1 : // Multimap implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
4 : //
5 : // This file is part of the GNU ISO C++ Library. This library is free
6 : // software; you can redistribute it and/or modify it under the
7 : // terms of the GNU General Public License as published by the
8 : // Free Software Foundation; either version 2, or (at your option)
9 : // any later version.
10 :
11 : // This library is distributed in the hope that it will be useful,
12 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 : // GNU General Public License for more details.
15 :
16 : // You should have received a copy of the GNU General Public License along
17 : // with this library; see the file COPYING. If not, write to the Free
18 : // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 : // USA.
20 :
21 : // As a special exception, you may use this file as part of a free software
22 : // library without restriction. Specifically, if other files instantiate
23 : // templates or use macros or inline functions from this file, or you compile
24 : // this file and link it with other files to produce an executable, this
25 : // file does not by itself cause the resulting executable to be covered by
26 : // the GNU General Public License. This exception does not however
27 : // invalidate any other reasons why the executable file might be covered by
28 : // the GNU General Public License.
29 :
30 : /*
31 : *
32 : * Copyright (c) 1994
33 : * Hewlett-Packard Company
34 : *
35 : * Permission to use, copy, modify, distribute and sell this software
36 : * and its documentation for any purpose is hereby granted without fee,
37 : * provided that the above copyright notice appear in all copies and
38 : * that both that copyright notice and this permission notice appear
39 : * in supporting documentation. Hewlett-Packard Company makes no
40 : * representations about the suitability of this software for any
41 : * purpose. It is provided "as is" without express or implied warranty.
42 : *
43 : *
44 : * Copyright (c) 1996,1997
45 : * Silicon Graphics Computer Systems, Inc.
46 : *
47 : * Permission to use, copy, modify, distribute and sell this software
48 : * and its documentation for any purpose is hereby granted without fee,
49 : * provided that the above copyright notice appear in all copies and
50 : * that both that copyright notice and this permission notice appear
51 : * in supporting documentation. Silicon Graphics makes no
52 : * representations about the suitability of this software for any
53 : * purpose. It is provided "as is" without express or implied warranty.
54 : */
55 :
56 : /** @file stl_multimap.h
57 : * This is an internal header file, included by other library headers.
58 : * You should not attempt to use it directly.
59 : */
60 :
61 : #ifndef _MULTIMAP_H
62 : #define _MULTIMAP_H 1
63 :
64 : #include <bits/concept_check.h>
65 :
66 : namespace _GLIBCXX_STD
67 : {
68 : // Forward declaration of operators < and ==, needed for friend declaration.
69 :
70 : template <typename _Key, typename _Tp,
71 : typename _Compare = std::less<_Key>,
72 : typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
73 : class multimap;
74 :
75 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
76 : inline bool
77 : operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
78 : const multimap<_Key, _Tp, _Compare, _Alloc>& __y);
79 :
80 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
81 : inline bool
82 : operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
83 : const multimap<_Key, _Tp, _Compare, _Alloc>& __y);
84 :
85 : /**
86 : * @brief A standard container made up of (key,value) pairs, which can be
87 : * retrieved based on a key, in logarithmic time.
88 : *
89 : * @ingroup Containers
90 : * @ingroup Assoc_containers
91 : *
92 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
93 : * <a href="tables.html#66">reversible container</a>, and an
94 : * <a href="tables.html#69">associative container</a> (using equivalent
95 : * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
96 : * is T, and the value_type is std::pair<const Key,T>.
97 : *
98 : * Multimaps support bidirectional iterators.
99 : *
100 : * @if maint
101 : * The private tree data is declared exactly the same way for map and
102 : * multimap; the distinction is made entirely in how the tree functions are
103 : * called (*_unique versus *_equal, same as the standard).
