RED HAT i
CONSULTING -« fednat

DO180 - Introduction to Containers,
Kubernetes, and Red Hat Openshift (OCP

4.2)

Travis Michette

Version 1.0

Table of Contents

BefOre YOU BegiN.ot 1
1. Introducing Container TEChNOIOGYo oo 3
1.1. Overview of Container TEChNOIOQY oot e 3
1.1.1. Containerized AppliCatioNS. o 3

1.2. Overview of Container ArChitECTUIEo e e e e 4
1.2.1. Introducing Container HiStory.ot 4
1.2.2. Describing Linux Container ArChiteCtUre 5
1.2.3. Managing Containers with Podman 5

1.3. Overview of Kubernetes and Openshift. 6
1.3.1. Limitations of CONAINEISottt e e e e e e e e e e e e e 6
1.3.2. KUDEINEIES OVEIVIEW . . . o .t ottt e e e e e e e e 7
1.3.3. KUDEINEIES FRAIUIES . . . o oottt et e e e e e e 7
1.3.4. OpenShift OVEIVIEW oo e e e e e e e e 8
1.3.5. OpeNnShift FEAtUIESt 8

2. Creating ContaiNerized SEIVICESottt e e 9
2.1. Provisioning Containerized SEIVICES ottt 9
2.1.1. Fetching Container Images with POAman 9
2.1.2. RUNNING CONTAINETS . . o . o ottt et et e 10
2.1.3. Using the Red Hat Container Catalogottt e e e 11

2.2, DEMONSIIALION . . o o e ottt et e e e e e 11

3. Managing CoNtaINErS.ottt et e e e e e e 17
3.1. Managing the Lifecycle of CONtaINErS e e e e 17
3.1.1. Container Life Cycle Management with Podman. e e e e 17
3.1.2. Creating CONAINEIS o ottt e e e 19
3.1.3. Running Commands in @ CONtAINET e e e e 20
3.1.4. Managing CoNtaINErS oottt e e e e e e e e e 20

3.2. Demonstration - Container LIfeCyCles 22
3.3. Attaching Persistent Storage to CONtaINErSot e 25
3.3.1. Preparing Permananent Storage LOCAtiONS. ot 25
3.3.2. ReClaiming StOrage oo 26
3.3.3. Preparing the HOSt DIreCtOry oo e e e e e 26
3.3.4. MouNting @ VOIUMEo e 27

3.4. Demonstration - Attaching Persistent Storage to CONtAINEISt 27
3.5, ACCESSING CONLAINEIS . . . oo ottt e et e e e e e e e e e e e e e e 28
3.5.1. Introducing Networking with CONtainers.t e e e e e e e 29
3.5.2. Mapping Network POrtSo 31

3.6. Demonstration - Accessing Containers over the Network 32

4. Managing Container IMAagES oottt e e e e e e e e e 34
4.1, ACCESSING REGISIIES . . o oot 34
4,11, PUBIC REgISIES. . . e e 34
4.1.2. Private ReQISIIES . . o . ottt 34
4.1.3. Configuring Registries iIN POAMaAN e e 34

4.1.4. ACCESSING REQISIIIES . . o ot e 35

4. 1.4 0 Registry HT TP APl . . 36

4.1.4.2. Registry AUthentiCation e 36
4.1.4.3. PUlliNg IMAGES oottt e e e 36
4.1.4.4. Listing Local Copies Of IMagesttt 36
4145, IMAGE TGS, « .« o ittt e 37

4.2. Demonstration - Accessing and Searching Registries. 37
4.3. Manipulating Container IMagesSottt et e e e e e e e e e 39
4.3 L INErOAUCHION. « . o . ottt e e e e e 39
4.3.2. Saving and Loading IMages. oot 40
4.3.3. Deleting IMagES . . . o oot 40
4.3.4.Deleting all IMages.o 41
4.3.5. MOAIfYiNG IMaAgES o ottt e e 41
4.3.6. Tagging IMages . . . ottt 42
4.3.6.1. Removing Tags from IMagesottt 43
4.3.7. Best Practices for Tagging IMageso ottt e e e 43
4.3.8. Publishing Images t0 @ RegiStry.o e 43
4.4. Demonstration - Manipulating Container IMages.ttt e e e 43
5. Creating Custom ContaiNer IMAGES oottt e e e e e e e e e 47
5.1. Designing Custom Container IMAgESottt et e e e e e e e e a7
5.1.1. Reusing EXisting DOCKerfiles 47
5.1.2. Working with the Red Hat Software Collections Library. e e a7
5.1.3. Finding Dockerfiles from the Red Hat Software Collections Library i, a7
5.1.4. Container Images in Red Hat Container Catalog (RHCC). e a7
5.1.5. Searching for Images UsiNg QUAY.I0ttt e e e e e 47
5.1.6. Finding Dockerfiles on Docker HUub a7
5.1.7. Describing How to use the OpenShift Source-to-Image Tool e e 48
5.2. Building Custom Container Images with Dockerfiles 48
5.2.1. BUIidliNg Base CONtAINEIS.ttt et e e e e e e e e e e e e 48
5.2.1.1. Create a Working Dir€CtOryttt e e 49
5.2.1.2. Write the Dockerfile Specification. 49
5.2.2. CMD and ENTRY POINT . .ottt e e e e e e e e e e 50
5.2.3. ADD @nd COPY . .ottt 50
5.2.4. Layering IMage.ot 50
5.2.5. Building Images with Podman 51
5.3. Demonstration - Building an Image with a Dockerfile 51
6. Deploying Containerized Applications on OpenShift. 55
6.1. Describing Kubernetes and OpenShift Architecture 55
6.1.1. Kubernetes and OpenShift. 55
6.1.2. New Features in RHOC P 4 58
6.1.3. Describing Kubernetes ReSOUICE TYPESottt et e e e et e e e e e e e e e e 59
6.1.4. OpenShift RESOUICE TYPESttt e e e e e e e e e e e 59
6.1, 5. NEIWOIKING . . . o oo e e 59
6.2. Creating KUDErnetes RESOUICESot e e e e e 60
6.2.1. The Red Hat OpenShift Container Platform (RHOCP) Command-line Tool oo 60
6.2.2. Describing Pod Resource Definition SyntaX 60

6.2.3. Describing Service Resource Definition Syntax.t 61

6.2.4. DISCOVEING SEIVICES . . . o ottt et et et e e e e e e e e 63

6.2.5. Creating New AppPliCatioNS oo 65
6.2.6. Managing OpenShift Resources at the Command Line. e 67
6.2.6.0. 0C getall. . ..o 67
6.2.6.2. oc describe RESOURCE_TYPE RESOURCE_NAME e 67
6.2.6.3. OC BXPOIT. . . o 68
6.2.6.4. OC CIEALE. it 68
B.2.6.5. 0C €. . . . o\ttt 68
6.2.6.6. oc delete RESOURCE_TYPE NAME oottt e 68
6.2.6.7. oc exec CONTAINER_ID options COMMANd ottt e e 68
6.2.7. Labeling reSOUICES. . . . ot e 68
6.3. Demonstration - Creating a Kubernetes RESOUICEottt 69
6.4, Creating ROULESot e 71
6.4.1. Working With ROULES oo e 71
6.4.2. Creating ROULES oo e 73
6.4.2.1. Leveraging the Default ROUtINg ServiCe. e 73

6.5. Demonstration - Creating ROULESttt 74
6.6. Creating Applications with SOUrCe-to-IMagettt 76
6.6.1. The Source-to-Image (S21) ProCESSottt e e e 76
6.6.2. Describing Image Streams. 77
6.6.3. Building an Application with S2l and the CLI e e e e 77
6.6.4. Relationship Between Build and Deployment Configurations e 77
6.7. Creating Applications with the OpenShift Web Console i 78
6.7.1. Accessing the OpenShift Web Console 78
6.7.1.1. Managing ProjeCtso 78
6.7.1.2. Navigating the Web Console 79
6.7.2. Creating New ApPliCatiONS oot 79
6.7.2.1. Managing Application BUilds 80
6.7.3. Managing Deployed Applications. 81
6.7.4. Other Web Console FeatUIESt e 82

7. Deploying Multi-Container AppliCatioNSo 83
7.1. Considerations for Multi-Container Applications 83
7.1.1. Leveraging Multi-Container AppliCations 83
7.1.2. Discovering Services in a Multi-Container Application. 83
7.1.3. Comparing Podman and KUDEINETES. 84
7.1.4. Describing the To Do List Application e e 85
7.2. Deploying a Multi-Container Application on OpenShift 86
7.2.1. Examining the Skeleton of a Template 86
72,00 ParamMeterS. . . .ot 88
7.2.2. Processing a Template Using the CLI e e 88
7.2.3. Configuring Persistent Storage for OpenShift Applications 89
7.2.3.1. Requesting Persistent VolUmMEsS o 90
7.2.3.2. Configuring Persistent Storage with Templates. 90

8. Troubleshooting Containerized ApPlICAtIONS oot 91
8.1. Troubleshooting S2I Builds and Deployments. e e e 91

8.1.1. INtroduction t0 the S2I PrOCESS e 91

8.1.2. Describing Common Problems 92

8.1.2.1. Troubleshooting Permission ISSUESt e e e e 92
8.1.2.2. Troubleshooting Invalid Parameters. 93
8.1.2.3. Troubleshooting Volume MOUNE EITOrS.t e e e e e e e 93
8.1.2.4. Troubleshooting Obsolete IMageso 93
8.2. Troubleshooting Containerized APPlICAtIONSo 93
8.2.1. Forwarding Ports for Troubleshooting 94
8.2.2. Enabling Remote Debugging with Port Forwarding i e e 94
8.2.3. ACCESSING CONAINET LOUS . .« o v ittt e et e e e e e e 94
8.2.4. OPENSNIft EVENIS . . . o o 94
8.2.5. Accessing RUNNINg CONAINEISot e e e e e e e e e e e e e e 95
8.2.6. Overriding Container BINAIES ot 95

8.2.7. Transferring Files To and Out Oof CoNtaiNerst e e e e e 95

Chapter Before You Begin

Before You Begin

Internet & Facility workstation
Network

=
3
A 4

588%8 =

classroom Classroom Network
content 172.25.252.0/24
materials

Figure 1. DO180 Classroom Layout

Table 1. Classroom Machines

Machine name IP addresses Role
classroom.lab.example.com 172.25.252.254, 172.25.253.254, Classroom utility server and
172.25.254.254 content.example.com and
materials.example.com
workstation.lab.example.com 172.25.250.254, 172.25.252.1 Graphical workstation used for system

administration

Table 2. Classroom Credentials

Username Password
student student
root redhat

DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section

OpenShift and ROL Credentials

Participants will be provisioned an OpenShift 4 (OCP4) cluster with their environment. Credentials for the
OCP4 environment are provided by the Red Hat Online interface and include:

* APl endpoint of OCP4
¢ Cluster-ID
» Username

» Password
These credentials will be used to access the OpensShift environment for guided exercises and labs.
Required Accounts
This course requires that a participant have an account with the following Internet services:

* Quay.io: https://quay.io/

¢ Github: https://www.github.com

Before starting Chapter 1, have class look at Appendix B and Appendix C so that accounts can be setup and
ready to go.

Version: 1.0

DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 2

https://quay.io/
https://www.github.com

Chapter 1. Introducing Container Technology

1. Introducing Container Technology

1.1. Overview of Container Technology

The goal of this section is to understand differences between container applications and traditional application deployment.

1.1.1. Containerized Applications

Many software applications depend on libraries, configuration files, and services provided by a runtime environment. These
environments are traditionally physical or virtual machines with dependencies installed as part of the host.

In traditional system deployments, applications are dependent upon the host operating system and applications and upgrades to
the underlying OS and system might break the application.

I il

APP A APP B
APP A APPB
| T LIBS A LIBS B
LIBS A LIBSB LIBS LIBS CONTAINER CONTAINER
HOST 0S HOST 0S
HARDWARE HARDWARE
TRADITIONAL 0OS CONTAINERS

Figure 2. Container versus Operating System Differences

A newer, alternative solution is to deploy the application as a container. Containers are a set of one or more processes
(applications and libraries) that are bundled together and isolated from the rest of the operating system and hardware. These
containers provide some of the same benefits of virtual machines in that many containers can run on a single host and can
leverage storage, security, and network isolation. However, containers can further separate applications by isolating other
resources required by the application (runtime libraries, runtime resources, etc.) which minimizes impact of the underlying system
updates breaking the application.

OCI - Open Container Initiative: Set of industry standards to define a container runtime specification and container image
specification.

The container image spec defines the format for the bundle of files and metadata forming a container image. When built, the
image will comply with the OCI standard and can use any OCl-compliant container engine.

Container Engines

* Rocket

3 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 1.2. Overview of Container Architecture

Drawbridge
e LXC

» Docker

Podman (RHEL 7.6+)
Isolation allows the container to be portable and provides many benefits when using a container.
Container Advantages

» Low Hardware Footprint (less memory/CPU required)

* Environment Isolation

Quick Deployment

e Multi-Environment Deployment

Reusability (version control of images)

Security/Stability

o References
Open Containers Initiative: https://www.opencontainers.org/

1.2. Overview of Container Architecture

Goals

» Describe Linux container architecture

* Install podman to manage containers

1.2.1. Introducing Container History

Containers had beginnings in 2001 as the concept was introduced under a project called VServer. This project attempted to run a
complete set of processes inside a single server. This project provided the idea of isolated processes and formed basis for the
following Linux kernel features:

» Namespaces: Location provided by the Linux kernel to isolate specific resources which prevents these resources from being
visible to all processes. By placing these resources inside a namespace, only members of the namespace can see the
resources. Resources included in a namespace include: network interfaces, process ID list, mount points, IPC resources,
and system hostname information.

» Control Groups (cgroups): A partitioning of processes and child processes into groups providing management and allowing
limits to put on the resources the group consumes.

» Seccomp: Limits how processes use system calls. Provides a process to whitelist system calls.

» SELinux: Security Enhanced Linux provides mandatory access controls (MAC) for processes. SELinux protects processes
from each other and ensures they run as a confined SELinux type.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 4

https://www.opencontainers.org/

Chapter 1. Introducing Container Technology

The concepts above focus on the basic concept of isolation and enabling isolation while providing access to system resources.
These concepts provide the foundation for Linux containers.

1.2.2. Describing Linux Container Architecture

To the Linux Kernel, a container is a process with restrictions. A container runs an image, which is a file-system bundle containing
all dependencies to execute a process. This means an image contains all files it needs including configuration files and libraries
to run the process on the system.

(,7 Image Bundle

- Images provide a repeatable process and allow a container to be deployed across multiple systems.

Container images are reusable and generally storage in an image repository. An image repository is a service which provides
container images to a container runtime.

Image Repositories

RedHatContainerCatalog[https://registry.redhat.io]

DockerHubl[https://hub.docker.com]

RedHatQuayl[https://quay.io/]
* GoogleContainerRegistry[https://cloud.google.com/container-registry/]

* AmazonElasticContainerRegistry[https://aws.amazon.com/ecr/]

This course will use the Quay image repository.

Important Header

If you haven't already created a Quay.lO account, this should be completed now as it will be used
throughout the course.

o RedHatQuay: https://quay.io/

Red Hat Training has created several images and placed in an image repository for this course. You will
need to use Quay.lO in order to complete the Guided Exercises and End of Chapter labs.

The best way to approach the use of containers is with Microservices. It is best to break apart larger applications to have a
singular function provided by several smaller pieces.

1.2.3. Managing Containers with Podman

Containers, images, and registries need to interact with each other. There are various tools out there to interact with these
registries. Podman is an open source too for managing containers and container images as well as it allows you to interact with
image registries.

Podman Feautures

5 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

https://registry.redhat.io
https://hub.docker.com
https://quay.io/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://quay.io/

Section 1.3. Overview of Kubernetes and Openshift

» Uses image format specified by OCI
* Stores local images in local filesystem

» Uses same command structure/pattern as Docker CLI

Compatible with Kubernetes

» Doesn’t require a client/server pattern

Important Header

podman is only available on Linux systems. Podman is RPM-based and can be installed with YUM or DNF

o on RPM-based systems.

yum install podman

Listing 1. Installing Podman

References

Red Hat Quay Container Registry: hitps://quay.io
0 Podman site: https://podman.io/

Open Container Initiative: https://www.opencontainers.org

1.3. Overview of Kubernetes and Openshift
Goals:
« |dentify container limitations and need for container orchestration

« Describe Kubernetes container orchestration tool

» Describe Red Hat OpensShift Container Platform (RHOCP or OCP)

1.3.1. Limitations of Containers

Containers provide a quick and easy method to package and run services. However, as the number of containers grows, the
complexity in system management grows.

Production Environment Requirements for Containers

» Easy communication between services

» Resource limits on applications regardless of number of containers

Ability to respond to usage variations (spikes/decreases) and ability to adjust containers accordingly
» Resolve and react to service degradation

* Ability to support gradual rollout of new releases

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 6

https://quay.io
https://podman.io/
https://www.opencontainers.org

Chapter 1. Introducing Container Technology

Container Orchestration Needs

a
O When used in an enterprise environment, container orchestration is needed because container runtimes like
Podman and Docker don’'t address the above requirements.

Pod

1.3.2. Kubernetes Overview

Figure 3. Accessing Containers

Kubernetes provides an orchestration service simplifying deployment, management, and scaling of containerized applications.
The smallest manageable unit in Kubernets is a pod.

Pod: Consists of one r more containers with storage resources and IP addresses representing a single application.

Service: Way to load balance and discover services. The Kubernetes service directs traffic to pods.

1.3.3. Kubernetes Features

Kubernetes adds many features on top of a container infrastructure.
 Service Discovery and Load Balancing: Enables inter-service communication by assigning DNS entries to each set of
containers
 Horizontal scaling: Allows applications to scale up/scale down
» Self-Healing: Performs health checks and monitors containers to restart and reschedule automatically in case of failure

» Automated rollout: Allows gradual updates to roll out while checking status. If a failure occurs, automatically rolls back to
previous deployment.

7 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 1.3. Overview of Kubernetes and Openshift

» Secrets and Configuration Management: Allows managing application secrets without rebuilding containers

» Operators: Pre-packaged Kubernetes applications which can use the Kubernetes APO to update clusters states. These are
typically used for applications getting feedback from the cluster.

1.3.4. OpenShift Overview

OCP is a set of modular components and services built on top of Kubernetes. OCP adds additional capababilities and
management on top of the Kubernetes orchestration platform.

