23

How?

Proposed launch digest update mechanism

e

o

VM boots with A

“standard” cloud
provider’s
firmware

[Terminate VM J <

a I
UKl examines launch

P Measurements.

Continued to
next slide ...

Measurements FAIL.

. /

4 Next stage firmware
has built-in hashes in
<4—— tssecure table to

verify kernel, initrd

\ etc.

™

/

UKI has next stage
firmware, kernel,
initrd etc.?

KUKI loads next stage kernel\
and firmware with known
measurements into shared
memory. May perform
signature verification.

‘ Red Hat

How?

Can be standard fw

load address
l Firmware

Oxfabcd] :
.-~~<_ - Kernelimage -
//Oxff00 \\ : :
,)
I ' initrd
\ Oxffabc !
\\ ,, 00

Addresses Memory after

chosenby VM reset
the guest

24

\

Continued to

Proposed launch digest update mechanism (contd ...)

Continued from previous slide ...

Guest private memory

(encrypted)

Guest shared

memory

(unencrypted,

left as is as

o

UKl uses hypervisor interface (fw_cfg) to pass
address range of next stage firmware where it
loaded in (shared memory) along with other
next stage boot components.

J

loaded by UKI

between
reboots) .

.
.
.
.
.
hl

.
-
.

e

o

Hypervisor resets the VM with the
next stage boot components
(firmware, kernel etc) using default
CPU reset vectors. Marks private

/I—Iypervisor copies the ﬁrmware\
to the target private address in

= the guest. This address is a fixed
address for a particular
architecture.

next slide ...

memory as private. Generates new
_ SEV context. -

o J

‘ Red Hat

Puts in shared

25

How?

mory

Insecure VM with

Proposed launch digest update mechanism (contd ...)

Secure VM with fw
standard fw supplied by guest .
Guest private F__—- Guest pl’lvate
UK memory . memory
w{ firmware
Shared -
. memory -~ __ Shared
o - e Hypervisor copies memory
- fw to a fixed
firmware ' target address in
guest private o
Kernel image memory Kernel image These remainin
guest shared
initrd : initrd memory and are
Hypervisor VM validated by guest
reset/kexec provided fw
using default
Cpu reset
vectors ‘ Red Hat

How?

Proposed launch digest update mechanism (contd ...)

Continued from previous slide ...

v

Next stage firmware checks
hashes of next stage boot
components (kernel. Initrd —
etc).

4 N
Firmware loads next
stage kernel/initrd etc

Hashes match with
its inbuilt private

hashes ? and continues
booting Linux.
\ / \ /
Terminate VM +
fAttestation server verifies N { } fAfter boot, boot N
the measurementsin

measurements are
calculated and launch
digest finalized and sent to
external attestation server.
N /

‘ Red Hat

launch digest, they PASS. ¢
It provides the keys to the
guest unlock its secrets.

27

How?

Salient points ...

e The guest chooses where to place firmware, kernel and inirtd blobs.
o Guest to guest ABI.
e UKl need to support “firmware” section (along with kernel, initrd, command line etc).
e Ukify.py ensures next stage firmware only loads trusted kernel and initrd etc by
installing their hashes in the firmware’s secure hash table
e We are using the guest shared memory (shared with the hypervisor) as a data plane to
pass the initial launch digests (firmware, kernel, initrd etc). The memory comes from the

guest. No separate hypervisor memory allocation required.

‘ Red Hat

28

How?

Salient points ...

e Private launch digests (eg. next stage firmware) are copied from the shared memory to guest private
memory by the hypervisor before restarting and regenerating the VM context.

e Systemd checks platform/capability bits to make sure we are loading the correct firmware version for
the correct platform.

e If we use default CPU reset register values, no need to pass initial CPU states.

e Next stage firmware validates kernel, initrd etc since their hashes are stored in a hash table inside a
secure page in the firmware.

o Thereis no need to generate measurements for these components.

o Signature verification also becomes optional.

‘ Red Hat

29

How?

Salient points ...

e The firmware itself is validated by the launch measurements that are sent to the external attestation
server.
e To make sure that secure VM remains secure after updating the firmware, we also have a provision for
implementing a “kill switch”.
o Once the firmware/kernel etc are updated, no more updates are allowed using the hypervisor

interface.

30

How?

Brief overview of major stack components involved

e QEMU:
o Hypervisor/guest interface in QEMU (fw_cfg based).
o Guest reset mechanism for secure VMs
m Currently in QEMU, resettings CPUS is not allowed - a reboot terminates the guest.
m Shared memory needs to be preserved across reset.
m New SEV context needs to be generated after reset.
o Machine changes to make sure loader correctly loads firmware to the right address.

e Systemd:
o Support for guest/hypervisor interface in systemd-boot.
o Check platform/capabilities to make sure correct firmware is loaded.
o Support for loading launch digests, using fw_cfg interface to pass digest information to hypervisor.
o Triggerreset.

e Firmware (EDK2):
o Fw_cfg changes to read platform/capability bits.
o Scan fw_cfg vmfwupdate_blobs to find the kernel/initrd addresses and load linux from there.

‘ Red Hat

