
Convergence in Bluetooth and 802.11 networks

Satyajit Chakrabarti*, Son T. Vuong*, Anirban Sinha**, Rajashree Paul***
 *Department of Computer Science, University of British Columbia, Canada

**Department of Computer Science, Institute of Engineering and Management, India
***School of Computing Science, Simon Fraser University, Canada

satyajit@cs.ubc.ca, vuong@cs.ubc.ca, anirban@ieee.org, rpaul2@cs.sfu.ca

Abstract: Ad Hoc Networks using Bluetooth Technology and
802.11 technology have gained widespread popularity in the
networking community. Whereas Bluetooth technology has
certain obvious advantages like low power consumption and
reliable connection, it has a low area of operation and lower
bandwidth in the order of 721 kpbs. 802.11 technology on the
other hand, has a wider area of operation and therefore very
useful as Access points and higher bandwidth to the order of 11
Mbps in 802.11b. But 802.11 has a higher power consumption
than Bluetooth. Due to popularity of devices fitted with both
Bluetooth and 802.11 chips, we look into ways of collaboration
and convergence between the two technologies. We propose an
architecture for convergence of Bluetooth and 802.11
technologies and propose software switching protocols to
facilitate the smooth handover of connection with minimal loss
of data and without disconnection of service.

1. INTRODUCTION

Bluetooth [1],[2] in the 2.4 GHz ISM band has
emerged the market leader for short range wireless
technology. Bluetooth 1.1 specification grew to include the
formation of Personal Area Networks (PANs) which is
narrower in scope of operation than WLAN. The
standardization of PANs is carried is being carried out by the
802.15 working group [3]. The IEEE 802.11 standard [5], [4]
for WLANs is the most widely used WLAN standard today.
The standard uses the carrier sense multiple access (CSMA),
medium access control (MAC) protocol with collision
avoidance (CA).

In this paper we present a novel architecture for a
hybrid Bluetooth- 802.11 access point and algorithms for
interoperability of Bluetooth and 802.11 on a software
switching level. In section 2 we discuss some relevant
research on interoperability in hybrid networks. In section 3
we propose algorithms for a hybrid network consisting of
Bluetooth and 802.11 devices. We analyse the handoff
latency in our proposed protocol in section 4. In section 5 we
conclude with some directions for future work on this
subject.

2. RELATED WORK

Kansal et al. [11] introduce a Handoff scheme for
Bluetooth devices to allow mobility of devices in Bluetooth
public access (BluePAC) environments. Baatz et al. [8]

concentrates on handoff support for mobility with IP over
Bluetooth. Perkins et al. [6] present a handoff scheme for
mobile IP’s.

The paper by Mishra et al. [9] does a thorough analysis of
the handoff procedure in the 802.11 MAC layer. Kastell et al.
[10] presents security issues involved in hybrid handover
procedures. Pack et al. [12] uses a predictive authentication
for fast handoff’s in 802.1x mode.

3. HANDOFF ALGORITHM

In our hybrid Bluetooth/802.11 network we have
access points that have both the Bluetooth and 802.11
antennae and physical interfacing devices/network cards. The
devices can access the backbone 802.11 network resources
either through the "802.11 AP- 802.11 Client" interface or
through "Bluetooth(BT) AP- Bluetooth Client" interface.
When the client uses its Bluetooth interface, the Access Point
(AP) should be able to forward the Bluetooth packets to the
backbone 802.11 network and the incoming packets from the
802.11 to the Bluetooth interface so that they can be passed
on to the client. However, when the client uses the 802.11
interface, the packets are directly forwarded to the
corresponding 802.11 interface in the AP and from there to
the backbone network.

We propose to introduce a handoff algorithm
through which the client can switch from one network to the
other, either voluntarily (due to his power or bandwidth
requirements) or because his mobility takes him out of the
Bluetooth radio range. When this switching of interfaces
occurs, the application layer must remain oblivious to this
change and a lower software layer must be able to activate
the appropriate interface that the client will use. For this
purpose, we propose to introduce a software engine or
daemon which we call layer of software control (LSC) in
between the TCP/IP and the next lower layer in the hierarchy
(LLC for 802.11 and PPP or L2CAP layer for Bluetooth) that
would take care of the switching between the Bluetooth
device and the 802.11 device both in the client as well as at
the hybrid Bluetooth/802.11 AP. Conceptually this software
engine is common to both the Bluetooth and 802.11 physical
interfaces, as shown in Fig 1. This layer traps all the outgoing
& incoming TCP packets, buffers them appropriately and
then releases them to the lower layers of the stack (after

This paper was published in the proceedings of IEEE sponsored Conference on Software, Telecommunications and
Computer Networks(SoftCOM) 2004

held during October 10-13, 2004 at Split, Dubrovnik (Croatia) and Venice (Italy)
www.fesb.hr/SoftCOM/2004/final program.pdf

deciding which interface to activate) so as to facilitate
smooth handoff.