CoreOS

o Beginning with Red Hat OpenShift 4.x (OCP4), Red Hat Linux CoreQOS is used as the underlying operating
system.

1.3.5. OpenShift Features

OpensShift adds several features to the Kubernetes orchestration platform with the most useful being a route.
* Integrated Developer Workflow: Provides built-in container registry, CI/CD pipelines, S2I, and a tool for building artifacts
from source repos to container images
* Route: Allows exposing of services easily to outside world
» Metrics and Logging Built-in metrics service and aggregated logging functions

¢ Unified Ul: Provides unified tools and Ul to manage all capabilities

References

o Production-Grade Container Orchestration - Kubernetes: https://kubernetes.io/

OpenShift: Container Application Platform by Red Hat, Built on Docker and Kubernetes:
https://www.openshift.com/

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 8

https://kubernetes.io/
https://www.openshift.com/

Chapter 2. Creating Containerized Services

2. Creating Containerized Services

2.1. Provisioning Containerized Services

Goals
» Search and download container images using Podman
* Run and configure containers locally

» Use the Red Hat Container Catalog

2.1.1. Fetching Container Images with Podman

Applications run in containers as a way to provide an isolated and controlled environment. Running the application requires a
container image which provides a filesystem bundle with all application files, libraries, and dependencies needed for the
application to properly run. Container images are provided by registries which allow users to find an appropriate container image

to run the desired application.

Containers

o |

c2 -
hamees Image Repository

c4

Figure 4. DO447 Classroom Layout
Podman: Allows users to search and retrieve images from remote or local registries.

Listing 2. Searching for a container image using Podman

[student@workstation ~]$ sudo podman search rhel

Listing 3. Obtaining a container image using Podman

[student@workstation ~]$ sudo podman pull rhel

Listing 4. Listing available images using Podman

[student@workstation ~]$ sudo podman images

9 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

Version: 1.0

Section 2.1. Provisioning Containerized Services

Container Image Naming Syntax

registry_nameluser_namelimage_name:tag

Registry Name: Name of registry storing the image.
» User Name: User or organization that the image belongs to

» Image Name: Unique name in the user namespace

Tag: Identifies image version

2.1.2. Running Containers

The podman run command is used to run a container locally based on a specified image. The container image should specify a
process to start in the container known as the entry point.

Listing 5. Running a Container Image

[student@workstation ~]$ sudo podman run ubi7/ubi:7.7 echo "Hello World!!!"

It is also possible to run a container image in the background as a process by passing the -d option to the podman run
command.

Listing 6. Running a Container Image in the Background

[student@workstation ~]$ sudo podman run -d rhscl/httpd-24-rhel7:2.4-36.8

[student@workstation ~]$ sudo podman inspect -1 \
> -f "{{.NetworkSettings.IPAddress}}"

podman inspect

o The podman inspect command can retrieve information about a container. Specifically, when podman
inspect is provided with the -f, it is possible to filter the information you want to return.

podman Tips
O Most podman subcommands accept the -l flag (I for latest) as a replacement for the container id.
w

If the image to be executed isn't locally available when using podman run it will automatically be
downloaded by podman using podman pull.

When referencing containers using podman a container can be referenced by either the container name or the container id.
The --name option can set the container name when using podman.

a Unique Container Names
Container names MUST be unique when specified with the podman run command.

It is possible that some images require user interaction with console input/output. podman has some run subcommands and

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 10

Chapter 2. Creating Containerized Services

flags which will support interactivity with the end user, typically utilized by specifying -it.

podman Run Sub-Commands

Many Podman flags also have an alternative long form; some of these are explained below.

A « -t is equivalent to --tty, meaning a pseudo-tty(pseudo-terminal)is to be allocated for the container.
* -i is the same as --interactive. When used, standard input is kept open into the container.

« -d, or its long form --detach, means the container runs in the background (detached). podman then
prints the container id.

Listing 7. podman Interactive Shell

[student@workstation ~]$ sudo podman run -it ubi7/ubi:7.7 /bin/bash

bash-4.2# 1s

Some containers require environment variables to be set in order for the container to properly initialize and run. The most
common approach to provide and inject these variables is using podman with the -e flag as a run subcommand to specify the
extra environment variables.

Listing 8. podman with Runtime Variables Provided

[rooteworkstation ~]# sudo podman run --name mysql-custom \
> -e MYSQL_USER=redhat -e MYSQL_PASSWORD=r3dh4t \
> -d rhmap47/mysql:5.5

2.1.3. Using the Red Hat Container Catalog

Red Hat maintains a repository of container images. The podman command can be used with the Red Hat Container Catalog. It
is easiest to explore container catalogs using graphical utilities provided by a web browser.

Red Hat Maintained Container Registries

* https://registry.redhat.io

* https://quay.io

« https://registry.access.redhat.com
2.2. Demonstration

The following demonstration will show how to use the Universal Base Image (UBI) for RHELS8. | will allow you to see various
podman commands in action that were demonstrated throughout the chapter. There will be a few new commands that are
introduced as well.

Example 1. DEMO - Using the RHELS8 Universal Boot Image

1. Search for Containers (specifically UBI)

11 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

https://registry.redhat.io
https://quay.io
https://registry.access.redhat.com

Section 2.2. Demonstration

Listing 9. Using podman to search for container images

[student@workstation Demos]$ podman search ubi8

INDEX NAME DESCRIPTION STARS
OFFICIAL ~ AUTOMATED
redhat.com registry.access.redhat.com/ubi8 The Universal Base Image is designed and eng... @

. output omitted ...

quay.io quay.io/tradisso/kogito-springboot-ubi8-s2i 0
[student@workstation Demos]$

2. Choose and run a container accessing the bash shell

Listing 10. Running a Container and Accessing the Shell

[student@workstation Demos]$ sudo podman run -it registry.access.redhat.com/ubi8/ubi /bin/bash

Getting an Interactive Shell

a
O When running a container, it is possible to pass -it as a command line option and then specify an
d interactive shell such as /bin/bash

3. Verify that you are running the container and accessing the container shell.

Listing 11. Verifying we are in the Container

[root@811b30c61a99 /1# cat /etc/redhat-release
Red Hat Enterprise Linux release 8.2 (Ootpa)

4. Change or Modify the Container - Install a package
Listing 12. Installing Packages in the Container

[root@811b30c61a99 /1# yum install httpd
. output omitted ...
redhat-logos-httpd-81.1-1.el18.noarch

Complete!

5. Attempt to Enable Daemon for HTTPD with SystemD
Listing 13. Failure of systemd and httpd as a Daemon

[root@811b30c61a99 /]# systemctl enable httpd --now

Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service = /usr/1ib/systemd/system/httpd.service.
System has not been booted with systemd as init system (PID 1). Can't operate.

Failed to connect to bus: Host is down

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 12

Chapter 2. Creating Containerized Services

Containers and Services as Daemons

functionality and init system isn’t running on a back-end. For apache to run, you can use
specialized HTTPD containers. In order to run for this container, you will need to use httpd & to
run the service in the background.

o The container is running, but isn’t a full blown virtual machine. Therefore, the systemd

6. Run the HTTP package

Listing 14. Executing Applications in the Background

[root@811b30c61399 /1# httpd&

[1] 67

[root@811b30c61a99 /1# AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using
fe80::5c7a:a2ff:febb:d180. Set the 'ServerName' directive globally to suppress this message

[1]+ Done httpd

7. Test the Webserver

Listing 15. Testing Apache HTTPD with Curl

[root@811b30c61a99 /]# curl http://localhost
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtm111/DTD/xhtm111.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
. output omitted ...
</div>
</body>

</html>
[root@811b30c61399 /1#

8. Attempt to run old container

Listing 16. Use Podman to Launch Container

[student@workstation Demos]$ sudo podman run -it registry.access.redhat.com/ubi8/ubi /bin/bash
[root@604e03f02d11 /1# exit
exit

Container ID Changed

o New container is root@604e03f02d11 /] and the container with HTTPD was
root@811b30c61a99

9. List Containers

13 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 2.2. Demonstration

Listing 17. Podman to list containers

[student@workstation Demos]$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
IS INFRA

604e03f02d11 registry.access.redhat.com/ubi8/ubi:latest /bin/bash 2 minutes ago Exited (@) 2 minutes ago

gallant_johnson false

811b30c61a99 registry.access.redhat.com/ubi8/ubi:latest /bin/bash 5 hours ago Exited (0) 5 minutes ago
suspicious_einstein false

10. Launch container with HTTPD package

Listing 18. Launching Original Container

[student@workstation Demos]$ sudo podman start 811b30c61399
811b30c6139988beca57bbee769987a43f393ec5add6441d84244091547b926

[student@workstation Demos]$ sudo podman exec -it 811b30c61a99 /bin/bash
[root@811b30c61399 /1#

[root@811b30c61399 /1# httpd &

[11 2

[root@811b30c61a99 /1# AH0@558: httpd: Could not reliably determine the server's fully qualified domain name, using
fe80::bcea:baff:fe20:ac4b. Set the 'ServerName' directive globally to suppress this message

[1]+ Done httpd

[root@811b30c61a99 /1# curl localhost
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtm111/DTD/xhtm111.dtd">

. output omitted ...

</div>
</body>
</html>
[root@811b30c61a99 /1#

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 14

Chapter 2. Creating Containerized Services

Container Management

Stopped containers don’t appear as running. Stopped containers can be seen with the podman
ps -a command. It is possible to launch/start a stopped container with the podman start
command, but you must provide the container name/ID in order to start the container. The
podman exec command will allow a command to be executed interactively in the container.

It is good practice to cleanup containers and images that are no longer needed.

Listing 19. Removing Containers

[student@workstation Demos]$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES IS INFRA

604e03f02d11 registry.access.redhat.com/ubi8/ubi:latest /bin/bash 14 minutes ago Exited (@) 6
minutes ago gallant_johnson false

811b30c61a99 registry.access.redhat.com/ubi8/ubi:1latest /bin/bash 5 hours ago Exited (@) 2
seconds ago suspicious_einstein false

[student@workstation Demos]$ sudo podman rm 604e03f02d11
604e03f02d112008c0b759890559461fccc7db89d0efaadfbd7a2950cbadbed

[student@workstation Demos]$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES IS INFRA
811b30c61a99 registry.access.redhat.com/ubi8/ubi:latest /bin/bash 5 hours ago Exited (@) About a
minute ago suspicious_einstein false
References
o Red Hat Container Catalog: https://registry.redhat.io

Quay.io website: https://quay.io

Excellent Podman References

o https://podman.io/getting-started/

https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/

15 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

https://registry.redhat.io
https://quay.io
https://podman.io/getting-started/
https://podman.io/getting-started/
https://podman.io/getting-started/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/

Section 2.2. Demonstration

podman Commands Covered in this Chapter

This chapter provided a brief overview of the podman command and using it to access container images to
create containerized services.

Listing 20. Searching for a container image using Podman

[student@workstation ~]$ sudo podman search rhel

Listing 21. Obtaining a container image using Podman

[student@workstation ~]$ sudo podman pull rhel

Listing 22. Listing available images using Podman

[student@workstation ~]$ sudo podman images

Listing 23. Running a Container Image
[student@workstation ~]$ sudo podman run ubi7/ubi:7.7 echo "Hello World!!!"
The podman run command can be used with -it to open an interactive session with the container. It can

also be used with a -d to run the container in the background. The -e option can specify environment
variables as part of the podman run command to initialize required environment variables.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 16

Chapter 3. Managing Containers

3. Managing Containers

3.1. Managing the Lifecycle of Containers

Goal: Manage the lifecycle of a container with podman.

3.1.1. Container Life Cycle Management with Podman

podman can be used to manage container life-cycle management. podman provides a set of subcommands to create and

manage containers.

pull
push
run
exec
rmi

rm
inspect
stop
kil

restart

podman Sub-commands

The image below shows a summary of the most common subcommands used to change container and image states. podman

provides additional sub-commands which can extract and obtain information about stopped and running containers.

17

DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

Version: 1.0

Section 3.1. Managing the Lifecycle of Containers

image handling : container states

Public registry Red Hat Container Private registry

1
|
Catalog i
1
I
: il >
i paused
! exec
pull i unpause
external i
1
__ I !
local |
i
push v | pause
1
node local |
1 . .
i exited or oom killed
| o (E, . @)
rmi i L M
: QS 4 yes
running restart policy?
local storage rm-f no
save kill
C stop
restart
v load start
s =l
[' © 1
rm
deleted .TAR stopped b deleted
Figure 5. Podman Managing Subcommands
Listing Containers
o The podman ps -a command is important because it returns all containers (running and stopped), whereas

the podman ps command will only return running containers.

Additionally, podman provides subcommands that can query information from containers and images. The image below can be
used to see subcommands which can provide information about container images as well as container states.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 18

Chapter 3. Managing Containers

image handling ' container states

Public registry Red Hat Container private registry
Catalog

il

I
I
I
I
I
1
I
1
1
1
I
|
i paused
<+— ! —>
i
external !
I
__ !
local l ps
search !
images E
|
node local i >
<« | top —» {é‘,}. .
] <4—— inspect ————» . A
— <+ o —s T
| — > running
local storage !
1
history i stats
I
I
$ tar -tf : logs
|
1
i ps -a
: | >
s |
A |
i
TAR i stopped
1

Figure 6. Podman Query Subcommands

3.1.2. Creating Containers

The podman run command creates a new container from an image and starts processes in the new container. If there is no
image available for the container locally, podman will download the image.

Listing 24. Running an Apache HTPPD Container

[student@workstation ~]$ sudo podman run rhscl/httpd-24-rhel7

Trying to pull regist...httpd-24-rhel7:1atest...Getting image source signatures Copying blob sha256:23113...b0be82

72.21 MB / 72.21 MB [] 7s ...output omitted...AH00094: Command line: "httpd -D
FOREGROUND'

19 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 3.1. Managing the Lifecycle of Containers

Listing 25. Listing Running Containers

[student@workstation ~]$ sudo podman ps -a

Listing 26. Running an Apache HTPPD Container and Specifying a Name

[student@workstation ~]$ sudo podman run --name travis-httpd-container rhscl/httpd-24-rhel7
Trying to pull regist...httpd-24-rhel7:1atest...Getting image source signatures Copying blob sha256:23113...b0be82
72.21 MB / 72.21 MB [] 7s ...output omitted...AH00094: Command line: "httpd -D

FOREGROUND'

Unique Container Names

° It is important to remember that container names must be unique. This includes the reuse of any stopped
container names.

It is possible to run the container as a daemon process in the background using the podman run -d option to run the container in

detached mode.

Listing 27. Running a container in the Background

[student@workstation ~]$ sudo podman run --name my-httpd-container -d rhscl/ httpd-24-rhel7

Lastly, it is possible to run the container with an interactive shell by using podman run -it container Ibin/bash to start an
interactive shell. The -it option lets podman know to provide an interactive terminal to the user.

Listing 28. Running a Shell from a Container

[student@workstation ~]$ sudo podman run -it rhscl/httpd-24-rhel7 /bin/bash

bash-4.24

3.1.3. Running Commands in a Container

The exec subcommand allows commands to be specified and run within a container. It is important to note that the container
must already be running for the exec command to work.

Listing 29. Executing Commands in a Container

[student@workstation ~]$ sudo podman exec 7ed6e671a600 cat /etc/hostname 7ed6e6713600

Using the Last Container Reference

a
O The podman exec command can use the -l option to reference the last used container. This allows you to
skip the container ID or container name with podman as the -l will use the previously referenced container.

3.1.4. Managing Containers

Creating and starting containers are a first step in the lifecycle of a container. It is also necessary to stop, restart, and remove

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

20

Chapter 3. Managing Containers

containers. In order to manage containers, the podman ps command can be very handy.

Listing 30. Listing Running Containers

[student@workstation ~]$ sudo podman ps

Listing 31. Listing All Containers

[student@workstation ~]$ sudo podman ps -a

Dealing with Stopped Containers

o It is important to note that podman doesn’t discard stopped containers. Instead, they are preserved for
analysis. The podman ps -a can list all containers and then it is possible to manually delete any stopped
containers.

It is possible to get additional information for a container. The podman inspect command will list metadata about running and
stopped containers. The output of podman inspect is in JSON format. The -f option allows formatting and specifying particular
output to retrieve.

Listing 32. Inspecting a Container

[student@workstation ~]$ sudo podman inspect my-httpd-container

Listing 33. Inspecting a Container to get IP Address

[student@workstation ~]$ sudo podman inspect \
> -f "{{ .NetworkSettings.IPAddress }}' my-httpd-container

There are a couple ways to stop a running container. The preferred method is podman stop to gracefully stop a running
container. However, it is possible to use podman kill and podman kill -s SIGKILL to send the kill commands to forcefully stop a
running container.

Listing 34. Gracefully Stopping a Container

[student@workstation ~]$ sudo podman stop my-httpd-container

Listing 35. Using kill to stop a container

[student@workstation ~]$ sudo podman kill my-httpd-container

It is possible to restart a stopped container with the same container state and filesystem. The podman restart command creates
a new container with the same container ID and filesystem.

Listing 36. Restarting a Container

[student@workstation ~]$ sudo podman restart my-httpd-container

21 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 3.2. Demonstration - Container Lifecycles

To complete container lifecycle management, it is necessary to remove the container. This can be done using podman rm to
remove the container. It should be noted that podman rm deletes the container and discards both the container state and

filesystem.

Listing 37. Removing a Container

[student@workstation ~]$ sudo podman rm my-httpd-container

Removing Running Containers

o It is important to note that containers must be stopped before using podman rm. It is possible to forcefully
remove containers by specifying the -f option to podman rm. This will forcefully stop the running container
and remove it as a single command. This is equivalent to running podman kill and podman rm.

Stopping and Removing Multiple Containers

It is possible to stop and remove all containers by specifying -a option to podman stop and podman rm.
Listing 38. Stopping all Containers

@
O [student@workstation ~]$ sudo podman stop -a

Listing 39. Removing all Containers

[student@workstation ~]$ sudo podman rm -a

Subcommand Syntax and Options

o The inspect, stop, kill, restart, and rm subcommands can use the container ID instead of the container
name.

3.2. Demonstration - Container Lifecycles

Example 2. DEMONSTRATION - Container Lifecycles

1. Locate HTTPD Container to run
Listing 40. Use podman to find an apache container

[student@workstation Demos]$ sudo podman search httpd

INDEX NAME

STARS ~ OFFICIAL AUTOMATED

redhat.com registry.access.redhat.com/rhscl/httpd-24-rhel7

DESCRIPTION

Apache HTTP 2.4 Server

. output omitted ...

