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Abstract

Time-sensitive applications that are also CPU intensive like video games,

video playback, eye-candy desktops etc. are increasingly common. These

applications run on commodity operating systems that are targeted at di-

verse hardware, and hence they cannot assume that sufficient CPU is al-

ways available. Increasingly, these applications are designed to be adaptive.

When executing multiple such applications, the operating system must not

only provide good timeliness but also (optionally) allow co-ordinating their

adaptations so that applications can deliver uniform fidelity.

In this work, we present a starvation-free, fair, process scheduling algo-

rithm that provides predictable and low latency execution without the use

of reservations and assists adaptive time sensitive tasks with achieving con-

sistent quality through cooperation.We combine an event-driven application

model called cooperative polling with a fair-share scheduler. Cooperative

polling allows sharing of timing or priority information across applications

via the kernel thus providing good timeliness, and the fair-share scheduler

provides fairness and full utilization.

Our experiments show that cooperative polling leverages the inherent

efficiency advantages of voluntary context switching versus involuntary pre-

emption. In CPU saturated conditions, we show that the scheduling re-

sponsiveness of cooperative polling is five times better than a well-tuned

fair-share scheduler, and orders of magnitude better than the best-effort

scheduler used in the mainstream Linux kernel.
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Chapter 1

Introduction

1.1 Motivation

The difference between traditional real time and commodity operating sys-

tems has become increasingly blurred over time. On one hand, the demand

for using more and different kinds of multimedia capable time sensitive1

applications on a commodity operating system has gone up. On the other

hand, the need for running non-real time, best effort applications on an

otherwise dedicated real time embedded core has increased. The important

challenges are therefore to provide predictable timeliness for the time sen-

sitive applications in a system running other best effort applications. At

the same time, it is important not to compromise the overall throughput

of the system significantly. Often, these time sensitive applications are also

CPU intensive. Since they are targetted at running under diverse hard-

ware platforms, they are also adaptive in nature. When multiple adaptive

time sensitive applications run on a single system, it is important to provide

mechanism that can facilitate coordinated adaptation, so that the fidelity is

stable across all applications.

The classic approach to best effort scheduling is the well known multi-

level feedback queue scheduling algorithm [5, 34]. In this work, we focus on

the Linux kernel that also uses the above scheduling algorithm for scheduling

tasks[7]. The salient features of the algorithm is as follows: The algorithm

uses priorities for each task. Within each priority level, each task is sched-

uled according to the first-in, first-out (FIFO) principle. It then tries to

classify applications either as CPU intensive or IO intensive based on how

1In this thesis, we use the words time sensitive and realtime interchangeably to mean
one and the same thing - soft realtime, primarily multimedia applications.
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Chapter 1. Introduction

long and how often the task spends time sleeping. It then prioritizes the

ones it thinks are IO intensive over the CPU intensive ones. This clas-

sification is workload dependent and dynamically varies with time. This

best effort strategy does not ensure predictable timeliness as far as the re-

altime applications goes. Further, the heuristics break when workloads are

both IO and CPU intensive in nature. Examples of such workloads include

multimedia streaming applications, databases, most web servers, etc. Fur-

ther, preemptive kernel scheduling policies introduce unpredictable timing

behavior, especially in the presence of issues such as priority inversion, lock

preemption, livelock, deadlock, etc. As a result, applications that are time-

sensitive may not run at the desired time, get the desired allocation, or may

miss important deadlines, and these problems are hard to understand or

debug. Preemption in an uninformed fashion also interacts badly with the

adaptation logic in adaptive multimedia applications, resulting in their poor

adaptation.

In general, scheduling for general purpose systems is an issue of tradeoff

between responsiveness and throughput. Traditionally kernel designers have

favored throughput over responsiveness in their algorithm design. Our ap-

proach tends to find a better balance between the two. Also, it is our belief

that unpredictable timing is more aggravated by the fact that time-sensitive

applications are not aware of the timing requirements of other time-sensitive

applications. If such applications were aware of the timing requirements of

other applications, they may be able to accommodate the others, and vice

versa. Furthermore, by sharing timing information, these applications may

be able to more effectively adapt their behavior while still preserving timeli-

ness during overload. For realtime systems, previous approaches have relied

on CPU time reservations for real time processes to ensure proper timeli-

ness. However, this approach has several disadvantages for a general purpose

operating system. First, reservations result in potential underutilization of

the system. To ensure proper timeliness, users are often tempted to over

allocate CPU for real time tasks. Over allocation can adversely affect the

throughput of the system. Secondly, in a commodity environment, with a

mix of real time and best effort applications, the system is overloaded most

2



Chapter 1. Introduction

of the time. Hence, reservation is not a feasible option.

This thesis describes a novel scheduling algorithm based on a combi-

nation of cooperative polling and a fair share scheduler that enables time-

sensitive and best-effort tasks to co-exist in a tightly unified framework. In

doing so, we remain careful so as not to be unfair to best effort applications

in terms of their throughput. We also avoid using reservations for real time

tasks. In this present work, we have focus more on the real time tasks and

not so much on the best effort tasks. Evaluation of our kernel implemen-

tation for various kinds of best effort workloads is left as a future work for

this thesis.

1.2 Our Approach

Cooperative polling uses a new system call called coop poll that time-

sensitive applications use to share event information such as deadlines and

priorities with the kernel. Across applications, intra-application event dis-

patchers use this shared information to determine appropriate times to yield,

and optionally to achieve co-ordinated quality adaptations. By yielding

in an informed fashion, applications minimize involuntary preemption thus

achieving more predictable timing. Our kernel scheduler uses the informa-

tion available from coop poll to provide better responsiveness to applica-

tions that use coop poll, hence providing an incentive for such cooperation.

Besides rewarding cooperation among time-sensitive tasks, our model which

combines fair-share scheduling, enables two other significant contributions:

a) we use preemptive scheduling to prevent the possibility of coop poll be-

ing abused (either intentionally or otherwise) to gain unfair advantage, and

b) unlike existing approaches that have attempted to integrate conventional

real-time scheduling algorithms into general-purpose operating systems with

limited success, our approach allows time-sensitive and best-effort tasks to

co-exist in a tightly unified framework.

3



Chapter 1. Introduction

1.3 Research Objectives

In this work, we present a novel starvation free scheduling algorithm in

the kernel that meets three important requirements for supporting adap-

tive time-sensitive applications in a general-purpose OS: a) good timeliness:

tasks must receive predictable and low latency execution even under CPU

saturation conditions, b) fairness: long term throughput of all tasks (or fi-

delity of the time-sensitive tasks) should be assured, avoiding starvation,

and c) full utilization: unnecessary idle periods should be avoided (work

conservation). We meet these requirements by combining an event-driven

application model called cooperative polling with a fair-share scheduler. Co-

operative polling allows sharing of priority information across applications

via the kernel. It thus provides good timeliness and the fair-share scheduler

provides fairness and full utilization.

1.4 Contributions

This thesis makes the following contributions:

• Design of a novel cooperative polling scheduling algorithm that allows

adaptive time sensitive applications to coexist along with best effort

tasks in a commodity operating system environment satisfying the

objectives above.

• Implementation of the algorithm in the Linux 2.6.20 kernel.

• Modification of the existing adaptive media streaming application Qstream

[21, 24] at the user level to benefit from the new coop poll system

call infrastructure.

• Performance evaluation of the algorithm showing that our algorithm

performs many times better under overloaded conditions than the

stock 2.6.20 Linux kernel scheduler.

4



Chapter 1. Introduction

1.5 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 describes our

scheduling algorithm and the cooperative polling mechanism. It goes on

to describe some of the details of our kernel implementation. It further

provides a brief description of the user level prototype of our scheduling

algorithm from which the kernel design followed. Chapter 3 focuses on

the performance evaluation of our implementation in the kernel against a

multimedia workload. It also shows how our algorithm performs many times

better than the stock Linux kernel heuristics. We review some of the related

work in this space in Chapter 4. Chapter 5 discusses some of the most

important future works in this area and then summarizes the work and

finally concludes.

5



Chapter 2

Algorithm Design and

Implementation

In this chapter, we discuss the algorithms and design principles behind our

scheduler implementation. We also give some details about our actual ker-

nel implementation as we describe these algorithms. In the beginning, we

describe our event driven programming model at the user level and how

we modify this model to use our new coop poll primitive. This is only

described in the algorithmic level since its actual implementation was al-

ready available to us prior to starting this work. Later on, we describe

our coop poll primitive and our kernel scheduling algorithm in detail. We

describe how coop poll has been integrated into the whole scheduling al-

gorithm. We also give important details of our kernel implementation of

coop poll and our overall scheduling algorithm.

2.1 Cooperative Polling

The cooperative polling model aims to provide support for applications that

require timeliness and that adapt during overload. This model is event-based

and makes certain assumptions which we collectively refer to as reactive

programming. The distinctive aspect of our model is that it enables inter-

application cooperation by sharing event information with the kernel and

across applications.

We discuss these aspects of the model below.

6



Chapter 2. Algorithm Design and Implementation

2.1.1 Reactive Programming

The cooperative scheduling model is founded on the principles of reactive

programming described below, which are assumed by the design of cooper-

ative scheduling outlined in the subsequent section.

1. The model is event-driven with a per-thread event dispatcher that

operates independently of event dispatchers in other threads. Program

execution is a sequence of events (function invocations) that are run

non-preemptively or cooperatively.

2. Events must avoid actions that can block or sleep.

3. Events should avoid long running computations.

Although not universal to all reactive models, the implementation of the

reactive model in the Qstream application executes events atomically. This

lack of preemption frees the programmer from the need to use locking and

synchronization primitives required in multi-threaded programs.

The second rule against blocking is generally challenging to satisfy in

practice. However, Qstream uses an asynchronous I/O subsystem that eases

programming significantly. The third rule may seem the most counter in-

tuitive. Obviously, long computations may be inherent to the task at hand

(e.g., decompressing video). However, most long computations use loops and

this rule simply means that reactive programs must divide the iterations of

long running loops into separate events. The focus on short non-blocking

events promotes a environment that allows software to quickly respond to

external events when they occur and hence the name reactive.

Figure 2.1 lists the key primitives in our scheduling model. The applica-

tion calls submit to submit an event for execution. To initiate dispatching of

events, the application calls run, which normally runs for the lifetime of the

application. The application must submit at least one event before calling

run, and it calls stop from within one of its events to end the dispatching

of events. The application can also call cancel to revoke an event it had

previously submitted.

7



Chapter 2. Algorithm Design and Implementation

submit(EventLoop l, Event e);

cancel(EventLoop l, Event e);

run(EventLoop l);

stop(EventLoop l);

Figure 2.1: Basic event API

struct Event{

enum {BEST_EFFORT, DEADLINE } type;

Callback callback;

TimeVal deadline;

int priority;

// ...

};

Figure 2.2: Event type definition

2.1.2 Events, Event Loop and Scheduling Policy

The scheduling policy component of our model aims to provide predictable

timing by reducing scheduling latency.

Figure 2.2 shows the type definition of an event. An application specifies

each event as either a best-effort (also sometimes referred to as an asap

event) or a deadline event. The callback field specifies the function that

will handle the event and any data arguments to be passed. The deadline

field specifies an absolute time value. Deadline-based events are not eligible

for execution until the deadline time has passed. Throughout this thesis,

we use the above notion of deadline events consistently. This notion of

deadline in our work is opposite to the common understanding of deadlines

where it is used to mean the time at which a work should finish. However,

we prefer to stick to our former definition. Once eligible, deadline events

take priority over all best-effort events.

The priority field is used by best-effort events. It is up to the appli-

8



Chapter 2. Algorithm Design and Implementation

cation to use priorities to control execution order. For example, in a video

application it is important to keep sound uninterrupted because users are

sensitive to audio glitches. Hence, the application would assign a high prior-

ity to events related to servicing the audio output device. When best-effort

events have the same priority, the deadline field is overloaded and used as a

secondary sort key for ordering best-effort events.

Figure 2.3 shows the the event dispatch algorithm (or simply the event

loop) used by Qstream. The deadline and best-effort events are stored in

the deadline events and the best effort events priority queues, and the

submit and cancel operations are realized by insertion and removal from

these queues. These operations are idempotent and have no effect if the

event is already submitted or canceled, or is a null event.

The dispatcher simply services all events as provided by the application

even when events arrive faster than they are dispatched. This approach

can cause the queue fill levels to increase, perhaps unboundedly, if over-

load is persistent (e.g., the CPU is just too slow for the given application).

However, Qstream chooses this approach because it makes the scheduling

policy and the dispatcher simple and predictable. Also, Krasic, while design-

ing Qstream believed that effective overload response requires application-

specific adaptation. The QStream video client implements such adaptation

by reducing the generation of certain events and invoking cancel for some

existing events to skip the less important steps (e.g. of video decoding) as

necessary to maintain timeliness [23].

2.1.3 Inter-application Cooperation

We improve kernel scheduling performance and enable cooperation between

time-sensitive applications with one new primitive, coop poll. This func-

tion voluntarily yields the processor and facilitates sharing of event infor-

mation between the kernel and time-sensitive tasks. The detail algorithmic

description of the user level prototype of coop poll is discussed in Sec-

tion 2.2.1 and that of the kernel implementation in Section 2.3.2. In this

section, we describe coop poll in the context of the event dispatcher. The
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run(EventLoop l)

{

do {

if(head_expired(l.deadline_events)) {

e=q_head(l.deadline_events);

callback_dispatch(l,e);

cancel(l,e);

}

else if (q_not_empty(l.best_effort_events)) {

e = q_head(l.best_effort_events);

callback_dispatch(l,e);

cancel(l,e);

}

else {

yield(l);

}

} while (l.stop!=True);

}

yield(EventLoop l) {

if(q_not_empty(l.deadline_events)) {

sleep_until_next_deadline;

} else{

l.stop = True;

}

}

Figure 2.3: Event dispatcher algorithm (or the event loop)

10
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primitive coop poll takes one IN and one OUT parameter. The IN pa-

rameter specifies the most important deadline and best-effort events in the

current thread. These values are used to wake up the thread at its next

deadline, or when its best-effort event has the highest priority among all

threads within a cooperation group. The concept of cooperation group is

further explained in Section 2.3.1 when we discuss scheduling domains.

When the coop poll call returns, the OUT parameter is set to the most

important deadline across all other threads and the most important best-

effort events within the current task’s cooperation group. This information

is used by the current thread to yield the processor as well as by the kernel

to decide its overall scheduling policy.

Figure 2.4 shows the use of the coop poll call in a modified yield

function that enables inter-process cooperative scheduling. The run routine

remains unchanged from Figure 2.3. This yield function is designed so

that events are executed across threads in the same order as events in the

single-threaded dispatcher function shown in Figure 2.3.

The first two arguments in the call to coop poll export the thread’s

own most important deadline and best effort events. To enable sharing, we

add two proxy events to the event loop state, coop deadline event and

coop best effort event, that act on behalf of other applications. The

deadline and priority values of these proxy events are set by coop poll to

reflect the most important deadline and best effort event of all the other

applications. After the coop poll call, the proxy events are submitted to

their respective event queues in the current thread. The callback function for

these events is set to yield so that the current thread yields voluntarily to

other applications in the callback dispatch routine shown in Figure 2.3.

The cancel calls at the beginning ensure that the event queues contain

only events internal to the current process. This in turn prevents yield from

spinning where a thread transitively yields to itself.

11
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yield(EventLoop l) {

cancel(l, l.coop_deadline_event);

cancel(l, l.coop_best_effort_event);

if (q_non_empty(l.deadline_events) ||

q_non_empty(l.best_effort_events)) {

struct inParam in =

{

.dead_ev = q_head(l.deadline_events),

.best_ev = q_head(l.best_effort_events),

};

struct outParam out =

{

.dead_ev = NULL,

.best_ev = NULL,

};

// coop_poll sleeps until next deadline

coop_poll(in, &out);

l.coop_deadline_event.callback =

l.coop_best_effort_event.callback = yield;

submit(l, l.coop_deadline_event);

submit(l, l.coop_best_effort_event);

} else {

l.stop = True;

}

}

Figure 2.4: Dispatcher support for inter-application cooperation

12
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struct SharedMemoryArea {

struct mutex_type m;

struct CoopSlot Slots[MAX_SLOTS];

//...

};

Figure 2.5: Definition of the shared memory area

2.2 The User Level Prototype

In this section, we describe briefly the design of the prototype of our schedul-

ing algorithm at the user level. The prototype was available to us prior to

implementing our algorithm in the kernel. Its main purpose was to give

us an idea about how well (and if at all) the algorithm would work when

we implement it in the kernel. We describe the user level prototype here

because, (a) our kernel implementation initially was largely inspired and

followed from the user level design. (b) in Chapter 3, we describe the results

we got from benchmarking our user level prototype. We then later compare

our kernel implementation results with the prototype results and show that

the kernel outperforms the later in terms of efficiency. We refer to our user

level algorithm to analyze some of these results.

In order to model the cooperation between the Qstream applications

(without the support of the kernel), the prototype uses a user level shared

memory file, shared between all the Qstream applications in a cooperation

group for exchanging event information. Each individual Qstream applica-

tion within a cooperation group owns a specific slot in this shared memory

area where it writes its own deadline and best-effort event information. Fig-

ure 2.5 shows the structure of the shared memory area. The mutex p is

used to protect the area from concurrent accesses. However, note that since

in our cooperative regime, any one application runs at one time, the mutex

contention will be light, if there is any.

Figure 2.6 describes the data structure representing a single slot in the

shared memory area reserved for a specific task in that cooperation domain.

13
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struct CoopSlot {

pid_t id;

TimeVal timeout_deadline;

boolean have_asap;

int asap_priority;

TimeVal asap_deadline;

pthead_cond_t yield_cond;

boolean sleeping;

// other statistics gathering parameters ...

