1 : // Map implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
4 : //
5 : // This file is part of the GNU ISO C++ Library. This library is free
6 : // software; you can redistribute it and/or modify it under the
7 : // terms of the GNU General Public License as published by the
8 : // Free Software Foundation; either version 2, or (at your option)
9 : // any later version.
10 :
11 : // This library is distributed in the hope that it will be useful,
12 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 : // GNU General Public License for more details.
15 :
16 : // You should have received a copy of the GNU General Public License along
17 : // with this library; see the file COPYING. If not, write to the Free
18 : // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 : // USA.
20 :
21 : // As a special exception, you may use this file as part of a free software
22 : // library without restriction. Specifically, if other files instantiate
23 : // templates or use macros or inline functions from this file, or you compile
24 : // this file and link it with other files to produce an executable, this
25 : // file does not by itself cause the resulting executable to be covered by
26 : // the GNU General Public License. This exception does not however
27 : // invalidate any other reasons why the executable file might be covered by
28 : // the GNU General Public License.
29 :
30 : /*
31 : *
32 : * Copyright (c) 1994
33 : * Hewlett-Packard Company
34 : *
35 : * Permission to use, copy, modify, distribute and sell this software
36 : * and its documentation for any purpose is hereby granted without fee,
37 : * provided that the above copyright notice appear in all copies and
38 : * that both that copyright notice and this permission notice appear
39 : * in supporting documentation. Hewlett-Packard Company makes no
40 : * representations about the suitability of this software for any
41 : * purpose. It is provided "as is" without express or implied warranty.
42 : *
43 : *
44 : * Copyright (c) 1996,1997
45 : * Silicon Graphics Computer Systems, Inc.
46 : *
47 : * Permission to use, copy, modify, distribute and sell this software
48 : * and its documentation for any purpose is hereby granted without fee,
49 : * provided that the above copyright notice appear in all copies and
50 : * that both that copyright notice and this permission notice appear
51 : * in supporting documentation. Silicon Graphics makes no
52 : * representations about the suitability of this software for any
53 : * purpose. It is provided "as is" without express or implied warranty.
54 : */
55 :
56 : /** @file stl_map.h
57 : * This is an internal header file, included by other library headers.
58 : * You should not attempt to use it directly.
59 : */
60 :
61 : #ifndef _MAP_H
62 : #define _MAP_H 1
63 :
64 : #include <bits/functexcept.h>
65 : #include <bits/concept_check.h>
66 :
67 : namespace _GLIBCXX_STD
68 : {
69 : /**
70 : * @brief A standard container made up of (key,value) pairs, which can be
71 : * retrieved based on a key, in logarithmic time.
72 : *
73 : * @ingroup Containers
74 : * @ingroup Assoc_containers
75 : *
76 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
77 : * <a href="tables.html#66">reversible container</a>, and an
78 : * <a href="tables.html#69">associative container</a> (using unique keys).
79 : * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
80 : * value_type is std::pair<const Key,T>.
81 : *
82 : * Maps support bidirectional iterators.
83 : *
84 : * @if maint
85 : * The private tree data is declared exactly the same way for map and
86 : * multimap; the distinction is made entirely in how the tree functions are
87 : * called (*_unique versus *_equal, same as the standard).