The application layer can directly send commands to
LSC daemon. For example, when the user wants to
voluntarily switch operation from one network to the other,
he will simply send a specific command to LSC, which is
implemented as API’s and this will, in turn, then activate that
physical interface and divert all outgoing TCP/IP packets to
it & listen for incoming packets from that interface. In other
words, after receiving the commands from the application, it
becomes the responsibility of this layer to initiate a manual
handoff. In order to facilitate this, LSC must send some
direct HCI commands to the Bluetooth physical chip. These
direct commands are Get_Address (for getting PHY address
and CLK information), Create_Connection (connect devive
and set scan mode), Write_Page_Timeout (set time spent on
paging), Read_Scan_Enable (read device configuration
regarding page scan), Write_Scan_Enable (enable device to
enter periodic page scan), Read_Page_Scan_Activity (check
page scan parameters), Write_Page_Scan_Activity (set page
scan parameters).

Figure 1. Conceptual representation of LSC daemon with
respect to 802.11 & Bluetooth protocol stack.

Let us take two specific cases of voluntary handoff
and a single case of natural forced handoff.

A. User is in the radio range of both 802.11 & BT
and wants to voluntarily switch from his currently
running BT-BT communication to 802.11-802.11, possibly
because he needs a higher bandwidth:

1. The LSC layer in client receives request command
from the application layer to switch to 802.11.

2. LSC then sends a control packet destined for the
LSC layer in the Bluetooth AP that this current
client is initiating a manual handoff from BT to
802.11. The control packet also contains the
physical address of the client machine.

3. Client LSC creates a buffer for the unsent TCP/IP
packets during handoff.

4. The LSC layer at Bluetooth AP, after receiving the
control packet creates a buffer for all unsent packets
destined for the client address specified in the
control packet and acknowledges the handoff
request. The acknowledgement packet contains the
channel information about the 802.11 AP where the
client will listen for beacon frames (passive
scanning) or send its probe request (active
scanning), once it switches its interface to 802.11.
Further, at AP, the address information for all such
clients who wishes to switch to 802.11 network is
kept in an address queue. For each item in the
address queue, there exists a buffer of all unsent
data packets from AP for that client.

5. When the acknowledgement packet reaches the
LSC layer of the client, the client LSC deactivates
the Bluetooth interface and activates the 802.11
interface. The 802.11 interface searches for
available 802.11 AP by the scan method. Once the
connection is established, all the unsent packets
destined for the client physical address is sent by the
AP. The unsent packets at the client are also sent.
Reauthentication takes less time as the address of
the client seeking handoff had already been sent to
the AP previously by the LSC control packet.

B. User is in the radio range of both 802.11 and BT
and he wants to voluntarily switch from his currently
running 802.11-802.11 communication to Bluetooth-
Bluetooth communication, possibly because he needs to
save power:

Similar steps are followed as in Case A in steps 1 -
4,as during switchover from BT-BT to 802.11-802.11. In
step 5, BT interface directly goes to the R0 page scan mode
(skips the time-expensive enquiry mode).Since the BT AP
knows about the client address and clock information, it
pages the client with these information until the client
responds. If the client is not in radio range of BT, the BT AP
will make four page attempts to connect to the BT interface
of the client before giving up. This is explained below in the
case when there is a natural handoff from BT to 802.11.
After connection is established, all the unsent packets
destined for the client physical address is sent by the AP, The
unsent packets by the client are also sent.

C. A client running BT connection, moving away
from the BT AP so that it no longer lies in its radio range.
Our design allows to seamlessly switch to the 802.11
network so the client does not feel any break in
connection.

1. BT AP constantly polls the client when the client is
accessing the backbone 802.11 network through BT
interface. The clients respond to these poll packets.

2. The poll packets reach the LSC layer in both the AP
and the client. Polling scheme is round robin, in
which the AP (master) polls each connected BT
(slave) device. Data requirements may be different
for different clients, and the packet duration may be
adjusted for this, using single slot packets for slaves
with low data rate requirements and multi slot
packets of length 3 or 5 for higher data rates.

