
How?

23

Proposed launch digest update mechanism

VM boots with
“standard” cloud
provider’s
firmware

Continued to
next slide …

UKI loads next stage kernel
and firmware with known
measurements into shared
memory. May perform
signature verification.

Next stage firmware
has built-in hashes in
its secure table to
verify kernel, initrd
etc.

UKI examines launch
measurements.
Measurements FAIL.

UKI has next stage
firmware, kernel,

initrd etc.?

Terminate VM

Yes

No

How?

24

Proposed launch digest update mechanism (contd …)

Kernel image

initrd
…

Firmware

Guest
memory after
VM reset

Guest private memory
(encrypted)

Guest shared
memory
(unencrypted,
left as is as
loaded by UKI
between
reboots)

UKI uses hypervisor interface (fw_cfg) to pass
address range of next stage firmware where it
loaded in (shared memory) along with other
next stage boot components.

Continued from previous slide …

Hypervisor copies the firmware
to the target private address in
the guest. This address is a fixed
address for a particular
architecture.

Hypervisor resets the VM with the
next stage boot components
(firmware, kernel etc) using default
CPU reset vectors. Marks private
memory as private. Generates new
SEV context.

Continued to
next slide …

0xff00

0xffabc

0xfabcd

Addresses
chosen by
the guest

Can be standard fw
load address

25

How?

Proposed launch digest update mechanism (contd …)

firmware

initrd

Kernel image

Shared
memory

Guest private
memory

Shared
memory

Guest private
memory

firmware

initrd

Kernel image

Insecure VM with
standard fw

Secure VM with fw
supplied by guest

Hypervisor VM
reset/kexec
using default
cpu reset
vectors

Hypervisor copies
fw to a fixed
target address in
guest private
memory

UKI

Puts in shared
memory

These remain in
guest shared
memory and are
validated by guest
provided fw

How?

26

Proposed launch digest update mechanism (contd …)

Next stage firmware checks
hashes of next stage boot
components (kernel. Initrd
etc).

After boot, boot
measurements are
calculated and launch
digest finalized and sent to
external attestation server.

Attestation server verifies
the measurements in
launch digest, they PASS.
It provides the keys to the
guest unlock its secrets.

Continued from previous slide …

Hashes match with
its inbuilt private

hashes ?

Terminate VM

No

Yes Firmware loads next
stage kernel/initrd etc
and continues
booting Linux.

27

How?

Salient points …

● The guest chooses where to place firmware, kernel and inirtd blobs.

○ Guest to guest ABI.

● UKI need to support “firmware” section (along with kernel, initrd, command line etc).

● Ukify.py ensures next stage firmware only loads trusted kernel and initrd etc by

installing their hashes in the firmware’s secure hash table

● We are using the guest shared memory (shared with the hypervisor) as a data plane to

pass the initial launch digests (firmware, kernel, initrd etc). The memory comes from the

guest. No separate hypervisor memory allocation required.

28

How?

Salient points …

● Private launch digests (eg. next stage firmware) are copied from the shared memory to guest private

memory by the hypervisor before restarting and regenerating the VM context.

● Systemd checks platform/capability bits to make sure we are loading the correct firmware version for

the correct platform.

● If we use default CPU reset register values, no need to pass initial CPU states.

● Next stage firmware validates kernel, initrd etc since their hashes are stored in a hash table inside a

secure page in the firmware.

○ There is no need to generate measurements for these components.

○ Signature verification also becomes optional.

29

How?

Salient points …

● The firmware itself is validated by the launch measurements that are sent to the external attestation

server.

● To make sure that secure VM remains secure after updating the firmware, we also have a provision for

implementing a “kill switch”.

○ Once the firmware/kernel etc are updated, no more updates are allowed using the hypervisor

interface.

30

Brief overview of major stack components involved

● QEMU:
○ Hypervisor/guest interface in QEMU (fw_cfg based).
○ Guest reset mechanism for secure VMs

■ Currently in QEMU, resettings CPUS is not allowed - a reboot terminates the guest.
■ Shared memory needs to be preserved across reset.
■ New SEV context needs to be generated after reset.

○ Machine changes to make sure loader correctly loads firmware to the right address.

● Systemd:
○ Support for guest/hypervisor interface in systemd-boot.
○ Check platform/capabilities to make sure correct firmware is loaded.
○ Support for loading launch digests, using fw_cfg interface to pass digest information to hypervisor.
○ Trigger reset.

● Firmware (EDK2):
○ Fw_cfg changes to read platform/capability bits.
○ Scan fw_cfg vmfwupdate_blobs to find the kernel/initrd addresses and load linux from there.

How?

