
Empowering confidential VMs in the
cloud to use their own firmware upon
instantiation

Anirban (Ani) Sinha
Principal Software Engineer, Virtualization, Red Hat.
anisinha@redhat.com.

1

KVM Forum 2024

September 22 2024

Brno, CZE.

Vitaly Kuznetsov
Sr. Principal Software Engineer, Virtualization, Red Hat.
vkuznets@redhat.com.

Alexander Graf
Principal Software Engineer, AWS.
graf@amazon.com.

Agenda

2

Focus of the
talk

▸ What?

▸ Why?

▸ How?

▸ Demo

▸ Resources

3

▸ What?
▸ Why?

▸ How?

▸ Demo

▸ Resources

Agenda

What?

4

▸ The focus is on the situation when host administrator != guest tenant (e.g. ‘cloud’ use-case).

▸ The mechanism is mostly useful for Confidential VMs but in theory can work with traditional VMs too.

The talk is focused on in-guest firmware update mechanism

5

▸ What?

▸ Why?
▸ How?

▸ Demo

▸ Resources

Agenda

Why?

6

▸ Getting predictable, pre-calculated launch measurements

▸ Implementing exclusive per-guest features and configurations

･ Bring-your-own SecureBoot everything (and trust it!)

･ A stateful vTPM implementation with runtime attestations

･ …

▸ and this is updateable during guest’s lifecycle, not only upon creation.

Why guest tenants are interested in supplying their own firmware?

Why?

7

▸ For Confidential VMs, updating firmware can’t go unnoticed by the guest tenant

･ Getting rid of the responsibility for non-trivial software which runs inside the confidential guest.

･ Guests may break because of new, unexpected launch measurements.

･ Tenants may be interested in what changed and in case of e.g. embargoed CVEs the information

cannot be shared.

Why host owners are interested in providing the option to do
in-guest firmware update?

Why?

8

▸ The firmware will require a storage if supplied separately and this external storage will have to be linked

to the VM’s lifecycle.

▸ Storing the firmware as part of guest image (e.g. a file on ESP, separate partition,...) can be problematic:

･ The host may not have access to guest storage at all (e.g. NVME passthrough with acceleration

card).

But why not just supply the firmware externally, as part of guest VM
image or separately?

9

▸ What?

▸ Why?

▸ How?
▸ Demo

▸ Resources

Agenda

10

Brief overview of major stack components involved

● QEMU:
○ Hypervisor/guest interface in QEMU (fw_cfg based).
○ Guest reset mechanism for secure VMs

■ Currently in QEMU, resettings CPUS is not allowed - a reboot terminates the guest.
■ Shared memory needs to be preserved across reset.
■ New SEV context needs to be generated after reset.

○ Machine changes to make sure loader correctly loads firmware to the right address.

● Systemd:
○ Support for guest/hypervisor interface in systemd-boot.
○ Check platform/capabilities to make sure correct firmware is loaded.
○ Support for loading launch digests, using fw_cfg interface to pass digest information to hypervisor.
○ Trigger reset.

● Firmware (EDK2):
○ Fw_cfg changes to read platform/capability bits.
○ Scan fw_cfg vmfwupdate_blobs to find the kernel/initrd addresses and load linux from there.

How?

How?

11

Proposed launch digest update mechanism

Confidential guest
boots up with
cloud platform
provided firmware.

The firmware starts UKI
(for example).

UKI examines launch
measurements.
Measurements FAIL.

Continued …

UKI loads next stage kernel
and firmware with known
measurements into shared
memory. May perform
signature verification.

(a) (b) (c)

(d)(e)(f)

Next stage firmware
has built-in hashes in
its secure table to
verify kernel, initrd
etc.

UKI uses hypervisor interface
(fw_cfg) to pass address
ranges of guest private
memory for private launch
digests (e.g next stage
firmware).

How?

12

Proposed launch digest update mechanism (contd …)

UKI passes the source address in
shared memory where launch
digests are loaded. Hypervisor
copies private launch digests to
guest private memory at
address specified by the guest.

UKI may also pass target
CPU state data for
measurements to
hypervisor using the
same (fw_cfg) interface.

