / IOPS)
○ Simplifies capacity planning for the operator
○ Operator increases the available capacity by adding more to distributed backend

■ more nodes, more IOPS, fixed increase in capacity

● Lessens the user’s learning curve for QoS
○ Meet users expectations defined by ‘The’ Cloud

Block Storage QoS in OpenStack

OPENSTACK FRAMEWORK TRENDS
What are users running on their clouds?

OPENSTACK CINDER DRIVER TRENDS
Which backend are used in production?

BLOCK STORAGE WITH OPENSTACK
The Road to Block Storage QoS in Cinder

● Generic QoS at hypervisor was first added in Grizzly
● Cinder and Nova QoS support was added in Havana
● Stable API starting Icehouse and ecosystem drivers velocity
● Horizon support was added in Juno

● Introduction of Volume Types, classes of block storage with different performance profiles
● Volume Types configured by OpenStack Administrator, static QoS values per type.

Frontend: Policy applied to Compute, Limit by
throughput

● Total bytes/sec, read bytes/sec, write bytes/sec
Frontend: Limit by IOPS

● Total IOPS/sec, read IOPS/sec, write IOPS/sec

Backend: Policy applied to Vendor specific fields

● HP 3PAR (IOPS,: min, max; BWS: min, max, latency,
priority)

● Solidfire (IOPS: min, max, burst)
● NetApp (QoS Policy Group) through extra specs
● Huawei (priority) defined through extra specs

BLOCK STORAGE WITH OPENSTACK
Block Storage QoS in Cinder - Ocata release

Cinder QoS (throughput based)

Gold {vendor:disk_type=SSD,
vendor_thick_provisioned=True}

{}

Silver {} {total_iops_s
ec=500}

Bronze {volume_backend_name=lvm} {total_iops_s
ec=100}

● Deployers may optionally
define the variable
cinder_qos_specs to create
qos specs.

● cinder volume-types may be
assigned to a qos spec by
defining the key
cinder_volume_types in the
desired qos spec dictionary.

BLOCK STORAGE WITH OPENSTACK
Block Storage QoS in Cinder - Ocata release

● QoS values in Cinder currently are able to be set to static values.
● Typically exposed in OpenStack Block Storage API in the following manner:

○ minIOPS - The minimum number of IOPS guaranteed for this volume. (Default = 100)
○ maxIOPS - The maximum number of IOPS allowed for this volume. (Default = 15,000)
○ burstIOPS - The maximum number of IOPS allowed over a short period of time. (Default = 15,000)
○ scaleMin - The amount to scale the minIOPS by for every 1GB of additional volume size.
○ scaleMax - The amount to scale the maxIOPS by for every 1GB of additional volume size.
○ scaleBurst - The amount to scale the burstIOPS by for every 1GB of additional volume size.

BLOCK STORAGE WITH OPENSTACK
Block Storage QoS in Cinder - Ocata release

● Examples:

○ SolidFire driver in Ocata can recognize 4 QoS spec keys to allow specify settings
which are scaled by the size of the volume:

■ ‘ScaledIOPS’ a flag used to tell the driver to look for ‘scaleMin’, ‘scaleMax’ and
‘scaleBurst’ which provide the scaling factor from the minimum values specified by the
previous QoS keys (‘minIOPS’, ‘maxIOPS’, ‘burstIOPS’).

○ ScaleIO driver in Ocata QoS keys examples:
■ maxIOPSperGB and maxBWSperGB used.

● maxBWSperGB - the QoS I/O bandwidth rate limit in KBs.
● The limit will be calculated by the specified value multiplied by the volume size.

BLOCK STORAGE WITH OPENSTACK
Block Storage QoS in Cinder - Ocata release

QoS values in Cinder currently are able to be set to static values
What if there was a way to derive QoS limit values based on volume capacities

 rather than static values….

Capacity Derived IOPs

● A new mechanism to provision IOPS on a per-volume basis with the IOPS values adjusted based
on the volume's size (IOPS per GB)

● Allowing OpenStack Operators to cap "usage" of their system and to define limits based on
space usage as well as throughput, in order to bill customers and not exceed limits of the
backend.

● Associating IOPS and size allows you to provide tiers such as:

Capacity Based QoS (Generic)

Gold 1000 GB at 10000 IOPS per GB

Silver 1000 GB at 5000 IOPS per GB

Bronze 500 GB at 5000 IOPS per GB

New in Pike release

Capacity Derived IOPs

● Allow creation of qos_keys:
○ read_iops_sec_per_gb
○ write_iops_sec_per_gb
○ total_iops_sec_per_gb

● These functions are the same as our current <x>_iops_sec keys, except they are scaled by the
volume size.

Cinder QoS API - New Keys

 QoS Spec Key QoS Spec Value 2 GB Volume 5 GB Volume

Read IOPS / GB 10000 20000 IOPS 50000 IOPS

Write IOPS / GB 5000 10000 IOPS 25000 IOPS

THEORY OF STORAGE QOS

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

Linear

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

Linear

Sub-linear

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

Contention + Coherency Delay

UNIVERSAL SCALABILITY MODEL
SCALE - I do not think it means what you think it means

Contention + Coherency Delay

This is normal, everything is fine.

DISK BASED CLUSTERS
Higher coherency delay due to seeking

● Diminishing returns from
contention

● Negative returns from
incoherency

SSD BASED CLUSTERS
Lower coherency delay, no seeks

● Diminishing returns from
contention

● Negative returns from
incoherency (marginal)

SCALING DIMENSIONS
What scales?

● Increase height of each block with faster media - IOPS limit

● Increase number of blocks by adding more OSD hosts - Volume quota

● Volume quota less relevant for SSDs, low coherency delay

CAPACITY BASED LIMITS
Brought to you by low latency media!

● More small volumes with
low iops

● Less large volumes with
high iops

● Mix and match

RESULTS
Disaggregated Volume Scalability (librbdfio 16KB randrw)

RESULTS
Hyperconverged Volume Scalability (librbdfio 16KB randrw)

RESULTS
Hyperconverged Volume Scalability (kvmrbdfio 16KB randrw)

SUMMARY OF RESULTS
What does it mean to me?

● OSD - 7.2k RPM, writeback cache, SSD journal

● One volume per OSD

● 100 IOPS per volume

● Flash - 500 IOPS per OSD GHz - Intel P3700

The future

CEPH + OPENSTACK QOS

● Magnetic style block volumes - fixed IOPS per volume*

● Provisioned IOPS style block volumes - scaled IOPS per GB*

● General purpose SSD - work in progress, distributed QoS implementation required

* with capacity planning

Where are we, where are we going?

OPENSTACK TOOLS AND GAPS
● Monitoring

○ Telemetry - via Gnocchi plugin for Grafana dashboard
○ QEMU

■ There's an interface in QEMU to request block stats ("info blockstats"
command), also exposed via libvirt but not yet in OpenStack

○ Ceph - RBD client stats socket
○ Event triggering automation (see AWS CloudWatch example)

● Elasticity
○ Change volume types limits
○ You can make the volumes larger (hot-grow) but not shrink them
○ Dynamically re-configurable at runtime

Q&A

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

 @0xF2
 @SeanCohen_RH