104 : * @endif
105 : */
106 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
107 : class multimap
108 0 : {
109 : public:
110 : typedef _Key key_type;
111 : typedef _Tp mapped_type;
112 : typedef std::pair<const _Key, _Tp> value_type;
113 : typedef _Compare key_compare;
114 : typedef _Alloc allocator_type;
115 :
116 : private:
117 : // concept requirements
118 : typedef typename _Alloc::value_type _Alloc_value_type;
119 : __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
120 : __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
121 : _BinaryFunctionConcept)
122 : __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
123 :
124 : public:
125 : class value_compare
126 : : public std::binary_function<value_type, value_type, bool>
127 : {
128 : friend class multimap<_Key, _Tp, _Compare, _Alloc>;
129 : protected:
130 : _Compare comp;
131 :
132 : value_compare(_Compare __c)
133 : : comp(__c) { }
134 :
135 : public:
136 : bool operator()(const value_type& __x, const value_type& __y) const
137 : { return comp(__x.first, __y.first); }
138 : };
139 :
140 : private:
141 : /// @if maint This turns a red-black tree into a [multi]map. @endif
142 : typedef typename _Alloc::template rebind<value_type>::other
143 : _Pair_alloc_type;
144 :
145 : typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
146 : key_compare, _Pair_alloc_type> _Rep_type;
147 : /// @if maint The actual tree structure. @endif
148 : _Rep_type _M_t;
149 :
150 : public:
151 : // many of these are specified differently in ISO, but the following are
152 : // "functionally equivalent"
153 : typedef typename _Pair_alloc_type::pointer pointer;
154 : typedef typename _Pair_alloc_type::const_pointer const_pointer;
155 : typedef typename _Pair_alloc_type::reference reference;
156 : typedef typename _Pair_alloc_type::const_reference const_reference;
157 : typedef typename _Rep_type::iterator iterator;
158 : typedef typename _Rep_type::const_iterator const_iterator;
159 : typedef typename _Rep_type::size_type size_type;
160 : typedef typename _Rep_type::difference_type difference_type;
161 : typedef typename _Rep_type::reverse_iterator reverse_iterator;
162 : typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
163 :
164 : // [23.3.2] construct/copy/destroy
165 : // (get_allocator() is also listed in this section)
166 : /**
167 : * @brief Default constructor creates no elements.
168 : */
169 1162 : multimap()
170 1162 : : _M_t(_Compare(), allocator_type()) { }
171 :
172 : // for some reason this was made a separate function
173 : /**
174 : * @brief Default constructor creates no elements.
175 : */
176 : explicit
177 : multimap(const _Compare& __comp,
178 : const allocator_type& __a = allocator_type())
179 : : _M_t(__comp, __a) { }
180 :
181 : /**
182 : * @brief %Multimap copy constructor.
183 : * @param x A %multimap of identical element and allocator types.
184 : *
185 : * The newly-created %multimap uses a copy of the allocation object used
186 : * by @a x.
187 : */
188 : multimap(const multimap& __x)
189 : : _M_t(__x._M_t) { }
190 :
191 : /**
192 : * @brief Builds a %multimap from a range.
193 : * @param first An input iterator.
194 : * @param last An input iterator.
195 : *
196 : * Create a %multimap consisting of copies of the elements from
197 : * [first,last). This is linear in N if the range is already sorted,
198 : * and NlogN otherwise (where N is distance(first,last)).
199 : */
200 : template <typename _InputIterator>
201 : multimap(_InputIterator __first, _InputIterator __last)
202 : : _M_t(_Compare(), allocator_type())
203 : { _M_t.insert_equal(__first, __last); }
204 :
205 : /**
206 : * @brief Builds a %multimap from a range.
207 : * @param first An input iterator.
208 : * @param last An input iterator.
209 : * @param comp A comparison functor.
210 : * @param a An allocator object.
211 : *
212 : * Create a %multimap consisting of copies of the elements from
213 : * [first,last). This is linear in N if the range is already sorted,
214 : * and NlogN otherwise (where N is distance(first,last)).