Hypervisor restarts the VM with
the next stage launch digests
(firmware, kernel etc) and
target CPU state. Marks private
memory as private. Generates
new SEV context.

Firmware loads kernel, initrd
etc with known
measurements (since
hashes for these
components where built into
the firmware).

(g) (h) (i)

(j)(k)(l)

After boot, PCR boot
measurements are
calculated and sent to
external attestation
server.

Attestation server
verifies the
measurements, they
PASS. It provides the
keys to unlock secrets.

Continued from previous slide …

13

How?

Some further details …

Step (a):
● Stock firmware used by cloud provider is outside the trust zone of the end-users.
● Typically customers do not want any vendor provided component in the stack

(between the guest and the hardware platform).

Step (c):
● Even if initial launch measurements with the vendor provided firmware is available,

measurements will fail every time the vendor updates/changes the firmware (for
example to put security fixes).

● This breaks customers.

Step (d):
● UKI need to support “firmware” section (along with kernel, initrd, command line etc).

Vitaly
has
covered
it.

14

How?

Some further details …

Step (e):
● Ukify.py ensures next stage firmware only loads trusted kernel and initrd etc by installing their hashes

in the firmware’s secure hash table.

Step (f):
● We are using the guest shared memory (shared with the hypervisor) as a data plane to pass the initial

launch digests (firmware, kernel, initrd etc). The memory comes from the guest. No separate
hypervisor memory allocation required.

● Private launch digests (eg. next stage firmware) are copied from the shared memory to guest private
memory by the hypervisor before restarting and regenerating the VM context.

● Systemd checks platform/capability bits to make sure we are loading the correct firmware version for
the correct platform.

Step (h):
● If we use default CPU reset register values, no need to pass initial CPU states.

15

How?

Some further details …

Step (j):
● Next stage firmware validates kernel, initrd etc since their hashes are stored in a hash table inside a

secure page in the firmware.
○ There is no need to generate measurements for these components.
○ Signature verification also becomes optional.

● The firmware itself is validated by the launch measurements that are sent to the external attestation
server.

● Firmware resides in the guest private memory pages. Rest can reside in the shared memory.

Step (l):
● To make sure that secure VM remains secure after updating the firmware, we also have a provision for

implementing a “kill switch”.
○ Once the firmware/kernel etc are updated, no more updates are allowed using the hypervisor

interface.

16

Brief overview of major stack components involved (revisit)

● QEMU:
○ Hypervisor/guest interface in QEMU (fw_cfg based).
○ Guest reset mechanism for secure VMs

■ Currently in QEMU, resettings CPUS is not allowed - a reboot terminates the guest.
■ Shared memory needs to be preserved across reset.
■ New SEV context needs to be generated after reset.

○ Machine changes to make sure loader correctly loads firmware to the right address.

● Systemd:
○ Support for guest/hypervisor interface in systemd-boot.
○ Check platform/capabilities to make sure correct firmware is loaded.
○ Support for loading launch digests, using fw_cfg interface to pass digest information to hypervisor.
○ Trigger reset.

● Firmware (EDK2):
○ Fw_cfg changes to read platform/capability bits.
○ Scan fw_cfg vmfwupdate_blobs to find the kernel/initrd addresses and load linux from there.

How?

17

How?

QEMU hypervisor interface

typedef struct FwCfgVmFwUpdateBlob {
 /*
 * blob_type indicates the type of blob/launch digest the guest has passed
 * to the host. blob_type 0x00 is invalid. It is of type blob_type_t.
 */
 uint8_t blob_type;
 /*
 * map_type: type of guest memory mapping requested. Mappings can be either
 * private or shared. Private guest pages are flipped from shared to private
 * when a new SEV guest context is created. The private memory contains CPU
 * state information and firmware blob. The shared memory remains shared
 * with the hypervisor and is excluded from encryption and measurements.
 * The shared data is the next stage artifacts (kernel image/UKI, initrd,
 * command line) that are validated by the second stage firmware present in
 * the private memory. Thus they need not be explicitly measured by ASP.
 */
 uint8_t map_type;
 uint32_t size; /* size of the blob */
 uint64_t paddr; /* starting gpa where the blob is in guest memory. We
 * copy the contents from the guest shared memory to a
 * different guest private address target_paddr from paddr.
 */
 uint64_t target_paddr; /* guest physical address where private blobs are
 * copied to.
 */
} FwCfgVmFwUpdateBlob;

18

How?