88 : * @endif
89 : */
90 : template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
91 : typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
92 : class map
93 697173 : {
94 : public:
95 : typedef _Key key_type;
96 : typedef _Tp mapped_type;
97 : typedef std::pair<const _Key, _Tp> value_type;
98 : typedef _Compare key_compare;
99 : typedef _Alloc allocator_type;
100 :
101 : private:
102 : // concept requirements
103 : typedef typename _Alloc::value_type _Alloc_value_type;
104 : __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
105 : __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
106 : _BinaryFunctionConcept)
107 : __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
108 :
109 : public:
110 : class value_compare
111 : : public std::binary_function<value_type, value_type, bool>
112 : {
113 : friend class map<_Key, _Tp, _Compare, _Alloc>;
114 : protected:
115 : _Compare comp;
116 :
117 : value_compare(_Compare __c)
118 : : comp(__c) { }
119 :
120 : public:
121 : bool operator()(const value_type& __x, const value_type& __y) const
122 : { return comp(__x.first, __y.first); }
123 : };
124 :
125 : private:
126 : /// @if maint This turns a red-black tree into a [multi]map. @endif
127 : typedef typename _Alloc::template rebind<value_type>::other
128 : _Pair_alloc_type;
129 :
130 : typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
131 : key_compare, _Pair_alloc_type> _Rep_type;
132 :
133 : /// @if maint The actual tree structure. @endif
134 : _Rep_type _M_t;
135 :
136 : public:
137 : // many of these are specified differently in ISO, but the following are
138 : // "functionally equivalent"
139 : typedef typename _Pair_alloc_type::pointer pointer;
140 : typedef typename _Pair_alloc_type::const_pointer const_pointer;
141 : typedef typename _Pair_alloc_type::reference reference;
142 : typedef typename _Pair_alloc_type::const_reference const_reference;
143 : typedef typename _Rep_type::iterator iterator;
144 : typedef typename _Rep_type::const_iterator const_iterator;
145 : typedef typename _Rep_type::size_type size_type;
146 : typedef typename _Rep_type::difference_type difference_type;
147 : typedef typename _Rep_type::reverse_iterator reverse_iterator;
148 : typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
149 :
150 : // [23.3.1.1] construct/copy/destroy
151 : // (get_allocator() is normally listed in this section, but seems to have
152 : // been accidentally omitted in the printed standard)
153 : /**
154 : * @brief Default constructor creates no elements.
155 : */
156 1266766 : map()
157 1266766 : : _M_t(_Compare(), allocator_type()) { }
158 :
159 : // for some reason this was made a separate function
160 : /**
161 : * @brief Default constructor creates no elements.
162 : */
163 : explicit
164 : map(const _Compare& __comp, const allocator_type& __a = allocator_type())
165 : : _M_t(__comp, __a) { }
166 :
167 : /**
168 : * @brief Map copy constructor.
169 : * @param x A %map of identical element and allocator types.
170 : *
171 : * The newly-created %map uses a copy of the allocation object used
172 : * by @a x.
173 : */
174 : map(const map& __x)
175 : : _M_t(__x._M_t) { }
176 :
177 : /**
178 : * @brief Builds a %map from a range.
179 : * @param first An input iterator.
180 : * @param last An input iterator.
181 : *
182 : * Create a %map consisting of copies of the elements from [first,last).
183 : * This is linear in N if the range is already sorted, and NlogN
184 : * otherwise (where N is distance(first,last)).
185 : */
186 : template <typename _InputIterator>
187 : map(_InputIterator __first, _InputIterator __last)
188 : : _M_t(_Compare(), allocator_type())
189 : { _M_t.insert_unique(__first, __last); }
190 :
191 : /**
192 : * @brief Builds a %map from a range.
193 : * @param first An input iterator.
194 : * @param last An input iterator.
195 : * @param comp A comparison functor.
196 : * @param a An allocator object.
197 : *
198 : * Create a %map consisting of copies of the elements from [first,last).
199 : * This is linear in N if the range is already sorted, and NlogN
200 : * otherwise (where N is distance(first,last)).
201 : */
202 : template <typename _InputIterator>
203 : map(_InputIterator __first, _InputIterator __last,
204 : const _Compare& __comp, const allocator_type& __a = allocator_type())
205 : : _M_t(__comp, __a)
206 : { _M_t.insert_unique(__first, __last); }
207 :
208 : // FIXME There is no dtor declared, but we should have something generated
209 : // by Doxygen. I don't know what tags to add to this paragraph to make
210 : // that happen:
211 : /**
212 : * The dtor only erases the elements, and note that if the elements
213 : * themselves are pointers, the pointed-to memory is not touched in any
214 : * way. Managing the pointer is the user's responsibilty.
215 : */
216 :
217 : /**
218 : * @brief Map assignment operator.
219 : * @param x A %map of identical element and allocator types.
220 : *
221 : * All the elements of @a x are copied, but unlike the copy constructor,
222 : * the allocator object is not copied.
223 : */
224 : map&
225 : operator=(const map& __x)
226 : {
227 : _M_t = __x._M_t;
228 : return *this;
229 : }
230 :
231 : /// Get a copy of the memory allocation object.
232 : allocator_type
233 : get_allocator() const
234 : { return _M_t.get_allocator(); }
235 :
236 : // iterators
237 : /**
238 : * Returns a read/write iterator that points to the first pair in the
239 : * %map.
