

Introducing F-UKI, Guest Firmware in a UKI for Confidential Cloud Deployments

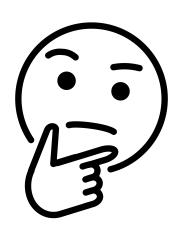
Anirban (Ani) Sinha Principal Software Engineer, Virtualization, Red Hat. anisinha@redhat.com.

FOSDEM 2025, Brussels, Belgium Feb 1-2 2025

People who are involved

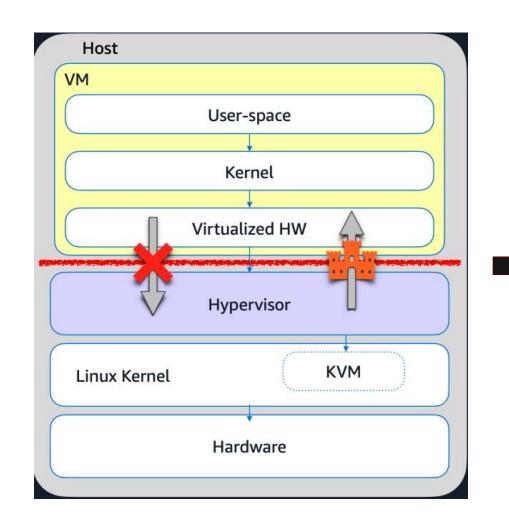
- Ani Sinha (Red Hat).
- Vitaly Kuznetsov (Red Hat).
- Alex Graf (AWS) (original idea).
- Paolo Bonzini (Red Hat).
- Gerd Hoffman (Red Hat).
- Harald Hoyer (Matter Labs).

Huge thanks to Lennart Poettering (speaking here at FOSDEM) for helping us with UKI parts! Alex and Vitaly are also speaking at FOSDEM this year! Please find them around!


Focus of the talk

- Background
- What?
- ► Why?
- ► How?
- Using UKI to bring in firmware
- Current Status
- References

Background


- ► What?
- ► Why?
- ► How?
- Using UKI to bring in firmware
- Current Status
- References



Taken from Nicolas Saenz Julienne's

So what is a Confidential VM?

So what is a Confidential VM?

Confidential VM provides protection from the host it runs on:

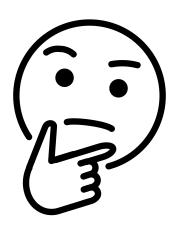
- "Protection" means strong security boundary for all data in the VM. Malicious hypervisor or an actor having access (even privileged!) to the host should not be able to get access to the data.
- The host is still able to disrupt execution of the VM, e.g. it can stop it.
- Hardware (AMD SEV-SNP, Intel TDX) is responsible for encrypting memory and CPU state.
- Storage encryption is necessary for security and must be done by the guest OS.

Verifying integrity at start - measured boot ... (1)

Measured Boot:

- It is the process of computing and securely recording hashes of code and critical data at each stage in the boot chain before the code/data is used.
- No validation. Simply a record of what code/critical-data was present on the system during boot.
- Platform Configuration Registers in TPM store the incremental hashes/measurements securely (can
 not be modified once the *update* operation has completed on the newly *extended* measured hash)
 that become part of the final launch digest.
- Intel TDX module provides measurement capability in HW (no need for TPM registers).
- The measurements can also be stored securely in memory.

Verifying integrity at start - measured boot ... (2)


Measured Boot:

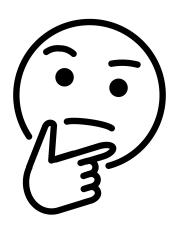
- Firmware images must be measured.
- Final launch digest is then sent to a remote attestation server that validates the digest and send keys to unlock secrets within the guest OS.
- The guest OS can then decrypt the disk with the secrets.

Our work focuses mostly on measured boot.

- Background
- ► What?
 - ► Why?
 - ► How?
 - Using UKI to bring in firmware
 - Current Status
 - References

What?

The talk is focused on in-guest firmware update mechanism


- ► The focus is on the situation when host administrator != guest tenant (e.g. 'cloud' use-case).
- ▶ The mechanism is mostly useful for Confidential VMs but in theory can work with traditional VMs too.

- Background
- What?

► Why?

- ► How?
- Using UKI to bring in firmware
- Current Status
- References

KVM Forum 2024 presentation

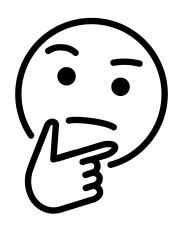
Why guest tenants are interested in supplying their own firmware?

