
How to design
IO Controller

in Linux?

Vivek Goyal

2

Why IO Controller

root

Prof
40%

Students
20%

System
40%

P1 P2 S1 S2

University Server

root

Customer 1
20%

Customer 2
20%

System
60%

VM1 VM2 VM3 VM4

Enterprise Server

● More sharing needs more isolation
● Resource guarantees/Predictability
● Hierarchical group IO control

3

What to Control
● Proportional Weight Controller

– Optimal resource usage. Resource control done
only if there is contention.

– Fair share of disk time (Like CFQ)

– Fair share in terms of number/size of IO

● Max Bandwidth/Max IOPS Control
– Don't allow usage of more resource if customer has

paid for lower level of service.

– How would one know the BW of a device to divide
that in absolute numbers

● Both?

4

Where to control

submit_bio()
IO-throttle

sda

Logical Device

sdb

T1 T2

Cgroup A
weight = 20

Cgroup B
weight = 10

dm-ioband

IO scheduler
Controller

5

Where to control Contd.

● T1 and T2 are seemingly contending for logical
disk but no contention at physical level

● No contention at physical level

sda

dm-linear

sdb

T1 T2

Cgroup A
weight = 20

Cgroup B
weight = 10

6

Where to control Contd.

● T1 and T2 are sharing the disk sda
● One could have got faster response for T1 by

throttling T2 at higher layer

sda

dm-linear

sdb

T1 T2

Cgroup A
weight = 20

Cgroup B
weight = 10

sda

dm-linear

sdb

T1 T2

Cgroup A
weight = 20

Cgroup B
weight = 10

7

Where to Control Contd.

● Lower level control
– Good for overall throughput

– But application might not always see fair share
at logical device level

● Higher level control
– Good for fairness numbers at logical devices

– Not an optimized scheme for throughput

8

Latency issues with Second level
Controller

sda

Higher level
Controller

Cgroup A
weight = 20

Cgroup B
weight = 10

SR1 SR2

SR4SR3
RR

SR1 SR2 SR3 SR4 RR

CFQ queue order

sda

Cgroup A
weight = 20

Cgroup B
weight = 10

SR1 SR2

SR4SR3
RR

SR1 SR2

CFQ queue order

IO scheduler
Controller

RR RR SR3

9

Challenges with Second level
controller

● Number or size of IO not best for seeky media
● How to get timing information up there?
● Can't use token bucket kind of model and allow

IO from multiple group at same time.
– Latency issues

– Pre-emptions across group; Poor isolation

– No idling at higher layer means no fairness for
readers; Idling means reduced throughput.

– Possibly, Increased number of seeks due to
throttling; Reduced throughput

10

Challenges with second level
controller

– Can't exploit group locality feature; Interleaved
IO across groups;

● Allowing IO from single group only reduces
parallelism at higher level devices

– Reduced throughput

● No per process queues at higher layer. How to
maintain ioprio model.

● sync/async IO ratio with-in group
– IO scheduler property

11

Timed group fairness

● Not suitable for higher level logical devices
– Introduces more serialization.

● Two ways to implement
– Keep group and queues together

● Current IO scheduler based controller
implementation

– Keep groups independent of queues

12

Issues with separate group and
queues

● Group scheduler will hold bios and release in
FIFO manner.

– Back to issue of ioprio with-in group

– Issue of Reader/Writer ratio

● How to sync between Group slices and queue
slices

● How to sync with AS read/write timed batches
– Save state per group otherwise we will see

sekwed read/write ratios with-in group

13

Issues with separate group and
queues

● What's the advantage of queuing at two levels?
– Group level queue and IO scheduler level

queuing

– Group scheduler most likely will be queuing bio
and can't take advantage of merging feature.

14

Buffered Writes

● pdflush/flusher threads evens out the writeback
flow

● Need per memory cgroup dirty ratio to
differentiate in page cache share

● Also possibly need facility to writeback pages
from a particular cgroup

15

Summary Of Test Results

TEST CASE IOC IOBAND IOT

Mult Sequential Reader Vs Random Reader

Mult Random Writer Vs Random Reader

Mult Sequential Reader Vs Sequential Reader

Mult Buffered Writer Vs Buffered Writer

Multiple Random Reader Vs Sequential Reader

TEST CASE IOC IOBAND IOT

Mult Sequential Reader Vs Mult Random Reader Throughput? No results

Mult Sequential Reader Vs Mult Sequential Reader Latency? No results

file:///home/vgoyal/main/work/io-mini-summit-2009/test-data-scritps/processed-data-indivitual-tests/mult-sequential-reader-vs-random-reader.txt
file:///home/vgoyal/main/work/io-mini-summit-2009/test-data-scritps/processed-data-indivitual-tests/mult-random-writer-vs-random-reader.txt
file:///home/vgoyal/main/work/io-mini-summit-2009/test-data-scritps/processed-data-indivitual-tests/mult-sequential-reader-vs-sequential-reader.txt
file:///home/vgoyal/main/work/io-mini-summit-2009/test-data-scritps/processed-data-indivitual-tests/mult-buffered-write-vs-buffered-write.txt
file:///home/vgoyal/main/work/io-mini-summit-2009/test-data-scritps/processed-data-indivitual-tests/mult-random-reader-vs-sequential-reader.txt
file:///home/vgoyal/main/work/io-mini-summit-2009/test-data-scritps/processed-data-indivitual-tests/mult-sequential-reader-vs-mult-random-reader.txt
file:///home/vgoyal/main/work/io-mini-summit-2009/test-data-scritps/processed-data-indivitual-tests/mult-sequential-reader-vs-mlt-sequential-reader.txt

16

Advantages of dm-ioband

● IO control can be enabled both at lower level
devices as well as higher level devices

● Provides multiple control policies
– Number of IO

– Size of IO

– Max BW

17

Issues with dm-ioband

● Fairness in terms of number of IO/size of IO
does not do very well on seeky media

● Weak isolation between groups
● Poor latencies
● No fairness for low volume IO group
● Changes the properties of underlying IO

scheduler
– Reader Vs Writer ratio

● IO priority with-in group is not maintained
– Some tasks in the group can starve

18

IO Throttling

● Higher level controller, can be used for both
physical and logical devices

● Provides max BW policy at higher layer

19

Issues with IO throttling

● Max BW policies have got limited usage and
are not very suitable for dynamic workload
environment.

● Inherits all the issues of higher level controller
mentioned in previous slides

– Weak isolation

– No strong control on latencies

– Preemptions across groups

– Looses notion of ioprio and class with-in group

20

IO Scheduler based Control

Block Layer

Elevator Layer + Fair Queuing

Noop Deadline AS CFQ

Disk

● Proportional Weight
Controller

● One Level Control at
leaf nodes

● Common fair queuing
elevator layer

● Extend to implement
upper limit control
later

21

IO Scheduler based Control Contd..

root

queue1 queue2 queue3

CFQ
Weighted Round Robin

CFQ

CFQ

root

Group 1 Group 2

Hierarchical CFQ

queue1 queue1 queue1 queue1

Common Layer
Fair Queuing

22

One possible way to move forward...

● Implement more than one controller in kernel
– One CFQ level for more efficient and optimal

control
● Implement time based fairness policy

– One higher level for
● Control on logical devices
● size/number of IO policies
● Max BW policies

● Let user choose based on the need.

23

That's it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