215 : */
216 : template <typename _InputIterator>
217 : multimap(_InputIterator __first, _InputIterator __last,
218 : const _Compare& __comp,
219 : const allocator_type& __a = allocator_type())
220 : : _M_t(__comp, __a)
221 : { _M_t.insert_equal(__first, __last); }
222 :
223 : // FIXME There is no dtor declared, but we should have something generated
224 : // by Doxygen. I don't know what tags to add to this paragraph to make
225 : // that happen:
226 : /**
227 : * The dtor only erases the elements, and note that if the elements
228 : * themselves are pointers, the pointed-to memory is not touched in any
229 : * way. Managing the pointer is the user's responsibilty.
230 : */
231 :
232 : /**
233 : * @brief %Multimap assignment operator.
234 : * @param x A %multimap of identical element and allocator types.
235 : *
236 : * All the elements of @a x are copied, but unlike the copy constructor,
237 : * the allocator object is not copied.
238 : */
239 : multimap&
240 : operator=(const multimap& __x)
241 : {
242 : _M_t = __x._M_t;
243 : return *this;
244 : }
245 :
246 : /// Get a copy of the memory allocation object.
247 : allocator_type
248 : get_allocator() const
249 : { return _M_t.get_allocator(); }
250 :
251 : // iterators
252 : /**
253 : * Returns a read/write iterator that points to the first pair in the
254 : * %multimap. Iteration is done in ascending order according to the
255 : * keys.
256 : */
257 : iterator
258 200 : begin()
259 200 : { return _M_t.begin(); }
260 :
261 : /**
262 : * Returns a read-only (constant) iterator that points to the first pair
263 : * in the %multimap. Iteration is done in ascending order according to
264 : * the keys.
265 : */
266 : const_iterator
267 : begin() const
268 : { return _M_t.begin(); }
269 :
270 : /**
271 : * Returns a read/write iterator that points one past the last pair in
272 : * the %multimap. Iteration is done in ascending order according to the
273 : * keys.
274 : */
275 : iterator
276 16600 : end()
277 16600 : { return _M_t.end(); }
278 :
279 : /**
280 : * Returns a read-only (constant) iterator that points one past the last
281 : * pair in the %multimap. Iteration is done in ascending order according
282 : * to the keys.
283 : */
284 : const_iterator
285 : end() const
286 : { return _M_t.end(); }
287 :
288 : /**
289 : * Returns a read/write reverse iterator that points to the last pair in
290 : * the %multimap. Iteration is done in descending order according to the
291 : * keys.
292 : */
293 : reverse_iterator
294 : rbegin()
295 : { return _M_t.rbegin(); }
296 :
297 : /**
298 : * Returns a read-only (constant) reverse iterator that points to the
299 : * last pair in the %multimap. Iteration is done in descending order
300 : * according to the keys.
301 : */
302 : const_reverse_iterator
303 : rbegin() const
304 : { return _M_t.rbegin(); }
305 :
306 : /**
307 : * Returns a read/write reverse iterator that points to one before the
308 : * first pair in the %multimap. Iteration is done in descending order
309 : * according to the keys.
310 : */
311 : reverse_iterator
312 : rend()
313 : { return _M_t.rend(); }
314 :
315 : /**
316 : * Returns a read-only (constant) reverse iterator that points to one
317 : * before the first pair in the %multimap. Iteration is done in
318 : * descending order according to the keys.
319 : */
320 : const_reverse_iterator
321 : rend() const
322 : { return _M_t.rend(); }
323 :
324 : // capacity
325 : /** Returns true if the %multimap is empty. */
326 : bool
327 1068 : empty() const
328 1068 : { return _M_t.empty(); }
329 :
330 : /** Returns the size of the %multimap. */
331 : size_type
332 619 : size() const
333 619 : { return _M_t.size(); }
334 :
335 : /** Returns the maximum size of the %multimap. */
336 : size_type
337 : max_size() const
338 : { return _M_t.max_size(); }
339 :
340 : // modifiers
341 : /**
342 : * @brief Inserts a std::pair into the %multimap.
343 : * @param x Pair to be inserted (see std::make_pair for easy creation
344 : * of pairs).
345 : * @return An iterator that points to the inserted (key,value) pair.