2. Run apache container

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

22

Chapter 3. Managing Containers

Listing 41. Running container with podman run and specifying a name

[student@workstation ~]$ sudo podman run --name HTTPD-Demol redhattraining/httpd-parent:2.4
AH@0558: httpd: Could not reliably determine the server's fully qualified domain name, using 10.88.100.121. Set the 'ServerName'

directive globally to suppress this message

3. Verifying container statuses
Listing 42. Using podman ps -a to see all containers

[student@workstation Demos]$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES IS INFRA

778d7093eb8c registry.access.redhat.com/rhscl/httpd-24-rhel7:1atest container-entrypoin... 46 seconds ago Exited (@) 7
seconds ago HTTPD-Demo1 false

811b30c613a99 registry.access.redhat.com/ubi8/ubi:latest /bin/bash 24 hours ago Exited (0) 19
hours ago suspicious_einstein false

4. Removing the HTTPD Demo Container
Listing 43. Using podman rm to remove stopped containers

[student@workstation Demos]$ sudo podman rm HTTPD-Demo1

5. Run as HTTPD container as a daemon in background

Listing 44. .Running container with podman run and specifying a name as well as the -d to run as daemon

[student@workstation ~]$ sudo podman run --name HTTPD-Demol -d redhattraining/httpd-parent:2.4
07d19e01c64d6cd44db8adddbdde341119b148078ec14684e9beada18b521550

6. Inspecting running containers
Listing 45. Using podman inspect to get container details

[student@workstation Demos]$ sudo podman inspect HTTPD-Demol

[

{
"ID": "a874387ac7ee8bbcedbb5badedd5dbbb5e608ca21e9e9f294a957056fb4b11b7",

. output omitted ...

"GlobalIPv6PrefixLen": 0,
"IPAddress": "10.88.100.111",
"IPPrefixLen": 16,
"IPv6Gateway": "",

. output omitted ...

23 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 3.2. Demonstration - Container Lifecycles

Filtering/Formatting with Go Templates

It is possible to use the -f option to utilize a formatting template to filter and retrieve a single piece
of desired information.

Listing 46. Using grep to filter/format results

"' ’ [student@workstation Demos]$ sudo podman inspect HTTPD-Demol | grep -i ipaddress
"SecondaryIPAddresses": null,
"IPAddress": "10.88.100.111",

Listing 47. Using podman inspect -f options
[student@workstation Demos]$ sudo podman inspect -f '{{ .NetworkSettings.IPAddress }}' HTTPD-Demol

10.88.100.111

7. Open interactive shell in container

Listing 48. Using podman exec to get a shell

[student@workstation Demos]$ sudo podman exec -it HTTPD-Demol /bin/bash
bash-4.2% cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.8 (Maipo)

bash-4.4# curl localhost
Hello from the httpd-parent container!

8. Stop the container

Listing 49. Use podman stop to stop the running container

[student@workstation Demos]$ sudo podman stop HTTPD-Demol
a874387ac7ee8bbcedbb5badedd5db6b5e608ca21e9e9f294a957056fb4b11b7

9. Delete the container

Listing 50. Use podman rm to Delete the container

[student@workstation Demos]$ sudo podman rm HTTPD-Demol
a874387ac7ee8bbce@bb5badedd5dbbb5e608ca21e9e9f2943957056b4b11b7

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

24

Chapter 3. Managing Containers

Cleanup of container images

It is important to cleanup the actual container images if the there are no containers using the
images and there are no plans to use the container image for other containers. This will conserve

o disk space on the system.

Listing 51. Use podman rmi to remove a container image

[student@workstation Demos]$ sudo podman rmi rhscl/httpd-24-rhel?
a0cb054ab975a1d93ffff3ff932052ce5F92d7bff0a918f9f3a9f430F83a3acd

3.3. Attaching Persistent Storage to Containers

Goals
» Save application data across containers by using persistent storage
» Configure host directories for use as container volumes

e Mount a volume inside a container

3.3.1. Preparing Permananent Storage Locations

By default, container storage is ephemeral. That means that no data is preserved when containers are stopped and removed.
Each running container gets a new layer over the base container image for the container storage. The storage is read/write
available for the container and should be considered volatile. When the container is removed, the storage layer is deleted and
anything on the ephemeral storage is lost. This is fine for several scenarios, however, ephemeral only storage is not sufficient for
all containerized application and there is a need to provide persistent storage to containers.

25 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 3.3. Attaching Persistent Storage to Containers

Ephemeral Storage Layer - Read Write <:=| Container Layer

bgie91vdx5e3

lo98g5vexdf2

bvzr42j754dw LN Image Layers - all

read-only

knb5az69nbra

1k6db38scg5q

Red Hat Enterprise Linux 7.2
Container based on RHEL 7.2
Figure 7. Container Storage Layers
Important Header
o All storage layers in the image are read-only. At runtime, a container gets a new layer of ephemeral storage
which is read/write non-persistent storage. This allows the container to write temporary files and have full

access to the filesystem area while the container is running.

3.3.2. Reclaiming Storage

podman doesn’t delete or remove stopped containers. Instead these container images are storage for later review. If an
administrator needs to reclaim storage space and remove a container, the podman rm container_ID command must be run.
This will remove the container and delete the storage associated with the container. Keep in mind, this doesn’t delete the original
image that was used to create the container.

3.3.3. Preparing the Host Directory

Persistent storage can be achieved by mounting host directories inside a running container. The application in the container sees
the host directories as part of the container storage and has full access to these directories. It is important to note that SELinux
should be running as this provides a large portion of the built-in container security. In order for the container to access and utilize
the storage, the directory must be properly configured with the correct ownership and group permissions as well as the correct
SELinux context container_file_t.

podman users container_file_t SELinux context to restrict files that the container can access from the host system. It further
requires that the UID/GID be numerically set based on the required permissions from the applicaiton running in the container.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 26

Chapter 3. Managing Containers

Important Header

o It is important to remember that after using semanage to define the SELinux contexts that you run a
restorecon -Rv IDir_Being_Used to restore the SELinux contexts on the /Dir_Being_Used directory.
3.3.4. Mounting a Volume

After creating and defining the directory, it is necessary to provide podman the options to mount and bind the shared filesystem
to the container. In order to bind and mount a host directory, the -v option should be used by the podman run command. This
option requires both the host directory path and the container storage path separated by a colon (:).

Listing 52. Sample Mounting Syntax

podman run -v /host_path:/container_path container_image_name

3.4. Demonstration - Attaching Persistent Storage to Containers

Example 3. Demonstration with Persistent Storage

The purpose of this demonstration is to provide persistent storage to a container. We will be mounting local storage to the
container as the web host storage.

1. Prepare directory to host local storage and copy files

Listing 53. Create a Directory

[student@workstation Chapter3]$ sudo mkdir /Webhosting

Listing 54. Copy files to IWebhosting directory

[student@workstation Chapter31$ sudo cp Website/* /Webhosting

2. Change ownership and set SELinux permissions on the directory and files.

Listing 55. Set Ownership and Permissions

[student@workstation Chapter3]$ sudo chown -R 48:48 /Webhosting

Listing 56. Set and Restore SELinux Contexts

[student@workstation Chapter3]$ sudo semanage fcontext -a -t container_file_t '/Webhosting(/.*)?'

[student@workstation Chapter3]$ sudo restorecon -Rv /Webhosting/

restorecon reset /Webhosting context unconfined_u:object_r:default_t:s@->unconfined_u:object_r:container_file_t:s@

restorecon reset /Webhosting/index2.html context unconfined_u:object_r:default_t:s@->unconfined_u:object_r:container_file_t:s@
restorecon reset /Webhosting/index3.html context unconfined_u:object_r:default_t:s@->unconfined_u:object_r:container_file_t:s@
restorecon reset /Webhosting/index.html context unconfined_u:object_r:default_t:s@->unconfined_u:object_r:container_file_t:s@

27 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 3.5. Accessing Containers

3. Start Apache container

Listing 57. Using podman run to start a container with persistent storage

[student@workstation Chapter3]$ sudo podman run --name HTTPD-Demo2 -v /Webhosting:/var/www/html -d redhattraining/httpd-parent:2.4

Trying to pull registry.access.redhat.com/rhscl/httpd-24-rhel7:latest...Getting image source signatures
Copying blob sha256:a03401a44180b6581a149376d6fd2d5bd85d938445fd5b5ad270e14ddde4937¢

. output omitted ...

4. Show website from container

Listing 58. Attempt to connect to container
[student@workstation Chapter3]$ curl http://localhost

curl: (7) Failed connect to localhost:80; Connection refused

Network traffic not setup

At this point, there is no network connection so it is expected that we don’t have any connection.

In order to verify the files exist, you must open a bash shell and look for the files from the
mounted directory.

Listing 59. Verifying Mounted Drive and Files

[student@workstation Chapter3]$ sudo podman exec -it HTTPD-Demo2 /bin/bash
bash-4.2$ 1s -alR /var/www/html

/var/www/html:
total 12
a drwxr-xr-x. 2 apache apache 62 Jul 16 23:10 .
O drwxr-xr-x. 4 default root 33 Jul 1 12:43 ..
- -rw-r--r--. 1 apache apache 35 Jul 16 23:10 index.html

-rw-r--r--. 1 apache apache 36 Jul 16 23:10 index2.html
-rw-r--r--. 1 apache apache 36 Jul 16 23:10 index3.html

Listing 60. Verify apache Service and Website

bash-4.4# curl localhost
This is the Demo2 Index.html file.

bash-4.4# curl http://localhost/index2.html
This is the Demo2 Index2.html file.

bash-4.4# curl http://localhost/index3.html
This is the Demo2 Index3.html file.

3.5. Accessing Containers

Goals

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 28

Chapter 3. Managing Containers

 Describe basics of networking with containers

* Remotely connect to services within a container

3.5.1. Introducing Networking with Containers

Networking is possible by the Container Networking Interface (CNI) project. This project was created to standardize network
interface for containers in cloud native, Kubernetes, and OCP environments. The CNI project uses software-defined networking
(SDN) for containers on each host. Podman attaches virtual bridges to containers as well as a private IP address. The CNI
settings are defined for podman in the /etc/cnilnet.d/87-podman-bridge.conflist file.

29 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 3.5. Accessing Containers

Host Network

HOST 1

-4
—> Container 1 e

local container SDN

—> Container 2 —

HOST 2 Containers from different
hosts have no network access
to each other

— Container 3 — 4

— local container SDN

— Container 4

t1

«—> Network packet flow —— Virtual or physical network

Figure 8. Basic Linux Container Networking

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 30

Chapter 3. Managing Containers

podman creates containers on a host and assigns each host a unique IP address connecting them all to the same SDN.
Containers on the same host can communicate freely by IP address. Containers created by podman on other hosts belong to a
different SDN and are generally prevented from interacting with containers running on a remote host because SDN isolates
containers to the locally defined SDN preventing communication between different networks.

Important Header

o By default, all container networks are hidden from the host network. SDN provides complete network
isolation for the containers one the host with containers on a different host. This isolation also allows a
container in one SDN to have the same IP address in a different SDN.

3.5.2. Mapping Network Ports

Accessing containers from the host network must be specifically granted using the SDN commands. In order to solve the problem
of allowing access to a container network, the -p option can be used to allow external access through port forwarding.
Specifically, when using podman, you would specify the -p [<IP address>:][<host port:]<container port> option when using
the podman run command.

Note Header

Container IP addresses are assigned from an IP address pool. When a container is deleted, the IP address

o is returned to the pool and becomes available for another container. Because the IP addresses are reused
and randomly assigned, port forwarding is the easiest method to allow access to a container application
using the network.

31 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 3.6. Demonstration - Accessing Containers over the Network

Host Network

HOST 1
podman -p'

HOST 3 (port forward) Container 1
—

local container SDN

Container 2

HOST 2

Container 3

local container SDN

— Container 4

«—> Network packet flow —— Virtual or physical network

Figure 9. External Access to Linux Containers

It is possible to specify the ports for forwarding. However, it is also possible to port forward requests only if the requests originate
from a specific and specified IP address. The -p option is capable of performing both port forwarding options.

3.6. Demonstration - Accessing Containers over the Network

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 32

Chapter 3. Managing Containers

Example 4. Demonstration - Allowing Network Ports

Building from Demonstration #2, we will restart the container with the network port forwarding.

1. Start the container as Demo3 with network port forwarding.

Listing 61. Use podman run with the -p option to port forward

[student@workstation ~]$ sudo podman run --name HTTPD-Demo3 -v /Webhosting:/var/www/html -p 80:80 -d redhattraining/httpd-

parent:2.4
4b2¢8dc1f89ffb22071d0d171b2¢33838dd09f5dabd41c4d9c56bc904b91284b

2. Verify port has been opened
Listing 62. Source Description

[student@workstation ~1$ curl localhost
This is the Demo2 Index.html file.

[student@workstation ~]$ curl http://localhost/index2.html
This is the Demo2 Index2.html file.

[student@workstation ~]$ curl http://localhost/index3.html
This is the Demo2 Index3.html file.

References

o Container Network Interface - networking for Linux containers: https://github.com/containernetworking/

cni Cloud Native Computing Foundation: https://www.cncf.io/

33 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

Version: 1.0

https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://www.cncf.io/

Section 4.1. Accessing Registries

4. Managing Container Images

4.1. Accessing Registries
Goals
 Search for and pull images from remote registries using Podman commands and the registry API
» Customize Podman configuration to access alternative container image registries
« List images downloaded from registries to the local file system

» Manage tags to pull tagged images

4.1.1. Public Registries

Public registries are the most likely registry to use as a download source for containers. Image registries provide container
images to download and allow image creators/maintainers to store and distribute container images to larger audiences.

podman can be used as a search tool for both public and private image registries. The Red Hat Container Catalog is the public
image registry maintained by Red Hat. Another Red Hat container registry is known as Quay.lO which is a public image registry
containing user created images.

Red Hat Container Image Benefits

» Trusted Source: All images come from known sources and trusted by Red Hat

 Original Dependencies: No container packages have been altered and only include known and required libraries

Vulnerability-Free: Images are free from known vulnerabilities in platform layer components

* Runtime Protection: All images run as non-root users

Red Hat Enterprise Linux (RHEL) Compatible: Images compatible with all RHEL platforms

» Red Hat Support: Images are commercially supported by Red Hat

Important Header

o Keep in mind, Quay.io is a public image repository maintained by Red HAt. However, these images are not
verified by Red Hat like with Red Hat Container Catalog. Quay.io allows users to create and publish their
own images, so be aware there could be potential issues.

4.1.2. Private Registries

Private registries give image creators control about image placement, distribution, and usage. A private registry works the same
way as a public registry except the administrators have full control.

4.1.3. Configuring Registries in Podman

The registries for the podman command are configured in the letc/lcontainersiregistries.conf file. The [registries.search]
section contains registry entries.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 34

Chapter 4. Managing Container Images

Listing 63. Sample of Registry Sources from letclcontainersiregistries.conf
[registries.search]

registries = ["registry.access.redhat.com", "quay.io"]

Specifying Registries in the letclcontainersiregistries.conf file.

(f) Use an FQDN and port number to identify a registry. A registry that does not include a port number has a
- default port number of 5000. If the registry uses a different port, it must be specified. Indicate port numbers
by appending a colon (:) and the port number after the FQDN.

Connections to registries require a trusted certificate. It is possible to support insecure connections by modifying the
[registries.insecure] section of /letcl containersiregistries.conf file.

Listing 64. Allowing Insecure Registries

[registries.insecure] registries = ['localhost:5000"]

4.1.4. Accessing Registries

The podman search command is capabable of searching registries defined by letcl containersi/registries.conf for images to
run as containers.

Listing 65. podman search Syntax

[student@workstation ~]$ sudo podman search [OPTIONS] <term>

Table 3. podman search Sub-commands

Option Description

--limit <number> *Limits the number of listed images per registry.

-filter <filter=value> Filter output based on conditions provided. Supported filters
are

» stars=<number>:Showonlyimageswith at least this
number of stars.

* is-automated=<truelfalse>:Show only images
automatically built.

« is-official=<truel/false>:Showonly images flagged as
official.

--tls-verify <true false>

35 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 4.1. Accessing Registries

4.1.4.1. Registry HTTP API

Remote registries expose web services APIs to the registry. Many of these registries conform to Docker Registry HTTP API v2
specifications which expose a standardized REST interface for interactions with the registry.

4.1.4.2. Registry Authentication

Some public and private registries require authorization. The podman login command allows a user to specify a UN/PW
combination for logging into a registry.

Listing 66. Using podman login to Login to a Registry

[student@workstation ~]$ sudo podman login -u username \ > -p password registry.access.redhat.com
Login Succeeded!

4.1.4.3. Pulling Images

The podman pull command is used to obtain images from a registry that were located with the podman search command. The
podman pull subcommand also supports adding the registry name to the image to specify exactly where you wish to obtain the
image.

Listing 67. podman pull Syntax

[student@workstation ~]$ sudo podman pull [OPTIONS] [REGISTRY[:PORT]/INAME[:TAG]

Listing 68. podman pull Syntax from Specific Registry

[student@workstation ~]$ sudo podman pull quay.io/bitnami/nginx

podman search and podman pull Registry Order

o If the image name does not include a registry name, Podman searches for a matching container image
using the registries listed in the /etc/containersiregistries.conf configuration file. Podman search for
images in registries in the same order they appear in the configuration file.

4.1.4.4. Listing Local Copies of Images

All container images obtained from a container registry are downloaded and locally stored on the host running podman. This
allows podman to store images for later use. It is possible to list images using the podman images command to list all locally
stored images.

Listing 69. Using podman images to List Downloaded Images

[student@workstation ~]$ sudo podman images

o podman Image Storage
By default, Podman stores container images in the Ivar/lib/containers/storage/overlay-images directory.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 36

Chapter 4. Managing Container Images

4.1.4.5. Image Tags

Image tags are ways to support multiple releases of a single image. The image tag can be used to support multiple versions of
the same software for container images. The image tag can be provided to the end of the podman pull command using a (:).

Listing 70. Using podman pull and podman run to Run a Specific Image

[student@workstation ~]$ sudo podman pull rhscl/mysql-57-rhel7:5.7

[student@workstation ~]$ sudo podman run rhscl/mysql-57-rhel7:5.7

The latest Image Tag

o It is important to note differences between images with multiple versions. If no tag is specified the image will
default to the image with the latest tag.

4.2. Demonstration - Accessing and Searching Registries

Example 5. Demonstration - Accessing and Searching Registries

1. Logging into a Registry
Listing 71. Registry Login without Password in History

[student@workstation Demos]$ sudo podman login -u tmichett quay.io
Password:
Login Succeeded!