3. To detect connection loss, the AP keeps a timer and
if no reply occurs for the timeout period, Tpolltimeout,
connection is assumed to be broken. At the mobile
too, a similar procedure is followed, to detect loss of
connection. At both the access point and the mobile
clients, the timeout value, Tpolltimeout, is specified to
be equal to the maximum number of slots that may
pass between two successive turns. One poll round
time takes s x 2 x l where s is the number of clients
(slaves) attached to the AP (master). Assuming s = 7
(can vary from 1 to 7) and l=5 (maximum), Tpolltimeout
= 70 slots which is the worst case value. If the AP
needs to communicate with more than 7 slaves, it
can do so by instructing active slave devices to
switch to low power park mode and inviting other
parked slaves to become active in the piconet. This
can be repeated to allow a master to serve a large
number of slaves.

4. Each Bluetooth AP finishes its poll round and
checks if the address queue has any pending
addresses of clients trying to connect to BT from
802.11. If there is such an element in the queue, the
AP sends a HOLD message to all its connected
clients to suspend their connection loss detection
timers for a period of TAP_Page.

5. BT AP then pages the mobile client using the
address and clock information received. The clients
resume their connection loss detection poll timers
either on the expiry of the TAP_Page, or if the AP
sends a regular poll packet before that. TAP_Page is the
maximum time an access point spends on paging for
a slave who switches over from 802.11 to BT.

All incoming data packets for all the BT clients must

also be buffered so as to be delivered once the HOLD stage
is over which is equal to TAP_Page. Since we configure the
clients to use the R0 page scan mode, each page train needs

to be attempted only once by the AP, which means that both
the trains can be tried out in 32 slots. Four page attempts are
made for robustness, leading to TAP_Page equal to 128 slots,
which is 80 milliseconds. Thus, the worst case time required
to discover a break in BT-BT connectivity is Tpolltimeout +
TAP_Page = 70 + 128 slots = 198 slot time (about 124
milliseconds). Since it is possible that the mobile clients
move out of the BT range during the HOLD period, we do
the following: as the clients will discover that they are out of
range only when the HOLD period is over, they will start
scanning for 802.11 AP's beacon after the HOLD period. At
the same time, the Bluetooth AP will also discover that the
particular client is out of the BT range only after the HOLD
stage, i.e. both client and AP discover the switchover at the
same time. The AP keeps track of the addresses of those
Bluetooth clients which are detected as lost & then looks
forward for a connection request from the client.

When a client moves away from the BT radio range, the
loss of connection is detected at the first unsuccessful poll
attempt because only one poll attempt can occur within
Tpolltimeout period after a successful poll. Since the round robin
poll always occurs within this time, live BT-BT connections
will be able to refresh the timeout counter before timeout.

Once a poll timeout occurs, the LSC at AP immediately
forwards the address of this client to the 802.11 interface AP
so that when this client connects to 802.11 network, the
authentication will take less time. Meanwhile, loss of
connection will also be detected by the client due to lack of
arrival of the poll packets from the Bluetooth AP after an
interval of Tpolltimeout. The client will then activate the 802.11
interface and go to the scan mode to discover the closest
available 802.11 AP. When the 802.11-802.11 connection
gets established, the unsent data packets from either end are
sent.

One important consideration is the length of the address
queue that we need to keep at both the 802.11 and Bluetooth
side. The number of elements in this queue depends on the
number of clients that switch between the network in a
specified time interval. In order to accommodate the fact that
the queue can be very large in a region where the clients
move very fast or they voluntarily switch network frequently,
we follow the following procedure. The AP completes one
round of polling all the attached clients and then checks to
see if the address queue has any elements. If an element
exists, it pages that device. The AP processes a single
element of the queue at a time between each round of polling.
This ensures that the existing clients are not kept waiting for
indefinite time while the AP pages for new devices. On the
802.11 side, the AP's are discovered by the mobile clients
themselves from the beacons and so there does not arise any
problem if the address queue is large.

Since we cannot modify the existing accepted TCP/IP
headers or introduce new header for LSC because that would
lead to serious backward incompatibility, we need to device
some technique so as to distinguish LSC control packet from
ordinary data packets. For this reason, we use the 6 unused
bits in the TCP header between “TCP header length” field
and “URG” flag. When all six of these bits are set to 1 (i.e.,
111111), this signifies to te remote LSC engine that the
packet is a dummy TCP packet sent by the transmitter and
contains control information in the data area of the packet for
handoff. A dummy TCP packet looks like an ordinary
TCP/IP packet, but it is not sent by any client for data
transfer. It is generated by the LSC alone & actually contains
the following information bits in the data area that facilitates
handoff :-

1. A single bit RQ/RES denoting whether it’s a client
request packet or server response packet. When set,
this signifies client request. Otherwise its server
response.

