
Anirban (Ani) Sinha

Principal Software Engineer, Virtualization, Red Hat.

anisinha@redhat.com.

1

FOSDEM 2025, Brussels, Belgium Feb 1-2 2025

Introducing F-UKI, Guest Firmware in a UKI for
Confidential Cloud Deployments

People who are involved

2

▸ Ani Sinha (Red Hat).

▸ Vitaly Kuznetsov (Red Hat).

▸ Alex Graf (AWS) (original idea).

▸ Paolo Bonzini (Red Hat).

▸ Gerd Hoffman (Red Hat).

▸ Harald Hoyer (Matter Labs).

Huge thanks to Lennart Poettering (speaking here at FOSDEM) for helping us with UKI parts!

Alex and Vitaly are also speaking at FOSDEM this year! Please find them around!

*F-UKI : UKI with Firmware, termed coined by Alex :-)

Agenda

3

Focus of the
talk

▸ Background

▸ What?

▸ Why?

▸ How?

▸ Using UKI to bring in firmware

▸ Current Status

▸ References

4

▸ Background
▸ What?

▸ Why?

▸ How?

▸ Using UKI to bring in firmware

▸ Current Status

▸ References

Agenda

Background

5

So what is a Confidential VM?

Taken from Nicolas Saenz Julienne’s

KVM Forum 2024 presentation

Background

6

Confidential VM provides protection from the host it runs on:

▸ “Protection” means strong security boundary for all data in the VM.

Malicious hypervisor or an actor having access (even privileged!) to

the host should not be able to get access to the data.

▸ The host is still able to disrupt execution of the VM, e.g. it can stop it.

▸ Hardware (AMD SEV-SNP, Intel TDX) is responsible for encrypting

memory and CPU state.

▸ Storage encryption is necessary for security and must be done by the

guest OS.

So what is a Confidential VM?

Confidential VMs in the Cloud

7

Background

● It is the process of computing and securely recording hashes of code and critical data at each stage in

the boot chain before the code/data is used.

● No validation. Simply a record of what code/critical-data was present on the system during boot.

● Platform Configuration Registers in TPM store the incremental hashes/measurements securely (can

not be modified once the update operation has completed on the newly extended measured hash)

that become part of the final launch digest.

● Intel TDX module provides measurement capability in HW (no need for TPM registers).

● The measurements can also be stored securely in memory.

Measured Boot:

Verifying integrity at start - measured boot … (1)

Confidential VMs in the Cloud

8

Background

● Firmware images must be measured.

● Final launch digest is then sent to a remote attestation server that validates the digest

and send keys to unlock secrets within the guest OS.

● The guest OS can then decrypt the disk with the secrets.

Our work focuses mostly on measured boot.

Measured Boot:

Verifying integrity at start - measured boot … (2)

9

▸ Background

▸ What?
▸ Why?

▸ How?

▸ Using UKI to bring in firmware

▸ Current Status

▸ References

Agenda

What?

10

▸ The focus is on the situation when host administrator != guest tenant (e.g. ‘cloud’ use-case).

▸ The mechanism is mostly useful for Confidential VMs but in theory can work with traditional VMs too.

The talk is focused on in-guest firmware update mechanism

KVM Forum 2024 presentation

11

▸ Background

▸ What?

▸ Why?
▸ How?

▸ Using UKI to bring in firmware

▸ Current Status

▸ References

Agenda

Why?

12

▸ Getting predictable, pre-calculated launch measurements

▸ Implementing exclusive per-guest features and configurations

･ Bring-your-own SecureBoot everything (and trust it!)

･ A stateful vTPM implementation with runtime attestations

･ …

▸ and this is updateable during guest’s lifecycle, not only upon creation.

Why guest tenants are interested in supplying
their own firmware?

KVM Forum 2024 presentation

Why?

13

▸ For Confidential VMs, updating firmware can’t go unnoticed by the guest tenant

･ Getting rid of the responsibility for non-trivial software which runs inside the confidential guest.

･ Guests may break because of new, unexpected launch measurements.