240 : * Iteration is done in ascending order according to the keys.
241 : */
242 : iterator
243 103174500 : begin()
244 103174500 : { return _M_t.begin(); }
245 :
246 : /**
247 : * Returns a read-only (constant) iterator that points to the first pair
248 : * in the %map. Iteration is done in ascending order according to the
249 : * keys.
250 : */
251 : const_iterator
252 : begin() const
253 : { return _M_t.begin(); }
254 :
255 : /**
256 : * Returns a read/write iterator that points one past the last pair in
257 : * the %map. Iteration is done in ascending order according to the keys.
258 : */
259 : iterator
260 159071859 : end()
261 159071859 : { return _M_t.end(); }
262 :
263 : /**
264 : * Returns a read-only (constant) iterator that points one past the last
265 : * pair in the %map. Iteration is done in ascending order according to
266 : * the keys.
267 : */
268 : const_iterator
269 548397 : end() const
270 548397 : { return _M_t.end(); }
271 :
272 : /**
273 : * Returns a read/write reverse iterator that points to the last pair in
274 : * the %map. Iteration is done in descending order according to the
275 : * keys.
276 : */
277 : reverse_iterator
278 : rbegin()
279 : { return _M_t.rbegin(); }
280 :
281 : /**
282 : * Returns a read-only (constant) reverse iterator that points to the
283 : * last pair in the %map. Iteration is done in descending order
284 : * according to the keys.
285 : */
286 : const_reverse_iterator
287 : rbegin() const
288 : { return _M_t.rbegin(); }
289 :
290 : /**
291 : * Returns a read/write reverse iterator that points to one before the
292 : * first pair in the %map. Iteration is done in descending order
293 : * according to the keys.
294 : */
295 : reverse_iterator
296 : rend()
297 : { return _M_t.rend(); }
298 :
299 : /**
300 : * Returns a read-only (constant) reverse iterator that points to one
301 : * before the first pair in the %map. Iteration is done in descending
302 : * order according to the keys.
303 : */
304 : const_reverse_iterator
305 : rend() const
306 : { return _M_t.rend(); }
307 :
308 : // capacity
309 : /** Returns true if the %map is empty. (Thus begin() would equal
310 : * end().)
311 : */
312 : bool
313 2191 : empty() const
314 2191 : { return _M_t.empty(); }
315 :
316 : /** Returns the size of the %map. */
317 : size_type
318 476 : size() const
319 476 : { return _M_t.size(); }
320 :
321 : /** Returns the maximum size of the %map. */
322 : size_type
323 : max_size() const
324 : { return _M_t.max_size(); }
325 :
326 : // [23.3.1.2] element access
327 : /**
328 : * @brief Subscript ( @c [] ) access to %map data.
329 : * @param k The key for which data should be retrieved.
330 : * @return A reference to the data of the (key,data) %pair.
331 : *
332 : * Allows for easy lookup with the subscript ( @c [] ) operator. Returns
333 : * data associated with the key specified in subscript. If the key does
334 : * not exist, a pair with that key is created using default values, which
335 : * is then returned.
336 : *
337 : * Lookup requires logarithmic time.
338 : */
339 : mapped_type&
340 52897038 : operator[](const key_type& __k)
341 : {
342 : // concept requirements
343 : __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
344 :
345 52897038 : iterator __i = lower_bound(__k);
346 : // __i->first is greater than or equivalent to __k.
347 52897038 : if (__i == end() || key_comp()(__k, (*__i).first))
348 1097297 : __i = insert(__i, value_type(__k, mapped_type()));
349 52897038 : return (*__i).second;
350 : }
351 :
352 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
353 : // DR 464. Suggestion for new member functions in standard containers.
354 : /**
355 : * @brief Access to %map data.
356 : * @param k The key for which data should be retrieved.
357 : * @return A reference to the data whose key is equivalent to @a k, if
358 : * such a data is present in the %map.
359 : * @throw std::out_of_range If no such data is present.