QEMU hypervisor interface (contd …)

/* type of mapping requested */
#define VMFW_TYPE_MAP_PRIVATE 0x00
#define VMFW_TYPE_MAP_SHARED 0x01

typedef enum {
 VMFW_TYPE_BLOB_KERNEL = 0x01, /* kernel */
 VMFW_TYPE_BLOB_INITRD, /* initrd */
 VMFW_TYPE_BLOB_CMDLINE, /* command line */
 VMFW_TYPE_BLOB_FW, /* firmware */
 VMFW_TYPE_BLOB_MAX
} blob_type_t;

typedef struct FwCfgVmFwUpdateCpuState {
 struct kvm_regs regs;
 /*
 * we are currently building this device only for x86.
 * So using sregs2 is fine even if its only available on x86.
 */
 struct kvm_sregs2 s;
} FwCfgVmFwUpdateCpuState;

19

How?

QEMU hypervisor interface (contd …)

struct VMFwUpdateState {
 DeviceState parent_obj;
 /*
 * platform and capabilities
 * least significant 3 bits - platform bits,
 * most significant 13 bits are capability bits.
 * Little endian format. Systemd loader checks these flags
 * before loading the firmware and kernel blobs to memory.
 */
 uint16_t platcap;
 /*
 * fw_cfg ctl
 * - 't' - trigger vm regeneration.
 */
 uint8_t fw_cfg_ctl;

 /* number of blob entries passed by the guest */
 uint8_t n_entries;
 /*
 * Guest measurement blobs or launch digests - can be firmware blob,
 * kernel blob etc. Number of such blobs is stored in n_entries above.
 */
 FwCfgVmFwUpdateBlob vmfwupdate_blobs[MAX_VMFWUPD_ENTRIES];
 FwCfgVmFwUpdateCpuState cpu_state;
};

20

How?

Systemd trigger using hypervisor interface

 FIRMWARE_CONFIG_ITEM FwCfgItem;
 size_t FwCfgSize;
 if (QemuFwCfgFindFile("etc/vmfwupdate-blob", &FwCfgItem, &FwCfgSize) != EFI_SUCCESS)
 {
 return EFI_LOAD_ERROR;
 }
 QemuFwCfgSelectItem(FwCfgItem);
 QemuFwCfgWriteBytes(cur_blob * sizeof(FwCfgVmFwUpdateBlob), blobs);

 if (QemuFwCfgFindFile("etc/fwupdate-control", &FwCfgItem, &FwCfgSize) != EFI_SUCCESS)
 {
 return EFI_LOAD_ERROR;
 }
 QemuFwCfgSelectItem(FwCfgItem);
 char cmd = 't';
 QemuFwCfgWriteBytes(1, &cmd);

 return EFI_LOAD_ERROR;

21

▸ What?

▸ Why?

▸ How?

▸ Demo
▸ Resources

Agenda

22

Demo

Demo of the concept in non-CoCo Virtual Machines

https://docs.google.com/file/d/1PhvLbYpxE_p9gc2cERgIhU-na44Qy2bn/preview

23

Demo

Getting the demo working …

24

Demo

Getting the demo working …

25

▸ What?

▸ Why?

▸ How?

▸ Demo

▸ Resources

Agenda

Resources

26

▸ QEMU changes:

▸ Systemd changes:

Links to WIP/demo code

▸ EDK changes:

▸ Demo

Thanks to all who are involved!

27

▸ Thanks Vitaly Kuznetsov (Red Hat) for initiating

this project within Red Hat, for guidance and for

getting me (Ani Sinha) excited to jump in :-).

▸ Thanks Alex Graf (AWS) for the original idea,

guidance and demo :-).

▸ Thanks Paolo Bonzini (Red Hat) for guidance

and involvement in the project :-).

▸ Thanks Harald Hoyer (Matter Labs) for building

FUKI support in systemd :-).

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

28

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