Password with -p

When using the -p the password is specified on the command line. This will end up in the BASH
g history so in secure environments, you might not want to use that option.

[student@workstation Demos]$ sudo podman login -u tmichett -p Secret_Password_Text quay.io
Login Succeeded!

Leaving out -u and -p

It is possible to use podman login without the u username option and the -p password option. If
this is the method used, it will issue an interactive prompt for the username and the password.
This will prevent both the username and password from appearing in BASH history.

O,
- Listing 72. Interactive Login

[student@workstation Demos]$ sudo podman login quay.io
Username (tmichett): tmichett

Password:

Login Succeeded!

37 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 4.2. Demonstration - Accessing and Searching Registries

2. Using podman to list images

Listing 73. Use podman images to list container images stored locally

[student@workstation Demos]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/ubi latest 7923da9%ba983 1@ days ago 212MB
registry.access.redhat.com/rhscl/httpd-24-rhel7 latest a@cb@54ab975 2 weeks ago 328MB
localhost/nexus latest b7d5e59cdc5e 3 months ago 550MB
localhost/do180/icrm2 latest 9692b730e6f5 3 months ago 252MB
quay.io/tmichett/do180/icrm2 v2.2 9692b730e6f5 3 months ago 252MB
quay.io/tmichett/icrm2 v2.2 9692b730e6f5 3 months ago 252MB
localhost/do180/icrm latest 166e944ab4ac 3 months ago 252MB
registry.access.redhat.com/ubi7/ubi 1.7 0355cd652bd1 4 months ago 215MB
localhost:5000/httpd-demo latest 3639ce1374d3 13 months ago 236MB
localhost/httpd-demo latest 3639ce1374d3 13 months ago 236MB
quay.io/tmichett/do180-demos/httpd-demo latest 3639ce1374d3 13 months ago 236MB
quay.io/tmichett/do180-demos/httpd-demo v3 3639ce1374d3 13 months ago 236MB
quay.io/redhattraining/httpd-parent 2.4 3639ce1374d3 13 months ago 236MB
registry.access.redhat.com/rhel7.4 latest 33a3ad89f9ab 2 years ago 206MB

3. Examine Config File for Container storage

Listing 74. Examining letclcontainers/storage.conf

[student@workstation ~]$ sudo vim /etc/containers/storage.conf
storage.conf is the configuration file for all tools

that share the containers/storage libraries

See man 5 containers-storage.conf for more information

The "container storage" table contains all of the server options
[storage]

Default Storage Driver
driver = "overlay"

Temporary storage location
runroot = "/var/run/containers/storage"

Primary Read/Write location of container storage
graphroot = "/var/lib/containers/storage”

[storage.options]
Storage options to be passed to underlying storage drivers

AdditionallmageStores is used to pass paths to additional Read/Only image stores
Must be comma separated list.
additionalimagestores = [

]
. output omitted ...

xfs_nospace_max_retries specifies the maximum number of retries XFS should
attempt to complete I0 when ENOSPC (no space) error is returned by
underlying storage device.

xfs_nospace_max_retries = "0"

= o= = =

4. Look at the registries.conf file

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 38

Chapter 4. Managing Container Images

Listing 75. Examinging Configured Registries

[student@workstation ~]$ vim /etc/containers/registries.conf

T R B

+=*

This is a system-wide configuration file used to

keep track of registries for various container backends.
It adheres to TOML format and does not support recursive
lists of registries.

The default location for this configuration file is /etc/containers/registries.conf

The only valid categories are: 'registries.search', 'registries.insecure’,
and 'registries.block'.

[registries.search]

registries = ["registry.access.redhat.com", "quay.io"]

If you need to access insecure registries, add the registry's fully-qualified name.

An insecure registry is one that does not have a valid SSL certificate or only does HTTP
[registries.insecure]

registries = ["sat6.michettetech.com:5000/michettetech-red_hat_training_containers-httpd-parent"]

. output omitted ...

If you need to block pull access from a registry, uncomment the section below
and add the registries fully-qualified name.

#

Docker only
[registries.block]
registries = []

References

Red Hat Container Catalog: https://registry.redhat.io
o Quay.io: https://quay.io

Docker Registry HTTP API V2: https://github.com/docker/distribution/blob/master/docs/spec/api.md

4.3. Manipulating Container Images

Goals

Save and load container images to local files

Delete images from the local storage

» Create new container images from containers and update image metadata

» Manage image tags fro distribution purposes

This section will cover four (4) ways to create and share images.

4.3.1. Introduction

There are two methods for transferring container images to other hosts.

39

DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

Version: 1.0

https://registry.redhat.io
https://quay.io
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md

Section 4.3. Manipulating Container Images

Image Transfer Methods

1. Save container image as a .tar file
2. Publish (push) the container image to an image registry
4.3.2. Saving and Loading Images

Existing images can be saved to a .tar file using the podman save command. This is a specialized TAR file containing image
metadata and preserving original image layers. By using podman save to save the image as a TAR file, podman can recreate
the original image exactly.

Listing 76. podman save Syntax

[student@workstation ~]$ sudo podman save [-o FILE_NAME] IMAGE_NAME[:TAG]

The podman save command uses the -o option to designate the output file. It is possible to save a file from a container registry
to a TAR file using the podman save command.

Listing 77. Using podman save to capture an image from Red Hat Container Catalog and Save Locally

[student@workstation ~]$ sudo podman save \
> -0 mysql.tar registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7

Image files saved locally with podman save can be restored with the podman load command.

Listing 78. Loading an image file from podman save

[student@workstation ~]$ sudo podman load [-i FILE_NAME]

o podman load Warning
If the TAR file provided to podman load is not a container image with metadata, the command fails.

Saving and Compressing a Container Image

a
O To save disk space, compress the file generated by the save subcommand with Gzip using the --compress
- . . . i
parameter. The load subcommand uses the gunzip command before importing the file to the local storage.

4.3.3. Deleting Images

Podman keeps all downloaded images on local storage. Even images not being used on a container remain in local storage. The
podman rmi command is capable of removing images. This command can accept both the name or the image ID of the image.

Listing 79. Removing an Image

[student@workstation ~]$ sudo podman rmi [OPTIONS] IMAGE [IMAGE...]

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 40

Chapter 4. Managing Container Images

Image Updates and Changes

o Images must be removed and pulled to guarantee they are the latest version of the image. Any updates to
images in a registry are not updated automatically to locally stored images. Additionally, images currently
being used by a container cannot be removed.

It is possible to use the --force option to force the removal of the image. This option will remove an image regardless if it is being
used by a container and regardless of how many containers might be using the image. The podman rmi --force will stop and
remove all containers forcefully and will then remove the image.

4.3.4. Deleting all Images

It is possible to delete all images not being used by a container by using podman rmi -a command. This will delete all images not
currently being used by any container.

Listing 80. Using podman rmi -a to Remove all Images

[student@workstation ~]$ sudo podman rmi -a

The podman rmi -a command will return all image IDs available in local storage and pass them to podman rmi for removal.

4.3.5. Modifying Images

A Dockerfile is the ideal way to modify and create custom, clean images. A Dockerfile allows creation of a clean, lightweight
image set of layers without added log files, temporary files, or other artifacts that can be created during custom image file
creation.

An alternative to using a Dockerfile is using podman commit to save changes made to a running container and save those
layers to create a new container image.

Warning about podman commit

Even though the podman commit command is the most straightforward approach to creating new images,

A it is not recommended because of the image size (commit keeps logs and process ID files in the captured
layers), and the lack of change traceability. A Dockerfile provides a robust mechanism to customize and
implement changes to a container using a human-readable set of commands, without the set of files that are
generated by the operating system.

Use of podman commit
The podman commit command takes a few options as described in the table below.
Table 4. podman commit Options
Option Description

--author "" Identifies who created the container image.

41 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 4.3. Manipulating Container Images

Option Description

--message "" Includes a commit message to the registry.

--format Selects the format of the image. Valid options are oci and
docker.

Listing 81. Using podman commit

[student@workstation ~]$ sudo podman commit [OPTIONS] CONTAINER \ > [REPOSITORY[:PORT]/]IMAGE_NAME[:TAG]

(,) Note about podman commit Options

- The --message option is not available in the default OCI container format.

It is possible to use a podman diff command to identify changes with the running container image and the original image. The
diff subcommand requires the name or container ID. The diff subcommand uses A for files that have been added, C for files that
were changed, and D for files that were deleted.

Listing 82. podman diff Usage

[student@workstation ~]$ sudo podman diff mysql-basic

podman diff and Mounted Filesystems

o IT should be noted that diff only reports differences in the container filesystem. Files that are part of a
mounted filesystem to a container are not included as part of the podman diff command.

It is possible to save changes to another image (new image) using the podman commit command.

Listing 83. Sample using podman commit

[student@workstation ~]$ sudo podman commit mysql-basic mysql-custom

4.3.6. Tagging Images

Projects with multiple images based on the same software requires a maintenance and management approach for deploying
images correctly and to the correct locations. This approach requires images to be tagged in order to manage multiple versions.
The podman tag command is used to tag images.

Listing 84. Tagging images with podman tag

[student@workstation ~]$ sudo podman tag [OPTIONS] IMAGE[:TAG] \ > [REGISTRYHOST/][USERNAME/INAME[:TAG]

The IMAGE argument is the image name with the optional tag which is managed by Podman.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 42

Chapter 4. Managing Container Images

Note Header

o podman will always assume that the latest version of the image is to be used (normally indicated by the
latest tag) if there is no tag value specified.

4.3.6.1. Removing Tags from Images

Single images can have multiple tags assigned by the podman tag command. In order to remove them use the podman rmi
command.

Removing Images with Multiple Tags

é Because multiple tags point to the same image, in order to remove an image referenced by a multiple tags,
each tag must be removed individually.

4.3.7. Best Practices for Tagging Images

Podman automatically adds the latest tag when tagging an image if you don’t specify a tag. Because tags can have different
meaning, it is often a common practice to place multiple tags on an image to allow an end-user to easily pull an image based on
either tag.

4.3.8. Publishing Images to a Registry

Images can be published to registries using the podman push command. In order to use podman push the image must reside
on Podman’s local storage and be properly tagged for identification purposes.

Listing 85. Using podman push to Publish an Image

[student@workstation ~]$ sudo podman push [OPTIONS] IMAGE [DESTINATION]

4.4. Demonstration - Manipulating Container Images

Example 6. DEMO - Manipulating Container Images

1. Save the httpd container image to a file

43 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 4.4. Demonstration - Manipulating Container Images

Listing 86. Using podman save to Save a Container Image

[student@workstation Chapter3]$ sudo podman save -o httpd-demo.tar redhattraining/httpd-parent:2.4
Getting image source signatures
Copying blob sha256:24d85¢895b6b87016b84327a5e31aa567a5d30588de@abbdd9ab69ec5012339¢
205.76 MB / 205.76 MB [1 4s
Copying blob sha256:c613b100be1645941fded703dd6037e5aba7c9388fd1fcb37¢2f9f73bc438126
20.00 KB / 20.00 KB [10s
Copying blob sha256:a3ed95caeb@2ffe68cdd9Ifd84406680ae93d633chb16422d00e8a7c22955b46d4
32B/32B [1 0s
Copying blob sha256:a3ed95caeb@2ffe68cdd9Ifd84406680ae93d633chb16422d00e8a7c22955b46d4
32B/328 [1 0s
Copying blob sha256:574bcc187eda95dd171dc76c3b8a8b39e07138fdal2acceebeads77ea2c5f95a
19.35 MB / 19.35 MB [1 0s
Copying blob sha256:a3ed95caeb@2ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
32B/32B [1 0s
Copying blob sha256:a3ed95caeb@2ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
32B/32B [1 0s
Copying blob sha256:7f9108fde4a18112ccc28fd421097680ad890ebad48ca3e635063e5acT1adbfb3
2.50 KB / 2.50 KB [10s
Copying blob sha256:a3ed95caeb@2ffe68cdd9Ifd84406680ae93d633chb16422d00e8a7c22955b46d4
32B/32B [1 0s
Copying blob sha256:a3ed95caeb@2ffe68cdd9Ifd84406680ae93d633chb16422d00e8a7c22955b46d4
32B/328 [1 0s
Copying config sha256:3639ce1374d3611e80edb6decd7d5467b72d010c21e19e4f193cd8b944e8c9f5
6.50 KB / 6.50 KB [1 0s
Writing manifest to image destination
Storing signatures

2. Load an image from a tar file

Listing 87. Load httpd-demo.tar for running

[student@workstation Chapter3]$ sudo podman load -i httpd-demo.tar

Getting image source signatures

Skipping fetch of repeat blob sha256:24d85c895b6b870f6b84327a5e31aa567a5d30588de@adbdd9ab69ec5012339¢
Skipping fetch of repeat blob sha256:c613b100be1645941fded703dd6037e5aba7c9388fd1fcb37¢c2f9f73bc438126
Skipping fetch of repeat blob sha256:574bcc187eda95dd171dc76c3b8a8b39e@738fdal2acceebea8477ea2c5f95a
Skipping fetch of repeat blob sha256:7f9108fde4a18112ccc28d421097680ad890ebad48ca3e635063e5ac1adbfb3
Copying config sha256:3639ce1374d3611e80ed66decd7d5467b72d010c21e19e4f193cd8b944e8c9f5

6.50 KB / 6.50 KB [1 0s

Writing manifest to image destination

Storing signatures

Loaded image(s): docker.io/redhattraining/httpd-parent:2.4

3. Run the imported image in a container

Listing 88. Run imported image in a container

[student@workstation Chapter3]$ sudo podman run -d --name HTTPD-Custom-Demo -p 8080:80 httpd-demo
3b9443763f778e8123e2076cf3a8dbeb8528a265e065f089c9a93de7c567dbe7

4, Test webserver and customize content

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 44

Chapter 4. Managing Container Images

Listing 89. Testing current container image

[student@workstation Chapter3]$ curl localhost:8080
Hello from the httpd-parent container!

Listing 90. Modifying Container Content

[student@workstation Chapter3]$ sudo podman exec -it HTTPD-Custom-Demo /bin/bash
bash-4.4# echo "I am custom material for the D0180 course" > /var/www/html/index.html
bash-4.4# exit

exit

Listing 91. Verifying Modified Container Content

[student@workstation Chapter3]$ curl localhost:8080
I am custom material for the D018@ course

5. Stop the container

Listing 92. Stopping the running container

[student@workstation Chapter3]$ sudo podman stop HTTPD-Custom-Demo
3b94437631778e8123e2076c3a8dbeb85283265e0651089c9a9d3de7c567dbe7?

6. Commit the changes to a new container

Listing 93. Using podman commit to commit changes

[student@workstation Chapter3]$ sudo podman commit -a 'Travis Michette' HTTPD-Custom-Demo httpd-custom-demo-new
Getting image source signatures

Skipping fetch of repeat blob sha256:24d85c895b6b870f6b84327a5e31a3567a5d30588de@adbdd9ab69ec5012339¢

Skipping fetch of repeat blob sha256:c613b100be1645941fded703dd6037e5aba7c9388fd1fcb37¢2f9f73bc438126

Skipping fetch of repeat blob sha256:574bcc187eda95dd171dc76c3b8a8b39e07138fdal12acceebealdd77ea2c5f95a

Skipping fetch of repeat blob sha256:7f9108fde4a18112ccc28d421097680ad890ebad48ca3e635063e5ac1adbfb3

Copying blob sha256:732708ab470496136cceeee875cada2fb767188e291b7f5a233e82cd153c56¢2

10.50 KB / 10.50 KB [1 0s
Copying config sha256:61044a30ab7d831fb211b61e78653563779e3a3ef0dde33a84d496aeb93eeac?
4.14 KB / 4.14 KB [1 0s

Writing manifest to image destination
Storing signatures
61044330ab7d831fb211b61e78653563779e3a3ef0dde33a84d496aeb93eeac?

(,') Container Names
- It is important to remember that the name for the container is lowercase and without spaces.

7. List available images to verify localhost/httpd-custom-demo-new was created

45 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 4.4. Demonstration - Manipulating Container Images

Listing 94. Use podman images to list available container images

[student@workstation Chapter3]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/httpd-custom-demo-new latest 61044a30ab7d About a minute ago 236MB

. output omitted ...

8. Tag the image and push to a repository

Listing 95. Tagging the container image

[student@workstation Chapter3]$ sudo podman tag httpd-custom-demo-new quay.io/tmichett/httpd-custom-demo-new:v1.0

Listing 96. Pushing image to the repository

[student@workstation Chapter3]$ sudo podman push httpd-custom-demo-new quay.io/tmichett/httpd-custom-demo-new:v1.0
Getting image source signatures
Copying blob sha256:24d85c895b6b870f6b84327a5e31aa567a5d30588de@abbdd9ab69ec5012339¢
205.76 MB / 205.76 MB [1 5m43s
Copying blob sha256:c613b100be1645941fded703dd6037e5aba7c9388fd1fcb37¢2f9f73bc438126
20.00 KB / 20.00 KB [11s
Copying blob sha256:574bcc187eda95dd171dc76c3b8a8b39e07138fdal2acceebeadd77ea2c5f95a
19.35 MB / 19.35 MB [1 32s
Copying blob sha256:7f9108fde4a18112ccc28fd421097680ad890ebad48ca3e635063e5acT1adbfb3
2.50 KB / 2.50 KB [11s
Copying blob sha256:732708ab470496136cceeee875cada2fb767188e291b7f5a233e82cd153c56¢2
10.50 KB / 10.50 KB [11s
Copying config sha256:61044a30ab7d831fb211b61e78653563779e3a3ef0dde33384d496aeb93eeac’
4.14 KB / 4.14 KB [12s
Writing manifest to image destination
Copying config sha256:61044a30ab7d831fb211b61e78653563779e3a3ef0dde33a84d496aeb93eeac?
0B/ 4.14 KB [---------------mmmmmm oo 10s
Writing manifest to image destination
Storing signatures

o References
Podman site: https://podman.io/

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

46

https://podman.io/

Chapter 5. Creating Custom Container Images

5. Creating Custom Container Images

5.1. Designing Custom Container Images
Goals
» Describe approaches for creating custom container images
* Find existing Dockerfiles to use as starting point for creating custom container images

« Define the role played by Red Hat Software Collections Library (RHSCL) in designing container images from the Red Hat
registry

Describe the Source-to-Image (S2I) alternative to Dockerfiles

5.1.1. Reusing Existing Dockerfiles

Dockerfile: List of instructions of what you want in an image. Allows taking an image from a trusted source and extending it to
meet specific purposes. Dockerfiles are also easy to share and be be placed in version control for reuse and later
changes/modifications/extensions.

