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Chapter 1

Symmetric Cluster Architecture

1.1 Introduction

The Symmetric Cluster Architecture is a design for software components that together support the GFS and
CLVM clustering products.

This design document begins with architectural requirements, motivations and definitions of components. It
continues with functional descriptions of the components and ends with detailed technical design specifica-
tions.

1.2 Background

The project of defining and implementing this cluster architecture began in 2000/2001. It has been reviewed
and revised at many levels in parallel with development. The earliest development (2000) was on the
Connection Manager portion of the CMAN cluster manager. The latest development was on the GDLM
lock manager that had a late start (5/02) because of an aborted plan to adopt an open source DLM from
IBM. Some of the results of this architecture have made their way into earlier products (most notably CCS
and the general cluster and node properties defined in configuration files.)

The years of research and education leading up to this architectural design produced dramatically new levels
of understanding about this software and what it required. Early knowledge about the problems being solving
was primitive but evolved through lengthy experimentation and study to the point where this comprehensive,
top-down design could be undertaken.

Early GFS concepts revolved around storing GFS lock state in storage devices using special SCSI commands
(DLOCK/DMEP). These ideas were accompanied by little to no understanding of what cluster management
meant or what would be required to correctly support GFS. As we came to realize new extents of the problem,
various aspects to clustering were forced into the DLOCK/DMEP locking system (and even protocol). We
were slowly discovering that GFS would require far more advanced locking and clustering support than could
realistically be provided by SCSI-based device locks.

Hardware devices that implemented the DLOCK/DMEP commands were scarce to non-existent. To develop
and test GFS without the necessary hardware, we created small network servers to emulate a DLOCK/DMEP
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device. Switching between DLOCK/DMEP hardware and emulators motivated the invention of the GFS
Lock Harness API. One lock module could send requests to an actual DLOCK/DMEP device and another
could send requests to a network server. The servers were antithetical to GFS’s symmetric philosophy and
chief selling points, of course, but they were merely for development purposes.

Eventually we realized that DMEP hardware devices would not become a reality. This was about the same
time we needed to release GFS to customers. Dismayed, we were forced to require customers to use the
DMEP emulator. We had long known that the alternative to device locking was a Distributed Lock Manager
(DLM) but it had now become a pressing need. We had neither time nor expertise to develop one ourselves,
so we began a search to adopt a DLM from elsewhere.

Meanwhile, with customers left using the DMEP emulator there were some simple things we could do to
improve its performance. Mainly, this meant not strictly adhering to the DMEP protocol which among other
things did not allow for callbacks. The result of these lock server improvements was called GULM and it
eventually replaced the DMEP emulator.

The DLM search ended when IBM released some DLM code as open source. We jumped on this and began
working with it in the hope that it could be linked with GFS in very short order. After several months,
however, we realized the IBM DLM had serious problems and would need extensive engineering work from
us to be useful. We decided instead to develop our own DLM from scratch.

The larger architecture design and CMAN developments had continued throughout the process of finding
a DLM. One of the first architectural principles had been that the cluster manager must be a unique,
symmetric, stand-alone entity that would independently support any lock manager, GFS and CLVM. It was
nearly complete, allowing us to focus on DLM development.

Faced with the development time of the DLM and customer intolerance for the DLOCK/DMEP/GULM
lineage of server-based locking, it was decided to add basic fail-over to GULM to keep customers interested
while the distributed clustering and locking subsystems were finished.

DLM development has been completed providing the full set of symmetric clustering and locking subsystems
to support GFS and CLVM.

1.3 Architecture Design Principles and Goals

There are a few general ideas that guide the development of the architectural components.

1. Symmetry

Symmetry has long been a chief design principle of our clustering products. Each component of this
architecture has been designed from the start with this symmetry in mind. As such, the components
when combined produce a uniformly symmetric system as a whole, exploiting to the fullest extent the
advantages inherent in such architectures.

2. Modularity

A second key advantage distinguishing GFS in the past has been its modularity. This allows GFS to
adapt quickly to new environments and makes it exceedingly extensible. Modular components can also
be shared among products avoiding duplication and allowing products to work together (e.g. CLVM
and GFS using common subsystems). This architecture furthers the modular tradition, understanding
and defining new components from its inception.
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3. Simplicity

The clustering products should remain simple, conceptually and from a management perspective. An
overly complex architecture makes the products difficult to understand and use and prohibits them from
being easily extended or adapted in the future. The symmetry principle supports this to a large extent
as symmetric clusters are far simpler conceptually (although often more difficult to design technically.)