};

Figure 2.6: Definition of a single slot shared memory area

The process ID of that task is pid. The important attributes of this data

structures are the information pertaining to the deadline event (the dead-

line itself), the best effort event (priority and deadline) and a flag value

that shows whether that application has outstanding besteffort events (the

have asap field). One another important attribute is the yield cond at-

tribute. This is a condition variable that is used to implement the actual

yielding logic. In the next section, we describe the qsf co op yield() func-

tion where we explain how this is done. Lastly, the boolean sleeping vari-

able is used to denote whether the application owning that slot is sleeping

(due to voluntary yielding).

In the next section, we describe the yielding logic as implemented in this

prototype.

2.2.1 The User Level qsf co op yield() Routine

Figure 2.4 shows the general cooperative yielding mechanism implemented

in an event loop that uses the kernel coop poll primitive. In the absence

of the kernel primitive, the qsf co op yield() function roughly does the

same operations that a kernel coop poll implementation would do. The

algorithm used by the function qsf co op yield() is shown in Figure 2.7.

The qsf co op yield() routine takes two IN arguments. my slot is

actually a pointer to the current task’s own slot in the shared memory

14
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qsf_co_op_yield (CoopSlot my_slot, CoopSlot ext_slot) {

lock_mutex(SharedMemoryArea.m);

export_deadline_event_info(my_slot);

export_best_effort_event_info(my_slot);

my_slot.sleeping = true;

wake_up(ext_slot.yield_cond);

cond_wait(my_slot.yield_cond, SharedMemoryArea.m);

my_slot.sleeping = false;

import_deadline_event_info();

import_best_effort_event_info();

}

Figure 2.7: User-level coop yield

area. ext slot points to the slot belonging to the external task to whom

the current task wants to yield. This decision is made based upon the

information imported after the current task wakes up. We discuss this later

when we discuss the import routines.

The mutex is locked before the shared memory area is modified. Before

cooperative yielding, the function writes its most important deadline and

best effort event information into its own slot. This is done so that other

external tasks within the same cooperation group may use it to decide the

most appropriate task to yield to. In the routine, this is done by calling the

export deadline event info and the export best effort event info func-

tions. These functions are also responsible for calling cancel() to cancel

external events as described in Section 2.1.3. Note that, if there are no

outstanding best effort events, the current slot’s have asap attribute re-

mains false. Similarly, if there are no deadline events, the current slot’s

timeout deadline attribute is set to all zeros.

Next, the routine sets the current task’s status to sleeping and wakes

up the external task by signaling through its condition variable

(ext slot.yield cond). Subsequently, the routine puts the current task to

sleep by invoking cond wait on its own condition variable. Thus, at the end

of this statement, the new external task is now active and running and the
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old task is inactive and sleeping.

When the current task wakes up from its cooperative yield, it sets its

sleeping attribute to false and imports the external deadline and best effort

event information from the shared memory area. This is done by the

import deadline event info() and import best effort event info()

functions. Each of these two functions iterate through all the slots in the

shared memory area, except its own, and finds the most important (the

earliest) deadline event and the most important best effort event (determined

by the {priority,deadline} dual key). It then schedules the external proxy

events as has been described in Section 2.1.3.

The routine qsf co op yield() models a pure (and ideal) cooperative

scheduling algorithm to reasonable accuracy. In Section 3.8.1, we analyze

the performance of this algorithm.

2.2.2 The User level Fairshare Algorithm

The earlier section described how the cooperative scheduling algorithm was

modelled in the user level. In this section, we describe how we model the

fairshare algorithm in the user level before implementing it in the kernel.

In order to model the algorithm, the import functions described in Sec-

tion 2.2.1 needed to be changed, keeping the rest of the qsf co op yield()

routine the same as before. Two separate import routines were actually

replaced by single one, qsf co op import() which we shall describe a lit-

tle later. The model also introduces a new attribute called virtual time

into the CoopSlot structure shown in Figure 2.6. This new attribute keeps

track of the virtual times of each of the cooperative tasks. Hence, the

export best effort event info(my slot) now writes the virtual time

information for the current task into the shared memory area. The concept

of virtual time is discussed in the next section.

The Concept of Virtual Time

The use of virtual time in designing multimedia-real time schedulers is an

old idea [6]. Virtual time is a technique used by many of these schedulers to
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evenly share the CPU among all the runnable processes. In our work, we use

one particular interpretation of virtual time. Briefly speaking, virtual time

measures the CPU time consumed by a process. It increases monotonically

as the task executes on a CPU. The increase is in exact correlation with the

wall clock time. When a task is context switched out, its virtual time no

longer increases. Thus, the amount of virtual time charged to a process is

an indication of how long the process ran. The only exception to this rule is

when the task sleeps and is no longer in the runqueue. When the task wakes

up again, we assign its virtual time equal to the minimum virtual time of all

the runnable tasks. In this work, the term borrowing is used to refer to this

assignment2. In this specific case, borrowing is only performed from among

the tasks in our scheduling domain (i.e., the tasks that are cooperating with

each other through the shared memory area). The borrowing mechanism

ensures that tasks that sleep can not accumulate CPU entitlements that

would subsequently allow them to starve other tasks. This use it or loose it

approach is an elegant method of accommodating the sporadic requirements

of IO bound tasks. We use this same concept of virtual time both in the

user level prototype implementation as well as our main kernel scheduler

implementation.

The qsf co op import() Routine

Figure 2.8 shows the basic import algorithm used by the user level fairshare

model. It takes one single parameter, the reference to the EventLoop struc-

ture. The purpose of this routine is to first iterate across all the slots in

the shared memory area and find the slot with the smallest virtual time and

having outstanding best effort events. For those slots with no outstanding

best efforts, the target is to find the slot with earliest deadline.

This is an O(n) algorithm where n is the number of slots. This is ac-

ceptable for prototype implementation as n is very small. In our case, we

do not use more than 12 players. Hence, we use no more than 12 slots.

2The readers should not get confused with other different meanings of the term bor-

rowing used in the related literature (e.g., the borrowed virtual time algorithm [10]).
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qsf_co_op_import(EventLoop l)

{

i=0;

smallest_vt_slot = 0;

earliest_dead_slot = 0;

N = find_num_active_slots();

Arr = l.SharedMemoryArea;

while (i < MAX_SLOTS) {

curr_slot = Arr.Slots[i];

if (curr_slot == l.my_slot) goto skip;

if (isEmpty(curr_slot)) goto skip;

if(curr_slot.have_asap)

find_slot_with_smallest_vtime(curr_slot,

smallest_vt_slot);

else

find_slot_with_earliest_dead(curr_slot,

earliest_dead_slot);

skip:

i = i + 1;

}

fair_share_period = max(l.global_period / (2 x N),

l.min_timeslice);

fairshare_deadline = now + fair_share_period;

external_event_deadline = earliest_dead_slot.timeout_deadline;

if (external_event_deadline < fairshare_deadline)

l.coop_deadline_event.deadline = external_event_deadline;

else

l.coop_deadline_event.deadline = fairshare_deadline;

submit(l.coop_deadline_event);

submit(l.coop_best_effort_event);

if (l.my_slot.have_asap != TRUE)

my_slot.virtual_time = smallest_vt_slot.virtual_time;

}

Figure 2.8: The import routine for the user level fairshare model.
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Next, the algorithm calculates the fairshare period according to the

Equation 2.1.

timeslice = max(sched granularity/(2 × N), min timeslice) (2.1)

where N is the number of players and the scheduling granularity is either

a constant or is tunable by the user. min timeslice is a constant in our

algorithm that determines the smallest timeslice a process can get. This is

necessary so as to limit the number of context switches and prevent live lock-

ing. Typically, this value is few hundred microseconds. Division by two for

calculating the fair share period was just a tuning parameter. We decided

not to change it even after we completed our kernel scheduler implementa-

tion.

Fairshare deadline is calculated by adding the fairshare period with the

current time given by the variable now. Depending upon which one of the two

deadlines, the earliest external deadline or the fairshare deadline is earlier,

a proxy deadline event is scheduled for yielding at the appropriate time as

has already been discussed in Section 2.1.3. A proxy best effort event is

also scheduled so that the task may yield to the external process in case it

catches up with all its best effort events (and there are no expired deadline

events).

Finally, as we have discussed in Section 2.2.2, after waking up3, if the

task finds that it had no best effort events before it went to sleep (recall

that the export() routine would keep the have asap attribute cleared if the

task did not have best effort events before yielding), it would borrow by

setting its own virtual time as the minimum of all the ones in the slot. This

is achieved by the last two lines in the above routine.

In the preceding section, we have described our user level prototype in

detail. Understanding the details of the user level prototype is useful in

understanding our kernel algorithm. In the next section, we describe our

kernel algorithm in detail.

3Note that the task calls qsf co op import() after it wakes up from a cooperative yield
(sleeping on condition variable).

19



Chapter 2. Algorithm Design and Implementation

2.3 The Kernel Algorithm

In this section, we describe our main contribution - the kernel scheduling

algorithm. As has already been discussed in Chapter 1, our goal is to design

a starvation free, fair scheduler that can provide predictable timeliness for

real time multimedia workloads without considerably sacrificing through-

put. Further, we wanted a reservation free, work conservating mechanism

to achieve our target. In addition, since uninformed context switches bring

unpredictable behavior and result in poor adaptation for adaptive multi-

media tasks, we wanted to eliminate pre-emptive scheduling for real time

tasks through a cooperating scheduling scheme. Based on the objectives

mentioned above, we made the following design decisions for our scheduler:

1. A fair share scheduler should be used to allocate the CPU resource

uniformly to all tasks. This will ensure fairness in the system and

avoid starvation.

2. There should be an interface through which realtime applications can

communicate their timing requirements to the kernel so that the kernel

can use this information while making scheduling decisions.

3. The kernel in turn should inform realtime tasks of the requirements

of other realtime tasks in the system so that they may cooperate with

each other and (optionally) coordinate their adaptation. Cooperation

also helps to eliminate involuntary context switches.

4. Real time tasks should receive a preferential treatment over best effort

tasks during scheduling.

5. Even though real time tasks get preferential treatment, they should

still be bounded by the fair share timeslice as decided by the fairshare

scheduler.

6. Any realtime task that violates its timeslice quota or fails to cooperate

properly should be policed, i.e., demoted to a best-effort task until
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Figure 2.9: The overall scheduling approach

it again re-earns its cooperative realtime status by yielding at the

appropriate time.

7. At the implementation level, our scheduler should not depend on

coarse notions of time (e.g., jiffies). The scheduling mechanism should

be compatible with the idea of the tickless kernel. Further, very few

scheduler tuning parameters should be exposed through the /proc

filesystem.

Figure 2.9 shows our overall scheduling mechanism that aims to satisfy

all the objectives mentioned above. Each of the user level cooperative ap-

plications uses a best effort event queue and a deadline event queue to sort

their events according to priority order. They inform the kernel of their most

important event parameters through the IN parameter of a new primitive,

coop poll. The kernel then inserts this information into its own per CPU

event queues. This is discussed in detail in later sections. These queues
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contain the most important event information for all the cooperative tasks.

In our algorithm, we use a virtual time based fairshare scheduler to choose

the next task to execute. We use a general policy of choosing the task with

smallest virtual time for the next execution. Our runqueue consists of a

priority queue with runnable tasks sorted by their virtual time. We treat all

cooperative realtime tasks as belonging to a single domain with a common

virtual time. The task or domain with the smallest virtual time is at the

head of the queue. Therefore, the kernel simply chooses to execute the task

at the head of this queue. If this task happens to be a cooperation domain4,

the kernel then inspects the per-CPU event queues to select the most impor-

tant realtime task based upon the event information of all realtime tasks.

In any case, a task’s timeslice is calculated on the basis of overall fairshare

period and the nearest deadline of all the realtime tasks. If a realtime task

is selected for execution, the deadline information of other realtime tasks is

reported as an OUT parameter of coop poll() so that the task can yield

cooperatively to this other realtime task. Best effort tasks do not interact

with the kernel through the coop poll interface. They do not receive any

preferential treatment from the scheduler either.

In this thesis, we do not consider SMP load balancing algorithms and

task migration issues. It is left as a future work.

In the subsequent sections, we explain our scheduling mechanism in

greater detail. We also discuss some of the important issues associated

with the implementation of our algorithm in the Linux kernel. Most of

our kernel implementation is contained within the two files

kernel/sched fairshare.c and kernel/coop poll.c. They together

consists of about 2500 lines of commented kernel code. This also includes a

small portion of code for tracing and debugging. Including the header files

and the heap implementation, our entire codebase is roughly 3500 lines of

commented kernel code.

4There can be more than one cooperation domain. See Section 2.3.1, the next section,
for details.
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2.3.1 Scheduling Domains and Data Structures

In order to facilitate co-existence of best effort and real time applications,

we introduce scheduling domains (or groups) in our algorithm. A set of

tasks treated by the scheduler under the same set of policies constitutes a

scheduling domain. In our present algorithm, we have one separate domain

for the best effort tasks (the best-effort domain) and another domain for

the cooperative real time tasks (the cooperative domain). In Section 2.5, we

discuss the introduction of multiple cooperative domains in our algorithm

in order to accommodate non-adaptive applications. All the tasks belonging

to a cooperative domain form a cooperation group. The tasks in this group

cooperate with each other and use their CPU allocation in a way so that

they can maintain uniform fidelity at the application level (discussed in

detail later). Each domain has its own scheduling parameters, including the

virtual time parameter. Our fairshare scheduler treats the cooperative

domain like a single task having a common virtual time, with timeslice

proportional to the number of tasks in that domain (more details on this

later).

The structure of a scheduling domain along with the new attributes

introduced into a task’s task struct structure is shown in Figure 2.10. In

the structure, dom ptr is a reference to the domain structure of which the

task is a member. timeslice start and timeslice end are the starting

and ending times of a process’ timeslice. The sched deadline value is set

by our scheduler to determine when the timeslice for the current task ends.

This is discussed in detail in Section 2.3.3 when we talk about our scheduling

algorithm. As a memory optimization step, these last three parameters could

also be made members of the per-CPU runqueue as there is always ever only

a single task running in a given CPU. is well behaved is a boolean flag

variable that denotes whether a cooperative realtime task is well behaved

(yielding at required times and respecting fairshare allocations). Later, we

will show that we use this flag for policing purposes.

In our algorithm, we use efficient priority-queues as the basic building

block. We use them for two main purposes:
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1. To sort all the processes (or cooperative domains as a whole) in the

system by their virtual time. The task having minimum virtual time

is the task that is next selected for execution. This minimum virtual

time first policy ensures fair CPU allocation.

2. To sort best effort and deadline events from all tasks in a cooperation

group so that the kernel can select the most important cooperative

process for execution.

Choosing the next process for execution takes O(1) time. All insertions and

removal of tasks from these queues can be done in O(lg(n)) time.

In our kernel implementation, we use binary heaps to represent these

priority queues. This heap implementation was already available at the user

level as a part of the Qstream codebase. We ported this heap codebase to

the kernel with slight modifications (for performance reasons). The resulting

codebase is available in /lib/heap.c file. There are two per-CPU heaps,

one for the best effort events and one for the deadline events for each of

the cooperative domains. There is one global per-CPU virtual time heap

for the fairshare scheduler. This serves as the runqueue for our scheduler.

The kernel itself has its own per-CPU runqueue data structure and in our

implementation, we make our heaps a part of that runqueue. Thus, we do

not need to implement any locking mechanism of our own to protect our

data structures.

In the algorithms written in the subsequent sections, we represent the

global virtual time priority queue by Wfq and the per coop-domain ones by

deadline events and best effort events.

In the next section, we describe in detail an important part of our

scheduling algorithm - the coop poll() system call interface. Thereafter,

we go on to describe our main kernel algorithm.

2.3.2 The coop poll System Call Interface

In this section, we describe the algorithm used by our new system call in-

terface coop poll() (representing cooperative polling) in detail.
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struct task_struct {

// ...

sched_dom_ptr dom_ptr;

TimeVal timeslice_start;

TimeVal timeslice_end;

boolean is_well_behaved;

TimeVal sched_deadline;

// ...

}

struct sched_dom {

enum {COOP_DOM, BEST_EFFORT_DOM} sched_dom;

TimeVal virtual_time;

int num_tasks;

// other domain specific parameters ...

}

Figure 2.10: Modified kernel task struct structure

The coop poll system call takes one IN parameter and one OUT param-

eter as has already been discussed in Section 2.1.3. The structure of the IN

and OUT parameters are shown in Figure 2.11. Both of these structures are

identical. Each of them encapsulates the information for both the deadline

and the best effort events. This includes,

1. The deadline time of a deadline event (the deadline timeout param-

eter).

2. The best effort event priority (the best effort priority parameter).

3. The best effort event deadline (the best effort timeout parameter).

4. A flag value that shows whether there are any best effort events at all

(the have asap parameter).

The figure also shows the details of the structure of the cooperative

domain. As discussed previously, it has two priority queues, one for the
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struct inParam {

TimeVal deadline_timeout;

TimeVal best_effort_timeout;

TimeVal best_effort_priority;

boolean have_asap;

}

struct outParam {

TimeVal deadline_timeout;

TimeVal best_effort_timeout;

TimeVal best_effort_priority;

boolean have_asap;

}

struct sched_dom CoopDomain {

sched_dom = COOP_DOM;

struct dom_param param;

struct PQueue deadline_events;alg:sched

struct PQueue best_effort_events;

}

Figure 2.11: The data structures used by coop poll .
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deadline events (sorted by their deadlines) and one for the best effort events

(sorted by their dual keys, priority and deadline).

We now discuss the coop poll() system call algorithm shown in Fig-

ure 2.12. In the algorithm, the currentTask variable refers to the task that

is in execution (the one that called coop poll). The variable CoopDomainPtr

is a reference to the structure of the cooperative domain shown in Fig-

ure 2.11. EventPtr is a reference to the event structure shown in Figure 2.2.