- Getting predictable, pre-calculated launch measurements
- Implementing exclusive per-guest features and configurations
 - Bring-your-own SecureBoot everything (and trust it!)
 - A stateful vTPM implementation with runtime attestations
 - ...
- and this is updateable during guest's lifecycle, not only upon creation.

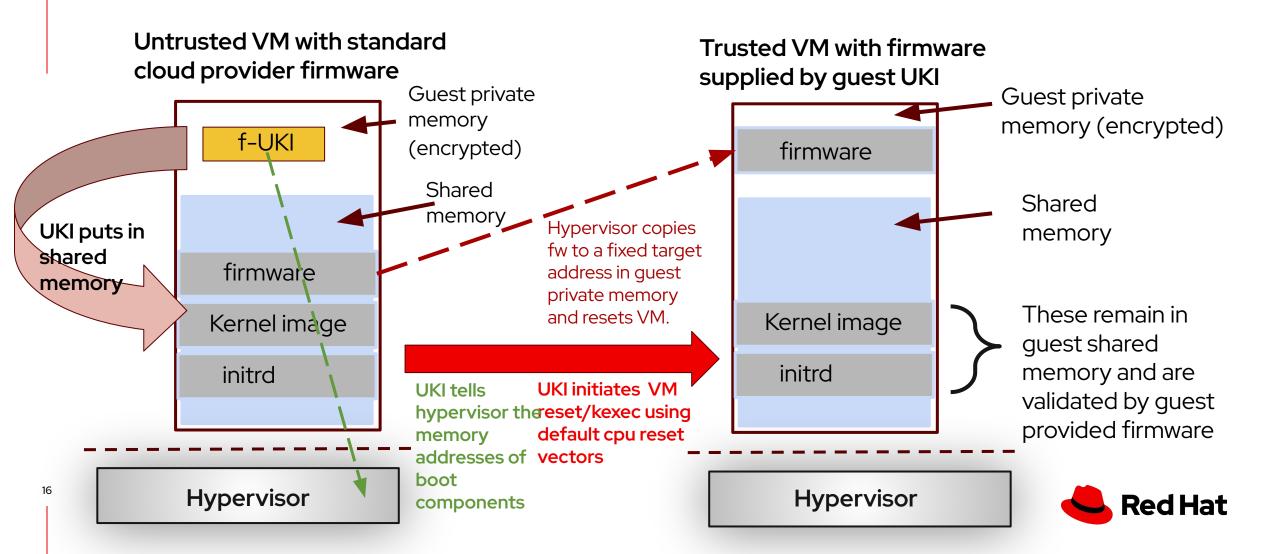
Why host owners are interested in providing the option to do in-guest firmware update?

- For Confidential VMs, updating firmware can't go unnoticed by the guest tenant
 - · Getting rid of the responsibility for non-trivial software which runs **inside** the confidential guest.
 - Guests may break because of new, unexpected launch measurements.
 - Tenants may be interested in what changed and in case of e.g. embargoed CVEs the information cannot be shared.

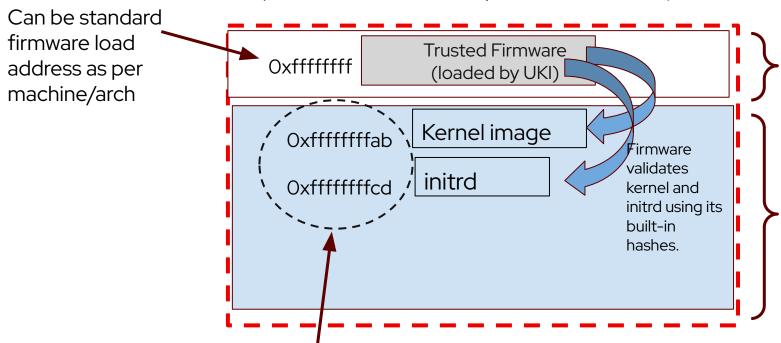
But why not just supply the firmware externally, as part of guest VM image or separately?


- The firmware will require a storage if supplied separately and this external storage will have to be linked to the VM's lifecycle.
- Storing the firmware as part of guest image (e.g. a file on ESP, separate partition,...) can be problematic:
 - The host may not have access to guest storage at all (e.g. NVME passthrough with acceleration card).

- Background
- What?
- ► Why?


► How?