4. Correctness

Customers place high trust in the software that manages their data. They must believe that the
software will not corrupt the data or simply lose it. Even one case of a customer losing data can
have devastating effect on our reputation. Every scenario where safety is at risk has been thoroughly
investigated and addressed in this design.

1.4 Component Definitions

The Symmetric Cluster Architecture defines the following distinct software components. Each component
has its own functional requirements and design. The components are defined here with respect to their
dependence on the others.

CCS Cluster Configuration System
CMAN Cluster Manager
FENCE I/O Fencing System
GDLM Global Distributed Lock Manager
LOCK DLM GFS Lock Module for the DLM
GFS Global File System
CLVM Cluster Logical Volume Manager

The modular components are clearly separate in function so they can form the basis of multiple products.

CCS

– Depends on no other component (for basic function).

– Provides static configuration parameters to other components.

CMAN

– Depends on CCS for cluster and node identifiers.

– Provides cluster and service management to Fence, GDLM, GFS/LOCK DLM, and CLVM.

FENCE

– Depends on CCS for node fencing parameters and fence device parameters. Depends on CMAN
for cluster management.

– Provides I/O Fencing for GFS/LOCK DLM and CLVM.

GDLM

– Depends on CMAN for cluster management.

– Provides lock management for GFS/LOCK DLM and CLVM.
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GFS/LOCK DLM

– Depends on CMAN for cluster management. Depends on Fence for I/O Fencing. Depends on
GDLM for lock management.

– Provides nothing to other components.

CLVM

– Depends on CMAN for cluster management. Depends on GDLM for lock management.

– Provides nothing to other components.

1.5 GFS Requirements

This is an overview of GFS requirements. The specific requirements are covered in more depth in the later
descriptions of how they are met.

GFS relies on external components to provide the following functions. They are provided to GFS through
a ”lock module” plugged into GFS’s Lock Harness interface. In this architecture, the lock module is
LOCK DLM. (The lock management requirements dominate the others – the term ”lock module” and the
LOCK prefix reflect this.) LOCK DLM primarily acts as a bridge to the independent CMAN and GDLM
clustering/locking managers, but GFS-specific semantics are implemented by the GFS lock module, not the
general lock manager.

1. Lock Management

Each GFS file system has a unique name specified when it’s created. This name is given to the lock
module which must use it to associate different GFS file systems with unique lock spaces.

GFS’s locking requirements are standard and quite simple. A GFS node will only request a single
lock on a resource at once. Resources are uniquely identified by GFS using 12 bytes (binary data
composed of two integers). GFS uses three lock modes: ”exclusive” and two shared modes (”shared”
and ”deferred”) that are incompatible with each other and exclusive.

GFS lock and unlock requests are asynchronous. GFS provides a callback function for notification
of completed requests and for blocking callbacks. A blocking callback should be accompanied by the
mode of lock being requested.

Normal GFS requests can be modified by three flags. The first is a ”try” flag that indicates the request
should not block if the lock cannot be immediately granted. Blocking callbacks should not be sent if the
”try” request fails. The other two flags are optional and are used to enhance performance. The ”any”
flag indicates that either of the shared modes may be granted – preferably the one compatible with
existing granted modes. The ”one cb” flag used with ”try” indicates that a single blocking callback
should be sent if the request cannot be granted immediately.

GFS requires selected resources have a 32 byte value block available for reading and writing in con-
junction with lock operations. The value should be written with the release of an exclusive lock and
read when any lock is acquired. The value block should be cleared to zero if the most recent value is
lost during recovery.

GFS requires the lock module to avert conversion deadlock when locks are promoted. The lock manager
is permitted, however, to release a lock in the process of promoting it if the result is subsequently flagged
to indicate that the lock was released.

GFS must be able to cancel an outstanding request. Once canceled a request should complete imme-
diately. If the request was not successful the result must be flagged as having been canceled.
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The lock manager with the support of the cluster manager must only allow locks to be held by nodes
that have the file system mounted. A node that fails with the file system mounted must have its locks
released before normal operation is resumed. The released locks of a failed node must not be granted
until GFS has completed its recovery for the failed node (with the following exception).

A GFS node performing recovery must be able to acquire locks that are otherwise not granted during
recovery. GFS identifies these special requests with the ”noexp” flag. The lock module must distinguish
these special requests from ordinary requests and allow them to proceed as usual.