Our initial design of kernel coop poll() was largely derived from the

qsf co op yield() routine described in Section 2.2.1. For the actual yield-

ing, we used a per-task completion variable and the corresponding wait

queue therein. A cooperative task would wake up another task by calling

complete() on the target task’s private completion variable. Since our user

level prototype gave us the kind of performance we looked for, we thought,

a direct translation of the algorithm in the kernel would be the best thing

to do. However, when we started integrating our fairshare scheduler and

policing mechanism with coop poll(), we realized that this approach was

grossly incorrect. This is because we used a sleeping semantics in coop poll.

However, coop poll is a mechanism to yield to another cooperative task for

a small duration of time (specially when the yielding task had other best

effort work to do). Thus, coop poll behaved more like the sched yield()

system call. Removing the task from the runqueue during yielding would

have been an incorrect approach. When we realized it, we had to scrap our

old implementation and reimplement the system call. This time we used

schedule() from coop poll to choose the next task to execute keeping

the yielding task still in the runqueue. In the subsequent sections, we only

describe this final and modified algorithm in greater detail.

The coop poll system call can be split into a top half and a bottom

half. The top half is executed before the process actually yields to the

kernel. All the code from the beginning of coop poll() until before the

call to schedule()(the core kernel scheduler) consists of the top half of

coop poll(). When the process is scheduled again for execution (after its

cooperative yield), it starts right after the schedule() call. All the code

from this point until the end of coop poll() consists of the bottom-half.
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We will describe the two halves in detail in the subsequent sections.

The Top Half of coop poll()

At the very beginning, the routine removes nodes of the current task from

the cooperative domain heaps if they are there. This is important because

we design our algorithm in a way such that the event node of the currently

executing cooperative task is left at the top of the heap. This design policy

follows from the observation that when a task is executing and has not

exhausted its timeslice, there is no need to change the state of the scheduler

data structures. When the task cooperatively yields by calling coop poll()

and requests a new task to be scheduled, it is therefore important to update

the nodes in the heap and remove stale nodes so that a new task can be

selected based on the updated information.

coop poll() not only signifies voluntary yielding, it is also a request to

seek membership with the cooperation domain. The routine then checks to

see if the current task is a member of the cooperative domain. If not, it marks

the current task as belonging to this domain and sets its well behaved flag

to TRUE. Recall from our discussion in Section 2.1.1 on reactive program-

ming that any cooperative process that obeys the reactive model can not

block, preempt or sleep anywhere other than the routine it uses to yield

voluntarily. Thus, as long as the process is executing within coop poll(), it

is considered to be well behaved (because it is the only place where it can be

preempted). If the process yields or blocks or is preempted because it has

exceeded its scheduler determined allocation at any place other than this

routine, the process is considered to be misbehaving. It is then subjected to

policing which will be described in Section 2.3.3. Therefore, when the task

enters coop poll, its is well behaved flag is set to TRUE. When it leaves

the routine, this flag is set to FALSE.

The routine then checks the input arguments to see if the task has out-

standing best effort events or deadline events or both. If the task does

not have outstanding best effort events and the deadline time of its earliest

deadline event is in the future, it calls putTaskToCoopSleep. This routine
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is responsible for putting a task into cooperative sleep. This sleep is different

from involuntary sleeps in that the scheduler is aware of the task’s needs

and therefore can make attempts to schedule the process as close as possible

to its future deadline. Note that during the time the task is cooperatively

sleeping, it remains removed the runqueue. This is a reasonable action since

the task has nothing else to do until the time corresponding to its next

deadline event. In order to achieve finer grained context switching even

when the system was not overloaded, putTaskToCoopSleep first inserts the

deadline event parameters of this task in a separate per-CPU priority queue

named coop sleep queue. The significance of this action will be further

explained in a later section where we describe our algorithm to calculate the

task timeslice. It then puts the task to cooperative sleep until its deadline

time. In our kernel implementation, the actions of putTaskToCoopSleep is

performed by the function cooperative sleeper(). The code for the later

is shown in Appendix B.2.

If the task has both best effort and deadline events, the routine inserts

these events in the queues and calls schedule() to select the next task for

execution based upon the updated information in the heaps.

The Bottom Half of coop poll()

After the task resumes its execution, the routine extracts the next most

important best effort event in the system (if any), other than current task’s

own event (the current task’s own event nodes are at the top of the queue).

It then sets the best effort attributes of the out parameter accordingly.

The deadline attribute of the out parameter is set from the current task’s

sched deadline parameter. This parameter is set by our scheduling algo-

rithm when it selects a new cooperative real time task for execution. We

discuss this in the next section. Finally, the task’s is well behaved flag is

set to FALSE (as has been discussed earlier) so that when the task sleeps

uncooperatively or gets preempted, policing can be imposed.
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coop_poll(struct inParam in , struct outParam out) {

if(taskInCoopQueues (currentTask )) {

q_remove(CoopDomainPtr.best_effort_events ,

currentTask );

q_remove(CoopDomainPtr.deadline_events ,

currentTask );

}

if(isTaskCoopRealtime(currentTask) != TRUE) {

setTaskDomain(currentTask ,COOP_DOM );

}

currentTask.is_well_behaved = TRUE;

if(in.have_asap == TRUE) {

q_insert(CoopDomainPtr.best_effort_events ,

in.best_effort_timeout ,

in.best_effort_priority ,

currentTask );

q_insert(CoopDomainPtr.deadline_events ,

in.deadline_timeout ,

currentTask );

} else if(in.deadline_timeout > now) {

q_insert(CoopDomainPtr.deadline_events ,

in.deadline_timeout ,

currentTask );

putTaskToCoopSleep(currentTask ,

in.deadline_timeout - now);

goto wakeup;

} else {

in.deadline_timeout = now;

q_insert(CoopDomainPtr.deadline_events ,

in.deadline_timeout ,

currentTask );

}

schedule ();

wakeup:

flag = FALSE;

if(taskInBestEffortQueue(currentTask) == TRUE) {

q_remove(CoopDomainPtr.best_effort_events ,
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currentTask );

flag = TRUE;

}

EventPtr topBE = NULL;

if(q_not_empty(CoopDomainPtr.best_effort_events )) {

topBE =

q_head(CoopDomainPtr.best_effort_events );

}

if (flag == TRUE) {

q_insert(CoopDomainPtr.best_effort_events ,

currentTask );

}

if (topBE != NULL) {

out.best_effort_timeout = topBE.deadline;

out.best_effort_priority = topBE.priority;

}

out.deadline_timeout = currentTask.sched_deadline ;

currentTask.is_well_behaved = FALSE;

return;

}

Figure 2.12: The coop poll algorithm.

Our kernel implementation of coop poll follows directly from the algo-

rithm described above. The complete C source code for the actual imple-

mentation is given in Appendix B.1.

We have described in detail our coop poll system call interface in this

section. In the next section, we describe our main kernel scheduling algo-

rithm. We show how the coop poll system call becomes an integral part of

our scheduling algorithm.

2.3.3 The Kernel Scheduling Algorithm

In this section, we discuss our main kernel scheduling algorithm. As we

have discussed previously, our scheduling algorithm employs a combination

of fairshare scheduling and cooperative polling. Fairshare scheduling ensures
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overall fairness and a starvation free system. However, it alone can not

ensure uniform coordinated adaptation for multiple adaptive time sensitive

tasks. This is because each these tasks has variable CPU requirements over a

period of time and across all the runnable tasks at a particular time. Hence,

a simple fairshare model can not match their requirements. Further, as we

will show in Chapter 3, even though we can increase the overall timeliness

of time sensitive applications to a certain degree by increasing the fairshare

scheduling granularity, we soon hit a bottomline threshold. The timeliness

can not be improved beyond this point.

Therefore, our scheduling algorithm must satisfy two conflicting require-

ments. First, in order to ensure predictable timeliness, we can’t throw away

fairness and time isolation between tasks. Secondly, since fairshare schedul-

ing alone can not match the requirements for adaptive time sensitive tasks,

we need to allow these tasks to consume CPU resources according to their

requirements so that they have uniform fidelity at the user level.

In order to meet these two conflicting requirements, we decided to take

the following policies:

1. The timeslice for all tasks in a system with no time sensitive tasks

is calculated on the basis of Equation 2.2, where N is the num-

ber of runnable tasks ( including the number of realtime

tasks ) and sched min timeslice has the same meaning and value

as min timeslice in Equation 2.1. sched granularity is either a

scheduling constant or can be adjusted by the user. The timeslice

with mixed best effort and time sensitive tasks is based on a combi-

nation of fairshare timeslice as well as the earliest next deadline of all

the time sensitive tasks. This combined approach should ensure pref-

erential treatment of the time sensitive tasks, based on their deadlines

over best effort ones.

timeslicefairshare = max(sched granularity/N, sched min timeslice)

(2.2)

2. All the real time tasks taken together get a combined CPU allocation
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as a group (the cooperation group/domain). This allocation is directly

proportional to the number of real time tasks and the fair share al-

location per task determined by Equation 2.2. However, there is no

enforcement of fairsharing between tasks within the same cooperation

domain. The real time tasks are allowed to use their allocation based

on their requirements. This leeway gives them an opportunity to co-

ordinate their adaptation, within the limits imposed by the fairshare

scheduler.

3. We provide strict time isolation in that a task can’t be pre-empted

before the timeslice expires, unless it sleeps.

Based on the policies, we describe our main scheduling algorithm next.

Main Scheduler Routine

Figure 2.13 shows our main scheduling routine schedule(). It takes two

external global parameters. They are sched granularity and

sched min timeslice. The meaning of these two has already been ex-

plained. The very first part of the routine enforces our third policy as

discussed above - we do not context switch unless the timeslice for the cur-

rently running task has expired (or it went to sleep). In our algorithm,

timeslice boundaries are enforced by one shot timers. Hence, if this timer is

still active for the current task, we allow the task to keep running.

If the timeslice did expire (or the previous task went to sleep and

its timer was cancelled), we charge the current task by an amount

of time proportional to its running time. This is done by the

safely charge running times() routine discussed in the next section.

choose next task() is the core of our scheduler. It chooses the next

task to execute based on certain criteria. We discuss this routine in detail

separately in a later section. Once a new task is selected, its timeslice start

time is assigned to be the current time. In our kernel code, we use the native

kernel function ktime get ts() in order to get the kernel monotonic time

value in ktime within a timespec structure. This provides the best available

timing resolution (64 bit). Thereafter, its timeslice is calculated and a timer
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is scheduled so as to enforce this timeslice. The later is performed by the

schedule timer() routine. In our kernel implementation, we use one shot

high resolution timers for all our allocation enforcement. None of our code

paths depend on the jiffy level timing granularity. However, we do let users

choose between high resolution and jiffies through a kernel configuration

option. This is provided so as to let users test our code even when high

resolution timers are not available for older kernels. Our use of one shot

timers and independence from jiffies make our code compatible with tickless

kernels.

The new task’s sched deadline attribute is set based on the timeslice

of this task. As discussed in Section 2.3.2, the cooperative tasks use this

information to inform the user level of the time by which it must again

yield to the kernel. This is the basic essence of cooperation. Finally, the

actual context switching is done by call to routine context switch() which

is architecture specific.

Global TimeVal sched_granularity;

Global TimeVal sched_min_timeslice ;

schedule () {

prevTask = currentTask;

if (fsTimerActive == FALSE) {

safely_charge_running_times (prevTask );

nextTask = choose_next_task ();

nextTask.timeslice_start = now;

TimeVal timeslice = calculate_timeslice ();

schedule_timer (timeslice );

nextTask.sched_deadline = now + timeslice;

} else {

nextTask = prevTask;

}

if (nextTask != prevTask)

context_switch (prevTask ,nextTask );

}

Figure 2.13: The main kernel scheduler routine
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Charging Running Times

Figure 2.14 shows the routines that charge the running time to the current

task. Notice that for best effort tasks, we charge them their exact running

time. However, for realtime tasks, we scale their running times by the

number of realtime tasks in their domain. This is because realtime tasks

receive an allocation as a group in totality and are treated as a single task by

the fairshare scheduler. The scaling ensures that the group as a whole gets

the fair amount of CPU allocation depending upon the number of tasks in

that group. From the point of view of the fairshare scheduler, one may also

consider the coop group as a single task with a weight equal to the number

of coop-realtime tasks the group has.

update_running_times(prevTask) {

prevTask.timeslice_end = now;

TimeVal running_time = prevTask.timeslice_end -

prevTask.timeslice_start;

if (prevTask.dom_ptr.sched_dom == COOP_DOM) {

running_time = running_time/CoopDomain.numtasks;

}

prevTask.dom_ptr.virtual_time =

prevTask.dom_ptr.virtual_time + running_time;

}

safely_charge_running_times (prevTask) {

remove_node_from_fs_q(prevTask );

update_running_times(prevTask );

reinsert_node_to_fs_q(prevTask );

}

Figure 2.14: Routines that charge running times to the current task
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The Scheduling Logic

Figure 2.15 shows the main scheduling logic used by our combined fairshare-

cooperative scheduler. We employ a two-level hierarchical approach in our

scheduler. At the top level, the fairshare scheduler selects the task with the

minimum virtual time. If this task happens to be a real time task, our next

level of cooperative logic selects the most appropriate cooperative realtime

task. The routine that does this selection is choose next coop task().

choose next coop task() first checks to see if there are any expired

deadline events in the deadline event heap of the coop-domain. If there is,

it then selects the corresponding task. If not, then it inspects the best-effort

queue and selects the task corresponding to the event at the head of this

queue.

The next section describes how we calculate the timeslice value corre-

sponding to this selected task.

choose_next_coop_task () {

if (head_expired(CoopDomain.deadline_events )){

nextDeadEv = q_head(CoopDomain.deadline_events );

return task(nextDeadEv );

}else if(q_not_empty(CoopDomain.best_effort_events )){

nextBeEvent =

q_head(CoopDomain.best_effort_events );

return task(nextBeEvent );

} else {

return ERR;

}

}

choose_next_task () {

nextTask = q_head(Wfq);

if (nextTask.dom_ptr.sched_dom == COOP_DOM) {
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nextTask = choose_next_coop_task ();

}

return nextTask;

}

Figure 2.15: The main scheduling logic

anirbans@ani:/proc$ cat bvtstat

timestamp 229211679

global bvt period = 20000000 nsec

current bvt period (cpu 0) = 100000 nsec

minimum bvt period = 100 usec

anirbans@ani:/proc$ cat coopstat

timestamp 229404690

cpu# coop_poll# yields#

cpu0: 2435753 2435753

Figure 2.16: The scheduling statistics exported through /proc filesystem.

Calculating Timeslice

Figure 2.17 shows the main routine that calculates the timeslice for the next

chosen task. We start by calculating the fairshare period using Equation 2.2.

This calculation is done by the routine find fair share period(). In our

kernel implementation, we allow the users to tune the global scheduling

period in Equation 2.2 by exporting a scheduling parameter in the /proc

filesystem. By writing an appropriate value of the period (in micro

seconds) into /proc/sys/kernel/bvt sched period us, the global period

can be adjusted. This is the only adjustable scheduling parameter exposed

through /proc even though we do export some other scheduling statistics

as well (see Figure 2.16).
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calculate_timeslice (nextTask) {

TimeVal fsPeriod = find_fairshare_period ();

if (nextTask.dom_ptr.sched_dom == COOP_DOM) {

fsPeriod = CoopDomain.numtasks * fsPeriod;

}

TimeVal timeslice = fsPeriod;

TimeVal earliestCoopDead = find_earliest_deadline ();

TimeVal coopPeriod = earliestCoopDead - now;

if (coopPeriod < 0) coopPeriod = 0;

nextDeadTask = find_earliest_deadline_task ();

if (nextTask.dom_ptr.virtual_time + coopPeriod <

nextDeadTask.dom_ptr.virtual_time) {

timeDelta = nextDeadTask.dom_ptr.virtual_time

- (nextTask.dom_ptr.virtual_time

+ coopPeriod );

coopPeriod = coopPeriod + timeDelta;

}

if (timeslice > coopPeriod) {

timeslice = coopPeriod;

}

if (timeslice < sched_min_timeslice ) {

timeslice = sched_min_timeslice ;

}

return timeslice;

}

Figure 2.17: The routine that calculates a task’s timeslice

Since all cooperative realtime tasks receive allocation as a group, the

period we calculate previously is then multiplied by the number of tasks

in the cooperative realtime domain if the next chosen task is one of them.

This value is the overall fairshare period (fsPeriod) as determined by the
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fairshare scheduler.

We have discussed previously that one of our design decisions was to give

preferential treatment to realtime tasks by taking into consideration their

deadline information. The next few steps in the routine try to achieve this

objective. We first find the time period between now and the next global

deadline which we name coopPeriod in the routine. The next global dead-

line is found by the routine find earliest deadline(). This routine finds

the global earliest deadline of all realtime tasks, including those whose event

information is in the coop sleep queue (see Section 2.3.2). Next, it finds

the pointer to the non-sleeping realtime task having the earliest deadline.

Then it checks to see whether by running the next task by coopPeriod re-

sults in the task having a virtual time greater than the previously found

realtime task. If not, it adjusts this period accordingly. The period thus

calculated becomes the period of the next running task provided it is not

greater than the overall fairshare period calculated earlier or less than the

minimum timeslice.

This approach ensures that when the deadline of the next realtime task

expires, the current task will be preempted unless the virtual time of the

currently running task is still smaller than that of the realtime task. In that

case, the current task keeps running until its virtual time becomes greater.

Further, there might be other best effort tasks that have smaller virtual time

than the realtime task whose deadline just expired. After preempting the

current task, the scheduler will then choose to run one of those best effort

tasks, the one whose virtual time is smallest. However, in that case, since

the deadline has already expired, coopPeriod will be 0 and all these tasks

will run for an amount of time that is just enough to make their virtual time

greater than this realtime task. Ultimately, all of them will catch up with

the virtual time of the realtime task whose deadline expired.

Note that this policy increases the event dispatch latency for the time

sensitive task. However, this also ensures that the fairness across all the

tasks is not violated. The minimum virtual time first ensures that all tasks

get a fair opportunity to execute on the CPU.

