Kdump

A Kexec Based Kernel Crash Dumping Mechanism

Vivek Goyal (vgoyal@in.ibm.com)

Eric W. Biederman (ebiederman@lnxi.com)

Hariprasad Nellitheertha (nharipra@gmail.com)

Background

- Dump capture from crashing kernel's context
 - Resource lockup
 - Corrupt data structures
- Dedicated dump drivers
 - Limited number of target devices
 - Maintenance was a big issue
 - Dependency on crashing kernel reduced and not eliminated completely

Background contd...

- Stand alone dumpers
 - Need to maintain low level hardware specific code
 - Filtering is not possible
- Kernel reboot based dumper
 - Memory constraint might prevent capturing full dump
 - Significant amount of code being run in crashing kernel context
 - Core kernel invasive code

Design Goals of The New Solution

- Simple and minimally invasive into the kernel code
- Highly Reliable
- Available on most architectures
- Easy to Maintain
- Flexibility in terms of dump contents and targets
 - Full dump or kernel-pages only dump
 - Dump to disk or across the network
- Ease of Use

Kdump – Overview

- A new kernel, often called capture kernel, is booted after the crash
- Previous kernel's memory is preserved
- Dump is captured from the context of capture kernel
- Kernel-to-kernel boot loader enables booting a new kernel after a crash
- Kexec is underlying kernel to kernel boot-loader

Kernel-to-Kernel Boot Loader

- Running kernel acts as a loader for the new kernel
- System directly jumps from one kernel to another
 - Skips BIOS or Firmware stage
- Reboots are extremely fast (33% reduction in time)
- Memory can be preserved across reboots
 - Since BIOS is skipped, it is left to the OS to retain or erase memory
- Finds application in crash dumping tools

Kexec

- Allows a Linux kernel to boot another kernel
- Currently available on i386, x86_64 and ppc64 platforms
- Two components
 - User space tool kexec-tools
 - Kernel System Call (sys_kexec_load)
- Load a new kernel

```
kexec -l <kernel-image> --append=<options>
```

Exec new kernel

kexec -e

Kexec On Panic

- An extension of Kexec functionality
- Enables booting a new kernel after system crash
- Devices are not shutdown
- New kernel runs from a reserved memory location
 - Protection against on-going DMA at the time of crash

Kexec On Panic Contd..

Loading capture kernel

```
kexec -p <kernel-image> --append=<options>
```

- Execution of capture kernel
 - ' panic()
 - Alt-Sysrq-c

Kdump Overview

Kexec on Panic - Pre-loading

- Reserve memory for capture kernel
 (crashkernel=X@Y)
- Pre-load the capture kernel
- Capture kernel runs from reserved memory location

Kexec on Panic - Purgatory

- Purgatory is an ELF relocatable object and it contains setup code and sha256 hash
- Sha256 hash ensures integrity of the new kernel's pre-loaded data

Kexec on Panic – Post Crash (x86)

- CPU states are saved and other CPUs are halted using NMI
- LAPIC/IOAPIC are disabled and put back into PIC or virtual wire mode
- Purgatory is run and control is transferred to new kernel

Kexec on Panic – Saving CPU States

- CPU register states are saved in ELF note format
- 1K of memory is reserved statically per CPU

Kdump – ELF Header Generation

- Dump information
 across the kernel is
 exchanged in an ELF
 format Core file
- Kexec-tools prepare
 ELF headers and pre load them in the
 reserved region

Kdump – ELF Header Generation

- One PT_LOAD type ELF program header is created for every contiguous memory chunk
- Kexec-tools use /proc/iomem to retrieve System
 RAM information on i386 platform
- Address of the start of ELF header is passed to the capture kernel using command line option "elfcorehdr="

Kdump – Backup Region

- Kernel uses some fixed memory locations to boot
- First 640K of memory is required for booting SMP capture kernel on i386
- Contents of first 640K of memory are backed up in Backup Region

Kdump – Backup Region

- Kexec-tools reserve the memory for backup region while loading capture kernel.
- Purgatory contains the code for backing up first 640K of memory after crash.
- Other architectures can define their own backup region (If need be).

Kdump – Booting into Capture Kernel

- Capture kernel uses limited amount of memory to boot
- Command line option "memmap=exactmap" is used to limit the memory regions capture kernel uses
- Kexec tools append memmap= command line options automatically

Kdump – Capturing the Dump

- Accessing dump image in ELF Core format
 - ' /proc/vmcore
- Accessing dump image in linear raw format
 - / /dev/oldmem

Kdump – ELF Format Core File (/proc/vmcore)

ELF Header	Program	Program		Per CPU	
	Header	Header		Register	Dump Image
	PT_NOTE	PT_LOAD		States	

- ELF32/ELF64 format headers
- Physical addresses are filled for all the regions
- Virtual addresses are filled only for linearly mapped memory region

Kdump – Analysis Tools

- gdb
 - Virtual view of memory
 - Can debug linearly mapped region of memory
 - User space utility to regenerate ELF headers to create the ELF headers for vmalloc regions
- crash
 - Physical view of memory

Advantages

- Increased reliability
 - Dump is captured from a newly booted kernel
- Enhanced flexibility
 - Dump image can be saved to virtually any storage media supported by kernel
 - Filtering mechanism can be plugged in

Advantages Contd..

- Ease of use
 - Standard utilities can be used to save the dump image either locally or remotely
 - Standard analysis tools like gdb can be directly used for limited debugging

Limitations

- Devices are not shutdown/reset after a crash which might result in a driver initialization failure in capture kernel
- Non-disruptive dumping is not possible

Current Status

- Initial i386 implementation is mainline now (2.6.13-rc1)
- Driver initialization issues are being addressed
 - Shared Interrupts
 - irqpoll commandline option, Disabling PCI interrupts etc.
 - Driver hardening
 - > Reset the device if it is not reset already.

ToDos

- Port kdump to other platforms like x86_64 and ppc64
- Modify "crash" tool to be able to analyze kdump generated dump images
- Implement kernel pages only filtering mechanism
- Relocatable Kernel for binary image unification
- Initialize APICs before timer initialization

Downloads

• Kdump patches for kexec-tools and test reports are available at:

http://lse.sourceforge.net/kdump/

Questions?

Legal Statement

- Copyright ©2005 IBM.
- This work represents the view of the author and does not necessarily represent the view of IBM.
- IBM, and the IBM logo, are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
- UNIX is a registered trademark of The Open Group in the United States and other countries.
- Linux is a registered trademark of Linux Torvalds in the United States, other countries, or both.

Legal Statement Contd...

- Other company, product, and service names may be trademarks or service marks of others.
- References in this publication to IBM products or services do not imply that IBM intends to make them available in all countries in which IBM operates.
- This document is provided "AS IS" with no express or implied warranties. Use the information in this document at your own risk.

Thank You