2. Two bits HREQ signify whether a switchover from
802.11 to Bluetooth or vice versa is requested.
00 => Client switching off both its interfaces
01 => 802.11 to Bluetooth switchover is requested.
10 => Bluetooth to 802.11 switchover is requested.
11 => Not used.

3. Bits (variable) denoting address and clock
information of the client. Relevant only when
RQ/RES bit is set. It is used when the client
switches over from 802.11 to Bluetooth, i.e., HREQ
bit is 01.

4. Bits (variable length, depending on the physical
medium used) CH denoting the channel information
of the 802.11 AP that will be used by the clients
when switching over from Bluetooth to 802.11. It is
relevant only when RQ/RES bit is reset.

When the six unused bits of the TCP header is not all
set, it indicates that the packet is a normal TCP datagram sent
by any mobile host for data communication. Table 1 shows
the API’s that are available with LSC which any application
programmer may use to interface his program with LSC for
seamless handoff.

Table 1: API’s available with the LSC for use.

4. ANALYSIS OF THE PROTOCOL

We take up all the three cases discussed above one after
the other. In each of these cases, we split the total handoff
process into three phases, detection, search and execution.

Case 1: When the client is operating using the Bluetooth-
Bluetooth interface and voluntarily switches to 802.11.

a. Detection of Handoff:

Here, the AP detects that a handoff is requested by
using the LSC control frame. Once it receives the LSC
control frame, it sends its response in the next slot. Assuming
the length of the packet to be of 5 slots, the total delay is 10-
slot time, which is about 6 milliseconds. Once the Bluetooth
AP receives the response, it switches its interface from
Bluetooth to 802.11 and goes to the scanning mode.

b. Search:
Searching by 802.11 clients for possible nearest AP

takes place ONLY in a single channel as was sent by the
acknowledgement packet when the client requested a
handoff. Thus, even in the active scanning mode, the
scanning time is reduced.
According to the analysis done in [7], we note that
MinChannelTime= DIFS + (aCWmin + saSlotTime).
According to 802.11b standard, aCWmin= 31 slots,
aSlotTime= 20µsec and DIFS = 50µsec.
Thus MinChannelTime=670 µsec.
Using the analysis in the paper MaxChannelTime=10.24 ms.
Now, in our case, the client scans only one single channel.
Assuming that there is equal probability for this channel to be
unused as well as to be free,
Total Search Time, s = (Tu + Te) / 2 where Tu= Time needed
to scan a used channel and Te = Time needed to scan an
empty channel.
Now, Tu= 2Td + MaxChannelTime & Te = 2Td +
MinChannelTime
Using Td = 65 ms (for 20 stations), Tu = 140.24 ms & Te =
130.67 ms; So, s = 135.5 ms

c. Execution of Handoff:
Now worst-case handoff execution time is 3 ms using a
Spectrum24 card.

Thus, total handoff latency : 6 + 135.5 + 3 ms = 144.5 ms

Case 2: When the client is operating using the 802
interface and voluntarily switches to Bluetooth.

a. Detection of Handoff:

Here, a control packet is sent by the LSC layer of
the client to inform the 802.11 AP that it needs to initiate a
handoff to Bluetooth. When the 802.11 AP acknowledges,
the client switches over. If we ignore the time taken for the
packets to travel, the overall delay in this case would be very

API Description
Activate_Bluetooth() Activates Bluetooth interface

Activate_Wlan() Activates 802 interface

Read_current_interface() Returns the current interface

Send_control() Sends control signal to interface
Read_control() Reads control signal to interface
Send_control() Sends control signal to interface
Send_Hold() Sends Hold signal to interface
Create_buffer() Creates local buffer
Acknowledge_request() Acks request to interface

low and hence we neglect the delay in this packet
transmission.

b. Time taken to resume Bluetooth-Bluetooth connection:

The time taken to resume connection depends on the
number of elements in the address queue (i.e., clients who are
willing to switchover from 802.11 to Bluetooth and have sent
their requests). Since maximum number of active slaves in a
piconet is 7, we assume that already 6 addresses are present
in the queue when the 7th one arrives. Time taken to process
each of the preceding 6 addresses as well one round polling
through all the attached slaves is:
TAP_Page + (1×2×5) + TAP_Page + (2×2×5) + TAP_Page + (3×2×5) +
… +TAP_Page + (6×2×5)
since one poll round = s × 2 × l slots where s = number of
slaves, l = slot length of the packet and s increases as each
slaves get attached to the AP (master).
The above expression equals 6 * TAP_Page +210 slots =
128+210 = 338 slot-time = 212 milliseconds.
But, for all practical purposes, this value would be much less
as probability for simultaneous 7 handoff requests coming
from the clients for 802.11 to Bluetooth switchover is very
very less.
Now, for the current address (7th), paging takes
approximately 16 slots in R0 scan mode. This is
approximately 10 milliseconds.