39



Chapter 2. Algorithm Design and Implementation

Routine in algorithm Implemented kernel function

safely charge running times() charge running times()

update running times() update virtual times()

choose next task() choose next bvt()

choose next coop task() choose next coop()

calculate timeslice() calculate bvt period()

schedule timer() schedule dynamic bvt timer()

Table 2.1: One to one relationship between algorithm routine and our im-
plemented kernel function

Table 2.1 shows the relationship between the routines previously de-

scribed in our algorithm and our implemented kernel functions. We hook

our scheduling algorithm with the main kernel scheduler function

schedule() using two of our own functions - update bvt prev()

and prepare bvt context switch(). update bvt prev() charges the pre-

vious task its own running time. Therefore it calls the routine

update running times() as described in Section 2.3.3.

prepare bvt context switch() then performs the rest of the scheduler

functions - choosing the next task to execute, calculating timeslice and

scheduling the timer for the newly chosen task.

Figure 2.18 shows the algorithm used by the native Linux 2.6.20 sched-

uler with the two functions mentioned above. Instead of removing the entire

logic in schedule(), we simply override its native decision by the decision

of our algorithm.
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schedule ()

{

if (in_atomic_context ())

panic ();

rQ = currentRunQueue ();

disable_preemption ();

irq_disable ();

spin_lock(rq);

prevTask = currentTask;

update_running_time (prevTask );

if (non_runnable(prevTask) &&

preemption_enabled ()) {

if (signal_pending (prevTask) &&

sleep_type(prevTask) ==

SLEEP_INTERRUPTED) {

set_task_state (prevTask ,RUNNABLE );

}

else

deactivate_task(prevTask );

}

update_bvt_prev(prevTask );

if (rq.active_arr.nr_active == 0)

switch_arr(rq.active_arr , rq.expired_arr );

nextTask = find_next_task (rq.active_arr );

prepare_bvt_context_switch(prevTask , nextTask );

update_sleeping_times(prevTask );

prio = recalc_task_prio (nextTask );

if (prio != nextTask.prio) {

requeue_task(nextTask , prio);

}

if (prevTask != nextTask) {

context_switch (prevTask , nextTask );

}
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spin_unlock(rq);

irq_enable ();

enable_preemption ();

}

Figure 2.18: Modified Linux 2.6.20 scheduler with our kernel functions

Borrowing

In our algorithm, we implement virtual time borrowing. Any task that

wakes up from sleep gets a fresh virtual time that is equal to the minimum

of the virtual times of all runnable tasks. Since we treat cooperative tasks as

belonging to one single domain, all the tasks in this domain have a common

virtual time. The cooperative domain borrows as a whole when the first task

in that domain wakes up. Any subsequent wakeups of other tasks will cause

them to inherit their common domain specific virtual time and hence they

need not borrow. Borrowing makes two tasks (one that woke up and the

other that was previously at the top of the queue) have same virtual time.

To break the tie, we employ a FIFO policy. The task that was previously

at the top of the queue still remains at the top by virtue of its earlier entry

into the queue. This FIFO policy helps to prevent starvation.

Borrowing ensures that:

1. No task can accumulate virtual time. When a task sleeps, it gives up

the virtual time it has accumulated during the course of its execution.

When it wakes up, it gets a fresh virtual time and begins anew. This

prevents IO intensive tasks from getting an occasional big shot at CPU

by virtue of its accumulated virtual time.

2. Interactive tasks that sleep often, wake up and get assigned a minimum

virtual time across all the currently running tasks in the runqueue.

Thus there is a bounded latency between the time the task wakes up

and when it gets to execute. This latency is solely dependent on the

number of tasks that were there earlier in the queue with exactly the
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same virtual time. In practice, the number of such tasks will be very

small and the interactive tasks will have a high responsiveness.

In the kernel implementation, borrowing of virtual time is implemented

by calling our function bvt borrow() from the Linux kernel function

activate task(). activate task() is called whenever a task is reinserted

into the runqueue after waking up. The implementation follows directly

from the algorithm. The code corresponding to borrowing is shown in ap-

pendix B.3. One thing significant to note from the code is that when a coop-

erative task wakes up, we reinsert its deadline event information back into

the kernel event queues and remove its nodes from the coop sleep queue

(see Section 2.3.2).

Policing

Policing is imposed on two distinct cases:

1. When a cooperative task fails to honor the deadlines of other tasks

and overshoots its timeslice. In this case, the timer fires and enforces

policing. Note that if a cooperative task yields by calling coop poll()

before its timeslice expires, we cancel the running timer from within

coop poll().

2. If a cooperative realtime task goes to sleep other than the cooperative

sleep described in Section 2.3.2. In this case, we enforce policing by

checking whether the is well behaved flag for that task is true. Re-

call that tasks go to cooperative sleep from within coop poll() where

this flag is true.

In the kernel implementation, we implement the first through the timer

handler. In the timer handler, we check to see if the current running task

is cooperative realtime. If it is, we impose policing by removing the task’s

event information from the queues and calling do policing() (described

later). For the second, we implement policing in the Linux kernel func-

tion deactivate task() (called when a task becomes non-runnable). In
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deactivate task(), we check to see if a task is a cooperative realtime task

and it is not well behaved. If both the conditions are TRUE, we impose

policing. Note that we do not impose policing when a cooperative realtime

task sleeps cooperatively from within coop poll(). In the later case, the

task is marked as well behaved (as it is executing within coop poll) and

policing is skipped. deactivate task() however does one more thing. It

cancels the running timer for the current task, regardless of whether its re-

altime or not. The code for deactivate task() with our modifications is

shown in Appendix B.5

The actions performed during policing are as follows:

1. It demotes a realtime task to a best effort task, changing membership

of domains.

2. It charges the running time of the task to the task itself and not to

the cooperative domain. This ensures that the other members of the

cooperative domain remain unaffected from the misbehaving task and

they still get preferential treatment.

Therefore, at the end of policing operation, the cooperative realtime task

loses its realtime status and is also pushed away from the head of the priority

queue (because the running time was charged to the task).

In our kernel implementation, the first of the above steps is performed

by the function do policing. It also assigns the virtual time of the coop-

domain to the task so that the task has correct virtual time and the end of

step 2 above. The actual charging of the virtual time is done by the routine

safely charge running times() as has been discussed in Section 2.3.3.

The code for the do policing() is shown in Appendix B.4.

2.4 Scheduling Best Effort Tasks

From Figure 2.18 it clear that in our current implementation, we do not

throw away the entire vanilla 2.6.20 kernel scheduler code. Instead we over-

ride its scheduling decisions by ours. Further, we implement a new system
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call called set bvt() through which processes can request to be scheduled

under our fairshare scheduling algorithm. In schedule(), we enforce our

scheduling decision only for these tasks. In order to test the performance

of our fairshare algorithm as a general purpose scheduler for all best effort

tasks, it is important to bring all Linux tasks under our fairshare schedul-

ing regime. We have cleaned up a large portion of our code towards this

end. The ultimate goal of running all tasks under our fairshare scheduling

regime was finally completed by another student, Mayukh Saubhashik. The

complete performace analysis of our fairshare scheduler with all best effort

tasks remains a future work (see Chapter 5, Section 5.1.1). A full rewrite of

the current scheduler and replacing its algorithm with ours is unnecessary

under the new 2.6.23 pluggable scheduler (see Chapter 5, Section 5.1.7).

So far, we have given a detailed description of our scheduling algorithm

in the kernel. In the next section, we describe how, with a simple extension,

non-adaptive applications can also be accommodated within our scheduling

framework.

2.5 Accommodating Non-Adaptive Time

Sensitive Applications

Our original cooperative polling scheme takes into account two kinds of

event information - the deadline event information and the best effort event

information. The best effort events are used by the adaptive applications to

share the CPU according to their own requirements. Hence they are able

to achieve coordinated adaptation at the user level. However, the notion

of adaptation is application centric and is specified via best effort event

priorities. The algorithm we have described so far does not accommodate

applications that are non-adaptive. Further, even with adaptive applications

using some form of best effort events, there is no guarantee that they use

the same notions of best effort event priority. With a mix of adaptive and

non-adaptive applications, the situation becomes even more complex.

We wanted to extend our algorithm in order to decouple the issues of
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achieving predictable timelines from coordinated adaptation. As a first step,

we made the following extensions to our algorithm:

1. We modified our domain data structure in Figure 2.10 to include multi-

ple cooperative domains. Each of the cooperative domains have dead-

line and best effort event priority queues for all the tasks belonging to

that domain.

2. We modified the coop poll() interface to add one new IN parame-

ter, the dom id. This is a simple integer variable that denotes which

cooperative domain the task wants to be a member of.

3. The find earliest deadline() routine in Figure 2.17 is modified to

find the earliest deadline across all the realtime tasks in all the do-

mains. This is done by iterating through the head of the priority

queues of all the deadline events of all the domains. This is an O(N)

algorithm where N is the number of coop domains. In our current

implementation, this is a fixed number (15 domains).

4. In coop poll(), when we report the most important external best

effort event to the user space, we only inspect the best effort events

from the coop-domain of which the current task is a member. This

enables members of the same coop-domain to cooperatively use the

timeslice allocated for that specific domain. Members of different coop-

domain do not interact with each other. Further, there is isolation and

protection between coop-domains and not within the members of the

same domain as before.

Thus, our multiple cooperative domain algorithm is just a simple ex-

tension of the single domain case. When all tasks seek membership to one

specific cooperative domain, it reduces to our previous algorithm having one

cooperative domain. However, we have an interesting case when all realtime

tasks seeks membership in different domains.

With all realtime tasks belonging to different domains, scheduling deci-

sions and yieldings are made solely on the basis of deadline events. Since
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there is only one cooperative realtime task in one coop domain, best effort

events for other cooperative realtime tasks are not considered (see point

4 above). Thus, realtime tasks having only deadline events can get better

timeliness even with only their deadline information. Also note that the best

effort event parameter is strictly not necessary in this algorithm. However,

they are used to decide whether a task can be put to cooperative sleep (since

it has no outstanding work pending) or it should be left runnable. Lack of

best effort events signify the former.

One issue with the above algorithm is that each of the (non-adaptive)

realtime tasks has to be a member of a different coop-domain if they want to

get timeliness benefits. In our present algorithm there are fixed number of

cooperative domains. A task, in general, does not know which domains other

realtime tasks are the members of. In essence, we need variable number of

domains that can be created by the realtime tasks themselves. Alternatively,

we need some kind of mechanism for the kernel to automatically decide which

domain the task should be a member of. Addressing some of these issues

are left as a future work.

2.6 Chapter Summary

In this chapter, we have discussed our task scheduling approach, both as a

complete task scheduler in the Linux kernel as well as a prototype imple-

mentation in the user level. In this respect, we have also discussed the new

data structures and other parameters related to our algorithm. We have

reviewed some of the basic ideas of the event driven reactive model and

have shown how this work fits into this model. Our approach, which is a

combination of a fair share scheduling with cooperative polling is designed

so as to satisfy the main objectives of our work. Through fairsharing we

ensure that there is an overall long term fairness in the system. Fairsharing

also helps us to implement policing for realtime tasks. Whereas the use

of fairshare scheduling approach is not new, the combination of fairsharing

with cooperation is a novel aspect of our work. Even though our algorithm

was originally designed for adaptive multimedia workloads, we show that
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with a simple extension, our algorithm can accommodate non-adaptive time

sensitive applications as well.

In this chapter, we have also discussed some of the main implementation

issues of our algorithm in the Linux kernel. Our implementation uses some

of the recent infrastructural components in the kernel, such as fine grained

preemption, high resolution time accounting and timers, etc. Though we

have a basic kernel implementation of our algorithm, it is far from complete.

We do not as yet have support for multicore and hyperthreaded processors

in our implementation. We do not take any optimization steps for the kernel

codepath.

In the next chapter, we discuss the evaluation our implementation. We

show that our scheduling approach can provide predictable timeliness for all

realtime tasks without sacrificing long term fairness in the system, even in

overload situations.
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Performance Evaluation

In this chapter, we provide evaluation and benchmark results from a proto-

type of the scheduling algorithm implemented in the user level and from the

actual scheduling algorithm implemented in the kernel. In this thesis, we

focus on the performance of our algorithm for multimedia real time appli-

cations. Further evaluations for various kinds of best effort tasks and other

workloads and comparison with the CFS scheduler [27] are in progress but

are outside the scope of this thesis.

3.1 Experiments with Multiple Instances of VLC

and MPlayer

To emphasize the relevance of our work and in order to show the shortcom-

ings of the Linux 2.6.20 kernel scheduler, we first describe our preliminary

experiences of running multiple independent players on the vanilla Linux

2.6.20 kernel. We use two of the most popular open source video players

available today: MPlayer[13] and the VideoLan Client (VLC)[2]. This work

was done as a part of our our previous work involving priority progress

decoding [23] and the results were reported in the paper. Since this work

was done at a very early stage, the experimental setup for this experiment

is different from the rest of all other experiments. We do not expect that

the differences in the setup to effect the substance of the results. These

experiments were performed on a Dell Inspiron 1300 laptop PC, with a 1.8

GHz Pentium-M CPU and 512 MB memory running the Ubuntu Linux 6.06

distribution. We chose MPlayer and VLC because they are very popular

video applications of very high overall quality, the result of very large teams
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of talented and dedicated developers. The open source nature of these ap-

plications allowed us to add our own instrumentation code for collecting

data.

We measured the performance of MPlayer and VLC by playing 3 and 6

videos (the same video) simultaneously. Each video is played in a separate

player. The CPU usage remains just below saturation with 3 videos while

the CPU is fully saturated with 6 videos. The video is a movie taken from a

DVD and converted to MPEG-4 format. We measured the frame rate and

jitter of the videos.

Figure 3.1 shows the frame rates of the three videos for the VLC and

MPlayer video players during underload. Both players maintain close to

the full frame rate of 24 fps, and subjectively, the videos play with normal

smoothness and no noticeable pauses.

Figure 3.2 shows the performance of VLC and MPlayer during overload

(CPU usage is pegged at 100%) when the frame-rate adaptation mechanism

was active in both the players. The graphs on the left show that the frame

rates of the videos varies dramatically. Both players exhibit bi-modal fair-

ness with many of the videos experiencing zero or low frame rates and some

that have almost full frame rate. Figure 3.2(b) shows that jitter reaches up

to one second for VLC, which experiences several pauses. MPlayer is able

keep jitter below 200 ms.

To conclude, these players maintain acceptable performance during un-

derload but not during overload. Interestingly, the event-driven MPlayer

is more consistent than the threaded VLC player even though both play-

ers adapt quality similarly during overload. While we have not analyzed

this difference in performance in detail, we believe it results mainly as a

result of the interaction between the adaptation mechanism and the kernel’s

scheduling mechanism.

3.2 Benchmarking Tools Used

For the rest of all our experiments, we use the adaptive media streaming

framework, Qstream [21] to gather data and analyze the results. Qstream
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Figure 3.1: VLC and MPlayer video players in underload
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Figure 3.2: VLC and MPlayer video players in overload.
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is an adaptive media streaming application based on the event driven pro-

gramming style that was the inspiration for our cooperative model. It has

built-in tools and options for tracing, profiling and performance diagnosis.

Gathering data using Qstream was much more automatic and seamless than

if we had used any other multimedia applications.

In the next section, we describe the details of the setup we use for our

experiments. We only discuss the basic configuration details. For other finer

details of our experimental configuration, please refer to Appendix A.

3.3 Experiment Description

3.3.1 Basic Setup

Qstream has a client-server architecture. In all our benchmarks, we run

the server side of Qstream on a separate physical machine connected to the

client machine through gigabit ethernet (thus the network does not become

a bottleneck in our experiments). This separation of client and server in

different physical machines ensures that the server side disk IO and pro-

cessing does not affect our results. We run all our video benchmarks on

the client side. Figure 3.3 shows the basic client server setup. A detailed

description of our experimental methodology is in Section 3.3.4. For all

the benchmarks, we use scripts to automate the entire process of running

the workload, data collection and plot generation. The scripts have differ-

ent command line options through which we can automate running several

different sets of experiments. We generate the plots from the results using

Gnuplot [47]. All the scripts that are used to generate the results are re-

leased open source and can be viewed and downloaded from the Qstream

public repository [22].

3.3.2 Hardware Configuration

The hardware configuration of the client is as follows: A Pentium IV, 3

Ghz machine with 1 Gigabyte RAM and a NVIDIA GeForce 6200 display

card with 256 MB video memory. We disable CPU hyperthreading from
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Figure 3.3: Basic experimental configuration

the BIOS for all our experiments since we do not support multiprocessor

scheduling. The server side consisted of a 3 Ghz Pentium IV machine with

one two way hyperthreaded CPU, 1 Gigabyte of RAM. It ran debian Linux

with the 2.6.20 SMP kernel.

3.3.3 Kernel Configuration

For all our experiments, we use Linux 2.6.20 as our base kernel downloaded

from http://kernel.org, patched with high resolution timer support. All

our developments are done on the top of this kernel. In the rest of the the-

sis, the word vanilla is used to describe the stock Linux kernel as directly

available from http://kernel.org without any modification or patches ap-

plied. The Linux 2.6.20 kernel uses the traditional O(1) scheduler based on

the well known multi-level feedback queue scheduling algorithm [5, 34]. Very

recently, a new kernel task scheduling algorithm (named the Completely Fair

Scheduler [27]) based on fairshare scheduling approach was incorporated into

the mainstream Linux 2.6.23 kernel. We do not do any benchmarking over

this kernel as it was released after the completion of this work.

We disable SMP and multicore options in our kernel for all the exper-

iments. We also make sure that all the debugging and kernel performance

measurement options remain disabled since they often add extra overhead.
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Fine grained preemption (kernel preemption when executing in non-critical

section codepath) was enabled in our kernel for all the experiments.