･ Tenants may be interested in what changed and in case of e.g. embargoed CVEs the information

cannot be shared.

Why host owners are interested in providing the option to do
in-guest firmware update?

KVM Forum 2024 presentation

Why?

14

▸ The firmware will require a storage if supplied separately and this external storage will have to be linked

to the VM’s lifecycle.

▸ Storing the firmware as part of guest image (e.g. a file on ESP, separate partition,...) can be problematic:

･ The host may not have access to guest storage at all (e.g. NVME passthrough with acceleration

card).

But why not just supply the firmware externally, as part of guest
VM image or separately?

KVM Forum 2024 presentation

15

▸ Background

▸ What?

▸ Why?

▸ How?
▸ Using UKI to bring in firmware

▸ References

Agenda

16

How?

Firmware update mechanism using UKI … (1)

firmware

initrd

Kernel image

Shared
memory

Guest private
memory
(encrypted)

Shared
memory

Guest private
memory (encrypted)

firmware

initrd

Kernel image

Untrusted VM with standard
cloud provider firmware

Trusted VM with firmware
supplied by guest UKI

UKI initiates VM
reset/kexec using
default cpu reset
vectors

Hypervisor copies
fw to a fixed target
address in guest
private memory
and resets VM.

f-UKI

UKI puts in
shared
memory

These remain in
guest shared
memory and are
validated by guest
provided firmware

Hypervisor

UKI tells
hypervisor the
memory
addresses of
boot
components Hypervisor

17

SEV-SNP/TDX Guest memory after VM reset
(trusted state with UKI provided firmware)

Guest private memory
(encrypted)

Guest shared
memory
(unencrypted,
left as is as
loaded by UKI
between
reboots)

Addresses chosen by the UKI strategically to load
boot components. It is then conveyed to the next
stage firmware (packaged within UKI) using
hypervisor interface.

Can be standard
firmware load
address as per
machine/arch

Trusted Firmware
(loaded by UKI) 0xffffffff

0xffffffffab

0xffffffffcd

How?

Firmware update mechanism using UKI … (2)

Kernel image

initrd
Firmware
validates
kernel and
initrd using its
built-in
hashes.

18

▸ Background

▸ What?

▸ Why?

▸ How?

▸ Using UKI to bring in
firmware

▸ Current Status

▸ References

Agenda

19

Using UKI to bring in firmware

But why UKI for firmware? Or Why f-UKI?

▸ Portable executable that can be executed by UEFI bios in a guest agnostic manner.

･ Its already widely used in various distributions to load kernel, initrd etc.

▸ UKI add-on allows customizations - for example separate initrd or kernel command line for separate

systems based on use-case.

▸ UKIs can be signed and UEFI bios can only load signed UKIs and UKI add-ons from trusted vendors.

▸ UKIs can be obsoleted/revoked using SBAT mechanism.

▸ UKIs containing updated kernel/initrd etc can be installed using standard package management tools.

▸ All of the above nicely applies for updating firmware images.

20

Using UKI to bring in firmware

So lets build a f-UKI …

$ ukify.py --help | grep efifw
 --efifw DIR Directory with efi firmware binary file [.efifw section]

$ ukify.py build --efifw=/home/anisinha/ovmf-x86-smm-secure --output=/tmp/test.uki

Directory containing a single ovmf firmware image

The name of the directory is used as an
unique identifier for the firmware image

$ ukify.py build --efifw=/home/anisinha/ovmf-x86 --efifw=/workspace/firmware/ovmf-aarch64-smm
--output=/tmp/test.uki

21

Using UKI to bring in firmware

f-UKI bits … (1)

▸ Multiple firmware images can be bundled in the same UKI.

･ UKI has a mechanism to load the correct one that is compatible with

the current hardware.

･ Calculates the “computer hardware IDs” (CHID) for the present

hardware and matches a particular firmware (or say devicetree) with it.

▸ The selected firmware can then load trusted kernel/initrd and command

line whose hashes are known to the firmware as trustworthy.

･ When building the UKI, ukify must install the hashes in the firmware or

they may be installed by a different tool and packaged together later

using ukify.

