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Proposed launch digest update mechanism
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Continued to
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‘ Red Hat
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Continued to

Proposed launch digest update mechanism (contd ...)

Continued from previous slide ...
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next slide ...
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mory

Insecure VM with

Proposed launch digest update mechanism (contd ...)
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Proposed launch digest update mechanism (contd ...)

Continued from previous slide ...

v

Next stage firmware checks
hashes of next stage boot
components (kernel. Initrd —
etc).

4 N
Firmware loads next
stage kernel/initrd etc

Hashes match with
its inbuilt private

hashes ? and continues
booting Linux.
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calculated and launch
digest finalized and sent to
external attestation server.
N /

‘ Red Hat

launch digest, they PASS. ¢
It provides the keys to the
guest unlock its secrets.
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Salient points ...

e The guest chooses where to place firmware, kernel and inirtd blobs.
o Guest to guest ABI.
e UKl need to support “firmware” section (along with kernel, initrd, command line etc).
e Ukify.py ensures next stage firmware only loads trusted kernel and initrd etc by
installing their hashes in the firmware’s secure hash table
e We are using the guest shared memory (shared with the hypervisor) as a data plane to
pass the initial launch digests (firmware, kernel, initrd etc). The memory comes from the

guest. No separate hypervisor memory allocation required.

‘ Red Hat
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Salient points ...

e Private launch digests (eg. next stage firmware) are copied from the shared memory to guest private
memory by the hypervisor before restarting and regenerating the VM context.

e Systemd checks platform/capability bits to make sure we are loading the correct firmware version for
the correct platform.

e If we use default CPU reset register values, no need to pass initial CPU states.

e Next stage firmware validates kernel, initrd etc since their hashes are stored in a hash table inside a
secure page in the firmware.

o Thereis no need to generate measurements for these components.

o Signature verification also becomes optional.

‘ Red Hat
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Salient points ...

e The firmware itself is validated by the launch measurements that are sent to the external attestation
server.
e To make sure that secure VM remains secure after updating the firmware, we also have a provision for
implementing a “kill switch”.
o Once the firmware/kernel etc are updated, no more updates are allowed using the hypervisor

interface.
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Brief overview of major stack components involved

e QEMU:
o Hypervisor/guest interface in QEMU (fw_cfg based).
o Guest reset mechanism for secure VMs
m  Currently in QEMU, resettings CPUS is not allowed - a reboot terminates the guest.
m Shared memory needs to be preserved across reset.
m  New SEV context needs to be generated after reset.
o Machine changes to make sure loader correctly loads firmware to the right address.

e Systemd:
o Support for guest/hypervisor interface in systemd-boot.
o Check platform/capabilities to make sure correct firmware is loaded.
o Support for loading launch digests, using fw_cfg interface to pass digest information to hypervisor.
o Triggerreset.

e Firmware (EDK2):
o Fw_cfg changes to read platform/capability bits.
o Scan fw_cfg vmfwupdate_blobs to find the kernel/initrd addresses and load linux from there.

‘ Red Hat