3.3.4 Experimental Methodology

Through our experiments, we aim to characterize the performance of our

scheduling approach across a broad spectrum of system load, from an under-

loaded system to a completely overloaded system. Our main focus though

is to evaluate the performance of our algorithm in the extreme overload

condition. In our experiments, we perform a set of runs with the same con-

figuration. We vary the load by adjusting the number of players in each run,

increasing it in successive runs, from four players to twelve players. We note

that with six players, in our setup, the CPU just becomes saturated. With

twelve players, the CPU remains completely saturated at all times. Run-

ning a variable number of players therefore gives us a broad spectrum of the

experimental condition, from fully underloaded to completely overloaded.

Since our algorithm is designed to provide predictable timeliness both for

underload and overload situations, this setup can effectively demonstrate

the strength (or weaknesses) of our algorithm.

Qstream has a command line option to disable or enable frame display

for the videos. We repeat the above set of experiments once with frame

display disabled in Qstream and once with frame display enabled. Disabling

frame display helps us to eliminate the effects of the Xserver from our re-

sults. This is important because the Xserver has a coarse grained event

dispatching mechanism (we have observed that a single frame display op-

eration can take several milliseconds) as compared to Qstream. Therefore,

it is important to separate the effects of the Xserver from our results so

that we may better understand the effectiveness of our approach. Further,

comparing the results of the experiments with frame display enabled with

those of the frame display disabled helps us to get a better idea of the extra

overhead introduced by the Xserver alone.

All our benchmarks use a video taken from a movie DVD converted to

MPEG-4 format. The movie has a bitrate of 2907 kbits/s, 704x352, 12bpp
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resolution and a frame rate of 24 frames per second. Each of the players

plays different sections of the movie. Since the video is of variable bit rate

and each section has a different bitrate profile, this setup is equivalent to

playing different videos in different players. Each stream was played for 300

seconds (5 minutes). For all our results, we discard the first few seconds of

the run and report the result from 100th to the 300th second.

As the movie has variable bit rate (thus variable processing require-

ments) over the duration of the run, running multiple videos represents a

fairly complex workload - the complexity arising from the following issues:

(a) The CPU requirements of each of the players varies considerably with

time. No specific mathematical model is known to represent their require-

ment to a reasonable accuracy. For example, Figure 3.4(a) shows the dy-

namics of stream bitrate for twelve Qstream players playing twelve different

streams. Clearly, there is considerable variation in bitrate among the twelve

players. The CPU usage, as shown in Figure 3.4(b) varies in strong coher-

ence with bitrate.

(b) Each of the players has specific timing requirements for its numerous

events.

(c) All the players are partly CPU intensive and partly IO intensive, repre-

senting the kind of a mixed workload that poses a significant challenge for

the vanilla 2.6.20 kernel scheduler.

(d) Each of the players have adaptive capability with respect to CPU and

network resources. Thus there is an inherent need to coordinate the adap-

tations across different players for uniform fidelity.

3.4 Benchmark Parameters and Terminology

In each of our experiments, we use certain specific terms to describe spe-

cific parameters of our results. We provide the meaning and explanations of

these terms below:

(a) Tardiness: This can also be termed as the dispatch latency. Recall from

Section 2.1.2 that our event dispatcher only invokes the callback for deadline
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Figure 3.4: Dynamics of multi video playback

events after the deadline has passed. The dispatch latency is the difference

between the time when a deadline event is actually serviced and the dead-

line value specified in the event by the application. At regular intervals (a

few milliseconds), the worst case difference is calculated for all the events

fired in that interval and then this value is averaged for the duration of one

second. This metric is very useful in showing how well the kernel is able to

schedule the applications such that they are able to hit their deadlines in

a timely fashion. A good scheduling algorithm should ensure small values

of tardiness, even under overload. However, it is important to note that

tardiness values are also limited by application granularity. For example, if

in the worst case a single event in the application takes 1 ms to execute,

the worst tardiness values of the application can never be smaller than 1

ms. Qstream has a worst case granularity of 1 ms. This was verified by

the WCET trace feature in Qstream. This feature measures the worst case

execution time (WCET) of all the functions for a given interval of time and

then dumps the names of the worst N longest executing functions, where N

is provided by the user.

(b) Average frames per second: This is the number of frames displayed

per second by all the players. This metric gives us an indication of through-

put. It is important to note here that throughput is affected by context

switches and other overheads. With an increase in the number of players,
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we expect the context switches to rise resulting in a decrease in throughput.

This is true for all cases.

(c) Frame jitter: This is the absolute time difference between displaying

two consecutive frames. Frame jitter gives us the measure of visible pauses

during the video playback (as opposed to frame rate which gives us an idea

of the overall smoothness of the video). We timestamp every frame displayed

by Qstream. Jitter is then simply calculated as the difference between two

successive timestamps. At regular intervals, the worst case difference is cal-

culated for all the frames displayed in that interval and then this value is

averaged for the duration of one second.

(d) Kernel context switch rate: It is the number of context switches

performed by the scheduler per second. This value is directly read off from

the /proc filesystem and then averaged for every second.

The next few sections describe the various stages of our evaluation. First,

we evaluate the results of playing a single video application on a vanilla ker-

nel. This gives us the base case (with no extra overhead of context switches)

against which we would compare all the rest of our results. Next, we revisit

the scenario of playing multiple instances of a video application over the

vanilla kernel. This time we use Qstream as a performance measurement

tool. In the later sections we evaluate the performance of our user level

and kernel implementation of the fairshare scheduling and our cooperating

scheduling algorithm. In each case, we compare our results with that of the

single player performance. We also analyze the performance of our algo-

rithm when playing a single high definition video together with running a

best effort video encoding job. Lastly, we describe the preliminary results of

our implementation involving multiple cooperative domains. This is still a

work in progress and a complete implementation of this algorithm with the

kind of results we expect to have from it remains a future work.

3.5 Single Player Playing Multiple Videos

Before we describe our results with multiple players, we discuss the results of

the simplest case where we let one single Qstream application play multiple

58



Chapter 3. Performance Evaluation

videos. The results in this case reflects the basic overhead of playing multiple

videos but has no extra context switch overhead. Thus, this case serves as

our base-case for comparing all other cases. Figure 3.5 shows the result

of playing an increasing number of videos, from four videos to twelve in

each run, when frame display has been disabled. Figure 3.6 shows the same

results when frame display has been enabled.

There are some interesting points to note from the figures. First, in

the overload, the context switches in both cases attains a steady value.

For frame display disabled case, its about 100 context switches per second.

When frame display is enabled, this value evens out at about 700 context

switches per second.

In the underload, for both cases, we see very large number of context

switches per second. We have observed this result for all the cases of our

experiments. It can be attributed to the opportunistic nature of the kernel

in the underload. In the underload, the kernel services the interrupts and

softirqs as and when they fire. There is no batching up of requests. As

a result, context switches increase. In the overload, the kernel batches up

requests together and this results in a constant number of context switches.

A look at the throughput (frames per second) also reveals interesting

facts. First, when the frame display is disabled, it is clear that application

adaptation (frame dropping) does not kick in until we play eight videos.

Even with seven videos, all players play full framerate (24 fps × 7 = 168

fps). However, as we increase the number of videos, overload increases and

all players start to drop frames. With twelve players, the overall FPS drops

to 124 fps. When frame display is enabled, we see a similar trend. However,

due to the extra overhead of the Xserver, we see a greater impact on the

throughput. With twelve players, the throughput reduces to 118 fps.

The tardiness starts with higher values in the underload, continues to

decreases as the CPU reaches saturation and then increases again at over-

load. This can be attributed due to the soft-timer effect. In the underload,

Qstream players sleep while waiting for data from the socket. This IO sleep-

ing decreases the soft timer granularity (while it sleeps, some deadlines may

expire which the application may not be aware of). As the load increases,
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Figure 3.5: Single Qstream: without frame display.
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the frequency of sleeping decreases, increasing the soft timer granularity. At

overload of course, more and more events gets stacked on to one another

(they have deadlines pretty close to each other). Hence the corresponding

delay in servicing these deadlines results in increasing tardiness. We do see

however that the overall tardiness values tends to be higher when frame

display is enabled than when it is disabled.

In Figure 3.7 we report the combined frame rate plot for all videos when

playing twelve videos at a time. We observe that the videos have uniform

frame-rate during the duration of playback. Thus, in spite of having ex-

tremely variable bitrate and CPU requirements across them and over the

duration of playback (see Figure 3.4), our adaptation technique is able to

achieve uniform fidelity across all the videos. This is a formidable scheduling

challenge for any conventional scheduler as the CPU requirements of each

of the videos are extremely variable even though their frame-rates are uni-

form. In Section 3.8.2, when we describe our results with multiple Qstream

players cooperating using kernel coop poll(), we show that we can achieve

very similar results.

3.6 Multiple Qstream Applications Under the

Vanilla Kernel.

This section describes our experiences with running multiple instances of

Qstream over the vanilla kernel. In this experiment, we ran an increasing

number of Qstream players, from four players to twelve players in the client

machine running the vanilla 2.6.20 kernel and measured the average tardi-

ness for each run. The CPU is underloaded with four players. The load

gradually increases until at six players the CPU is just saturated and the

adaptation mechanism in the players kicks in. At twelve players, the CPU is

completely saturated and all the players are adapting to the available CPU.

Figure 3.8 shows the values of average tardiness plotted against increasing

number of players. Clearly, as the number of players increases, the tardiness

value increases quickly. With twelve players, the tardiness value reaches 1.4
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Figure 3.6: Single Qstream: with frame display on.

62



Chapter 3. Performance Evaluation

 0

 5

 10

 15

 20

 25

 30

 100  150  200  250  300
 0

 25

 50

 75

 100

F
ra

m
es

 p
er

 s
ec

o
n

d

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Video Position (s)

video 1
video 2
video 3
video 4
video 5
video 6
video 7

video 8
video 9

video 10
video 11
video 12

Global CPU

(a) Frame Display Disabled

 0

 5

 10

 15

 20

 25

 30

 100  150  200  250  300
 0

 25

 50

 75

 100

F
ra

m
es

 p
er

 s
ec

o
n

d

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Video Position (s)

video 1
video 2
video 3
video 4
video 5
video 6
video 7

video 8
video 9

video 10
video 11
video 12

Global CPU

(b) Frame Display Enabled

Figure 3.7: Single Qstream: FPS and CPU load for all videos.

seconds resulting in visible long stoppage of the video and very poor fidelity

across all the video players.

Figure 3.9 shows the FPS of each of the players and the overall CPU

load when running ten independent players at a time. The CPU load is

shown on the right hand side scale and the FPS on the left hand side. As

is expected, the CPU is fully saturated all the time. However, it is clear

that the FPS varies widely between streams and even for the same stream,

varies considerably with time. There are periods when one of the streams

is completely stuck. This clearly brings forward the weaknesses of the CPU

scheduling algorithm of the vanilla 2.6.20 Linux kernel.

So far, we have described the results of running a single Qstream player

playing more than one video and multiple Qstream players, each playing

a single video over the vanila kernel. In the next section, we talk about

our fairshare scheduling algorithm. First, we evaluate the prototype of the

algorithm designed at the user level. Then we describe the results of the

implementation of the algorithm in the kernel.

3.7 Fair Share Scheduling

In this section, we analyze the performance of our fairshare scheduling algo-

rithm. We first benchmark the performance of the fairshare algorithm that
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was already available as a user level prototype and then do it for the kernel

scheduler.

3.7.1 User Level Shared Memory Prototype

Implementation.

In this section, we provide a brief overview of the results obtained after

benchmarking the user level fairshare algorithm prototype. We believed

that the user level implementation will have a higher overhead than the cor-

responding implementation in the kernel. Our experimental results verifies

our belief.

The experimental setup is the same as before. The kernel however does

not play any role in each of the following results. For simplicity, we only

show the results with frame display disabled. Figure 3.10 shows the plots

for throughput, tardiness and context switch rates.

From Figure 3.10(c) we see that, in the user level, the context switches

are extremely high. We believe that there are two main reasons for this.

First, in the user level, we use condition variables for implementing the

yielding logic. After careful analysis, we found that user level condition

variable sleep/wakeup yield does not have a 1:1 relationship with kernel

context switches. In fact, for every user level yield, there are more than one

kernel context switches. We elaborate this point later in Section 3.8.1 where

we analyze the user level cooperative scheduling performance.

Secondly, in the user level, we use a slightly different formula for calcu-

lating the timeslice for a particular process. Instead of the formula given by

Equation 2.2 for the kernel scheduler, we use the Equation 2.1 for the user

level implementation. This has already been discussed in Section 2.2.2.

Thus, there would be roughly two times more context switches per second

for the user level implementation as there would be in the kernel implemen-

tation. This is exactly what we see from the figures. For example, from

Figure 3.12(c), we see that in the kernel implementation with timeslice of

10 ms and 12 players, there are about 1300 context switches per second. In

the userlevel case however, for the same period and number of players, there
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Figure 3.10: Multiple Players: User level fairshare without frame display.
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are 3000 context switches (Figure 3.10(c)).

The increased number of context switches has a direct impact on through-

put. Comparing Figures 3.10(a) and 3.12(a), we see that the decrease in

throughput with respect to the single player case is more for the user level

implementation than for the kernel implementation.

For completeness, in Figure 3.11 we show the cpu usage and fps rates for

12 videos under our fairshare scheduler. We see that each player gets a uni-

form share of the CPU as can be expected from a fairshare algorithm. The

frame rate varies widely across the 12 players. This is because each of the

videos have different bitrates and hence different processing requirements.

Hence, giving fair allocation of CPU resource does not translate to uniform

quality (in terms of frame rate) across all the applications.

In the next section, we evaluate the performance of the fairshare algo-

rithm implemented in the kernel.

3.7.2 Kernel Implementation.

In this section, we analyze the results of our kernel fairshare implementation.

In each of the experiments, we vary the number of Qstream players, from

four players to twelve players. We also vary the scheduling granularity (the

scheduling period) along with it. Recall from Chapter 2, Section 2.3.3 that

our implementation allows the user to change the scheduling period through

the /proc filesystem. Through our scripts, we write an appropriate value

(in microseconds) of the period in /proc/sys/kernel/bvt sched period us.

For these experiments, we use the following values for the scheduling gran-

ularity: 1 ms, 5 ms, 10 ms, 15 ms and 20 ms. It is important to note that

in this experiment, the Qstream applications are all running independently

and are neither exposing their deadline information to each other through

the kernel nor through shared memory. Figure 3.12 shows the combined re-

sults for all the experiments when the frame display is disabled. Figure 3.13

shows the same results when the frame display is enabled. Also note that

when the frame display is enabled, the Xserver is also run as a fairshare

task.
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Figure 3.11: Userlevel fairshare algorithm with 12 players and 10 ms period:
FPS and CPU load for all videos without frame display.
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Figure 3.12: Multiple Players: Kernel Fairshare without frame display.
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Figures 3.12(a) and 3.13(a) show the overall throughput normalized

with respect to the throughput of the corresponding single player case (Fig-

ure 3.5(a) and Figure 3.6(a)). Since we have multiple Qstream applications,

we expect that the increased number of context switches would effectively

reduce the overall throughput. We see that this is indeed the case when

the scheduling granularity is set at 1 ms. In all other cases, we see that

the throughput is in fact more than that of the single player case. This

we believe, is the result of amortization of the cost of context switches at a

relatively large period as we explain below. Recall that in the single player

experiment, the player switches between the videos at a much more fine

grained scale. This translates to very low tardiness values as we have ob-

served in Figures 3.5(b) and 3.6(b). For the kernel fairshare scheduling,

the Qstream applications context switch at a much coarser level depending

upon the scheduling period. On one hand, this results in higher tardiness

values (compare Figures 3.5(b) and 3.12(b)) but on the other hand, this

also results in better cache and TLB utilization, increasing the throughput.

Note that when kernel is switching between different applications, each con-

text switch is potentially more expensive as this results in TLB flushes. In

single player case, since all the videos are running under one address space,

there is no TLB flush. Thus, larger periods in a multi-application scenario

amortizes the cost of context switches resulting in a perceptible increase in

throughput. When we decrease the scheduling period however, the context

switches take place at a finer level, resulting in better tardiness but at the

same time, less efficient cache/TLB utilization. Hence, the results with a 1

ms scheduling period shows better tardiness but worse FPS throughput.

Figures 3.12(b) and 3.13(b) shows that the tardiness of the runs in the

overload are a direct function of the scheduling period. Each player runs for

the duration of their timeslice and then context switches to the next player.

With scheduling period T and N players (we assume that all the cpu time is

allocated for the players only), fairshare timeslice is given by Equation 2.2

as has been discussed in Section 2.3.3.

In the worst case, when an event deadline of a player expires at the

moment when it is context switched out, the event gets delayed by the
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tardiness value given by

tardinessworst = ((N − 1)/N) × T (3.1)

Since, N is constant for a particular run (in overload, the players do

not sleep), we see that the tardiness is directly proportional to the period

T. However, when T is sufficiently small, say 1 ms, the overhead of a very

large number of context switches (in terms of cache pollution and TLB

flushes) effects the tardiness. In that case, Equation 2.2 no longer holds.

In Figures 3.12(b) and 3.13(b), we can see that with period 1 ms, the

tardiness gradually rises until it reaches 5 ms with twelve players. If the

above equation were to hold, tardiness would have been roughly equal to 1

ms at all overload conditions.

In the underload however, since the players sleep on IO, they miss dead-

lines and we see high tardiness values. This situation is the same as the

single player case and has been described in Section 3.5. However, it is im-

portant to note that the scheduling period will also have some impact on

the tardiness even at underload. A player may not be scheduled to run until

the timeslice for the currently executing process expires. The timeslice of

a task can be as large as the period since players spend most of their time

sleeping in underload and are hence out of the runqueue.

Comparing the tardiness results with the user level implementation case

(see Figure 3.10), we see that the later has a better result than the kernel

implementation. In our belief, this is a direct consequence of a finer grained

context switch coupled with the slightly different way we implement the al-

gorithm in the user level. At the user level, when a cooperative task sleeps5,

we take into account the nearest deadline among all the tasks and adjust the

sleeping duration accordingly. This is different from the kernel implementa-

tion where we do not take into account any deadline information at all. All

context switches take place based on the fairshare allocation between tasks.