360 : */
361 : mapped_type&
362 : at(const key_type& __k)
363 : {
364 : iterator __i = lower_bound(__k);
365 : if (__i == end() || key_comp()(__k, (*__i).first))
366 : __throw_out_of_range(__N("map::at"));
367 : return (*__i).second;
368 : }
369 :
370 : const mapped_type&
371 : at(const key_type& __k) const
372 : {
373 : const_iterator __i = lower_bound(__k);
374 : if (__i == end() || key_comp()(__k, (*__i).first))
375 : __throw_out_of_range(__N("map::at"));
376 : return (*__i).second;
377 : }
378 :
379 : // modifiers
380 : /**
381 : * @brief Attempts to insert a std::pair into the %map.
382 : * @param x Pair to be inserted (see std::make_pair for easy creation of
383 : * pairs).
384 : * @return A pair, of which the first element is an iterator that points
385 : * to the possibly inserted pair, and the second is a bool that
386 : * is true if the pair was actually inserted.
387 : *
388 : * This function attempts to insert a (key, value) %pair into the %map.
389 : * A %map relies on unique keys and thus a %pair is only inserted if its
390 : * first element (the key) is not already present in the %map.
391 : *
392 : * Insertion requires logarithmic time.
393 : */
394 : std::pair<iterator,bool>
395 568484 : insert(const value_type& __x)
396 568484 : { return _M_t.insert_unique(__x); }
397 :
398 : /**
399 : * @brief Attempts to insert a std::pair into the %map.
400 : * @param position An iterator that serves as a hint as to where the
401 : * pair should be inserted.
402 : * @param x Pair to be inserted (see std::make_pair for easy creation of
403 : * pairs).
404 : * @return An iterator that points to the element with key of @a x (may
405 : * or may not be the %pair passed in).
406 : *
407 : * This function is not concerned about whether the insertion took place,
408 : * and thus does not return a boolean like the single-argument
409 : * insert() does. Note that the first parameter is only a hint and can
410 : * potentially improve the performance of the insertion process. A bad
411 : * hint would cause no gains in efficiency.
412 : *
413 : * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
414 : * for more on "hinting".
415 : *
416 : * Insertion requires logarithmic time (if the hint is not taken).
417 : */
418 : iterator
419 1097297 : insert(iterator position, const value_type& __x)
420 1097297 : { return _M_t.insert_unique(position, __x); }
421 :
422 : /**
423 : * @brief A template function that attemps to insert a range of elements.
424 : * @param first Iterator pointing to the start of the range to be
425 : * inserted.
426 : * @param last Iterator pointing to the end of the range.
427 : *
428 : * Complexity similar to that of the range constructor.
429 : */
430 : template <typename _InputIterator>
431 : void
432 : insert(_InputIterator __first, _InputIterator __last)
433 : { _M_t.insert_unique(__first, __last); }
434 :
435 : /**
436 : * @brief Erases an element from a %map.
437 : * @param position An iterator pointing to the element to be erased.
438 : *
439 : * This function erases an element, pointed to by the given iterator,
440 : * from a %map. Note that this function only erases the element, and
441 : * that if the element is itself a pointer, the pointed-to memory is not
442 : * touched in any way. Managing the pointer is the user's responsibilty.
443 : */
444 : void
445 : erase(iterator __position)
446 : { _M_t.erase(__position); }
447 :
448 : /**
449 : * @brief Erases elements according to the provided key.
450 : * @param x Key of element to be erased.
451 : * @return The number of elements erased.
452 : *
453 : * This function erases all the elements located by the given key from
454 : * a %map.
455 : * Note that this function only erases the element, and that if
456 : * the element is itself a pointer, the pointed-to memory is not touched
457 : * in any way. Managing the pointer is the user's responsibilty.
458 : */
459 : size_type
460 : erase(const key_type& __x)
461 : { return _M_t.erase(__x); }
462 :
463 : /**
464 : * @brief Erases a [first,last) range of elements from a %map.
465 : * @param first Iterator pointing to the start of the range to be
466 : * erased.
467 : * @param last Iterator pointing to the end of the range to be erased.
468 : *
469 : * This function erases a sequence of elements from a %map.
470 : * Note that this function only erases the element, and that if
471 : * the element is itself a pointer, the pointed-to memory is not touched
472 : * in any way. Managing the pointer is the user's responsibilty.
473 : */
474 : void
475 : erase(iterator __first, iterator __last)
476 : { _M_t.erase(__first, __last); }
477 :
478 : /**
479 : * @brief Swaps data with another %map.
480 : * @param x A %map of the same element and allocator types.