Dockerfile Image Customization

(f) Dockerfiles allow existing images to be extended by using the base image (parent image) to create a new
- customized image (child image). Two great sources for parent images are Docker Hub and Red Hat
Software Collections Library (RHSCL).

5.1.2. Working with the Red Hat Software Collections Library

The Red Hat Software Collections Library (RHSCL) provides an additional repository as part of a RHEL subscription with access
to the latests development tools (not normally distributed as part of the standard RHEL release schedule). Packages in this
repository don’t conflict with default RHEL packages and can normall be installed side-by-side.

5.1.3. Finding Dockerfiles from the Red Hat Software Collections Library

Red Hat provides RHSCL Dockerfiles and related sources in the rhscl-dockerfiles package available from the RHSCL repository.

Source-to-Image Note

o Many RHSCL container images include support for Source-to-Image (S2l), best known as an OpenShift
Container Platform feature. Having support for S2I does not affect the use of these container images with
Docker.

5.1.4. Container Images in Red Hat Container Catalog (RHCC)
5.1.5. Searching for Images Using Quay.io

5.1.6. Finding Dockerfiles on Docker Hub

47 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 5.2. Building Custom Container Images with Dockerfiles

5.1.7. Describing How to use the OpenShift Source-to-image Tool

Source-to-Image S2I provides alternatives to Dockerfiles for creating a new container. S2I can be used as a standalone s2i
utility or can be used with OpenShift. S2I allows developers to use existing tools without requiring use or learning of a Dockerfile.
These tools often work with version control systems such as git and start from a container base image called a builder image.

S2I Process to Build Custom Container Images

1. Start the container from a base container image (builder image)
2. Fetch source code from version control
3. Build application binary files inside the container

4. Save the container as a new image

The s2i command runs the S2I process outside OpenShift in a Docker-only environment. It is part of the source-to-image RPM
package in RHEL and also available from the S2I project on Github.

References

Red Hat Software Collections Library (RHSCL): hitps://access.redhat.com/documentation/en/red-hat-
software-collections/

Red Hat Container Catalog (RHCC): https://access.redhat.com/containers/
RHSCL Dockerfiles on GitHub: https://github.com/sclorg?q=-container
0 Using Red Hat Software Collections Container Images: https://access.redhat.com/articles/1752723
Quay.io: https://quay.io/search
Docker Hub: https://hub.docker.com/
Docker Library GitHub project: https://github.com/docker-library

The S2I GitHub project: https://github.com/openshift/source-to-image

5.2. Building Custom Container Images with Dockerfiles

Goal: Create a container image using common Dockerfile commands

5.2.1. Buidling Base Containers

The Dockerfile will be the mechanism to automate building of container images and specify the components of the container.
There is a three-step process to build images from a Dockerfile.

Dockerfile 3 Step Process

1. Create working directory

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 48

https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://github.com/sclorg?q=-container
https://github.com/sclorg?q=-container
https://github.com/sclorg?q=-container
https://github.com/sclorg?q=-container
https://github.com/sclorg?q=-container
https://access.redhat.com/articles/1752723
https://access.redhat.com/articles/1752723
https://access.redhat.com/articles/1752723
https://access.redhat.com/articles/1752723
https://access.redhat.com/articles/1752723
https://quay.io/search
https://quay.io/search
https://quay.io/search
https://hub.docker.com/
https://github.com/docker-library
https://github.com/docker-library
https://github.com/docker-library
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image

Chapter 5. Creating Custom Container Images

2. Write Dockerfile

3. Build image with Podman

5.2.1.1. Create a Working Directory

The working directory is the directory containing all files needed to build an image. It is best to create an empty working
directory to avoid accidentally including extra files.

5.2.1.2. Write the Dockerfile Specification

The Dockerfile is a text file that must exist in the working directory. It contains instructions needing to build an image. It is also
possible to include comments in a Dockerfile using the # sign.

Listing 97. Dockerfile Specification Syntax

Comment
INSTRUCTION arguments

Dockerfile Instructions

* FROM - specifies the base image to be used by the Dockerfile

* CMD - Default command arguments/options which are used with the ENTRYPOINT. Easily overridden by Podman when
starting a container

« ENTRYPOINT - Command to be executed when the container starts. This can be the command and additional
arguments/options/parameters or just the initial command with no parameters. The ENTRYPOINT cannot be overridden by
Podman on the command line.

* ADD -
* COPY -

* RUN - Executes commands for image layering. This executes commands using /bin/sh and creates a new layer on top of
the current image.

The FROM Instruction

o The first non-comment instruction must be the FROM instruction specifying the base image to be used by
the Dockerfile. Subsequent instructions are then executed in the newly created image using the specified
image as the base image. Instructions in the Dockerfile execute in sequential order.

TIP Header
(f) Each instruction from a Dockerfile runs in an independent container using intermediate images built from a
- previous command. Therefore all Dockerfile instructions are independent from other instructions in the

Dockerfile.

49 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 5.2. Building Custom Container Images with Dockerfiles

Listing 98. Sample Dockerfile

This is a comment line

FROM ubi7/ubi:7.7 # Defines the Universal Base image as the default image

LABEL description="This is a custom httpd container image" # Provides metadata for the image

MAINTAINER John Doe <jdoe@xyz.com> # Provides metadata for the image

RUN yum install -y httpd # Installs packages in the image

EXPOSE 80 # Allows a port to be exposed when running

ENV LogLevel "info"

ADD http://someserver.com/filename.pdf /var/www/html # Copies a files from a webserver into the containers

COPY ./src/ /var/www/html/ # Copies files from the current working directory of system building the container into the container
USER apache # Specifies User/UID of the user running the container image and applies to RUN,CMD, and ENTRYPOINT.
ENTRYPOINT ["/usr/sbin/httpd"] # Default command to execure when image is started and run as a container

CMD ["-D", "FOREGROUND"] # Default arguments for the ENTRYPOINT

5.2.2. CMD and ENTRYPOINT

Dockerfiles should container at most one ENTRYPOINT and one CMD instruction.

Important Header

o CMD parameters can be overridden by command line. ENTRYPOINT cannot be overridden by podman on
the command line.

5.2.3. ADD and COPY

Both the ADD and COPY instructions have two forms and both can be used to copy files. It should be noted however, that ADD
has additional functionality.

ADD Instruction Functionality

« If source is compressed, ADD will decompress the file to the destination folder in the container

« If the source is a URL, ADD can be used to copy the file from the URL to the destination folder in the container

(,) Filesystem Path and source Files

- If the source for COPY or ADD is a filesystem path, it must be located in the working directory.

File Permissions with ADD and COPY

A Both the ADD and COPY instructions copy the files, retaining permissions, with root as the owner, even if
the USER instruction is specified. Red Hat recommends using a RUN instruction after the copy to change
the owner and avoid “permission denied” errors.

5.2.4. Layering Image

Each new Dockerfile instruction results in a new image layer being created. If there are too many instructions in a Dockerfile the
image created by the Dockerfile will contain too many layers. It is best to consolidate instructions into a useful form while still
maintaining readability.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 50

Chapter 5. Creating Custom Container Images

Listing 99. Dockerfile Unconsolidated RUN Instruction Example

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms"
RUN yum update -y
RUN yum install -y httpd

Eliminate Multiple Layers and Preserve Readability

o Each instruction creates a separate layer in the image. It is possible to merge instructions on a single line
with && to minimize the number of layers. However, merging layers on a single line can cause issues with
readability. In order to improve readability, use the I escape code to insert line breaks.

The goal of a well-defined Dockerfile is to eliminate unnecessary image layers while maintaining readability of the file.

Listing 100. Dockerfile Consolidated RUN Instruction

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms" && \
yum update -y && \
yum install -y httpd

5.2.5. Building Images with Podman

The podman build command processes the Dockerfile and builds a new image.

Listing 101. Sample podman build

$ podman build -t NAME:TAG DIR

The DIR argument is the directory containing the Dockerfile for building the image. You can specify "." for the current working
directory. The NAME:TAG parameter allows specifying a name and a tag for the newly created image. If no TAG is provided, the
image is tagged as latest.

5.3. Demonstration - Building an Image with a Dockerfile

Example 7. Demo - Using a Dockerfile to Build an Image

1. Create Dockerfile with content

51 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 5.3. Demonstration - Building an Image with a Dockerfile

Listing 102. Creation of Dockerfile

[student@workstation webserver]$ vim Dockerfile

Dockerfile to create an Apache Container Image

Set to expose port 80 for web traffic

Set to run Apache on launch

Uses Universal base image for RHEL7 as RHEL8 not in REPO
FROM ubi7/ubi:7.7

MAINTAINER Travis Michette <tmichett@redhat.com>

LABEL description="Custom webserver demo for D0180"

RUN yum install -y httpd vim && yum clean all

RUN echo "This is a demo of Apache for D018@ from a Dockerfile" > /var/www/html/index.html
EXPOSE 80

" n

NGINX not available for classroom environment CMD ["nginx", "-g", "daemon off;"]
ENTRYPOINT ["httpd", "-D", "FOREGROUND"]

2. Build the Container image with podman.

Listing 103. Source Description

[student@workstation webserver]$ sudo podman build --layers=false -t do180/httpd_ch5_demo .

STEP 1: FROM ubi7/ubi:7.7

STEP 2: MAINTAINER Travis Michette <tmichett@redhat.com>

STEP 3: LABEL description="Custom webserver demo for D0180"

STEP 4: RUN yum install -y httpd vim && yum clean all

Loaded plugins: ovl, product-id, search-disabled-repos, subscription-manager

This system is not receiving updates. You can use subscription-manager on the host to register and assign subscriptions.

. output omitted ...
Writing manifest to image destination

Storing signatures
--> ab34b1f7ef6bd22b84dc1e6a07c1be66b7771c23938ed5a7eebf48efd6d00506

Eliminating Intermediate Layers

a
O It is important to eliminate any intermediate layers not needed for the image. The --layers=false
- . .
command causes intermediate layers to be deleted.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 52

Chapter 5. Creating Custom Container Images

Repositories and Files Must be Available

It is important that files and repositories used in the dockerfile be available.

+ .Trainig Repository

[student@workstation webserver]$ tree
o —— Dockerfile
—— training.repo
0 directories, 2 files
[student@workstation webserver]$ cat training.repo
[rhel_dvd]
baseurl = http://content.example.com/rhel7.6/x86_64/dvd
enabled = true

gpgcheck = false
name = Remote classroom copy of dvd

3. Verify newly built image exists

Listing 104. Using podman images to look for image

[student@workstation webserver]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/httpd_ch5_demo latest ab34b1f7ef6b 2 minutes ago 307MB

4. Test newly built image

Listing 105. Using podman run to launch image

[student@workstation webserver]$ sudo podman run --name HTTPD-CH5-DEMO -d -p 9080:80 do180/httpd_ch5_demo
9d62ecd59e6971118e49e7590d5b709cda3c6a@b5303fec332ea879d72f2f78e

Listing 106. Testing HTTPD webserver using curl

[student@workstation webserver]$ curl localhost:9080
This is a demo of Apache for D0180 from a Dockerfile

5. Stop container and Cleanup Image

Listing 107. Stopping and Removing the Container and Image

[student@workstation webserver]$ sudo podman stop HTTPD-CH5-DEMO
9d62ecd59e6971118e49e7590d5b709cda3c6adb5303fec332ea879d72f2f78e

[student@workstation webserver]$ sudo podman rm HTTPD-CH5-DEMO
9d62ecd59e6971118e49e7590d5b709cda3c6adb5303fec332ea879d72f2f78e

[student@workstation webserver]$ sudo podman rmi httpd_ch5_demo
ab34b1f7ef6bd22b84dc1e6a07c1be66b7771c23938ed5a7eebf48efdbd00506

53

DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

Version: 1.0

Section 5.3. Demonstration - Building an Image with a Dockerfile

References

o Dockerfile Reference Guide: https://docs.docker.com/engine/reference/builder/

Creating base images: https://docs.docker.com/engine/userguide/eng-image/baseimages/

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 54

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/

Chapter 6. Deploying Containerized Applications on OpenShift

6. Deploying Containerized Applications on OpenShift

6.1. Describing Kubernetes and OpenShift Architecture

* List main resource types provided by Kubernetes and OCP

List mechanisms to make a pod externally available

6.1.1. Kubernetes and OpenShift

Goals

Describe the architecture of a Kubernetes cluster running on OCP

Identify the network characteristics of containers, Kubernetes, and OCP

Kubernetes is an orchestration service simplifying deployment, management, and scaling of containerized applications. Servers
can act as both a server and node, but generally the roles are segregated for increased stability.

Table 5. Kubernetes Terminology

Term

Node

Master Node

Worker Node

Resource

Definition

A server that hosts applications in a Kubernetes cluster.

A node server that manages the control plane in a
Kubernetes cluster. Master nodes provide basic cluster
services such as APIs or controllers.

Also named Compute Node, worker nodes execute workloads
for the cluster. Application pods are scheduled onto worker
nodes.

Resources are any kind of component definition managed by
Kubernetes. Resources contain the configuration of the
managed component (for example, the role assigned to a
node), and the current state of the component (for example, if
the node is available). Generally controlled by a YAML file and
are:

* Pod
* Service

* Route

55 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.1. Describing Kubernetes and OpenShift Architecture

Term Definition

Controller A controller is a Kubernetes process that watches resources
and makes changes attempting to move the current state
towards the desired state. Watches resources and maintains
desired state.

Label A key-value pair that can be assigned to any Kubernetes
resource. Selectors use labels to filter eligible resources for
scheduling and other operations. Assists with resource
organization.

Namespace A scope for Kubernetes resources and processes, so that
resources with the same name can be used in different
boundaries. Known as projects in OpenShift. Bundles
resources and processes to stay organized.

Red Hat OpenShift Container Platform (RHOCP) is a set of modular components and services built on top of RHEL CoreOS and
Kubernetes. An OCP cluster is a Kubernetes cluster that can be managed with a CLI or web console.

Table 6. OpenShift Terminology
Machine name IP addresses

Infra Node A node server containing infrastructure services like
monitoring, logging, or external routing.

Console A web Ul provided by the RHOCP cluster that allows
developers and administrators to interact with cluster
resources

Project OpenShift's extension of Kubernetes' namespaces. Allows the

definition of user access control (UAC) to resources.

The image below is an illustration of the OCP Platform stack. The pale green portions are the components that OCP adds to the
base Kubernetes architecture.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 56

Chapter 6. Deploying Containerized Applications on OpenShift

RED HAT’

OPENSHIFT

DevOps Tools and User Experience
Web Console, CLI, REST API, SCM integration

Containerized Services Runtimes and xPaaS
Auth, Networking, Image Registry Java, Ruby, Node.js and more
Contai’rler:i;::]tezstration Etcd CRDs
i K
and management Cluster state and configs ubernetes Operators
CRI-O

Container runtime

Red Hat Core0OS
Container optimized 0S

Figure 10. OCP Component Stack

OCP Infrastructure Components

BaseOS - CoreOS is the base OS for containers

CRI-O - Implementation of Kubernetes CRI (Container Runtime Interface) allowing OCI compatible runtimes.
Kubernetes - Manages a cluster of hosts used to run containers. The resource and orchestration component.
Etcd - Distributed key-value store. Maintains cluster state and configuration resources.

CRDs - Custom Resource Definitions stored in etcd and managed by Kubernetes. Form the state and configuration of
resources managed by OpenShift.

Containerized Services - Fulfill PaaS infrastructure functions (authentication, networking, image registry etc.). These are
responsible for most OCP internal services

Runtimes and xPaasS - Base container images ready for use. All of these are preconfigured for particular runtime languages
or databases.

DevOps Tools and User Experience - OCP provides the oc CLI management tool as well as a webUI with a graphical
management console. These use REST APIs which can be integrated with IDEs and CI platforms.

57

DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.1. Describing Kubernetes and OpenShift Architecture

O

B

Developer

SCM (Git/Svn)
I
|
I

cl/cp

Existing
Automation
Toolsets

O

B

Operations

ROUTING LAYER

Containers and CoreOS

MASTER NODE

API/
Authentication

RED HAT COREOS

OPENSHIFT

SERVICE LAYER

RED HAT COREOS

Scheduler

Management/
Replication

INFRA NODE

POD 1

POD 2

POD N

RED HAT COREOS

CERTIFIED HARDWARE / CLOUD PROVIDER

6.1.2. New Features in RHOCP 4

e CoreOS is OS for all nodes

* New installer (based on CoreOS enhancements)

Figure 11. DO447 Classroom Layout

 Self-managing platform that can automatically apply updates and recover without disruption

* New Life-cycle management

It is important to note that all pieces of the OCP platform uses containers. As of OCPv4, CoreOS is used as
the container optimized OS for which all components can be supported.

Other Storage
Vendors

Version: 1.0

DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

58

Chapter 6. Deploying Containerized Applications on OpenShift

» Operator SDK to build/test/package Operators

6.1.3. Describing Kubernetes Resource Types

Kubernetes (and therefore OCP) have six main resource types that can be created and configured using a YAML or JSON file as
well as OpenShift management tools.

Pods (po) - Group of containers storing resources (IP addresses, persistent storage volumes, etc).
» Services (svc) - Single IP/port combination providing access to a pool of pods.
* Replication Controllers (rc) - Defines how pods are replicated. Provides high availability for pods and containers.

» Persistent Volumes (pv) = Defines storage areas used by Kubernetes pods. This provides persistent storage to a container
like podman -v option.

» Persisten Volume Claims (pvc) - Represents a request for storage by a pod. Links PVs to containers.

» ConfigMaps (cm) and Secrets - How important central configuration is stored. Secrets are used for storing passwords and
encoding information.

6.1.4. OpenShift Resource Types

OCP brings a few more main resource types to the Kubernetes underlying architecture.

» Deployment config (dc) - Represents set of containers included in a pod and is the config used by the BC.

 Build Config (bc) - Defines how apps are built/executed in OpenShift projects. The BC works with the DC to provide CI/CD
workflows. This is what is used by OCP’s S2| feature.

* Routes - Provides a DNS host name (ingress point) for applications and microservices. This exposes a Kubernetes service
to the outside network.

6.1.5. Networking

Each container in a Kubernetes cluster has an IP address assigned from an internal network that is only accessible from the node
running the container. These IP addresses and constantly assigned and released since containers are ephemeral.