The tasks do not have any information about their mutual deadlines. Thus,

whereas in the kernel fairshare implementation in the underload case, the

5Sleeping occurs when none of the tasks have any unserviced asap events left.
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sleep duration is based on their own deadlines; for the user level implemen-

tation, the sleep duration is adjusted based on the nearest overall deadline

event. Hence, the result.

Looking at the figures for the context switches we see that, as expected,

the context switches are directly proportional to the period. Since, according

to our implementation, the minimum CPU time allocation per task is 100

micro seconds, the ideal context switch rate is given by the following formula:

c rateideal = min(N × 1000/T, 10000) (3.2)

where c rateideal is the ideal context switch rate per second, N is the number

of players and T is the scheduling period in ms.

Note that with one context switch at every 100 micro seconds, we have

10 context switches per 1 ms, or 10,000 context switches per second. This

is as high as it can get. With 10 players and a period of 1 ms, each player

gets the minimum allocation. With an increasing the number of players,

the context switch remains the same as the players still continue to get an

allocation of 100 micro seconds. Thus, in the figures, we see that with 1

ms period, the context switch rate becomes flat after 10 players. It is also

important to note that in practice, we never reach 10,000 context switches.

The maximum we get is about 9,600 context switches. This, we believe is

due to the high resolution timer latency issues. With 9600 context switches,

a single context switch occurs at every 104 micro seconds. Thus, the timer

latency turns out to be 4 micro seconds. We consider this to be a very good

performance for the high resolution timers and a major achievement by the

kernel designers.

We also observe that the context switches with frame display enabled is

slightly higher than that when frame display is disabled. This is due to the

same reasons as was described for the single player case in Section 3.5.

Finally, if we compare Figures 3.5(c) and 3.12(c), we see that with

12 players, 1 ms scheduling period and frame display disabled, fairshare

scheduling results in 9500 more context switches than the single player case

(9600 context switches as opposed to 100 context switches per second). How-

72



Chapter 3. Performance Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 4  5  6  7  8  9  10  11  12
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

F
P

S
 t

h
ro

u
g
h
p
u
t 

as
 %

 o
f 

 s
in

g
le

 p
la

y
er

 t
h
ro

u
g
h
p
u
t.

# of Videos

Timeslice: 1 ms
Timeslice: 10 ms
Timeslice: 15 ms

Timeslice: 20 ms
Timeslice: 5 ms

(a) Throughput vs Monolithic (single player case)

 0

 5

 10

 15

 20

 25

 30

 4  5  6  7  8  9  10  11  12
 0

 5

 10

 15

 20

 25

 30

A
v
er

ag
e 

T
ar

d
in

es
s 

(m
s)

# of Videos

Timeslice: 1 ms
Timeslice: 10 ms
Timeslice: 15 ms

Timeslice: 20 ms
Timeslice: 5 ms

(b) Tardiness

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000

 4  5  6  7  8  9  10  11  12
 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000
 11000
 12000

G
lo

b
al

 k
er

n
el

 c
o
n
te

x
t 

sw
it

ch
es

 
 p

er
 s

ec
o
n
d
.

# of Videos

Timeslice: 1 ms
Timeslice: 10 ms
Timeslice: 15 ms

Timeslice: 20 ms
Timeslice: 5 ms

(c) Context switches

Figure 3.13: Multiple Players: Kernel fairshare with frame display on.
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ever, if we observe Figure 3.12(a), we see only a 20% reduction in through-

put. Hence, 9500 more context switches only decreases the throughput by

a mere 20%. It indicates that context switches are not as expensive in a

modern kernel on a modern hardware as it used to be. This is an important

result from our experiments. In Section 3.8.2, when we discuss kernel co-

operative polling, we will show that it is possible to get higher throughput

and better tardiness even with the same amount of context switches. It is

possible to do so if the context switches occur in an informed fashion, which

is the essence of our cooperative scheduler.

For completeness, in Figure 3.14 we show the cpu usage and fps rates

for 12 videos under our fairshare scheduler. We see that when playing 12

videos under our fairshare scheduler with 10 ms period, each player gets a

uniform share of the CPU (Figure 3.14(a)) whereas their FPS rates vary

widely (Figure 3.14(b)). This is because of the same reasons as has been

described in Section 3.7.1 while analyzing the same results for the user level

implementation.

In the preceding section, we evaluated our fairshare algorithm. There

was no cooperation between the tasks in this algorithm. In the next section,

we evaluate our cooperative polling algorithm. In this algorithm, the coop-

erative time sensitive tasks cooperatively share the CPU among themselves

through the new primitive coop poll().

3.8 Cooperative Polling

In this section, we analyze the performace of our cooperative polling algo-

rithm. First we give a brief overview of the performance of our user level

prototype. The prototype was already available to us and was useful for

evaluating the performance of the cooperative scheduler at work before we

implement it in the kernel. In the later section, we describe the perfor-

mance of our kernel implementation. Note that, in the kernel, we combine

our cooperative polling approach with the fairshare scheduler. The fairshare

scheduler ensures overall fairness across all the tasks in the system. This we

refer to as policing. The cooperative scheduler preferentially treats real time
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Figure 3.14: Kernel fairshare with 12 players and 10 ms period: FPS and
CPU load for all videos without frame display.
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tasks and together with their deadline information ensures that they get pre-

dictable timeliness within the limits of the fairness imposed by the fairshare

scheduler. However, note that in our experiments, we use a homogeneous

set of exactly the same application(Qstream). Therefore the policing never

actually kicks in. All our Qstream applications are actually well behaved.

In general however, in any system we will have a mix of heterogeneous co-

operative applications and therefore, policing will play an important role

in ensuring fairness in the system. Modification of any other off the shelf

application to fit in our cooperative polling framework is beyond the scope

of this thesis (see Chapter 5). At the user level, we can not enforce polic-

ing and therefore cooperative polling was implemented without any policing

mechanism.

3.8.1 User Level Shared Memory Prototype

Implementation

In this section, we give a brief overview of our user level implementation

results. Each of the players in this experiment share their event deadline

and asap event priorities with each other through a shared memory file.

They yield to the appropriate process using the condition variable semantics.

Figure 3.15 gives the overall results for running increasing number of players

(from four to twelve). Comparing Figures 3.15(b) and 3.5(b), we see that

the tardiness results are comparable. However, the context switches are

extremely high. We were first confused by observing this high level of context

switches. To get a better idea, we instrumented Qstream to report the rate of

user level yields, which is the number of times qsf coop yield() is called

per second. qsf coop yield() in the user level prototype replaces calls

to the coop poll system call in the kernel implementation and has been

described in detail in Section 2.2.1. Figure 3.17 shows the average number

of yields per second for each number of players. We see that this figure

matches reasonably with Figure 3.19(c), the number of context switches in

the kernel implementation. We conclude that the extra number of context

switches results due to the way condition variable sleep/wakeup semantics
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has been implemented in libc. Figure 3.18 shows the ratio of kernel context

switches to user level yields. Ignoring the underload cases and the basic

amount of context switches in overload (as shown in Figure 3.5(c)), we see

that the ratio varies approximately between 2.25 and 2.5.

A high value of context switches decreases the throughput by as much

as 20% from the single player case as shown in Figure 3.15(a).

Figure 3.16 shows the overall frame rate of all the players and the global

CPU usage. It is clear that in our user level implementation, cooperative

scheduling maintains uniform fidelity across all the applications through

sharing of event information. We were excited to see this result. If the

same cooperative logic could be implemented in the kernel, we hoped to

see a similar (or even better) performace. Further, a kernel implementation

through a system call interface will be able to actually enforce policing

when tasks misbehave or fail to cooperate properly. In the next section, we

describe our results with the kernel implementation.

3.8.2 Kernel Implementation With Policing

In this section, we analyze the performance of our cooperative polling mech-

anism working in combination with fairshare scheduling. This combined

approach is the most important contribution of this thesis. In this experi-

ment, we vary the number of players, from four players to twelve. We also

vary the fairshare scheduling granularity: 1ms, 5 ms, 10 ms, 15 ms and 20

ms. Unlike Section 3.7.2 where we discussed fairshare scheduling without

any mutual cooperation between the tasks, in this experiment, each of the

players share their event information (deadline and asap priority) with each

other. Each of the players cooperatively yield to each other with the help

of the kernel through the use of the coop poll system call. However, the

overall allocation of CPU resources in the system is decided by the fairshare

scheduler. This ensures that no task gets more than its fairshare allocation.

Further, please recall from the discussion in Section 2.3.3 that all the coop-

erative processes gets an allocation as a group. They do not have individual

allocations.
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Figure 3.15: Multiple Players: User level cooperative scheduling without
frame display.
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Figure 3.16: Multiple Players: User level cooperative scheduling, overall
frames per second without frame display.
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Figure 3.18: Multiple players: Ratio of kernel context switches to user level
yields without frame display.

We run two sets of experiments, one with frame display disabled and the

other with frame display enabled. With frame display enabled, we run the

Xserver as a fairshare task as before. Figure 3.19 shows the combined result

of our experiments when frame display is disabled. Figure 3.20 shows the

same results with frame display enabled.

If we observe tardiness plots from the above figures, we can see that their

values are much closer to the single player baseline (compare Figure 3.5(b)

with Figure 3.19(b)) than that of the fairshare scheduler alone, even with

the smallest scheduling period (Figure 3.12(b)). Further, comparison of the

context switch rates from Figure 3.19(c) with that for the best tardiness

case (1 ms period) of the fairshare scheduler in Figure 3.12(c), reveals a

very important result. Whereas the fairshare scheduler has almost twice as

many context switches compared to cooperative scheduler with policing, its

tardiness is almost five times worse (5 ms as opposed to 1 ms).

Whereas a very high number of context switches reduces the throughput

by as much as 80% in the fairshare only scheduler, our cooperative polling

mechanism coupled with fairshare scheduler does admirably well. We ob-
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Comparison Fairshare Sched-
uler(1 ms period)

Cooperative Sched-
uler

Dispatcher Latency 4.3 ms 0.9 ms

Context Switches 9430 per sec 4766 per sec

Throughput as % of sin-
gle player

87% 95%

Table 3.1: Comparison of Fairshare Scheduling with Cooperative Polling
with 10 Qstream players

serve from Figures 3.19(a) and 3.20(a) that the reduction in throughput is

as low as 5% in this case compared to the single player case . We believe

that such a small reduction in throughput is not only the result of fewer con-

text switches but also a direct consequence of informed context switching.

Informed voluntary switching amortizes the cost of cache pollution and TLB

flushes, resulting in an increase of throughput. In a pure fairshare sched-

uler, applications are not aware of the kernel scheduling decisions, resulting

in untimely involuntary context switches which is more expensive.

One another interesting thing to note from the context switches is that

they are independent of the scheduling period, unlike in the pure fairshare

scheduling case. This is because all the real time cooperative processes

have a CPU allocation as a group and they are free to share this allocation

among themselves cooperatively, according to their needs as long as they do

not cross the limits of the group allocation.

Table 3.1 clearly brings out the advantages of cooperative polling over

pure fairshare scheduling. In this table, we compare fairshare scheduler with

1 ms period using cooperative scheduler. In both cases, we take the example

of playing 10 videos at a time. Clearly, cooperative polling has five times

better tardiness than pure fairshare scheduling. However, its throughput

penalty compared to single player is 8% better than pure fairshare. The

context switching in pure fairsharing is also almost twice as much as in

cooperative polling.

Figure 3.21 shows the combined framerate of all the twelve players play-

ing with scheduling period set to 10 ms and frame display enabled. Clearly,
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Figure 3.19: Multiple Players: Kernel cooperative polling with policing and
without frame display.

82



Chapter 3. Performance Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 4  5  6  7  8  9  10  11  12
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

F
P

S
 t

h
ro

u
g
h
p
u
t 

as
 %

 o
f 

 s
in

g
le

 p
la

y
er

 t
h
ro

u
g
h
p
u
t.

# of Videos

Timeslice: 1 ms
Timeslice: 10 ms
Timeslice: 15 ms

Timeslice: 20 ms
Timeslice: 5 ms

(a) Throughput vs Monolithic (single player case)

 0

 1

 2

 3

 4

 5

 4  5  6  7  8  9  10  11  12
 0

 1

 2

 3

 4

 5

A
v
er

ag
e 

T
ar

d
in

es
s 

(m
s)

# of Videos

Timeslice: 1 ms
Timeslice: 10 ms
Timeslice: 15 ms

Timeslice: 20 ms
Timeslice: 5 ms

(b) Tardiness

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000

 4  5  6  7  8  9  10  11  12
 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000
 11000
 12000

G
lo

b
al

 k
er

n
el

 c
o
n
te

x
t 

sw
it

ch
es

 
 p

er
 s

ec
o
n
d
.

# of Videos

Timeslice: 1 ms
Timeslice: 10 ms
Timeslice: 15 ms

Timeslice: 20 ms
Timeslice: 5 ms

(c) Context switches

Figure 3.20: Multiple Players: Kernel cooperative polling with policing and
with frame display on.
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Figure 3.21: Kernel cooperative fairshare algorithm with 12 players and 10
ms period: FPS and CPU load for all videos with frame display.

since each of the players are cooperating using coop poll through the ker-

nel, they have coordinated adaptations with uniform frame rate across all

of them.

So far, we have described the results of our fairshare scheduling algorithm

as well as our cooperative polling algorithm (with policing). In each of the

experiments, we have run variable number of players to vary the CPU load

from underloaded to extremely overloaded condition. In the next section,

we describe our experiences with running a single high definition video (a

single such video in our experiment takes as much as 70% of the CPU) by

a single Qstream application. We run our experiment both on the vanilla

kernel as well as on our cooperative-fairshare scheduler. We run a best effort

video encoding work in parallel to completely saturate the CPU.
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3.9 Results of Playing a Single High Definition

Video in CPU Saturated Condition

In this section, we describe our experiments with playing a single 1080p high

definition video in Qstream and running a best effort video encoding task

in parallel. Together, they completely saturate our client. The goal of this

experiment is to evaluate our algorithm for a more common scenario where

users watching a high definition video perform some video/audio encoding

work in parallel.

We found it difficult to get a freely downloadable long 1080p high-def

video. The one that we use has a bitrate of 679.2 kbyte/s, resolution of

1440x1080 with 24 bits per pixel and frame-rate of 25 fps. When running

alone, the single video requires roughly 70% of the CPU. The sample video

that we encode is a standard MPEG-2 video ripped from a movie DVD,

resolution 720x480, with 24 bits per pixel, bitrate of 743.5 kbyte/s and

frame rate of 24 fps. The encoding job converts this video to SPEG format

(Qstream compatible video) of equivalent quality.

We run our experiments both in the vanilla 2.6.20 kernel and on our

cooperative-fairshare scheduling algorithm. Please note that since this is a

single video running with no other real time tasks in parallel, there is no

other real time process to cooperate with. Hence, effectively, the real time

task gets a fairshare allocation of CPU along with the other best effort task.

Also note that when running the experiment under our scheduler, we run the

Xserver as a best effort process. When running the experiment under the

vanilla kernel, we leave the responsibility of scheduling the Xserver totally

on the vanilla kernel heuristics.

3.9.1 Vanilla Kernel Performance

In this section we describe the results of our experiments on the vanilla

2.6.20 kernel. Figure 3.22 shows the results of our experiment. From Fig-

ure 3.22(c) we see that the vanila kernel heuristic is treating the Qstream

player as a CPU intensive task and is therefore equally sharing the CPU
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between both the tasks. Since the video itself requires about 70% of CPU,

the player is forced to adapt, resulting in frames dropping, as is evident from

Figure 3.22(a). Figure 3.22(b) shows the average value of tardiness (or dis-

patcher latency) for the duration of playback. We observe that the tardiness

consistently reaches 100 ms which is an extremely high value. Moreover, the

vanilla kernel has no adjustable scheduling parameter with which one can

obtain a better timeliness for the real time task if so desired.

3.9.2 Performance of Our Kernel Fairshare Algorithm

In this section, we run the above described experiment under our cooperative-

fairshare scheduler. Note that the Xserver is also run as a best effort task

under our fairshare scheduler. Figure 3.23 shows the combined results of the

experiment as the scheduling period is varied. From the Figure 3.23(b) we

see that the tardiness is a direct linear function of the scheduling granular-

ity (the period). As the scheduling period is decreased, the kernel context

switches at a finer level, resulting in improved tardiness. Hence, our sched-

uler gives the users a tuning knob in the form of the scheduling granularity

value (which can be set through the /proc filesystem) that can give the de-

sired tardiness required. Moreover, even with a large value of the period, 20

ms say, the tardiness we can achieve is many times better than the vanilla

kernel (12 ms as opposed to 100 ms). However, as the downside of decreasing

the scheduling period, the number of kernel context switches increases (Fig-

ure 3.23(c)). However, it is interesting to note from Figure 3.23(a) that even

though context switches increases with increasing scheduling granularity, the

overall FPS throughput does not decrease considerably as a consequence of

excess context switch overhead.

The main evaluations of our implementation ends here. However, we

did perform some more experiments to do initial evaluations of our multiple

cooperation domain implementation. The next section describes the results

of these experiments.
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Figure 3.22: Single player with one high definition video on vanilla kernel
with frame display on.
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3.10 Multiple Coop-domain Implementation

Results

In this section, we provide a brief overview of the results of our experiments

over our multiple cooperative domain implementation. This implementation

and its purpose has been explained in detail in Section 2.5. This work remain

unfinished and the results reported here are only preliminary.

For this experiment, we modified the coop poll interface and added a

new integer argument representing the coop domain id. We had to modify

the user level Qstream code in order to make use of the new system call

interface. We added a new command line parameter to Qstream through

which users can specify the coop-domain in which the application should

become a member. Further, we modified the benchmark scripts so that each

of the different Qstream players seek membership in separate coop domains.