UKI calculates CHID
values for a specific
virtualized hardware

UKI .hwids section
has entries mapping
CHIDs to fwid for
efifirmware devices

maps
CHID to a
hwid entry

UKI has multiple
.efifw entries, each
with a specific fwid

maps to a specific
firmware with
fwid

22

Using UKI to bring in firmware

f-UKI bits … (2)

▸ Through a well known hypervisor interface (see green line in diagram), the

UKI then convey the hypervisor the memory locations where these boot

components (firmware, kernel, initrd, command line etc) are loaded.

▸ UKI initiates reset of the guest to activate the packaged firmware and

other boot components.

▸ The structure of the “opaque blob” in the hypervisor interface is known to

UKI and packaged firmware.

･ The UKI conveys information on where it loaded the boot bits into

memory for the packaged firmware to consume after reset.

23

Using UKI to bring in firmware

f-UKI bits … (3)

▸ How to build the support for hypervisor interface into UKI in a hypervisor agnostic manner?

･ We prototyped and built patches only for QEMU/edk.

･ The demo was a prototype work - patches are rough work.

･ We are requesting inputs from the community to help us in this effort.

▸ QEMU uses fw-cfg. We need to build support/write a driver for fw-cfg in UKI. How to design that?

▸ Open question: What happens when there multiple initrd and kernel command lines are in UKI?

24

▸ Background

▸ What?

▸ Why?

▸ How?

▸ Using UKI to bring in firmware

▸ Current Status
▸ References

Agenda

25

Current Status

Progress so far …

We need your interest and help in getting all the bits of work
into upstream.

QEMU:
● Some code reorgs needed towards enabling reset in CoCo merged!
● QEMU hypervisor interface design proposal patch posted.

○ Link to google doc where we had elaborate discussions later in
references.

○ See @qemu-devel link later in references for the latest patch.
Systemd:
● Changes towards matching a firmware to a specific hardware merged!
● WIP: adding a “efifw” UKI section to contain the UEFI firmware.

○ WIP: update related documentations.

26

▸ Background

▸ What?

▸ Why?

▸ How?

▸ Using UKI to bring in firmware

▸ Current Status

▸ References

Agenda

References

27

Upstream (QEMU, Systemd) activities

● Hypervisor interface design doc:
○ https://docs.google.com/document/d/14P5L2mwaGcfsKKnDkQL5dxi7j

1Mc1rzXtbuvilA5xfU/edit?usp=sharing
● QEMU hypervisor interface patch on @qemu-devel:

○ https://mail.gnu.org/archive/html/qemu-devel/2025-01/msg05693.html
● Systemd PRs:

○ https://github.com/systemd/systemd/pull/35091 (WIP)
○ Doc update: https://github.com/uapi-group/specifications/pull/131 (WIP)
○ https://github.com/systemd/systemd/pull/35747 (merged!)

https://docs.google.com/document/d/14P5L2mwaGcfsKKnDkQL5dxi7j1Mc1rzXtbuvilA5xfU/edit?usp=sharing
https://docs.google.com/document/d/14P5L2mwaGcfsKKnDkQL5dxi7j1Mc1rzXtbuvilA5xfU/edit?usp=sharing
https://mail.gnu.org/archive/html/qemu-devel/2025-01/msg05693.html
https://github.com/systemd/systemd/pull/35091
https://github.com/uapi-group/specifications/pull/131
https://github.com/systemd/systemd/pull/35747

References

28

KVM Forum 2024
https://kvm-forum.qemu.org/2024/

● Talk page: https://pretalx.com/kvm-forum-2024/talk/HJSKRQ/

● Talk recording: https://youtu.be/VCMBxU6tAto?feature=shared

● Demo: https://people.redhat.com/~anisinha/BYOF-demo.mp4

● PDF slides:

https://kvm-forum.qemu.org/2024/BYOF_-_KVM_Forum_2024_iWTioIP.pdf

Can also access these from my Red Hat page:
https://people.redhat.com/~anisinha/

Photo credit: Anthony Davis, Red Hat.