Kubernetes provides an SDN (software-defined network) that spawns internal networks from multiples nodes and allows
communication to containers from any pod inside any host. The SDN only works inside the same Kubernetes cluster.

External access to containers can be provided and Kubernetes can specify NodePort although this is not recommended by Red

Hat and does not scale well. OpenShift makes external access to containers simple and scalable by defining the Route resource
which defines external-facing DNS names and ports to a service. An OCP route is the desired way to provide access to container
services.

59 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.2. Creating Kubernetes Resources

Exposing Services Externally

The oc expose <svc> command can be used to create a route for a service in order to direct traffic.

r
- Listing 108. Creating a Route and Exposing a Service
oc expose <svc>
References
Kubernetes documentation website: https://kubernetes.io/docs/
o OpenShift documentation website: https://docs.openshift.com/

Understanding Operators: https://docs.openshift.com/container-platform/4.2/operators/olm-what-
operators-are.html
6.2. Creating Kubernetes Resources

Goal: Be able to create standard Kubernetes resources

6.2.1. The Red Hat OpenShift Container Platform (RHOCP) Command-line Tool

The main method interacting with OCP is using the oc command, which is the command-line tool provided with OpenShift.

Listing 109. oc Command Syntax

oc <command>

Using the oc Command

Before interacting with and managing an OCP cluster, it is often necessary to login. The oc login command
(r) can provide authentication into the OCP environment.

- Listing 110. oc Login

oc login <Cluster_URL>

6.2.2. Describing Pod Resource Definition Syntax

OCP runs containers inside of Kubernetes pods. Each OCP pod needs a resource definition file provided as a JSON or YAML
text file or can be generated from defaults using the oc new-app command or OCP Web console.

o Environment Variables for Containers

Kubernetes transforms all name and value pairs to environment variables for OCP.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 60

https://kubernetes.io/docs/
https://kubernetes.io/docs/
https://kubernetes.io/docs/
https://docs.openshift.com/
https://docs.openshift.com/container-platform/4.2/operators/olm-what-
https://docs.openshift.com/container-platform/4.2/operators/olm-what-
https://docs.openshift.com/container-platform/4.2/operators/olm-what-
https://docs.openshift.com/container-platform/4.2/operators/olm-what-
https://docs.openshift.com/container-platform/4.2/operators/olm-what-
https://docs.openshift.com/container-platform/4.2/operators/olm-what-
https://docs.openshift.com/container-platform/4.2/operators/olm-what-
https://docs.openshift.com/container-platform/4.2/operators/olm-what-
https://docs.openshift.com/container-platform/4.2/operators/olm-what-

Chapter 6. Deploying Containerized Applications on OpenShift

6.2.3. Describing Service Resource Definition Syntax

Kubernetes provides a virtual network allowing pods from different workers to connect. However, there is no easy method for
pods to discover IP addresess from other pods. A service is an essential resource to OCP applications as they allow containers
in one pod to interact with containers in anoter pod. Each time a pod is restarted or a new pod is started, they get different IP
addresses. A service provides a stable IP address for pods to use no matter how many times a pod gets restarted.

Kubernetes Pod SDN

L

Node 2

L

«+—> Network packet flow —— Virtual or physical network

Figure 12. Basic Kubernetes Networking

61 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.2. Creating Kubernetes Resources

Need for a service

a
O A service is used because it should be assumed that pods will go down and be brought back onlune by a
hd replication controller.

Kubernetes Pod SDN Kubernetes Service SDN

Node 1

The same services exists

in all nodes
Node 2

— Network packet flow = Virtual or physical network
Figure 13. Kubernetes services Networking

Most real-world application run on multiple pods. The set of running pods behind a service is managed by a DeploymentConfig

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 62

Chapter 6. Deploying Containerized Applications on OpenShift

resource. These resources embed a ReplicationController managing how many replicas are created from a pod.

Listing 111. Minimal Service Definition

"kind": "Service", @
"apiVersion": "v1",
"metadata": {
"name": "quotedb" @
s
"spec": {
"ports": [®
{
"port": 3306,
"targetPort": 3306
}
Iy
"selector": {
"name": "mysqldb" @
}
}

@ Defines a service
@ Provides name for service
(® Maps network ports

@ Selects pods for pointing a service to. Note that multiple pods can be selected.

service IP Address

o Each service is assigned a unique IP address provided from the OCP SDN. Each pod matching the selector
is added to the service as an endpoint.
6.2.4. Discovering Services

Applications find service IP addresses and ports using environment variables. Some environment variables are automatically
defined and injected into containers for all pods inside the same project.

Automatic Environment Variables

» SVC_NAME_SERVICE_HOST - Service IP Address

» SVC_NAME_SERVICE_PORT - Service TCP Port number

SVC_NAME Variable Information

o The SVC_NAME part of the variable is changed to comply with DNS naming restrictions: letters are
capitalized and underscores (_) are replaced by dashes (-).

The OCP internal DNS server can also be used to discover services from a pod.

SVC_NAME.PROJECT_NAME.svc.cluster.local

63 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.2. Creating Kubernetes Resources

There are two ways for an application to access services from outside an OCP Cluster.

1. NodePort type - Older Kubernetes approach. It is possible to use oc edit svc to edit service attributes and specify a
NodePort and provide the port values.

2. OpensShift Routes - Preferred approach for OCP to expose services with a uniqgue URL. The oc expose command is used
to create a route in order to expose a service.

The figure below shows how NodePort services allow external access to Kubernetes services by using port forwarding.

NODE 1
Pod 1
Node Port
33011
Pod 2
HOST
NODE 2
Pod 3
Node Port
33011
Pod 4

Figure 14. Alternatives for Kubernetes Service External Access

OCP provides the oc port-forward command to forward local ports to a port on a pod and can be done on-the-fly. It is important

to note that with oc port-forward that there is no load balancing and this is a different from using a service.

Port-Forward Notes (Different from a service)

 Port-forward mapping exists on on workstation running the oc client

« Port-forward maps a connection to a single pod

NodePort Approach Should be Avoided

é Red Hat discourages the use of the NodePort approach to avoid exposing the service to direct connections.
Mapping via port-forwarding in OpenShift is considered a more secure alternative.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

64

Chapter 6. Deploying Containerized Applications on OpenShift

6.2.5. Creating New Applications

All types of applications can be described by a single resource definition file. The file should contain:

* pod definitions

* service definitions

« replication controllers
» DeploymentConfigs

» PersistentVolumeClaims

anything else needed that is managed by OCP

The oc new-app command can be used with -0 json or -0 yaml options to create a skeleton resource definition file in JSON or
YAML format. This file defines the application and all needed resources. The file can also be customized and used to create an
application with the oc create -f <filename> command.

The oc new-app command can create pods for OCP in different ways including:

« existing docker images
» from Dockerfiles
« from raw source code using S2I

The image below is a graphical representation of using the oc new-app command to create an application from a container
image.

65 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.2. Creating Kubernetes Resources

Deployment
ConfiqurationO

0C new-app Creates (Application)

<image> 0 Image StreamO

—) Service

— created by oc new-app

Figure 15. Resources for New Application

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 66

Chapter 6. Deploying Containerized Applications on OpenShift

a
O The oc new-app -h command can be used to see different options available when creating a new

application.

Getting oc new-app Help

6.2.6. Managing OpensShift Resources at the Command Line

The oc get command is the main method for retrieving information about cluster resource. It is typically used in this format oc get
RESOURCE_TYPE. This will display a summary of all resources available of the specified type. Another useful command is the
oc get pods command which will show all pods and their status.

[root@ocpbuilder OCP1# oc get pods

NAME

dns-default-6f7xf
dns-default-7s1j5
dns-default-1fhng
dns-default-xx67v
dns-default-zdzv8

READY
2/2
2/2
2/2
2/2
2/2

STATUS

Running
Running
Running
Running
Running

[root@ocpbuilder OCP]# oc get nodes

NAME

ocp4-8s4rd-master-0
ocp4-8sdrd-master-1
ocp4-8sdrd-master-2

ocp4-8s4rd-worker-0-
ocp4-8sdrd-worker-0-

4srf8
Oxfff

6.2.6.1. oc get all

The oc get all command retrieves a summary of the most important OCP cluster components

oc get all

STATUS
Ready
Ready
Ready
Ready
Ready

RESTARTS

oo

ROLES

master
master
master
worker
worker

Listing 112. Getting a Pod Listing

AGE

5d15h
5d14h
5d15h
5d14h
5d15h

Listing 113. Getting a Node Listing

AGE

5d17h
5d17h
5d17h
5d15h
5d15h

VERSION
v1.17.1
v1.17.1
v1.17.1
v1.17.1
v1.17.1

6.2.6.2. oc describe RESOURCE_TYPE RESOURCE_NAME

The oc describe command can retrieve additional information about resource. The oc describe command provides detailed
information on a specific resource.

67

DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

Version: 1.0

Section 6.2. Creating Kubernetes Resources

Listing 114. Using oc describe

[root@ocpbuilder OCP]# oc describe service/dns-default

Name: dns-default

Namespace: openshift-dns

Labels: dns.operator.openshift.io/owning-dns=default

Annotations: <none>

Selector: dns.operator.openshift.io/daemonset-dns=default

Type: ClusterIP

IP: 172.30.0.10

Port: dns 53/UDP

TargetPort: dns/UDP

Endpoints: 10.128.0.2:5353,10.128.2.5:5353,10.129.0.4:5353 + 2 more...
Port: dns-tcp 53/TCP

TargetPort: dns-tcp/TCP

Endpoints: 10.128.0.2:5353,10.128.2.5:5353,10.129.0.4:5353 + 2 more...
Port: metrics 9153/TCP

TargetPort: metrics/TCP

Endpoints: 10.128.0.2:9153,10.128.2.5:9153,10.129.0.4:9153 + 2 more...

Session Affinity:

Events:

None
<none>

6.2.6.3. oc export

The oc export command can export a resource definition. The export command prints out the object representation in YAML
format, however it can be changed with the -o option. This can export resources to JSON/YAML formats.

6.2.6.4. oc create

The oc create command creates a resource from a resource definition file. It is often paired with oc export for editing resource
definitions.

6.2.6.5. oc edit

The oc edit command allows a user to edit resources of a resource definition. This directly edits a resource.

6.2.6.6. oc delete RESOURCE_TYPE name

The oc delete command removes a resource from the OCP cluster. When a project is deleted all resources and applications
within the project get deleted.

6.2.6.7. oc exec CONTAINER_ID options command

The oc exec command allows commands to be executed inside a container. This command is similar to podman exec and
allows both interactive and noninteractive commands to be run.

6.2.7. Labeling resources

Labels can be defined allowing an administrator to establish groups of resources within a project. A label is part of the metadata
section of a resource and is defined as a key/value pair.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 68

Chapter 6. Deploying Containerized Applications on OpenShift

(,') The oc Command and Labels
- Most of the oc subcommands support the -l option to process resources from a label specification.
o Label Definitions with Templates
Labels are applied to all objects below it when defined at the top of a template.

6.3. Demonstration - Creating a Kubernetes Resource

Example 8. DEMO - Deploying a Webserver on OpenShift

1. Login to OCP Cluster
Listing 115. Accessing Credential File and Logging In

[student@workstation webserver]$ source /usr/local/etc/ocp4.config

[student@workstation webserver]$ oc login -u ${RHT_OCP4_DEV_USER} -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}
Login successful.

You don't have any projects. You can try to create a new project, by running

oc new-project <projectname>

2. Create a new project
Listing 116. Use oc hew-project to create a new OCP project

[student@workstation Chapter6]$ oc new-project ${RHT_OCP4_DEV_USER}-mysql-ocp-demo
Now using project "travis-mysql-ocp-demo" on server "https://api.ocp4.michettetech.com:6443".

You can add applications to this project with the 'new-app' command. For example, try:
oc new-app django-psql-example
to build a new example application in Python. Or use kubectl to deploy a simple Kubernetes application:

kubectl create deployment hello-node --image=gcr.io/hello-minikube-zero-install/hello-node

3. Create a new MySQL application
Listing 117. Use oc new-app to create a new application

[student@workstation Chapter6]$ oc new-app \
--docker-image=registry.access.redhat.com/rhscl/mysql-57-rhel7:1latest \
--name=mysql-ocp \

-e MYSQL_USER=demouser -e MYSQL_PASSWORD=redhat -e MYSQL_DATABASE=demodb \

-e MYSQL_ROOT_PASSWORD=r00tpa55
--> Found Docker image 60726b3 (9 months old) from registry.access.redhat.com for "registry.access.redhat.com/rhscl/mysql-57-

rhel7:1atest"

. output omitted ...

69 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.3. Demonstration - Creating a Kubernetes Resource

4. Verify running pods
Listing 118. Use oc get pods -o=wide to List Pods and names

[student@workstation Chapter6]$ oc get pods -o=wide

NAME READY ~ STATUS RESTARTS AGE P NODE NOMINATED NODE READINESS
GATES

mysql-ocp-1-67h2z 171 Running 0 5m14s 10.131.0.16 ocp4-7h47x-worker-0-g8dql <none> <none>
mysql-ocp-1-deploy 0/1 Completed @ 5m17s 10.131.0.15 ocp4-7h47x-worker-0-g8dql <none> <none>

Getting Node Names

o It is important to note the POD name from the oc get pods command as this will be used for
setting up port forward to the POD. In this case, the name is mysql-ocp-1-67h2z

5. Expose the Service
Listing 119. Use oc expose service to Expose the mysql-ocp service

[student@workstation Chapter6]$ oc expose service mysql-ocp
route.route.openshift.io/mysql-ocp exposed

6. Obtain the Route
Listing 120. Use oc get routes to obtain the routes

[student@workstation Chapter6]$ oc get routes
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD

mysql-ocp mysql-ocp-travis-mysql-ocp-demo.apps.ocp4.michettetech.com mysql-ocp 3306-tcp None

7. Use Port forwarding in one terminal window and test in another
Listing 121. Use oc port-forward to Port Forward and Test

[student@workstation Chapter6]$ oc port-forward mysql-ocp-1-67h2z 3306:3306
Forwarding from 127.0.0.1:3306 -> 3306
Forwarding from [::1]:3306 -> 3306

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 70

Chapter 6. Deploying Containerized Applications on OpenShift

Listing 122. Testing of Port Forwarding

[student@workstation ~]$ mysql -u demouser -predhat --protocol tcp -h localhost
Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MySQL connection id is 3

Server version: 5.7.24 MySQL Community Server (GPL)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '"\h" for help. Type '\c' to clear the current input statement.

MySQL [(none)]> show databases;

Hmmmmmm e +
| Database

Hmmm e +
| information_schema |
| demodb
fommomcmsossomcoso=as +

2 rows in set (0.01 sec)

8. Cleanup OCP

Listing 123. Delete OCP project with oc delete project Command

[student@workstation Chapter6]$ oc delete project ${RHT_OCP4_DEV_USER}-mysql-ocp-demo
project.project.openshift.io "travis-mysql-ocp-demo" deleted

References

Additional information about pods and services is available in the Pods and Services section of the
OpenShift Container Platform documentation: Architecture - https://access.redhat.com/documentation/en-
us/openshift_container_platform/4.2/html-single/architecture/index

o Additional information about creating images is available in the OpenShift Container Platform
documentation: Creating Images - https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.2/html/images/index

Labels and label selectors details are available in Working with Kubernetes Objects section for the
Kubernetes documentation: Labels and Selectors - https://kubernetes.io/docs/concepts/overview/working-
with-objects/labels/

6.4. Creating Routes

Goal: Expose a service using an OpenShift route

6.4.1. Working with Routes

It is important to note that services allow for network access between pods in OCP and routes allow for network access to pods
from resources outside of OCP.

Routes are created using the oc expose command. A route points to a service allowing access of a pod in a static way.

71 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Section 6.4. Creating Routes

Kubernetes Pod SDN

Host network

Node 3

Router pods run in selected
infrastructure nodes

HTTPR, TLS

Host

Node 1

Node 2

— Network packet flow = Virtual or physical network

Figure 16. Openshift Routes and Kubernetes Services

Route - Connects a public-facing IP address and DNS hostname to an internal-facing service IP. The router service uses

HAProxy as the default implementation.

Kubernetes Service SDN

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

72

Chapter 6. Deploying Containerized Applications on OpenShift

Difference between service and route

a
O A service is mean to be consumed internally while a route is meant to be consumed externally. A route
- . . .
links directly to the service resource name.

6.4.2. Creating Routes

The oc create command can be used to create route resources by providing a JSON or YAML file with the proper route resource
definitions. The oc new-app command doesn’t create a route when a pod is built from a container image. It will create a service
but not a route.

As mentioned earlier, the other way of creating a route is to use oc expose service command and passing the service name. It is
also possible to name the route using the --name option.

Listing 124. Exposing a Service and Naming a Route

$ oc expose service <service_name> --name <route_name>

Default Route Parameteres

By default, routes created with oc expose generate a DNS name in this form:
o route-name-project-name.default-domain

* route-name - Name assigned to route. This is the name provided with the --name option.
 project-name - Name of project containing resource

« default-domain - Name configured as part of OCP and corresponds to the wildcard DNS domain

6.4.2.1. Leveraging the Default Routing Service

The default routing service is implemented with HAProxy. Router pods, containers, and the configuration can be inspected by
selecting the correct namespace.

Listing 125. Inspecting Router Apps

$ oc get pod --all-namespaces -1 app=router

By default, OCP deploys routers in the openshift-ingress project. The oc describe pod command can be used to get routing
configuration details.

Listing 126. Inspecting the Router Configuration Details

$ oc describe pod router-default-UUID

73 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.5. Demonstration - Creating Routes

TIP Header
(f) The subdomain, or default domain gets the value from ROUTER_CANONICAL_HOSTNAME entry. It is
- also defined by the subdomain keyword in the routingConfig section of the OCP config file master-

config.yaml.

6.5. Demonstration - Creating Routes

Example 9. DEMO - Creating a Route to Application

1. Create a project to demo the route

Listing 127. Source Description

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-route-demo
Now using project "rhn-gps-tmichett-route-demo" on server "https://api.ocp-na2.prod.nextcle.com:6443".