The rest the benchmark setup remained the same as before. We performed

experiments with both frame display enabled and disabled. However, for

brevity, in this thesis, we only report results of the experiments that were

performed with frame display disabled.

Figure 3.24 shows the combined results of all our experiments. We see

at once that the number of context switches becomes independent of the

period at bigger scheduling periods. This is because, with a large schedul-

ing period, the event granularity remains finer than the fairshare period.

Since, in this algorithm, the scheduling decision is also based on the earliest

deadline in each of the domains and each domain has exactly one task in

our benchmarks, context switches solely depend on the event granularity

and not on the period. At smaller periods however, the fairshare allocation

becomes smaller than the event granularity. In this scenario, as we see in

the 1 ms period case, the context switches become a function of the period.

From Figure 3.24(b), we observe that the tardiness values are indepen-

dent of the scheduling granularity and solely depends on the number of

Qstream applications. The reason for this is the same as explained above.

If the scheduling period is too large, the event granularity will be much

more fine grained than the individual allocations. Hence, tardiness (which
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Figure 3.24: Multiple Players: Kernel multi-domain cooperative scheduling
with policing and without frame display.
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depends on how fine grained the context switches are compared to the spac-

ing of the event deadlines) will also be independent of the period. However,

with a small enough period, the event granularity is coarser than the fair-

share allocation per task. We see from the figure that this is indeed the

case with a 1 ms period. With a 1 ms period, we see more context switches

though not as many as in the pure fairshare algorithm (Figure 3.12(c)).

In terms of throughput, we see that this algorithm does experience a re-

duction of overall FPS with an increase in the number of players. However,

its performance is comparable to that of the cooperative fairshare imple-

mentation (see Figure 3.19(a)).

It is interesting to observe that the tardiness in this implementation

is not as good as the cooperative fairshare implementation. We believe

that a part of this reason could be the mismatch between the task that

spent the longest time waiting in the runqueue and the one whose deadline

just expired. Recall from Section 2.3.3 that in this scenario we prioritize

running the former task as opposed to the later task to ensure fairness in

CPU allocation. Due to time constraints, we were unable to complete a

full and rigorous analysis of our multi-coop domain implementation and

ascertain some of these proposed beliefs through concrete numbers. This

work is currently being persued by some other students but nevertheless, it

remains a future work for this thesis.

In summary, even though our analysis and design fine tuning were incom-

plete as far as the multi-coop domain algorithm goes, we were encouraged

to see that it did give us a middle ground performance - in between a pure

fairshare algorithm and our cooperative fairshare implementation, both in

terms of tardiness and throughput. Further, the algorithm inherently does

not use asap events for scheduling. Hence, it has the potential to accommo-

date non-adaptive applications as well.

3.11 Chapter Summary

In this chapter, we have analyzed the performace of the vanilla 2.6.20 Linux

scheduler in scheduling multiple real time multimedia applications. We have
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shown that this vanilla kernel heuristics is incapable of providing acceptable

timeliness for the real time tasks. Further, we have shown that multime-

dia workloads that are both CPU and IO intensive impose a formidable

scheduling challenge to the the existing scheduler.

Next, we gave an overview of the performance of the userlevel proto-

type of the algorithms available to us prior to our venture with the kernel.

We show that our user level prototype gives us the results we anticipated.

However, they exhibit extra overhead along with having weak scheduling

isolation between tasks which the kernel implementation is capable of ad-

dressing.

Next, we analyzed the performace of the various algorithms implemented

by us in the kernel. We have shown that a simple fairshare algorithm is ca-

pable of providing acceptable timeliness for time sensitive applications, if

the scheduling period is properly chosen. However, a very small value of

scheduling period can adversely effect the overall throughput as the number

of context switches increases to extremely high levels. The overhead of the

large number of context switches imposes a practical limit on the best possi-

ble timeliness one can get out of a simple fairshare scheduler. We show that

a combination of cooperative polling and fairshare algorithm can provide

timeliness many times better than a simple fairshare scheduler with much

less overhead. Through voluntary preemption, it is possible to amortize the

cost of context switching and get better throughput. Preferential treatment

of realtime tasks using the information provided by them in the form of event

deadlines and priorities can help in getting excellent timing performance for

real time tasks. At the same time, cooperative scheduling, when supervised

by the fairshare scheduler, ensures fairness of CPU allocation among all the

tasks. It also facilitates policing of the misbehaving/uncooperative real time

tasks that violate the allocation constraints. Thus, this combined approach

ensures predictable timeliness without starvation concerns.

In our experiments, we show that the Xserver in itself imposes a signifi-

cant overhead and introduces untimely behavior in the system. We believe

that it is possible to alleviate the problem to a large extent by modifying

the Xserver so as to use our cooperative polling mechanism. This however
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remains a future work for this thesis.

Finally, we analyzed the performace of our multi-coop domain algorithm.

We propose that, with proper implementation, the multi-coop domain al-

gorithm can provide equivalent performance compared to our cooperative-

fairshare algorithm. Yet this new approach would give more portability and

flexibility across many other applications as it will bring non-adaptive time

sensitive applications under our scheduling regime as well. However, this

work remains incomplete in this thesis.
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Related Work

In this chapter, we review some of the related works in this space and com-

pare our work with them. We also cite the relevant papers and references

from where we have been encouraged to work on this idea.

4.1 Cooperative Polling and Kernel-Userspece

Interactions

Traditionally, operating systems provide a process interface that isolates

the different execution contexts, similar to virtual machines. However this

isolation does not ensure predictable timeliness for time sensitive applica-

tions. The cooperative polling model helps time-sensitive applications get

predictable timeliness by facilitating cooperation between these applications

via sharing of their internal deadlines or priorities.

Our cooperative polling at the user level is largely inspired by the soft

timers [4] and the firmtimers [16] kernel-based polling approach. They use

trigger states such as kernel entry points to efficiently schedule events (e.g.,

packet transmission). Cooperative polling extends the benefits of these ap-

proaches into the user level. Both cooperative polling and soft/firm timers

aim to avoid unnecessary preemption or interrupts.

Both scheduler activations [3] and our model aim to avoid the ill-effects of

preemption by informing the user level about the scheduling decisions made

by the kernel. However, the main difference is that activations are upcalls

that inform the application when a new scheduling decision is made while our

model uses application-level polling to synchronize with the kernel’s schedul-

ing decisions. This difference is partly a result of the different application
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domains: activations are mainly designed for throughput-oriented applica-

tions where the upcall model is easier to use, while cooperative polling is

mainly designed for time-sensitive applications where polling is a commonly

used method to meet timing requirements. Also, with activations, the user

level only informs the kernel when it yields the processor, 6 while with co-

operative polling, applications also inform the kernel about their deadlines

or priorities.

4.2 Operating System Support for Time

Sensitive Applications

There is a large body of work that aims to provide operating system support

for multimedia and real-time applications [9, 16, 17, 18, 26, 30, 36, 41]. We

believe that our work is closely related to the borrowed virtual time (BVT)

scheduling algorithm [10] and the SMART scheduler [30]. Like SMART, our

algorithm uses a notion of urgency based on application-supplied timing val-

ues, while BVT uses a notion of urgency based on warp value that is difficult

to calculate. However like BVT and unlike SMART, our approach does not

require an application estimate of service time and leaves admission control

to the user-level. SMART requires service times to perform schedulability

analysis, this analysis can be conservative, when SMART sends overload

notifications, they are probably too late for the application to react. The

comparison of our work against BVT and SMART is described in tabular

form for better clarity in Table 4.1.

4.3 Event Driven and Multi-threaded

Programming

Although the relative merits of event-driven and multi-threaded architec-

tures remain highly debated over a long period of time [1, 25, 32, 33, 44, 46],

generally events are considered to offer better performance while threads are

6With multi-processors, the user level can also ask for more processors.

95



Chapter 4. Related Work

Comparison coop poll BVT SMART

Application
Model

Event Driven Regular Regular + Event
Driven

Specifications Wake up times
and (optionally)
priorities

warp (priority)
values

Deadlines and
service time
estimates and
(optionally)
priorities.

Use of WFQ to
ensure fairness

yes yes yes

Notion of ur-
gency

wake up time
(which we call
deadline in this
thesis)

warp value time of comple-
tion of work (re-
ferred to as dead-
line in the paper)

At overload Application in-
formed at wake
up time when it
needs to yield
next

external ad-
mission control
module

scheduler noti-
fications when
system is in
overload.

Table 4.1: Comparison of our work with BVT and SMART.

considered to offer ease of programing. In the QStream framework which is

used extensively to benchmark this work, Krasic uses events because he feels

they are the best match for time-sensitive applications that must quickly

respond to external input. For example, the worst-case execution time

(WCET) of a job or a response is an important metric for time-sensitive

applications. This metric is quite easy to instrument with events. Never-

theless, we believe that it is possible to use non-preemptive threads libraries

such as Pth [11] as an alternative for implementing cooperatively-polled

applications.

Currently, our model supports applications that are primarily single

threaded. Zeldovich et. al. [48] provide multiprocessor support for event-

driven programs. Their approach could be directly applied to our work.

Even though events have been used extensively, most event systems have

focused on the efficiency and scalability advantages of events rather than
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predictable timing. As a result, most event systems do not distinguish be-

tween deadline and best-effort events. The PulseAudio [35] sound server

uses events that are closest to our model. It uses separate event types

corresponding to our deadline and best-effort types, but unlike our model,

applications cannot control the order of best effort events.

4.4 Adaptive Multimedia Applications

Our model focuses on time-sensitive applications that can adapt during

overload. The QStream video streaming application uses a technique called

Priority-Progress to adapt to available network bandwidth [24] and CPU [23].

This technique was inspired by several other works on quality-adaptive

streaming [12, 37, 40]. Seda [46] provides a framework for performing over-

load management primarily for throughput-based applications such as In-

ternet services.

4.5 Recent Kernel Developments

Recently, there has been some activity in the space of redesigning the kernel

scheduling algorithm for the Linux kernel. Ingo Molnar and others have

proposed and designed a new scheduling algorithm which they have named

the Completely Fair Scheduler [27] or CFS scheduler. Certain portions of

the CFS scheduler is itself derived from the previous work by Con Kolivas

in his Rotating Staircase Deadline (RSDL) Scheduler [19]. The concept of

providing fair allocation of CPU time to all tasks in the system is close to

our fair share scheduler. However, the idea of cooperative polling which al-

lows cooperation between real time tasks through the kernel and voluntarily

yielding the CPU based on deadlines, is still a novel aspect of our work. As

far as our knowledge goes, no one as yet has proposed a similar idea. The

CFS scheduler was in the implementation and testing phases and began to

be incorporated into the mainstream kernel as of version 2.6.23. The CFS

scheduler has been better tested and debugged and run by many more users

than our code.
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For supporting various time sensitive applications, certain new features

have been implemented into the Linux kernel. Fine grained kernel preemp-

tion, high resolution kernel timer and time keeping mechanisms and tickless

kernel design with dynamic ticks [38] are some of them. John Stultz and

Thomas Gleixner [15, 42] have done work in the space of kernel timers and

timer mechanisms. In our work, we complement and make use of some of

these new kernel infrastructures for fine grained timekeeping and process

accounting. We also avoid using any kernel features that make use of reg-

ular timer ticks, thus making our design consistent for using with tickless

kernels.

4.6 Chapter Summary

In this chapter, we have reviewed some of the related work in this space

and compared them with ours. Whereas the need for running more and

different types of adaptive multimedia applications has increased over time,

the kernel scheduling algorithm has not changed significantly to support

these newer kinds of workloads. Most of the existing works on multimedia

scheduling either depends on CPU time reservations or has complicated

heuristics to achieve predictable timeliness. However such approaches are

impractical for commodity environments. Recently Ingo Molnar and others

have proposed and designed new kernel scheduling heuristics to address some

of the challenges we seek to solve. However, as far as our knowledge goes,

our idea of cooperative polling based on application deadlines still remains

a novel idea in this space.
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Future Work and Conclusion

This chapter reviews some of the important future directions of this work

and then finally concludes.

5.1 Future Work

While this work involved a novel approach for scheduling time sensitive work-

loads along with traditional best effort ones, it was only a good beginning.

The work is hardly complete. There are several avenues of future work in

this space, some of which has already been discussed in the earlier sections

in this thesis. In this chapter, we enumerate a few of the very important

ones.

5.1.1 Evaluation of the Fairshare Scheduling Algorithm

We have not performed a thorough evaluation of our fairshare algorithm as

a general purpose scheduler. A complete and detailed evaluation of the al-

gorithm is needed. In particular, evaluations with various kinds of patholog-

ical workloads e.g., massive intr [43], HBench-OS [8], ocbench [45], pipe-

test [28], ringtest [29], etc., and comparing the results with those of the

CFS scheduler [27] would be of great interest. It would also be interesting to

quantify the throughput figures for running multiple best effort workloads

and comparing them with the vanilla kernel scheduler.
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5.1.2 Accomodating Non-Adaptive Time Sensitive

Applications

In Section 2.5, we discuss our approach towards accommodating non-adaptive

applications within our scheduling regime. In Section 3.10, we discuss our

preliminary evaluation of this algorithm. However, this work remains incom-

plete due to time constraints. Though the results did give us some broad

idea on the potential of the algorithm, we were not able to exactly reason

out some of the performance figures we obtained from benchmarking the

design. A deeper level analysis and understanding with possibly modifying

the implementation is necessary.

5.1.3 Implementation of Cooperative Xserver.

Our benchmark results from Chapter 3 show that the Xserver imposes signif-

icant overhead and cause poor timeliness for time sensitive tasks, even when

scheduled as a best effort application in our fairshare scheduler. Schedul-

ing Xserver has always been a challenge to system programmers. Since the

Xserver is based on an event driven programming model, it would be an

interesting work to modify it so that it can use our coop poll semantics.

With Xserver cooperating with the rest of the Qstream applications, it is our

belief that we can achieve much better results. However, since it is not an

adaptive application like Qstream, our kernel has to support non-adaptive

time sensitive applications. This work was discussed in the previous section.

Unfortunately, due to time constraints, both of these two are left as future

work.

5.1.4 Benchmark on a More Heterogeneous System

In our performance analysis, we use the Qstream application throughout,

as the only cooperative application. It will be definitely an interesting ex-

perience to modify certain other applications to use our cooperative polling

scheme. Then, we can benchmark our scheduling framework on a more

heterogeneous system comprising of different cooperating tasks. This work

will become more attractive if these modifications can be performed with
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minimal effort. Unfortunately, due to time constraints, we also leave this as

future work.

5.1.5 Load Balancing for Chip-Multithreaded Processors.

We have already described in Chapter 2 that our implementation does not

support multi core and hyperthreded systems. Even though we have per-

CPU data structures that should automatically scale to multi-processor sce-

narios, we have not been able to get our code running on SMP systems (pos-

sibly because of subtle bugs in the code). Support for chip multithreaded

processors and a mechanism to load balance the tasks across the processors

would be an important future work. One way to load balance is to tackle

the problem in the application itself. Event driven applications can assign

different colors to each of their events such that events of the same color can

be executed in different CPUs without concurrency issues. This idea is very

much similar to the Zeldovich et.al., work [48] on supporting event driven

programs on multi-processors. However, this idea is still in the early stages

and a complete working implementation remains to be done.

5.1.6 Integration of coop poll with epoll

An interesting extension of the work is to integrate our coop poll system

call with the existing epoll system call. Even though the epoll system

call interface will change significantly as a result of this integration, no new

system call will be introduced into the kernel. Further, this will help us to

incorporate the status of open file descriptors as one of the parameters of the

coop poll yielding logic. Thus, the modified yielding logic will prioritize a

cooperative task whose deadline has expired or the task that has the highest

priority best effort event ready. The important difference is that now, the

best effort events of a task would include its ready file descriptors with

priority values attached to them. This would facilitate more fine grained

adaptation mechanism with improved timeliness across all the cooperative

tasks.
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5.1.7 Integration with the 2.6.23 Pluggable Scheduler.

As of writing this thesis, the new CFS scheduler [27] has been merged with

the 2.6.23 kernel source tree. The scheduler code of this new kernel uses the

notion of pluggable CPU schedulers [20]. It might be possible to integrate

our scheduler into the new kernel as a pluggable module. This would help us

in getting more and more people involved with this work (since the scheduler

can be tested with minimal effort) and further fine tuning and regression

testing of our scheduling algorithm.

5.2 Conclusion

In this thesis, we have introduced a new and novel approach to bring time

sensitive and traditional best effort applications within a single unified schedul-

ing framework. We have shown that the traditional preemptive scheduling

introduces unpredictable timing and poor adaptation behavior for adaptive

timesensitive workloads. Cooperative polling aims to reduce unpredictable

timing by minimizing involuntary preemption, and it facilitates cooperation

between applications by sharing event information such as deadlines and

priorities across applications. Our evaluation has shown that this approach

together with a simple deadline-based scheduling policy achieves overall pre-

dictable timing, and it allows applications to make adaptation decisions

during overload that cooperate with rather than get overwhelmed by the

kernel’s scheduling policy.

However, cooperative scheduling alone can not ensure fairness and avoid

starvation. We combine our cooperative algorithm with a fairshare sched-

uler in order to achieve fairness. This preemptive scheduling prevents the

possibility of our cooperative mechanism being abused (either intentionally

or otherwise) to gain unfair advantage. Further, unlike existing approaches

that have attempted to integrate conventional real-time scheduling algo-

rithms into general-purpose operating systems with limited success, our ap-

proach allows time-sensitive and best-effort tasks to co-exist in a tightly

unified framework.
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We have implemented our scheduling algorithm in the Linux kernel and

have performed a series of experiments to evaluate our approach. In our eval-

uation, we use a quality-adaptive video playback application to demonstrate

how complex adaptation policies may be realized. We have also performed

comparisons that show the performance and timing benefits of cooperative

polling. Our experiments show that cooperative polling leverages the inher-

ent efficiency advantages of voluntary context switching versus involuntary

preemption. In CPU saturated conditions, we show that the scheduling re-

sponsiveness of cooperative polling is five times better than a well-tuned

fair-share scheduler, and orders of magnitude better than the best-effort

scheduler used in the mainstream Linux kernel.