https://pretalx.com/kvm-forum-2024/talk/HJSKRQ/
https://youtu.be/VCMBxU6tAto?feature=shared
https://people.redhat.com/~anisinha/BYOF-demo.mp4
https://kvm-forum.qemu.org/2024/BYOF_-_KVM_Forum_2024_iWTioIP.pdf
https://people.redhat.com/~anisinha/

References

29

Links to talks, specs and documentations …

● UKI spec:
https://github.com/uapi-group/specifications/blob/main/specs/unified_kernel_image.md

● Emanuele’s FOSDEM 2024 talk on UKI/secure boot work Red Hat is doing

https://archive.fosdem.org/2024/events/attachments/fosdem-2024-2024-uki-addons-and-e

xtensions-safely-extending-ukis-kernel-command-line-and-initrd/slides/22125/Uki_addons_O9

7iYns.pdf

● Lennart’s FOSDEM 2024 talk on systemd-boot and UKI

https://archive.fosdem.org/2024/events/attachments/fosdem-2024-1987-systemd-boot-syst

emd-stub-ukis/slides/22834/systemd-boot_systemd-stub_UKIs_mNuvmv0.pdf

● SHIM source: https://github.com/rhboot/shim/

● SBAT details: https://github.com/rhboot/shim/blob/main/SBAT.md

https://github.com/uapi-group/specifications/blob/main/specs/unified_kernel_image.md
https://archive.fosdem.org/2024/events/attachments/fosdem-2024-2024-uki-addons-and-extensions-safely-extending-ukis-kernel-command-line-and-initrd/slides/22125/Uki_addons_O97iYns.pdf
https://archive.fosdem.org/2024/events/attachments/fosdem-2024-2024-uki-addons-and-extensions-safely-extending-ukis-kernel-command-line-and-initrd/slides/22125/Uki_addons_O97iYns.pdf
https://archive.fosdem.org/2024/events/attachments/fosdem-2024-2024-uki-addons-and-extensions-safely-extending-ukis-kernel-command-line-and-initrd/slides/22125/Uki_addons_O97iYns.pdf
https://archive.fosdem.org/2024/events/attachments/fosdem-2024-1987-systemd-boot-systemd-stub-ukis/slides/22834/systemd-boot_systemd-stub_UKIs_mNuvmv0.pdf
https://archive.fosdem.org/2024/events/attachments/fosdem-2024-1987-systemd-boot-systemd-stub-ukis/slides/22834/systemd-boot_systemd-stub_UKIs_mNuvmv0.pdf
https://github.com/rhboot/shim/
https://github.com/rhboot/shim/blob/main/SBAT.md

References

30

Links to talks, specs and documentations …

● Computer hardware IDS (CHID):

https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/using-chids

● Secure boot and measured boot Microsoft page:

https://learn.microsoft.com/en-us/windows/security/operating-system-security/system-securit

y/secure-the-windows-10-boot-process

● Controlling secure boot https://www.rodsbooks.com/efi-bootloaders/controlling-sb.html

● Measured boot design

https://trustedfirmware-a.readthedocs.io/en/v2.11/design_documents/measured_boot.html

● Remote attestation using ephemeral TPM https://dl.acm.org/doi/pdf/10.1145/3627106.3627112

● Intel TDX whitepaper https://cdrdv2.intel.com/v1/dl/getContent/690419

● AMD Secure Encrypted Virtualization https://www.amd.com/en/developer/sev.html

https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/using-chids
https://learn.microsoft.com/en-us/windows/security/operating-system-security/system-security/secure-the-windows-10-boot-process
https://learn.microsoft.com/en-us/windows/security/operating-system-security/system-security/secure-the-windows-10-boot-process
https://www.rodsbooks.com/efi-bootloaders/controlling-sb.html
https://trustedfirmware-a.readthedocs.io/en/v2.11/design_documents/measured_boot.html
https://dl.acm.org/doi/pdf/10.1145/3627106.3627112
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://www.amd.com/en/developer/sev.html

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

31

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