2. Create a new app for OCP

Listing 128. Create a new app with oc new-app

[student@workstation ~]$ oc new-app \
php:7.1~https://github.com/${RHT_OCP4_GITHUB_USER}/D0180-apps \
--context-dir php-helloworld --name php-demo

. output omitted ...
'oc expose svc/php-demo’

Run 'oc status' to view your app

3. Review information about the service

Listing 129. Using oc describe to describe the service

[student@workstation ~]$ oc describe sve

Name: php-demo

Namespace: rhn-gps-tmichett-route-demo

Labels: app=php-demo

Annotations: openshift.io/generated-by: OpenShiftNewApp
Selector: app=php-demo, deploymentconfig=php-demo
Type: ClusterIP

IP: 172.30.39.175

Port: 8080-tcp 8080/TCP

TargetPort: 8080/TCP

Endpoints: <none>

Port: 8443-tcp 8443/TCP

TargetPort: 8443/TCP

Endpoints: <none>

Session Affinity: None

Events: <none>

4. Expose the Service

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 74

Chapter 6. Deploying Containerized Applications on OpenShift

Listing 130. Use oc expose command to expose the service

[student@workstation ~]$ oc expose svc/php-demo --name ch6-route-demo
route.route.openshift.io/ch6-route-demo exposed

5. Describe the Route

Listing 131. Use oc describe route

[student@workstation ~]$ oc describe route

Name: ch6-route-demo

Namespace: rhn-gps-tmichett-route-demo

Created: 16 seconds ago

Labels: app=php-demo

Annotations: openshift.io/host.generated=true

Requested Host: ch6-route-demo-rhn-gps-tmichett-route-demo.apps.ocp-na2.prod.nextcle.com
exposed on router default (host apps.ocp-na2.prod.nextcle.com) 16 seconds ago

Path: <none>

TLS Termination: <none>

Insecure Policy: <none>

Endpoint Port: 8080-tcp

Service: php-demo

Weight: 100 (100%)

Endpoints: <none>

6. Verify the route has been exposed and that you can connect to it

Listing 132. Verifying Exposed Route

[student@workstation ~]$ curl ch6-route-demo-rhn-gps-tmichett-route-demo.apps.ocp-na2.prod.nextcle.com
Hello, World! php version is 7.1.30

: There is a small time delay
It may take a few minutes for everything to build and be exposed.

7. Cleanup the project

Listing 133. Use oc delete to remove the project

[student@workstation ~]$ oc delete project ${RHT_OCP4_DEV_USER}-route-demo
project.project.openshift.io "rhn-gps-tmichett-route-demo" deleted

References

o Additional information about the architecture of routes in OpensShift is available in the Architecture and
Developer Guide sections of the OpenShift Container Platform documentation -
https://access.redhat.com/documentation/en-us/openshift_container_platform/

75 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://access.redhat.com/documentation/en-us/openshift_container_platform/

Section 6.6. Creating Applications with Source-to-Image

6.6. Creating Applications with Source-to-lmage

Goal: Deploy an application using Source-to-Image (S2l) facility of OCP.

6.6.1. The Source-to-Image (S2l) Process

Source-to-Image (S2l) is a tool allowing you to build container images from application source code. The S2I| tool takes source
code from a Git repository and injects the code into a base container based on the language and framework desired for the
source code being used.

The figure below shows the oc new-app creating a BuildConfig for deploying an application with S2I.

oc new-app Creates _ Build ~ (S2I)
‘source> o~ Configuration I's] " Notifies Image Stream I's:
. Monitors,
Container Fetches
Creates local cache Metadata
v v
Application | Clones Bullder Pod Pulls , (S21Builder)

Sources

Image
O g

Pushes External Registry

Y
(Application) <

Image 0 1

:

Internal Registry

1
|
|
1
1
|
|
1
1
|
|
1
1
|
1
|
Git Server :
1
|
|
1
1
|
|
1
1
|
1
1
|
|
1

Deployment
Configuration Q

— dependent resource — created by oc new-app
Figure 17. Deployment Configuration and Resource Dependence
S2l is the primary strategy for building applications in OCP.

Reasons to use S2I

 User efficiency - Developers can work using standard programming tools and don’t need to understand system
administration

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 76

Chapter 6. Deploying Containerized Applications on OpenShift

» Patching - Allows rebuilding of applications consistently if base image needs a patch

» Speed - Assembly process performs large number of operations without creating new layers for each step

» Ecosystem - Encourages sharing and re-use of base images and scripts across multiple applications
6.6.2. Describing Image Streams

An image stream is a way of collecting multiple versions of an image under a single alias. The image stream resource is a
configuration that names container images associated with an image stream tag as aliases for container images.

An S2I build is performed to the entire image stream.

6.6.3. Building an Application with S2I and the CLI

Building applications with S2I can be done with the oc hew-app command.
Listing 134. Building an Application from Source and Image Stream
$ oc new-app -i php http://my.git.server.com/my-app --name=myapp

Build configurations (bc) are responsible for defining input parameters and triggers to transform code into runnable images. The
BuildConfig (bc) is the second resource in a definition file identified by "kind": "BuildConfig" resource definition file.

DeploymentConfig (dc) is the third resource in a deployment configuration responsible for customizing the deployment process
in OCP.

DeploymentConfig Objects

» User customizable strategies to transition existing deployment to new deployments
* Rollbacks to a previous deployment

» Manual replication scaling

Monitoring Builds and Obtaining Logs

r
O After a new application is created, the build process can be viewed by using the oc get builds command.
You can see logs with the oc logs build/appname command.

A new build can be triggered with the oc start-build <build_config_name> command. This will initialize a new build.

6.6.4. Relationship Between Build and Deployment Configurations

The BuildConfig pod is responsible for creating images in OCP and pushing them to the internal container registry. The
DeploymentConfig pod is responsible for deploying pods to OCP. The outcome of DeploymentConfig pod execution is the
creation of pods with images deployed in the internal container registry.

The BuildConfig creates an image and pushes it to the container registry. The DeploymentConfig reacts to images that
BuildConfig changes for the registry and deploys the pods to OCP defining various triggers and replicas.

77 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.7. Creating Applications with the OpenShift Web Console

References
Source-to-Image (S2I) Build: https://access.redhat.com/documentation/en-us/
o openshift_container_platform/4.2/html/builds/build-strategies#build-strategy- s2i_build-strategies

S2I GitHub repository: https://github.com/openshift/source-to-image

6.7. Creating Applications with the OpenShift Web Console

Goals
» Create an application with the OpenShift web console
* Manage and Monitor the build cycle of an application

» Examine resources for an application

6.7.1. Accessing the OpenShift Web Console

The OCP Web Console allows users to execute the same tasks as the OCP CLI (oc) command. It is accessed by the following
URL: https://consoleopenshift-console.{wildcard DNS domain for the RHOCP cluster}/

6.7.1.1. Managing Projects

Projects can be managed from the OCP Home page. The Projects Status page shows all applications created within a project
space.

Note on SSL Certificates

o It is necessary to trust two certificates for managing an OCP environment. There is one certificate for the
OCP Console and there is another certificate for the REST API

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://consoleopenshift-console.{wildcard

Chapter 6. Deploying Containerized Applications on OpenShift

RED HAT'
OPENSHIFT

Projects

[~} kube:admin « .

You are logged in as a temporary administrative user. Set up an identity provider to allow others to login.

NAME 1 STATUS REQUESTER ABELS
@ derauit @ active H
@ kube-public @ Active H
@ kube-system @© Active H
@ openshift @ Active E
@ openshift-apiserver @ Active openshiftio/run-level=1 E
@ openshift-apiserver- @ Active openshiftio/cluster-... =t... H
operator openshift.io/run-level=0
@ orenshift-cluster-api @ Active name=openshift-cluster-api &
openshiftio/run-level=1
@ openshift-cluster-kube- @ active openshiftio/run-level=0 H

scheduler-operator

Figure 18. OpenShift Web Console

6.7.1.2. Navigating the Web Console
OCP Web Console menus are located on the left side and expand for the sub-menus providing related management functions.
 Catalog - Navigate multiple image streams

» Workloads - Access to resources and pods in a DeploymentConfig

» Networking - Used to manage Services and Routes

Storage - Create and manage persistent volumes

* Builds
> Build Configs - Displays list of project build configurations
> Builds - Provides list of recent build processes and allows access to logs
> Image Streams - Provides list of image streams defined in a project

* Monitoring - Provides access to manage OCP alerts

» Adminstration - Control and manages resource quotas as well as other cluster/project settings.

6.7.2. Creating New Applications

Provides a click-through experience for creating an application. Applications can be deployed using the Developer Catalog or
using various S2| templates.

79 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.7. Creating Applications with the OpenShift Web Console

RED HAT'
OPENSHIFT

Catalog

Developer Catalog

‘You are logged in as a temporary administrativ up an identity pre

Project: test v

Developer Catalog

All Items All ltems
Languages .
10 items

Middleware
Other

NET
R .NET Core
[Service Class (0) Build and run .NET Core 2.1
[Source-to- applications on CentOS 7. For
N Image (9) more information about using

this builder image, including
OpenShift considerat

nade

Nodejs

/

Apache HTTP Server (httpd)

Build and serve static content
via Apache HTTP Server
(httpd) 2.4 on CentOS 7. For
more information about using
this builder image,

Php

PHP

kube:admin « .

dertoa

Browse Catalog

Deploy Image

Import YAML

NGiNX

Nginx HTTP server and a
reverse proxy (nginx)

Build and serve static content
via Nginx HTTP Server and a
reverse proxy (nginx

@

PackageManifest

Figure 19. OpenShift Developer Catalog

6.7.2.1. Managing Application Builds

The BuildConfigs sub-menu of the Builds menu allows you to do the following:

* View build configuration parameters

» View and edit environment variables

* View a list of recent application builds and access logs from the build process

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 80

Chapter 6. Deploying Containerized Applications on OpenShift

5EFI’JEFF‘?§.H FT [2] kube:admin .

You are logged in as a temporary administrative . set up an identity provider to allow others to lo

Project: test ~

Build Configs

Create Build Config |

‘ 0 | Docker ‘ 0 Je sPipeline ‘ 1 Source ‘ Select All Filter: 1 Item
Builds NAME 1 NAMESPACE LABELS CREATED
Build Configs @ apache @ o=t app=apache 13 hours ago H

Figure 20. OpenShift Build Configurations

6.7.3. Managing Deployed Applications

The Workloads menu provides access to deployment configurations for the project. From here you can do the following:

* View deployment configuration parameters
» Change number of application pods for scaling
» View and edit environment variables

* View a list of application pods and access logs for that pod

BEFI’JE'I!»IA{HIFT e kube:admin = .

You are logged in as a temporary administrative . set up an identity provider to allow others to login

Project: test +

Deployment Configs

Deployment Configs NAME T NAMESPACE LABELS STATUS POD SELECTOR

Workloads

@ apache @ test app=apache 1of1pods Q, app=apache,
deploymentconfig=apache

Figure 21. OpenShift Workloads Menu / Deployment Configurations

81 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 6.7. Creating Applications with the OpenShift Web Console

6.7.4. Other Web Console Features

» Manage resources - project quotas, user membership, secrets, and other advanced resources

* Create persistent volume claims

Monitor builds, deployments, pods, and system events

Create CI/CD pipeline with Jenkins :pygments-style: tango :source-highlighter: pygments :toc: :toclevels: 7 :sectnums:
:sectnumlevels: 6 :numbered: :chapter-label: :icons: font :imagesdir: images/

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 82

Chapter 7. Deploying Multi-Container Applications

7. Deploying Multi-Container Applications

7.1. Considerations for Multi-Container Applications
Goals
 Describe considerations for containerizing applications with multiple container images
 Leverage networking concepts in containers

» Create a multi-container application with Podman

Describe the architecure of the To Do List application

7.1.1. Leveraging Multi-Container Applications

Kubernetes and OCP provide tools to facilitate container orchestration. This eliminates complication and the need to manually
manage containers. Container orchestration becomes even more important for multi-container applications as restarts of these
applications can often break functionality.

7.1.2. Discovering Services in a Multi-Container Application

Podman uses Container Network Interface (CNI) to create software-defined-networks (SDN) between the containers and the
host. CNI will assign new IP addresses when a container starts. Each container exposes all ports to other containers in the same
SDN so services are readily available and accessible.

Important Header

Containers with dynamic IP addresses become difficult to manage when working with multicontainer
applications because each container needs to be able to communicate with other containers to use services.

83 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 7.1. Considerations for Multi-Container Applications

BEFORE

Front End Container
IP: 10.8.0.1

backend.host =10.8.0.2

Back End Container
IP: 10.8.0.2

database.host =10.8.0.3

Database Container
IP: 10.8.0.3

AFTER

Front End Container
IP: 10.8.0.1

backend.host =10.8.0.2

o2

IS

New Back End Container
IP: 10.8.0.4

database.host =10.8.0.3

Database Container
IP: 10.8.0.3

Figure 22. Three-tiered Application Links

In the above diagram, a three container application has a backend container getting reset. This backend container receives a new
IP address breaking communication for the application. Kubernetes and OCP provide mechanisms for service discoverability for

dynamic network changes.

7.1.3. Comparing Podman and Kubernetes

Pods get attached to a Kubernetes namespace, in OCP, this is called a project. Kubernetes assign resources to services defined
in the namespace and generates the corresponding environment variables.

 Uppercase

Kubernetes Environment Variable Conventions

» Snakecase - environmnent variables created by a service with multiple words separated with _

» Service name first

* Protocol type

service Benefits

o A service allows for pointing to a service instead of directly to a container or IP address.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

84

Chapter 7. Deploying Multi-Container Applications

7.1.4. Describing the To Do List Application

User Web
Browser

To Do List app

HTMLS REST
Single-page app Services
AngularJS HTTP API
Front end Back end

\

The front end is composed of
static HTML files that are
downloaded by and executed
in the user web browser

Figure 23. Logical Architecture of To Do List Application

Database
Server

MySQL

Database files

85 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 7.2. Deploying a Multi-Container Application on OpenShift

To Do List Application

To Do List Add Task

Iﬁ Description Done Description:

1 Pick up new... false

2 Buy groceries true Adldl Description.
Completed:

. [

First Previous MNext Last

Figure 24. To Do List Application

o Red Hat DO180 Training Repository
https://github.com/RedHatTraining/DO180-apps.git.

7.2. Deploying a Multi-Container Application on OpenShift

Goal: Be able to deploy a multicontainer application on OpenShift using a template.

7.2.1. Examining the Skeleton of a Template

Web applications might require a BuildConfig, DeploymentConfig, Service, and Route resource to run an OCP project. OCP
templates provide a way to simplify creation of application resources. A template will create resources in a repeatable fashion.

There are several default templates created by the OpenShift installer in the openshift namespace. The oc get templates
command with the -n openshift option can list preinstalled templates.

[student@workstation ~]$ oc get templates -n openshift

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 86

https://github.com/RedHatTraining/DO180-apps.git
https://github.com/RedHatTraining/DO180-apps.git
https://github.com/RedHatTraining/DO180-apps.git
https://github.com/RedHatTraining/DO180-apps.git
https://github.com/RedHatTraining/DO180-apps.git

Chapter 7. Deploying Multi-Container Applications

You can use openshift get template <name> -n openshift -o yaml to display the definition of a template file.

Listing 135. YAML Source File of Mysql-Persistent Template

[student@workstation ~]$ oc get template mysql-persistent -n openshift -o yaml apiVersion: template.openshift.io/v1

kind: Template

labels: ...value omitted...
message: ...message omitted ...
metadata:
annotations:
description: ...description omitted...
iconClass: icon-mysql-database openshift.io/display-name: MySQL openshift.io/documentation-url: ...value omitted... openshift.io/long-
description: ...value omitted... openshift.io/provider-display-name: Red Hat, Inc. openshift.io/support-url: https://access.redhat.com tags:
database,mysql
labels: ...value omitted...

name: mysql-persistent objects:

- apiVersion: v1 kind: Secret metadata:

annotations: ...annotations omitted...

name: ${DATABASE_SERVICE_NAME} stringData: ...stringData omitted...
- apiVersion: v1 kind: Service metadata:

annotations: ...annotations omitted...

name: ${DATABASE_SERVICE_NAME} spec: ...spec omitted...
- apiVersion: v1

kind: PersistentVolumeClaim metadata:

name: ${DATABASE_SERVICE_NAME} spec: ...spec omitted...
- apiVersion: v1

kind: DeploymentConfig metadata:

annotations: ...annotations omitted...
name: ${DATABASE_SERVICE_NAME} spec: ...spec omitted...
parameters:

- ...MEMORY_LIMIT parameter omitted...
- ...NAMESPACE parameter omitted...
- description: The name of the OpenShift Service exposed for the database.
displayName: Database Service Name name: DATABASE_SERVICE_NAME required: true
value: mysql
- ...MYSQL_USER parameter omitted...
- description: Password for the MySQL connection user.
displayName: MySQL Connection Password from: '[a-zA-Z0-9]{16}"
generate: expression
name: MYSQL_PASSWORD
required: true
- ...MYSQL_ROOT_PASSWORD parameter omitted...
...MYSQL_DATABASE parameter omitted...
- ...VOLUME_CAPACITY parameter omitted...
...MYSQL_VERSION parameter omitted...

It is also possible to create a template using the oc create command and specifying the corresponding YAML file with the

template definition.

Listing 136. Creating a todo-template

[student@workstation deploy-multicontainer]$ oc create -f todo-template.yaml template.template.openshift.io/todonodejs-persistent created

The creation of the template above will create a template under the current project. It is also possible to specify the name of the

project where the template should be created with the -n option and the project name.

87 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

Version: 1.0

Section 7.2. Deploying a Multi-Container Application on OpenShift

Listing 137. Source Description

[student@workstation deploy-multicontainer]$ oc create -f todo-template.yaml \ > -n openshift

openshift Namespace and Templates

o Any template created under the openshift namespace (OpensShift project) is available in the web console
under the dialog box accessible in the Catalog — Developer Catalog menu item. Moreover, any template
created under the current project is accessible from that project.

7.2.1.1. Parameters

OCP templates can define parameters which can be assigned values. There are two methods of using listing available
parameters from a template.

» oc describe

* oc process with the --parameters option

7.2.2. Processing a Template Using the CLI

The oc process commands allows processing of a template and can return output in various formats. The process of the
template file is either in JSON or YAML and the output that is returned is typically JSON, although it is possible to use -o yaml tp
have the output as YAML.

Listing 138. Processing Template with oc process and Output as JSON

$ oc process -f <filename>

Listing 139. Processing Template with oc process and Output as YAML

$ oc process -o yaml -f <filename>

Redirecting oc process Output to a File

The oc process command returns a list of resources to standard output. This output can be redirected to a
(’) file.

$ oc process -o yaml -f filename > myapp.yaml

Templates generate resources with configurable attributes based on parameters. The -p option followed by <hame <<value>
pair. This can be done as a two-step process by creating a new template file with the new parameters and then using this new file
to create the applicaiton.