- Using UKI to bring in firmware
- References



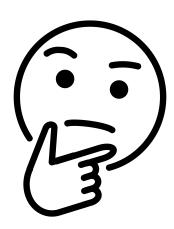
Firmware update mechanism using UKI ... (1)

Firmware update mechanism using UKI ... (2)

SEV-SNP/TDX Guest memory after VM reset (trusted state with UKI provided firmware)

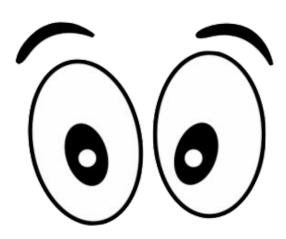
Guest private memory (encrypted)

Guest shared memory (unencrypted, left as is as loaded by UKI between reboots)


Addresses chosen by the UKI strategically to load boot components. It is then conveyed to the next stage firmware (packaged within UKI) using hypervisor interface.

- Background
- What?
- ► Why?
- ► How?

- Current Status
- References



But why UKI for firmware? Or Why f-UKI?

- Portable executable that can be executed by UEFI bios in a guest agnostic manner.
 - Its already widely used in various distributions to load kernel, initrd etc.
- UKI add-on allows customizations for example separate initrd or kernel command line for separate systems based on use-case.
- UKIs can be signed and UEFI bios can only load signed UKIs and UKI add-ons from trusted vendors.
- UKIs can be obsoleted/revoked using SBAT mechanism.
- UKIs containing updated kernel/initrd etc can be installed using standard package management tools.
- All of the above nicely applies for updating firmware images.

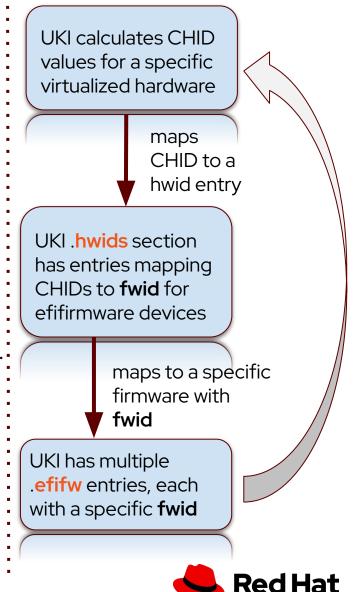
So lets build a f-UKI ...


```
$ ukify.py --help | grep efifw
--efifw DIR Directory with efi firmware binary file [.efifw section]
```

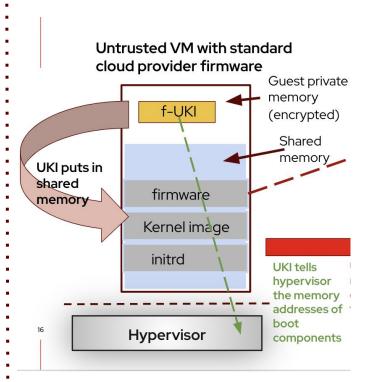
\$ ukify.py build --efifw=/home/anisinha/ovmf-x86-smm-secure --output=/tmp/test.uki

The name of the directory is used as an unique identifier for the firmware image

Directory containing a single ovmf firmware image


\$ ukify.py build --efifw=/home/anisinha/ovmf-x86 --efifw=/workspace/firmware/ovmf-aarch64-smm
--output=/tmp/test.uki

Using UKI to bring in firmware


f-UKI bits ... (1)

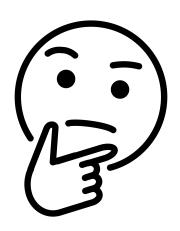
- Multiple firmware images can be bundled in the same UKI.
 - UKI has a mechanism to load the correct one that is compatible with the current hardware.
 - Calculates the "computer hardware IDs" (CHID) for the present hardware and matches a particular firmware (or say devicetree) with it.
- The selected firmware can then load **trusted** kernel/initrd and command line whose hashes are known to the firmware as trustworthy.
 - When building the UKI, ukify must install the hashes in the firmware or they may be installed by a different tool and packaged together later using ukify.

f-UKI bits ... (2)

- Through a well known hypervisor interface (see green line in diagram), the UKI then convey the hypervisor the memory locations where these boot components (firmware, kernel, initrd, command line etc) are loaded.
- UKI initiates reset of the guest to activate the packaged firmware and other boot components.
- The structure of the "opaque blob" in the hypervisor interface is known to UKI and packaged firmware.
 - The UKI conveys information on where it loaded the boot bits into memory for the packaged firmware to consume after reset.