481 : *
482 : * This exchanges the elements between two maps in constant time.
483 : * (It is only swapping a pointer, an integer, and an instance of
484 : * the @c Compare type (which itself is often stateless and empty), so it
485 : * should be quite fast.)
486 : * Note that the global std::swap() function is specialized such that
487 : * std::swap(m1,m2) will feed to this function.
488 : */
489 : void
490 : swap(map& __x)
491 : { _M_t.swap(__x._M_t); }
492 :
493 : /**
494 : * Erases all elements in a %map. Note that this function only erases
495 : * the elements, and that if the elements themselves are pointers, the
496 : * pointed-to memory is not touched in any way. Managing the pointer is
497 : * the user's responsibilty.
498 : */
499 : void
500 102689274 : clear()
501 102689274 : { _M_t.clear(); }
502 :
503 : // observers
504 : /**
505 : * Returns the key comparison object out of which the %map was
506 : * constructed.
507 : */
508 : key_compare
509 52490502 : key_comp() const
510 52490502 : { return _M_t.key_comp(); }
511 :
512 : /**
513 : * Returns a value comparison object, built from the key comparison
514 : * object out of which the %map was constructed.
515 : */
516 : value_compare
517 : value_comp() const
518 : { return value_compare(_M_t.key_comp()); }
519 :
520 : // [23.3.1.3] map operations
521 : /**
522 : * @brief Tries to locate an element in a %map.
523 : * @param x Key of (key, value) %pair to be located.
524 : * @return Iterator pointing to sought-after element, or end() if not
525 : * found.
526 : *
527 : * This function takes a key and tries to locate the element with which
528 : * the key matches. If successful the function returns an iterator
529 : * pointing to the sought after %pair. If unsuccessful it returns the
530 : * past-the-end ( @c end() ) iterator.
531 : */
532 : iterator
533 1855819 : find(const key_type& __x)
534 1855819 : { return _M_t.find(__x); }
535 :
536 : /**
537 : * @brief Tries to locate an element in a %map.
538 : * @param x Key of (key, value) %pair to be located.
539 : * @return Read-only (constant) iterator pointing to sought-after
540 : * element, or end() if not found.
541 : *
542 : * This function takes a key and tries to locate the element with which
543 : * the key matches. If successful the function returns a constant
544 : * iterator pointing to the sought after %pair. If unsuccessful it
545 : * returns the past-the-end ( @c end() ) iterator.
546 : */
547 : const_iterator
548 548397 : find(const key_type& __x) const
549 548397 : { return _M_t.find(__x); }
550 :
551 : /**
552 : * @brief Finds the number of elements with given key.
553 : * @param x Key of (key, value) pairs to be located.
554 : * @return Number of elements with specified key.
555 : *
556 : * This function only makes sense for multimaps; for map the result will
557 : * either be 0 (not present) or 1 (present).
558 : */
559 : size_type
560 310217 : count(const key_type& __x) const
561 310217 : { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
562 :
563 : /**
564 : * @brief Finds the beginning of a subsequence matching given key.
565 : * @param x Key of (key, value) pair to be located.
566 : * @return Iterator pointing to first element equal to or greater
567 : * than key, or end().
568 : *
569 : * This function returns the first element of a subsequence of elements
570 : * that matches the given key. If unsuccessful it returns an iterator
571 : * pointing to the first element that has a greater value than given key
572 : * or end() if no such element exists.
573 : */
574 : iterator
575 52897038 : lower_bound(const key_type& __x)
576 52897038 : { return _M_t.lower_bound(__x); }
577 :
578 : /**
579 : * @brief Finds the beginning of a subsequence matching given key.
580 : * @param x Key of (key, value) pair to be located.
581 : * @return Read-only (constant) iterator pointing to first element
582 : * equal to or greater than key, or end().
583 : *
584 : * This function returns the first element of a subsequence of elements
585 : * that matches the given key. If unsuccessful it returns an iterator
586 : * pointing to the first element that has a greater value than given key
587 : * or end() if no such element exists.
588 : */
589 : const_iterator
590 : lower_bound(const key_type& __x) const
591 : { return _M_t.lower_bound(__x); }
592 :
593 : /**
594 : * @brief Finds the end of a subsequence matching given key.
595 : * @param x Key of (key, value) pair to be located.