1. Create new template based on oc process

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 88

Chapter 7. Deploying Multi-Container Applications

Listing 140. Creating a new processed template

$ oc process -o yaml -f mysql.yaml \
> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \ > -p VOLUME_CAPACITY=106i > mysqlProcessed.yaml

2. Create the application with oc create

Listing 141. Creating Application from Processed Template

$ oc create -f mysqlProcessed.yaml

Single Step Processing and Creation of Application

It is also possible to generate an application from a template without first saving the intermediate template
file using oc process and oc create via a UNIX pipe.

Listing 142. Generating an Application with Custom Template Parameters

$ oc process -f mysql.yaml -p MYSQL_USER=dev \
> -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \ > -p VOLUME_CAPACITY=106i | oc create -f -

7.2.3. Configuring Persistent Storage for OpenShift Applications

OCP manages persistent storage as a set of pooled, cluster-wide resources. In order to present storage to a cluster, a
PersistentVolume must be created and defined.

Listing 143. Listing PersistenVolume Objects

[admin@host ~1$ oc get pv

The oc get pv command can list PersistentVolume objects in a cluster. To see the YAML definition, use the oc get command
with the -o yaml option.

Listing 144. PersistentVolume Definition

[adminghost ~]$ oc get pv pv@@81 -o yaml apiVersion: v1
kind: PersistentVolume
metadata:
creationTimestamp: ...value omitted... finalizers:
- kubernetes.io/pv-protection
labels:
type: local
name: pv0o1
resourceVersion: ...value omitted... selflLink: /api/v1/persistentvolumes/pv00@1 uid: ...value omitted...
spec: accessModes:
- ReadWriteOnce capacity:
storage: 1Mi
hostPath:
path: /data/pv0001
type: "" persistentVolumeReclaimPolicy: Retain
status:
phase: Available

89 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 7.2. Deploying a Multi-Container Application on OpenShift

The oc create command can add additional PersistentVolumes to a cluster

Listing 145. Creating and Adding New Volumes

[admin@host ~]$ oc create -f pv1001.yaml

7.2.3.1. Requesting Persistent Volumes

When applications need storage, a PersistentVolumeClaim (PVC) object must be requested. The easiest way to request a PVC

claim is using a YAML file and the oc create command. It is possible to also list PVC requests with the oc get pvc command.

Listing 146. Requesting a PVC

[admin@host ~]$ oc create -f pvc.yaml

Listing 147. Listing PVC Requests

[adminghost ~]$ oc get pvc

7.2.3.2. Configuring Persistent Storage with Templates

Templates requiring a persistent storage volume should have a suffix of -persistent. An easy way to search for templates in the

openshift project is below.

Listing 148. Listing Persistent Templates

[student@workstation ~]$ oc get templates -n openshift | grep persistent

Important Header
o In a template definition under DeploymentConfig, a PersistentVolumeClaim must exist in order for the
template to request a persistent volume.
References
o Developer information about templates can be found in the Using Templates section of the OpenShift
Container Platform documentation: Developer Guide - https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.2/html-single/images/index#using-templates

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates

Chapter 8. Troubleshooting Containerized Applications

8. Troubleshooting Containerized Applications

8.1. Troubleshooting S2I Builds and Deployments

Goals
» Troubleshoot an application build and deployment steps on OpenShift

 Analyze OpensShift logs to identify problems during the build and deploy process

8.1.1. Introduction to the S2I Process

Source-to-Image (S2l) allows images to automatically be created based on the programming language of the application source
code in OCP. The S2I process has two major steps.

Source-to-Image Steps

» Build Step - Compiles source code, downloads library dependencies, and packages application as a container image. The
BuildConfig (BC) is responsible for the build step.

» Deployment Step - Starts a pod and makes sure application is available for OCP. The DeploymentConfig (DC) is
responsible for the deployment step.

Unique S2I Processes

a
O For each S2I process, every application uses its own BC and DC Pods start in order to complete the build
and the deployment process aborts if the build fails.

Each S2I process is started in a separate pod. After a successful build, the application starts on a separate pod. It is possible to
look at the Builds section of the WebUI and get detailed information about the builds, including logs.

T,
Builds
New 0 | Pending 0 | Running 1 Complete 0 | Failed 0 | Error 0 | Cancelled
elect All Filters 1ltem
MNAME T NAMESFACE STATUS CREATED
thtpc-l @trol_blezhot ® complete 3 minutes ago H

Figure 25. Project Build Instances

91 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 8.1. Troubleshooting S2I Builds and Deployments

f s 200k
100M 100

1} 0 o

11:18 11:19 11:1% 11:20 11:19 11:20 11:21 11:18 11:19 11:19 11:20
MNAME STATUS
httpd-2 Complete
NAMESPACE DURATION
@D troubleshot 2m 36s k
LABELS TYPE
app=httpd buildconfig=httpd Source

openshiftio/build-config.name=httpd
GIT REPOSITORY

https://github.com/sclorg/httpd-ex.git

openshiftio/build.start-policy=Serial

ANNOTATIONS
GIT REF

3 Annotations #*
master

Figure 26. Detailed Build Instance View

It is also possible to build and retrieve logs from the command line as well using the oc logs command and the oc start-build
commands.

Listing 149. Retrieving Build Logs

$ oc logs bc/<application-name>

Listing 150. Starting a Build

$ oc start-build <application-name>

Listing 151. Retrieving Deployment Logs

$ oc logs dc/<application-name>

8.1.2. Describing Common Problems

The oc logs command provides information about the build, deploy, and run processes of an application during pod execution.
Logs can often indicate missing values or options that must be included/enabled, as well as any incorrect parameters or
environment incompatibilities.

8.1.2.1. Troubleshooting Permission Issues

Permission issues are often one of the most common problems. Additionally, RHEL7 enforces SELinux policies which further
restrict filesystem resources, network ports, and processes. Sometimes, containers also require runnign with a specific UID or
other policy.

The oc adm policy command can be used to relax OCP project security and test for permission errors.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 92

Chapter 8. Troubleshooting Containerized Applications

Listing 152. Modifying OCP Policy for SELinux and UID

[student@workstation ~]$ oc adm policy add-scc-to-user anyuid -z default

8.1.2.2. Troubleshooting Invalid Parameters

Shared parameters for multi-container applications are also a common issue. It is a good practice to centralize and store shared
parameters in ConfigMaps. These ConfigMaps can be injected by the Deployment Config into containers as environment
variables. By using this method, a ConfigMap can be injected into different containers ensuring the environment variables are
available and defined the same.

8.1.2.3. Troubleshooting Volume Mount Errors

Sometimes it is possible that a persistent volume can’t be mounted even though a claim is released. To resolve these issues,
delete the PV claim and then recreate the PV.

Listing 153. Fixing a Persistent Volume

oc delete pv <pv_name>
oc create -f <pv_resource_file>

8.1.2.4. Troubleshooting Obsolete Images

OCP pulls images from the source unless it exists locally. In order to manage images and ensure that the most current image is
used, it is a good practice to perform image cleanup. The podman rmi command can remove images and be scheduled.
Additionally, you can use oc adm prune as an automated way to remove obsolete images and resources.

References

More information about troubleshooting images is available in the Images section of the OpenShift Container
Platform documentation accessible at: Creating Images - https://docs.openshift.com/container-platform/4.2/

o openshift_images/create- images.html

Documentation about how to consume ConfigMap to create container environment variables can be found in
the Consuming in Environment Variables of the Configure a Pod to use ConfigMaps -
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod- configmap/#define-container-
environment-variables-using-configmap-data

8.2. Troubleshooting Containerized Applications

Goals

» Implement techniques for troubleshooting and debugging containerized applications
» Use the port-forwarding feature of OCP client tool
 View container logs

* View OCP cluster events

93 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://docs.openshift.com/container-platform/4.2/openshift_images/create-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-

Section 8.2. Troubleshooting Containerized Applications

8.2.1. Forwarding Ports for Troubleshooting

podman can use port forwarding with the -P command with the run subcommand. However, this only provides port-forwarding
during runtime.

Listing 154. Sample Port Forwarding

$ sudo podman run --name db -p 30306:3306 mysql

OpensShift provides the ability to use port-fowarding with the oc port-forward command which forwards a local port to a pod port.

Port Forwarding Differences

 Port-Forwarding maps only exist on workstation where oc client runs

 Port-Forwarding only maps a port to a single pod, so load-balanced services on multiple pods are not tested

Listing 155. Port Forwarding with oc port-forward

$ oc port-forward db 30306 3306

podman vs OpenShift Port Forwarding

a
O The podman run -p can only be used for port-forwarding when the container gets started. The oc port-
hd forward command can be used anytime within the container lifecycle.

8.2.2. Enabling Remote Debugging with Port Forwarding

Another feature for port forwarding is to enable remote debugging.

8.2.3. Accessing Container Logs

Both podman and OpenShift provide the ability to view logs in running containers and pods. However, these utilities require that
applications are configured to send all logging output to standard output.

Listing 156. Using podman to get Container Logs

$ podman logs <containerName>

Listing 157. Using oc logs to get Container Logs

$ oc logs <podName> [-c <containerName>]

8.2.4. OpenShift Events

OpensShift events are high-level logging and not as log-level as logs making troubleshooting a little less difficult. To read these
logs, use the oc get events command.

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 94

Chapter 8. Troubleshooting Containerized Applications

$ oc get events

Events from the oc get events command above aren't filtered and span the entire OCP cluster. The oc describe command can
be used to retrieve events related to a specific pod.

Listing 158. Using oc describe to Obtain Pod Specific Events

$ oc describe pod <podname>

8.2.5. Accessing Running Containers

Both podman and OpenShift provide the exec subcommand which allows creation of new processes inside of a running
container.

Listing 159. Using podman exec

$ sudo podman exec [options] container command [arguments]

Listing 160. Using oc exec

$ oc exec [options] pod [-c container] -- command [arguments]

It is possible to provide the it option to the exec subcommand which will provide a single interactive command or can be used to
start an interactive shell.

$ oc exec -it <container> /bin/bash

8.2.6. Overriding Container Binaries

Most container images don’t contain all troubleshooting commands and binaries needed by administrators to inspect and manage
the containers. It is possible for administrators to temporarily access missing commands by mounting host binaries folders as
volumes inside the command. This must be done at the launching of the container.

Listing 161. Overriding the Container Image Ibin Folder

$ sudo podman run -it -v /bin:/bin image /bin/bash

8.2.7. Transferring Files To and Out of Containers

It can also be necessary to retrieve or transfer files in/out of running containers. The podman cp command is capable of
transferring and copying files into and out of a running container.

Listing 162. Using podman cp to Copy a File into a Container

$ sudo podman cp standalone.conf todoapi:/opt/jboss/standalone/conf/

95 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) Version: 1.0

Section 8.2. Troubleshooting Containerized Applications

Listing 163. Using podman cp to Copy a File from a Container

$ sudo podman cp todoapi:/opt/jboss/standalone/conf/standalone.conf .

It is also possible to use podman exec with UNIX pipes to pass files into and out of containers. This is more useful when you
have other utilities that create data such as mysqldump

OpenShift Copy Equivalent

r
O The oc rsync command provides functionality similar to podman cp for containers running under OpenShift
w
pods.

References

More information about port-forwarding is available in the Port Forwarding section of the OpenShift
Container Platform documentation at Architecture - https://access.redhat.com/documentation/en-us/
o openshift_container_platform/4.2/html-single/architecture/index/

More information about the CLI commands for port-forwarding are available in the Port Forwarding chapter
of the OpenShift Container Platform documentation at Developing Applications -
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/
index/

Version: 1.0 DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2) 96

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/

	DO180 - Introduction to Containers, Kubernetes, and Red Hat Openshift (OCP 4.2)
	Table of Contents
	Before You Begin
	1. Introducing Container Technology
	1.1. Overview of Container Technology
	1.1.1. Containerized Applications

	1.2. Overview of Container Architecture
	1.2.1. Introducing Container History
	1.2.2. Describing Linux Container Architecture
	1.2.3. Managing Containers with Podman

	1.3. Overview of Kubernetes and Openshift
	1.3.1. Limitations of Containers
	1.3.2. Kubernetes Overview
	1.3.3. Kubernetes Features
	1.3.4. OpenShift Overview
	1.3.5. OpenShift Features

	2. Creating Containerized Services
	2.1. Provisioning Containerized Services
	2.1.1. Fetching Container Images with Podman
	2.1.2. Running Containers
	2.1.3. Using the Red Hat Container Catalog

	2.2. Demonstration

	3. Managing Containers
	3.1. Managing the Lifecycle of Containers
	3.1.1. Container Life Cycle Management with Podman
	3.1.2. Creating Containers
	3.1.3. Running Commands in a Container
	3.1.4. Managing Containers

	3.2. Demonstration - Container Lifecycles
	3.3. Attaching Persistent Storage to Containers
	3.3.1. Preparing Permananent Storage Locations
	3.3.2. Reclaiming Storage
	3.3.3. Preparing the Host Directory
	3.3.4. Mounting a Volume

	3.4. Demonstration - Attaching Persistent Storage to Containers
	3.5. Accessing Containers
	3.5.1. Introducing Networking with Containers
	3.5.2. Mapping Network Ports

	3.6. Demonstration - Accessing Containers over the Network

	4. Managing Container Images
	4.1. Accessing Registries
	4.1.1. Public Registries
	4.1.2. Private Registries
	4.1.3. Configuring Registries in Podman
	4.1.4. Accessing Registries
	4.1.4.1. Registry HTTP API
	4.1.4.2. Registry Authentication
	4.1.4.3. Pulling Images
	4.1.4.4. Listing Local Copies of Images
	4.1.4.5. Image Tags

	4.2. Demonstration - Accessing and Searching Registries
	4.3. Manipulating Container Images
	4.3.1. Introduction
	4.3.2. Saving and Loading Images
	4.3.3. Deleting Images
	4.3.4. Deleting all Images
	4.3.5. Modifying Images
	4.3.6. Tagging Images
	4.3.6.1. Removing Tags from Images

	4.3.7. Best Practices for Tagging Images
	4.3.8. Publishing Images to a Registry

	4.4. Demonstration - Manipulating Container Images

	5. Creating Custom Container Images
	5.1. Designing Custom Container Images
	5.1.1. Reusing Existing Dockerfiles
	5.1.2. Working with the Red Hat Software Collections Library
	5.1.3. Finding Dockerfiles from the Red Hat Software Collections Library
	5.1.4. Container Images in Red Hat Container Catalog (RHCC)
	5.1.5. Searching for Images Using Quay.io
	5.1.6. Finding Dockerfiles on Docker Hub
	5.1.7. Describing How to use the OpenShift Source-to-Image Tool

	5.2. Building Custom Container Images with Dockerfiles
	5.2.1. Buidling Base Containers
	5.2.1.1. Create a Working Directory
	5.2.1.2. Write the Dockerfile Specification

	5.2.2. CMD and ENTRYPOINT
	5.2.3. ADD and COPY
	5.2.4. Layering Image
	5.2.5. Building Images with Podman

	5.3. Demonstration - Building an Image with a Dockerfile

	6. Deploying Containerized Applications on OpenShift
	6.1. Describing Kubernetes and OpenShift Architecture
	6.1.1. Kubernetes and OpenShift
	6.1.2. New Features in RHOCP 4
	6.1.3. Describing Kubernetes Resource Types
	6.1.4. OpenShift Resource Types
	6.1.5. Networking

	6.2. Creating Kubernetes Resources
	6.2.1. The Red Hat OpenShift Container Platform (RHOCP) Command-line Tool
	6.2.2. Describing Pod Resource Definition Syntax
	6.2.3. Describing Service Resource Definition Syntax
	6.2.4. Discovering Services
	6.2.5. Creating New Applications
	6.2.6. Managing OpenShift Resources at the Command Line
	6.2.6.1. oc get all
	6.2.6.2. oc describe RESOURCE_TYPE RESOURCE_NAME
	6.2.6.3. oc export
	6.2.6.4. oc create
	6.2.6.5. oc edit
	6.2.6.6. oc delete RESOURCE_TYPE name
	6.2.6.7. oc exec CONTAINER_ID options command

	6.2.7. Labeling resources

	6.3. Demonstration - Creating a Kubernetes Resource
	6.4. Creating Routes
	6.4.1. Working with Routes
	6.4.2. Creating Routes
	6.4.2.1. Leveraging the Default Routing Service

	6.5. Demonstration - Creating Routes
	6.6. Creating Applications with Source-to-Image
	6.6.1. The Source-to-Image (S2I) Process
	6.6.2. Describing Image Streams
	6.6.3. Building an Application with S2I and the CLI
	6.6.4. Relationship Between Build and Deployment Configurations

	6.7. Creating Applications with the OpenShift Web Console
	6.7.1. Accessing the OpenShift Web Console
	6.7.1.1. Managing Projects
	6.7.1.2. Navigating the Web Console

	6.7.2. Creating New Applications
	6.7.2.1. Managing Application Builds

	6.7.3. Managing Deployed Applications
	6.7.4. Other Web Console Features

	7. Deploying Multi-Container Applications
	7.1. Considerations for Multi-Container Applications
	7.1.1. Leveraging Multi-Container Applications
	7.1.2. Discovering Services in a Multi-Container Application
	7.1.3. Comparing Podman and Kubernetes
	7.1.4. Describing the To Do List Application

	7.2. Deploying a Multi-Container Application on OpenShift
	7.2.1. Examining the Skeleton of a Template
	7.2.1.1. Parameters

	7.2.2. Processing a Template Using the CLI
	7.2.3. Configuring Persistent Storage for OpenShift Applications
	7.2.3.1. Requesting Persistent Volumes
	7.2.3.2. Configuring Persistent Storage with Templates

	8. Troubleshooting Containerized Applications
	8.1. Troubleshooting S2I Builds and Deployments
	8.1.1. Introduction to the S2I Process
	8.1.2. Describing Common Problems
	8.1.2.1. Troubleshooting Permission Issues
	8.1.2.2. Troubleshooting Invalid Parameters
	8.1.2.3. Troubleshooting Volume Mount Errors
	8.1.2.4. Troubleshooting Obsolete Images

	8.2. Troubleshooting Containerized Applications
	8.2.1. Forwarding Ports for Troubleshooting
	8.2.2. Enabling Remote Debugging with Port Forwarding
	8.2.3. Accessing Container Logs
	8.2.4. OpenShift Events
	8.2.5. Accessing Running Containers
	8.2.6. Overriding Container Binaries
	8.2.7. Transferring Files To and Out of Containers