Using UKI to bring in firmware

f-UKI bits ... (3)


- How to build the support for hypervisor interface into UKI in a hypervisor agnostic manner?
 - We prototyped and built patches only for QEMU/edk.
 - The demo was a prototype work patches are rough work.
 - · We are requesting inputs from the community to help us in this effort.
- QEMU uses fw-cfg. We need to build support/write a driver for fw-cfg in UKI. How to design that?
- Open question: What happens when there multiple initrd and kernel command lines are in UKI?

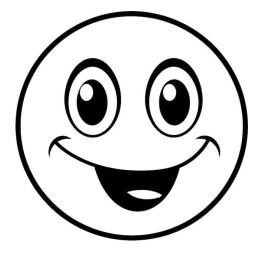
- Background
- What?
- ► Why?
- ► How?
- Using UKI to bring in firmware

Current Status

References

Progress so far ...

QEMU:


- Some code reorgs needed towards enabling reset in CoCo **merged!**
- QEMU hypervisor interface design proposal patch posted. 🗸
 - Link to google doc where we had elaborate discussions later in references.
 - See @qemu-devel link later in references for the latest patch.

Systemd:

- Changes towards matching a firmware to a specific hardware **merged!**
- WIP: adding a "efifw" UKI section to contain the UEFI firmware.
 - WIP: update related documentations.

We need your interest and help in getting all the bits of work into upstream.

- Background
- What?
- ► Why?
- ► How?
- Using UKI to bring in firmware
- Current Status
- References

Upstream (QEMU, Systemd) activities

- Hypervisor interface design doc:
 - https://docs.google.com/document/d/14P5L2mwaGcfsKKnDkQL5dxi7j 1Mc1rzXtbuvilA5xfU/edit?usp=sharing
- QEMU hypervisor interface patch on @qemu-devel:
 - https://mail.gnu.org/archive/html/gemu-devel/2025-01/msq05693.html
- Systemd PRs:
 - https://qithub.com/systemd/systemd/pull/35091 (WIP)
 - Doc update: https://github.com/uapi-group/specifications/pull/131 (WIP)
 - https://github.com/systemd/systemd/pull/35747 (merged!)

References

KVM Forum 2024 https://kvm-forum.gemu.org/2024/

- Talk page: https://pretalx.com/kvm-forum-2024/talk/HJSKRQ/
- Talk recording: https://youtu.be/VCMBxU6tAto?feature=shared
- Demo: https://people.redhat.com/~anisinha/BYOF-demo.mp4
- PDF slides:

https://kvm-forum.gemu.org/2024/BYOF - KVM Forum 2024 iWTioIP.pdf

Can also access these from my Red Hat page: https://people.redhat.com/~anisinha/

Links to talks, specs and documentations ...

- <u>UKI spec</u>:
 - https://github.com/uapi-group/specifications/blob/main/specs/unified kernel image.md
- Emanuele's FOSDEM 2024 talk on UKI/secure boot work Red Hat is doing
 https://archive.fosdem.org/2024/events/attachments/fosdem-2024-2024-uki-addons-and-e
 xtensions-safely-extending-ukis-kernel-command-line-and-initrd/slides/22125/Uki addons 09
 7iYns.pdf
- Lennart's FOSDEM 2024 talk on systemd-boot and UKI
 https://archive.fosdem.org/2024/events/attachments/fosdem-2024-1987-systemd-boot-syst

 emd-stub-ukis/slides/22834/systemd-boot systemd-stub UKIs mNuvmv0.pdf
- SHIM source: https://github.com/rhboot/shim/
- SBAT details: https://github.com/rhboot/shim/blob/main/SBAT.md

Links to talks, specs and documentations ...

- Computer hardware IDS (CHID):
 - https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/using-chids
- Secure boot and measured boot Microsoft page:
 <a href="https://learn.microsoft.com/en-us/windows/security/operating-system-security/sy
- Controlling secure boot https://www.rodsbooks.com/efi-bootloaders/controlling-sb.html
- Measured boot design
 https://trustedfirmware-a.readthedocs.io/en/v2.11/design_documents/measured_boot.html
- Remote attestation using ephemeral TPM https://dl.acm.org/doi/pdf/10.1145/3627106.3627112
- Intel TDX whitepaper https://cdrdv2.intel.com/v1/dl/getContent/690419
- AMD Secure Encrypted Virtualization https://www.amd.com/en/developer/sev.html

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- facebook.com/redhatinc
- **y** twitter.com/RedHat