346 : *
347 : * This function inserts a (key, value) pair into the %multimap.
348 : * Contrary to a std::map the %multimap does not rely on unique keys and
349 : * thus multiple pairs with the same key can be inserted.
350 : *
351 : * Insertion requires logarithmic time.
352 : */
353 : iterator
354 487375 : insert(const value_type& __x)
355 487375 : { return _M_t.insert_equal(__x); }
356 :
357 : /**
358 : * @brief Inserts a std::pair into the %multimap.
359 : * @param position An iterator that serves as a hint as to where the
360 : * pair should be inserted.
361 : * @param x Pair to be inserted (see std::make_pair for easy creation
362 : * of pairs).
363 : * @return An iterator that points to the inserted (key,value) pair.
364 : *
365 : * This function inserts a (key, value) pair into the %multimap.
366 : * Contrary to a std::map the %multimap does not rely on unique keys and
367 : * thus multiple pairs with the same key can be inserted.
368 : * Note that the first parameter is only a hint and can potentially
369 : * improve the performance of the insertion process. A bad hint would
370 : * cause no gains in efficiency.
371 : *
372 : * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
373 : * for more on "hinting".
374 : *
375 : * Insertion requires logarithmic time (if the hint is not taken).
376 : */
377 : iterator
378 : insert(iterator __position, const value_type& __x)
379 : { return _M_t.insert_equal(__position, __x); }
380 :
381 : /**
382 : * @brief A template function that attemps to insert a range of elements.
383 : * @param first Iterator pointing to the start of the range to be
384 : * inserted.
385 : * @param last Iterator pointing to the end of the range.
386 : *
387 : * Complexity similar to that of the range constructor.
388 : */
389 : template <typename _InputIterator>
390 : void
391 : insert(_InputIterator __first, _InputIterator __last)
392 : { _M_t.insert_equal(__first, __last); }
393 :
394 : /**
395 : * @brief Erases an element from a %multimap.
396 : * @param position An iterator pointing to the element to be erased.
397 : *
398 : * This function erases an element, pointed to by the given iterator,
399 : * from a %multimap. Note that this function only erases the element,
400 : * and that if the element is itself a pointer, the pointed-to memory is
401 : * not touched in any way. Managing the pointer is the user's
402 : * responsibilty.
403 : */
404 : void
405 : erase(iterator __position)
406 : { _M_t.erase(__position); }
407 :
408 : /**
409 : * @brief Erases elements according to the provided key.
410 : * @param x Key of element to be erased.
411 : * @return The number of elements erased.
412 : *
413 : * This function erases all elements located by the given key from a
414 : * %multimap.
415 : * Note that this function only erases the element, and that if
416 : * the element is itself a pointer, the pointed-to memory is not touched
417 : * in any way. Managing the pointer is the user's responsibilty.
418 : */
419 : size_type
420 : erase(const key_type& __x)
421 : { return _M_t.erase(__x); }
422 :
423 : /**
424 : * @brief Erases a [first,last) range of elements from a %multimap.
425 : * @param first Iterator pointing to the start of the range to be
426 : * erased.
427 : * @param last Iterator pointing to the end of the range to be erased.
428 : *
429 : * This function erases a sequence of elements from a %multimap.
430 : * Note that this function only erases the elements, and that if
431 : * the elements themselves are pointers, the pointed-to memory is not
432 : * touched in any way. Managing the pointer is the user's responsibilty.
433 : */
434 : void
435 : erase(iterator __first, iterator __last)
436 : { _M_t.erase(__first, __last); }
437 :
438 : /**
439 : * @brief Swaps data with another %multimap.
440 : * @param x A %multimap of the same element and allocator types.
441 : *
442 : * This exchanges the elements between two multimaps in constant time.
443 : * (It is only swapping a pointer, an integer, and an instance of
444 : * the @c Compare type (which itself is often stateless and empty), so it
445 : * should be quite fast.)
446 : * Note that the global std::swap() function is specialized such that
447 : * std::swap(m1,m2) will feed to this function.