Thus, total delay in the worst case is 222 milliseconds.

Case 3: When the client is operating using the Bluetooth-
Bluetooth interface and moving away from the Bluetooth
radio range.

a. Detection of Handoff:
The time taken to detect loss of connection is

Tpolltimeout when no paging attempt takes place. If however,
paging attempt is taking place then worst case duration
within which a break in connection will be detected is
Tpolltimeout + TAP_Page = 70 + 128 slots = 198 slot time (about
124 milliseconds) as was discussed before.
Thus, the time to detect break in connection is much less than
that when a normal handoff between two 802.11 AP takes
place using any 802.11b physical cards [7].

b. Search & Execution of Handoff:
Search for possible nearest 802.11 AP and then

finally execution of the handoff procedure takes place by
normal 802.11-802.11 handoff mechanism (active scanning
by 802.11 client). Worst case time required for search and
execution using D-Link 520 802.11 interface is 290
millisecond as is analyzed in [7].

So total handoff latency is 124+290 ms = 414 ms

5. CONCLUSIONS AND FUTURE WORK

In this paper we introduced Handoff algorithms’ for

different scenario’s of switching from a Bluetooth AP-
Bluetooth Client connection to 802.11 AP – 802.11 Client
and vice versa. We have modified the current protocol stack
of Bluetooth and 802.11 to introduce a new layer LSC for
interoperability. We have designed the header for messages
in the LSC and shown the delay analysis on various
handoff’s.

We propose to implement the LSC daemon as an
external kernel module that can be attached using ‘insmod’
command in unix. The exact implementation and evaluation
of this daemon as kernel module is left as a future extention
of this work in another paper.

REFERENCES

[1] Jennifer Bray and Charles F Sturman, Bluetooth :
Connect Without Cables, Prentice Hall, 2001.
[2] "The Bluetooth SIG," http://www.bluetooth.com.
[3] IEEE 802.15 Working Group for WPAN standards.
http://grouper.ieee.org/groups/802/15.
[4] IEEE Std 802.11 - Wireless LAN MAC and Physical
Layer (PHY) specifications. The IEEE, Inc., 1999.
[5] IEEE 802.11 Working Group Task Group.
http://grouper.ieee.org/groups/802/11/main.html
[6] C. E. Perkins, K.-Y. Wang, “Optimized Smooth Handoffs
in Mobile IP”, Proceedings of the Fourth IEEE Symposium
on Computers and Communications, July, 1999
[7] H. Velayos, G. Karlsson, “Techniques to Reduce IEEE
802.11b Handoff Time”, in the proceeding of IEEE ICC
2004, Paris, France, June 2004.
[8] S. Baatz, “Handoff Support for mobility with IP over
Bluetooth”, at the 25th Annual Conference on Local
Computer Networks (LCN ’00), Tampa, November 2000.
[9] A. Mishra, M. Shin, W. Arbaugh, “An Empirical
Analysis of IEEE 802.11 MAC layer Handoff process”,
ACM SIGCOMM Computer Communication Review,
Volume 33 Issue 2, April 2003
[10] K. Kastell, U. Meyer, R. Jakoby, “Secure Handover
Procedures”, in the proceedings of CIC 2003.
[11] Aman Kansal, “A Handoff Protocol for Mobility in
Bluetooth Public Access”,Proceedings of the 15th ICC, 2002.
[12] S. Pack, Y. Choi, "Pre-Authenticated Fast Handoff in a
Public Wireless LAN based on IEEE 802.1x Model," IFIP
TC6 Personal Wireless Communications 2002, Singapore,
pp.175-182, October 2002.
[13] Pravin Bhagwat, “Bluetooth: Technology for Short-
Range Wireless Apps” , IEEE Internet Computing, June
2001
[14] Mustafa Ergen, IEEE 802.11 Tutorial, UC Berkeley,
June 2002.