All our source code is Open Source and is freely available for down-

load from the repository, http://dsg.cs.ubc.ca/viewsvn. Details of the

project, current status, related publications along with the checkout URLs

of the codebase can be seen from our project homepage: http://dsg.

cs.ubc.ca/coopfsched/. My research log can be viewed from: http:

//cs.ubc.ca/∼anirbans/research/ (access restricted to UBC Computer

Science faculty and graduate students only). Complete set of results for

all our implementations (including experimental ones and those which we

discarded in the course of our work) is available for viewing from http://

dsg.cs.ubc.ca/∼anirbans/. Qstream is completely Open Source and can

be freely downloaded from http://www.Qstream.org. Benchmark scripts

used to perform all the experiments are available along with the Qstream

source.
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Appendix A

Finer Details of the

Experimental Setup

A.1 Client Configuration

In all our experiments, we used the older Nvidia driver version 1.0-8776 uni-

formly for all runs. We had to apply a very simple patch in order to make

the driver compatible with newer Linux 2.6.20 kernel. This was necessary

because in the newer 9629 and above drivers with NVIDIA Quadro Plex[31]

support, we observed that the Xserver was consuming unusually large per-

centage of CPU cycles. We do not know the exact reason for this behavior

since there has been some major changes in between driver versions 8776

and 96297. However, when we reverted back to the old legacy 8776 driver

version, Xserver seemed to behave normally.

A.2 Kernel Configuration

In all our experiments, high resolution timers and hpet drivers were enabled

during kernel configuration. However, vanilla Linux 2.6.20 kernel does not

come with drivers that can provide high resolution timer support. We had

to patch the kernel with high resolution patches [14] in order to enable

high resolution timer support. These patches have been integrated into the

mainstream 2.6.21 kernel. While enabling high resolution timers, we have

been careful not to enable the timer monitoring and profiling options as

these add significant additional overhead.

7details can be seen here:http://www.nvidia.com/object/Linux display ia32 1.

0-9629.html
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For all our experiments, we configure the jiffies to be of 1000 HZ.

Some additional fine tuning is performed on the top of this basic setup

so that our benchmark results are not affected by other external factors. We

make sure that we have enough memory on the client side so that running

multiple players on the client does not cause undue memory pressure. All

unnecessary daemons and applets running on the client are killed so that

our client is free from interference from other stray applications when we run

our benchmarks. In the scripts, we echo 0 to /proc/sys/vm/swappiness so

as to ensure that the kernel does not swap Qstream pages to disk8.

8We saw that having enough free physical memory at any given time does not prevent
Linux kernel from swapping pages to disk. This, we believe, is a bad design choice in the
Linux memory management subsystem.
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Source Codes

B.1 The coop poll System Call Code

/∗ s y s c o o p p o l l − The coop po l l system c a l l i n t e r f a c e

∗ @i param : input dead l ine parameters

∗ @o param : output dead l ine parameters

∗

∗ This ve r s i on o f the c o op po l l does not f o r c e a proces s to

∗ s l e e p on a complet ion v a r i a b l e /waitqueue . Instead , i t j u s t

∗ c a l l s s chedu l e ( ) to y i e l d the

∗ proces sor to another coop ta s k .

∗ This system c a l l i s thus , very s im i l a r to s c h e d y i e l d ( ) c a l l

∗ t h a t a l s o y i e l d s the proces sor f o r a very sma l l amount o f

∗ t ime . In a combined f a i r s h a r e & coop h eu r i s t i c , t h i s i s

∗ expec ted to r e s u l t in a much more s imp ler code and i s

∗ concep t ua l l y more c on s i s t e n t wi th what we want i t

∗ to do .

∗/

asmlinkage long

s y s c o op po l l ( struct coop param t u s e r ∗ i param ,

struct coop param t u s e r ∗o param ){

struct coop param t ki param ;

struct coop param t ko param ;

int r e t ;

unsigned short y i e l d s = 0 ;

unsigned long f l a g s ;

int f l g ;
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struct t imeval tv now , t v d i f f ;

struct t imespec tomono ;

coop queue ∗cq ;

struct bvtqueue ∗bq ;

struct t a s k s t r u c t ∗w asap ;

struct t imeval t v z e r o = { . t v s e c = 0 , . t v u s e c = 0} ;

ko param . t d e ad l i n e = tv z e r o ;

ko param . t a sap = tv z e r o ;

ko param . p asap = 0 ;

ko param . have asap = 0 ;

/∗ copy input va l u e s to k e rne l space

∗ t h i s i s where the k e rne l checks f o r

∗ memory acces s v i o l a t i o n s

∗ This might put the proces s to s l e e p

∗/

r e t = g e t u s e r a r g (&ki param , i param ) ;

i f ( r e t )

return r e t ;

/∗ i f a t a s k has no asaps or dead l i n e s to report ,

∗ we pretend as i f t h i s guy i s on ly a b e s t e f f o r t guy

∗/

i f ( un l i k e l y ( !GET HAVE ASAP( ki param ) ) &&

un l i k e l y ( t imeval compare(&ki param . t dead l i n e ,

&tv z e r o ) == 0)) {

goto y i e l d ;

}

/∗ acqu i re the coop queue l o c k .

∗ t h i s d i s a b l e d preemption and l o c a l

∗ IRQs and acqu i r e s

∗ the runqueue s p i n l o c k

∗/
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cq = ta s k c q l o c k ( current , &f l a g s ) ;

bq = cpu bq ( task cpu ( cur rent ) ) ;

/∗ update the number o f coop count in coop queue ∗/

cq−>num coop ca l l s++;

i f ( ( cur rent)−>c f . bvt t . bv t t ime r a c t i v e ) {

bv t t ime r canc e l (&bq−>bvt t imer ) ;

current−>c f . bvt t . bv t t ime r a c t i v e = 0 ;

}

i f ( ! i s c o o p r e a l t im e ( cur rent ) ) {

s e t t s k a s c o op ( cur rent ) ;

}

current−>c f . coop t . i s we l l b ehaved = 1 ;

do gett imeofday(&tv now ) ;

/∗ remove my s t a l e nodes from the coop heaps

∗ and re−i n s e r t new

∗ nodes based on my updated in format ion

∗/

remove task from coop queue ( current , cq , 0 ) ;

/∗ I n s e r t my in f o in t o the heap ∗/

i f ( l i k e l y ( t imeval compare(&ki param . t dead l i n e ,

&tv z e r o ) != 0) ) {

r e t = i n s e r t t a s k i n t o t imeou t qu eu e (

&ki param . t dead l i n e ,

cq ,

cur rent ) ;

i f ( un l i k e l y ( r e t < 0)){

remove task from coop queue ( current ,
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cq , 0 ) ;

cq unlock ( cq , &f l a g s ) ;

return r e t ;

}

} /∗ i f ∗/

f l g = 0 ; /∗ w i l l be = 1 only when the r e are asaps ∗/

i f ( l i k e l y (GET HAVE ASAP( ki param ) ) ) {

r e t = i n s e r t t a s k i n t o a s ap qu eu e (

&ki param . t asap ,

ki param . p asap ,

cq ,

cur rent ) ;

i f ( r e t < 0) {

remove task from coop queue ( current ,

cq , 0 ) ;

cq unlock ( cq , &f l a g s ) ;

return r e t ;

} else {

f l g = 1 ;

}

} /∗ i f ∗/

/∗ i f t h e r e are no asaps and the dead l ine i s in the

∗ fu ture , make the proces s s l e e p in c o op po l l ( ) u n t i l

∗ the dead l ine e x p i r e s

∗/

i f ( ! f l g &&

timeval compare(&ki param . t dead l i n e ,

&tv now ) > 0) {

/∗ c a l c u l a t e the time d i f f e r e n c e ∗/

s e t no rma l i z ed t imeva l (& t v d i f f ,

ki param . t d e ad l i n e . t v s e c

− tv now . tv sec ,

ki param . t d e ad l i n e . tv u s e c

− tv now . tv us e c ) ;
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c o o p e r a t i v e h i g h r e s s l e e p e r ( cq ,

&f l a g s ,

t imeva l to k t ime ( t v d i f f ) ) ;

goto wakeup ;

}

cq unlock ( cq , &f l a g s ) ;

y i e l d :

s chedu le ( ) ; /∗ t h i s i s how we now y i e l d ∗/

wakeup :

y i e l d s++;

cq = ta s k c q l o c k ( current , &f l a g s ) ;

/∗ update the current running t a s k node ∗/

cq−>num yie lds += y i e l d s ;

w asap = NULL;

f l g = 0 ;

/∗ remove , ob ta in most imp asap and then r e i n s e r t ∗/

i f ( current−>c f . coop t . coop asap heap node ) {

remove task from coop queue ( current , cq , 2 ) ;

f l g = 1 ;

}

f i n d n e a r e s t a s ap ( cq , &w asap ) ;

i f ( f l g )

i n s e r t i n t o a s a p h e a p ( cq , cur rent ) ;

i f ( w asap ) {

ko param . t a sap =

w asap−>c f . coop t . asap p . t a sap ;

ko param . p asap =
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w asap−>c f . coop t . asap p . p r i o r i t y ;

SET HAVE ASAP( ko param ) ;

}

cq unlock ( cq , &f l a g s ) ;

/∗ ad ju s t f o r wa l l time , monotonic time d i f f e r e n c e ∗/

tomono = wal l to monoton ic ;

s e t no rma l i z ed t ime spec (&current−>c f . coop t . dead l ine ,

current−>c f . coop t . dead l ine . t v s e c

− tomono . tv sec ,

current−>c f . coop t . dead l ine . tv n s e c

− tomono . tv n s e c ) ;

ko param . t d e ad l i n e . t v s e c =

current−>c f . coop t . dead l ine . t v s e c ;

ko param . t d e ad l i n e . tv u s e c =

current−>c f . coop t . dead l ine . tv n s e c / NSEC PER USEC;

/∗ r e s e t the w e l l behaved f l a g ∗/

current−>c f . coop t . i s we l l b ehaved = 0 ;

/∗ send i t to user proces s ∗/

return copy to us e r ( o param ,

&ko param ,

s izeof ( struct coop param t ) ) ? −EFAULT: 0 ;

}

/∗ s y s c o o p p o l l ∗/
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B.2 The cooperative sleeper() Code

/∗ c o o p e r a t i v e h i g h r e s s l e e p e r :

∗ arms a high r e s o l u t i o n t imer to s l e e p f o r the

∗ r eque s t ed i n t e r v a l o f time in k t ime t

∗ Also r e l e a s e s the corresponding runqueue l o c k .

∗ @cs : The po in t e r to coop queue

∗ @f lags : The IRQ f l a g s saved p r e v i o u s l y .

∗ @time : The amount o f time to s l e e p in k t ime t .

∗/

stat ic kt ime t c o o p e r a t i v e h i g h r e s s l e e p e r ( coop queue ∗cq ,

unsigned long ∗ f l a g s ,

kt ime t time )

{

struct h r t ime r s l e e p e r t ;

kt ime t remain ;

h r t im e r i n i t (&t . timer , CLOCK MONOTONIC,

HRTIMER MODE REL) ;

h r t i m e r i n i t s l e e p e r (&t , cur rent ) ;

s e t c u r r e n t s t a t e (TASK UNINTERRUPTIBLE) ;

h r t ime r s t a r t (&t . timer , time , HRTIMER MODE REL) ;

cq unlock ( cq , f l a g s ) ;

i f ( l i k e l y ( t . task ) )

schedu le ( ) ;

h r t ime r canc e l (&t . t imer ) ;

remain = hr t imer ge t r ema in ing (&t . t imer ) ;

i f ( k t ime to ns ( remain ) < 0)

return kt ime se t (0 , 0 ) ;

else

return remain ;
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}

B.3 The Borrowing Code

/∗ bv t borrow : implement borrowing o f v i r t u a l t imes .

∗ I t i s c a l l e d from a c t i v a t e t a s k in sched . c

∗/

void bvt borrow ( struct t a s k s t r u c t ∗p , struct bvtqueue ∗bq )

{

struct f a i r sha r e s ched param ∗ top node = NULL;

struct t imeval t v z e r o = { . t v s e c = 0 ,

. t v u s e c = 0} ;

p−>c f . bvt dom−>num tasks++;

/∗ handle r e a l coop wakeups s e p e r a t e l y here ∗/

i f ( i s c o o p r e a l t im e (p ) ) {

/∗ r e i n s e r t the coop nodes

∗ i n t o the coop heap ∗/

i f ( t imeval compare (

&(p−>c f . coop t . dead p . t d e ad l i n e ) ,

&tv z e r o ) > 0) {

/∗ i n s e r t i n t o t imeout heap ∗/

i n s e r t i n t o c o op h e ap s (&bq−>cq ,

p ,COOP TIMEOUT HEAP) ;

/∗ and remove from coop s l e e p

∗ queue ∗/

r emove task f rom coop s l e ep queue (

p , &bq−>cq ) ;

}

/∗ i f t h e r e are o ther coops running ,

∗ do not borrow and do not

∗ i n s e r t my nodes in t o the heap

∗/

i f (p−>c f . bvt dom−>num tasks >1) return ;

} /∗ i f ∗/
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i f ( l i k e l y ( ! heap is empty (bq−>bvt heap ) ) ) {

top node =

( struct f a i r sha r e s ched param ∗)

heap min data (bq−>bvt heap ) ;

}

i f ( top node ) {

p−>c f . task sched param−>bv t v i r t u a l t ime =

top node−>bv t v i r t u a l t ime ;

}

else {

s e t no rma l i z ed t ime spec (

&(p−>c f . task sched param−>bv t v i r t u a l t ime ) ,

0 , 0 ) ;

}

/∗ i n s e r t t a s k in t o the bv t queue

∗/

i f ( l i k e l y ( ! p−>c f . task sched param−>bheap ptr ) ) {

i n s e r t t a s k i n t o bv t qu eu e (bq , p ,HEAP NO GROW) ;

}

}

B.4 The Policing Code

/∗ do po l i c i n g : This i s the main p o l i c i n g func t i on .

∗ Important : I t on ly goes one way , i . e . , demotes

∗ a r e a l coop ta s k to a b e s t e f f o r t

∗ t a s k . The a s s e r t i on at the

∗ very beg inn ing o f the func t i on

∗ ensures t ha t t h i s i s not v i o l a t e d .

∗/

void do po l i c i n g ( struct bvtqueue ∗bq , struct t a s k s t r u c t ∗ t sk )

{

g a s s e r t ( t sk ) ;

g a s s e r t ( bq ) ;
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g a s s e r t ( i s c o o p r e a l t im e ( tsk ) ) ;

/∗ We need to s e t the p r i v a t e v i r t u a l time o f the

∗ po l i c e d t a s k to the coop−domain ’ s v i r t u a l time .

∗ This w i l l ensure t ha t when the t a s k has co r r e c t

∗ v i r t u a l time once the s chedu l e r charges i t s

∗ running time to i t s e l f .

∗/

tsk−>c f . bvt t . pr ivate sched param . bv t v i r t u a l t ime =

tsk−>c f . task sched param−>bv t v i r t u a l t ime ;

/∗ r e g i s t e r t h i s t a s k as be l ong ing to the

∗ b e s t e f f o r t domain . Once t h i s i s done , the

∗ s chedu l e r rou t ine w i l l c o r r e c t l y charge the running

∗ t ime o f t h i s t a s k to the t a s k i t s e l f and not to the

∗ coop−domain .

∗/

tsk−>c f . bvt dom = &(bq−>bvt domains [DOM BEST EFFORT] ) ;

/∗ t a s k v i r t u a l time i s going

∗ to be the v i r t u a l time o f the

∗ i n d i v i d u a l t a s k

∗/

tsk−>c f . task sched param =

&tsk−>c f . bvt t . pr ivate sched param ;

c l e a r c o op t a s k ( t sk ) ;

} /∗ do po l i c i n g ∗/

B.5 The Modified Kernel deactivate task()

Function

/∗

∗ d e a c t i v a t e t a s k − remove a ta s k from the runqueue .

∗/

stat ic void dea c t i v a t e t a s k ( struct t a s k s t r u c t ∗p ,
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struct rq ∗ rq )

{

#i f de f ined (CONFIG SCHED COOPREALTIME)

struct bvtqueue ∗bq = &(rq−>bq ) ;

#endif

dec nr runn ing (p , rq ) ;

dequeue task (p , p−>array ) ;

p−>array = NULL;

#i f de f ined (CONFIG SCHED COOPREALTIME)

i f ( ! i s b v t (p ) ) return ;

bq−>runn ing bvt ta sk = NULL;

bv t t ime r canc e l (&bq−>bvt t imer ) ;

p−>c f . bvt t . bv t t ime r a c t i v e = 0 ;

i f ( i s c o o p r e a l t im e (p ) )

{

/∗ note t ha t p o l i c i n g has

∗ not ye t taken p lace , so

∗ no matter whether we are

∗ c o op e r a t i v e l y s l e e p i n g or

∗ not , we remove our nodes

∗ from coop heap because

∗ the t a s k i s g e t t i n g

∗ dea c t i v a t e d .

∗/

t e s t r emove ta sk f rom coop bvt queue s (

p,&bq−>cq ) ;

i f ( ! p−>c f . coop t . i s we l l b ehaved &&

! p−>e x i t s t a t e ) {

do po l i c i n g (bq , p ) ;

} /∗ i f ∗/

else {
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i n s e r t i n t o c o op h e ap s (&bq−>cq ,

p ,COOP SLEEP HEAP) ;

} /∗ e l s e ∗/

} else {

remove task from bvt queue (bq , p ) ;

p−>c f . bvt dom−>num tasks−−;

} /∗ e l s e ∗/

#endif

}
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