448 : */
449 : void
450 : swap(multimap& __x)
451 : { _M_t.swap(__x._M_t); }
452 :
453 : /**
454 : * Erases all elements in a %multimap. Note that this function only
455 : * erases the elements, and that if the elements themselves are pointers,
456 : * the pointed-to memory is not touched in any way. Managing the pointer
457 : * is the user's responsibilty.
458 : */
459 : void
460 0 : clear()
461 0 : { _M_t.clear(); }
462 :
463 : // observers
464 : /**
465 : * Returns the key comparison object out of which the %multimap
466 : * was constructed.
467 : */
468 : key_compare
469 : key_comp() const
470 : { return _M_t.key_comp(); }
471 :
472 : /**
473 : * Returns a value comparison object, built from the key comparison
474 : * object out of which the %multimap was constructed.
475 : */
476 : value_compare
477 : value_comp() const
478 : { return value_compare(_M_t.key_comp()); }
479 :
480 : // multimap operations
481 : /**
482 : * @brief Tries to locate an element in a %multimap.
483 : * @param x Key of (key, value) pair to be located.
484 : * @return Iterator pointing to sought-after element,
485 : * or end() if not found.
486 : *
487 : * This function takes a key and tries to locate the element with which
488 : * the key matches. If successful the function returns an iterator
489 : * pointing to the sought after %pair. If unsuccessful it returns the
490 : * past-the-end ( @c end() ) iterator.
491 : */
492 : iterator
493 : find(const key_type& __x)
494 : { return _M_t.find(__x); }
495 :
496 : /**
497 : * @brief Tries to locate an element in a %multimap.
498 : * @param x Key of (key, value) pair to be located.
499 : * @return Read-only (constant) iterator pointing to sought-after
500 : * element, or end() if not found.
501 : *
502 : * This function takes a key and tries to locate the element with which
503 : * the key matches. If successful the function returns a constant
504 : * iterator pointing to the sought after %pair. If unsuccessful it
505 : * returns the past-the-end ( @c end() ) iterator.
506 : */
507 : const_iterator
508 : find(const key_type& __x) const
509 : { return _M_t.find(__x); }
510 :
511 : /**
512 : * @brief Finds the number of elements with given key.
513 : * @param x Key of (key, value) pairs to be located.
514 : * @return Number of elements with specified key.
515 : */
516 : size_type
517 0 : count(const key_type& __x) const
518 0 : { return _M_t.count(__x); }
519 :
520 : /**
521 : * @brief Finds the beginning of a subsequence matching given key.
522 : * @param x Key of (key, value) pair to be located.
523 : * @return Iterator pointing to first element equal to or greater
524 : * than key, or end().
525 : *
526 : * This function returns the first element of a subsequence of elements
527 : * that matches the given key. If unsuccessful it returns an iterator
528 : * pointing to the first element that has a greater value than given key
529 : * or end() if no such element exists.
530 : */
531 : iterator
532 : lower_bound(const key_type& __x)
533 : { return _M_t.lower_bound(__x); }
534 :
535 : /**
536 : * @brief Finds the beginning of a subsequence matching given key.
537 : * @param x Key of (key, value) pair to be located.
538 : * @return Read-only (constant) iterator pointing to first element
539 : * equal to or greater than key, or end().
540 : *
541 : * This function returns the first element of a subsequence of elements
542 : * that matches the given key. If unsuccessful the iterator will point
543 : * to the next greatest element or, if no such greater element exists, to
544 : * end().
545 : */
546 : const_iterator
547 : lower_bound(const key_type& __x) const
548 : { return _M_t.lower_bound(__x); }
549 :
550 : /**
551 : * @brief Finds the end of a subsequence matching given key.
552 : * @param x Key of (key, value) pair to be located.
553 : * @return Iterator pointing to the first element
554 : * greater than key, or end().
555 : */
556 : iterator
557 : upper_bound(const key_type& __x)
558 : { return _M_t.upper_bound(__x); }
559 :
560 : /**
561 : * @brief Finds the end of a subsequence matching given key.