596 : * @return Iterator pointing to the first element
597 : * greater than key, or end().
598 : */
599 : iterator
600 : upper_bound(const key_type& __x)
601 : { return _M_t.upper_bound(__x); }
602 :
603 : /**
604 : * @brief Finds the end of a subsequence matching given key.
605 : * @param x Key of (key, value) pair to be located.
606 : * @return Read-only (constant) iterator pointing to first iterator
607 : * greater than key, or end().
608 : */
609 : const_iterator
610 : upper_bound(const key_type& __x) const
611 : { return _M_t.upper_bound(__x); }
612 :
613 : /**
614 : * @brief Finds a subsequence matching given key.
615 : * @param x Key of (key, value) pairs to be located.
616 : * @return Pair of iterators that possibly points to the subsequence
617 : * matching given key.
618 : *
619 : * This function is equivalent to
620 : * @code
621 : * std::make_pair(c.lower_bound(val),
622 : * c.upper_bound(val))
623 : * @endcode
624 : * (but is faster than making the calls separately).
625 : *
626 : * This function probably only makes sense for multimaps.
627 : */
628 : std::pair<iterator, iterator>
629 : equal_range(const key_type& __x)
630 : { return _M_t.equal_range(__x); }
631 :
632 : /**
633 : * @brief Finds a subsequence matching given key.
634 : * @param x Key of (key, value) pairs to be located.
635 : * @return Pair of read-only (constant) iterators that possibly points
636 : * to the subsequence matching given key.
637 : *
638 : * This function is equivalent to
639 : * @code
640 : * std::make_pair(c.lower_bound(val),
641 : * c.upper_bound(val))
642 : * @endcode
643 : * (but is faster than making the calls separately).
644 : *
645 : * This function probably only makes sense for multimaps.
646 : */
647 : std::pair<const_iterator, const_iterator>
648 : equal_range(const key_type& __x) const
649 : { return _M_t.equal_range(__x); }
650 :
651 : template <typename _K1, typename _T1, typename _C1, typename _A1>
652 : friend bool
653 : operator== (const map<_K1, _T1, _C1, _A1>&,
654 : const map<_K1, _T1, _C1, _A1>&);
655 :
656 : template <typename _K1, typename _T1, typename _C1, typename _A1>
657 : friend bool
658 : operator< (const map<_K1, _T1, _C1, _A1>&,
659 : const map<_K1, _T1, _C1, _A1>&);
660 : };
661 :
662 : /**
663 : * @brief Map equality comparison.
664 : * @param x A %map.
665 : * @param y A %map of the same type as @a x.
666 : * @return True iff the size and elements of the maps are equal.
667 : *
668 : * This is an equivalence relation. It is linear in the size of the
669 : * maps. Maps are considered equivalent if their sizes are equal,
670 : * and if corresponding elements compare equal.
671 : */
672 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
673 : inline bool
674 : operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
675 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
676 : { return __x._M_t == __y._M_t; }
677 :
678 : /**
679 : * @brief Map ordering relation.
680 : * @param x A %map.
681 : * @param y A %map of the same type as @a x.
682 : * @return True iff @a x is lexicographically less than @a y.
683 : *
684 : * This is a total ordering relation. It is linear in the size of the
685 : * maps. The elements must be comparable with @c <.
686 : *
687 : * See std::lexicographical_compare() for how the determination is made.
688 : */
689 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
690 : inline bool
691 : operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
692 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
693 : { return __x._M_t < __y._M_t; }
694 :
695 : /// Based on operator==
696 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
697 : inline bool
698 : operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
699 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
700 : { return !(__x == __y); }
701 :
702 : /// Based on operator<
703 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
704 : inline bool
705 : operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
706 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
707 : { return __y < __x; }
708 :
709 : /// Based on operator<
710 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
711 : inline bool
712 : operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
713 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
714 : { return !(__y < __x); }
715 :
716 : /// Based on operator<
717 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
718 : inline bool
719 : operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
720 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
721 : { return !(__x < __y); }
722 :
723 : /// See std::map::swap().
724 : template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
725 : inline void
726 : swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
727 : map<_Key, _Tp, _Compare, _Alloc>& __y)
728 : { __x.swap(__y); }
729 : } // namespace std
730 :
731 : #endif /* _MAP_H */
|