562 : * @param x Key of (key, value) pair to be located.
563 : * @return Read-only (constant) iterator pointing to first iterator
564 : * greater than key, or end().
565 : */
566 : const_iterator
567 : upper_bound(const key_type& __x) const
568 : { return _M_t.upper_bound(__x); }
569 :
570 : /**
571 : * @brief Finds a subsequence matching given key.
572 : * @param x Key of (key, value) pairs to be located.
573 : * @return Pair of iterators that possibly points to the subsequence
574 : * matching given key.
575 : *
576 : * This function is equivalent to
577 : * @code
578 : * std::make_pair(c.lower_bound(val),
579 : * c.upper_bound(val))
580 : * @endcode
581 : * (but is faster than making the calls separately).
582 : */
583 : std::pair<iterator, iterator>
584 0 : equal_range(const key_type& __x)
585 0 : { return _M_t.equal_range(__x); }
586 :
587 : /**
588 : * @brief Finds a subsequence matching given key.
589 : * @param x Key of (key, value) pairs to be located.
590 : * @return Pair of read-only (constant) iterators that possibly points
591 : * to the subsequence matching given key.
592 : *
593 : * This function is equivalent to
594 : * @code
595 : * std::make_pair(c.lower_bound(val),
596 : * c.upper_bound(val))
597 : * @endcode
598 : * (but is faster than making the calls separately).
599 : */
600 : std::pair<const_iterator, const_iterator>
601 : equal_range(const key_type& __x) const
602 : { return _M_t.equal_range(__x); }
603 :
604 : template <typename _K1, typename _T1, typename _C1, typename _A1>
605 : friend bool
606 : operator== (const multimap<_K1, _T1, _C1, _A1>&,
607 : const multimap<_K1, _T1, _C1, _A1>&);
608 :
609 : template <typename _K1, typename _T1, typename _C1, typename _A1>
610 : friend bool
611 : operator< (const multimap<_K1, _T1, _C1, _A1>&,
612 : const multimap<_K1, _T1, _C1, _A1>&);
613 : };
614 :
615 : /**
616 : * @brief Multimap equality comparison.
617 : * @param x A %multimap.
618 : * @param y A %multimap of the same type as @a x.
619 : * @return True iff the size and elements of the maps are equal.
620 : *
621 : * This is an equivalence relation. It is linear in the size of the
622 : * multimaps. Multimaps are considered equivalent if their sizes are equal,
623 : * and if corresponding elements compare equal.
624 : */
625 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
626 : inline bool
627 : operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
628 : const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
629 : { return __x._M_t == __y._M_t; }
630 :
631 : /**
632 : * @brief Multimap ordering relation.
633 : * @param x A %multimap.
634 : * @param y A %multimap of the same type as @a x.
635 : * @return True iff @a x is lexicographically less than @a y.
636 : *
637 : * This is a total ordering relation. It is linear in the size of the
638 : * multimaps. The elements must be comparable with @c <.
639 : *
640 : * See std::lexicographical_compare() for how the determination is made.
641 : */
642 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
643 : inline bool
644 : operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
645 : const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
646 : { return __x._M_t < __y._M_t; }
647 :
648 : /// Based on operator==
649 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
650 : inline bool
651 : operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
652 : const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
653 : { return !(__x == __y); }
654 :
655 : /// Based on operator<
656 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
657 : inline bool
658 : operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
659 : const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
660 : { return __y < __x; }
661 :
662 : /// Based on operator<
663 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
664 : inline bool
665 : operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
666 : const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
667 : { return !(__y < __x); }
668 :
669 : /// Based on operator<
670 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
671 : inline bool
672 : operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
673 : const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
674 : { return !(__x < __y); }
675 :
676 : /// See std::multimap::swap().
677 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
678 : inline void
679 : swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
680 : multimap<_Key, _Tp, _Compare, _Alloc>& __y)
681 : { __x.swap(__y); }
682 : } // namespace std
683 :
684 : #endif /* _MULTIMAP_H */
|