2. Name-space Management

GFS requires a unique node identifier to use for journal selection. The integer identifier provided at
mount time must be the lowest unused ID beginning from zero. The scope is all nodes with the file
system mounted. This allows the limited number of GFS journals to all be used.

3. Recovery

GFS requires a cluster manager to know which nodes have each file system mounted at any point in
time. One or more nodes with file system F mounted must receive a ”recovery needed” callback if
any other node with F mounted fails. The callback must identify the journal ID used by the failed
node (see previous section). Upon receiving this callback, one of the live GFS nodes will perform GFS
recovery using the journal of the failed node.

GFS expects to receive recovery callbacks for a journal ID until it indicates it’s done (through the lock
module interface ”lm recovery done” function.) That is, if a node recovering a journal fails, another
node must be sent the recovery callback for the partially-recovered journal in addition to a callback
for the journal of the second failed node. This holds true all the way to a single remaining node.

4. I/O Fencing

The clustering and fencing systems must guarantee that a failed node has been fenced successfully
from the shared storage it was using (or has been fully reset) before GFS recovery is initiated for the
failed node.

5. Exclusive Initialization

When a GFS file system is mounted on a node, it needs to be told if the node is the first in the cluster
to mount the particular file system. In combination with being first, GFS on the first mounting node
must have exclusive access to the entire file system until it indicates through the lock module interface
that it has completed initialization and others may mount.

When a node is given this exclusive initialization right for a file system, the clustering and fencing
systems must guarantee that every other node in the cluster (nodes that might have had the particular
file system mounted in the past) is in not in a state having hung with GFS mounted since last being
reset or fenced. i.e. If the state (including fencing history) of a node X is unknown at the time node
Y requests the exclusive initialization right to any file system that X might have mounted in the past,
X must be fenced before Y is given that right.

1.6 Concepts

This section lays out the concepts being dealt with and the simplicity that should be conveyed to the user.
This is simplicity in the natural definition of objects, their properties and the relationships among them.
These are the concepts a user will want to comprehend to effectively set up and manage the software.
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Entities

Cluster A group of nodes.
Node A machine that can join and leave a cluster.
Resource Something used by nodes in a cluster.
Service A program run by nodes in a cluster. Often related to

accessing a resource.

Policies

• A node can be a member of one cluster.

• A resource belongs to one cluster.

• A node in a cluster can access the resources in the cluster.

• All nodes are equal.

• Access to shared resources is controlled by services running on the nodes.

• Arbitrary cluster members can start and stop using arbitrary cluster resources at any time without
affecting any other cluster members.

• The failure of a cluster member should only affect other cluster members that are using the same
shared resources as the failed node.

Properties

Cluster

– name: unique name

– members: list of nodes that are members

Node

– name: unique name

– cluster: the cluster the node is member of

Resource

– name: unique name

– cluster: the name of the cluster whose members can use the resource

Resources exist in many forms and at many levels. A resource could be a device, a file, a record, a piece of
metadata, or any other entity that can be consistently named among nodes or processes. Services accessing
shared resources often require synchronization involving some form of locking.

The generic properties of a service are not generally relevant when managing the system. The taxonomy
above is extended further in the area of services when describing the internal function of the cluster manager.



Chapter 2

Functional Descriptions

Description of purpose, main parts and functions of each component. Specific interface definitions and
implementation details are left for the technical design specifications.

2.1 CCS

CCS provides access to a single cluster configuration file. The CCS daemon (ccsd) running on each node
manages this file and provides access to it. When ccsd is started it finds the most recent version of the file
among the cluster nodes. It keeps the file in sync among nodes if updates are made to it while the cluster
is running.

2.2 CMAN

The CMAN cluster manager has two parts: Connection Manager and Service Manager. The main require-
ments of CMAN are to manage the membership of the cluster (connection manager) and to manage which
members are using which services (service manager). CMAN operates in the kernel and both parts are
completely symmetric – every node is the same.

CMAN has no specific knowledge of higher level cluster services; it is an independent, stand-alone system
using only CCS. As a general cluster manager it should naturally not function specifically for select higher
level applications. While GFS, GDLM, CLVM, etc. can sit above it, CMAN can be used for entirely different
services or purposes.

2.2.1 Connection Manager

Connection Manager (cnxman) tracks the liveness of all nodes through periodic ”HELLO” messages sent
over the network. Cnxman’s list of current live nodes defines the membership of the cluster. Managing
changes to cluster membership is the main task of cnxman.

A node joins the cluster by broadcasting the cluster’s unique ID on the network. Other members of the
13
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cluster will accept the new node and add it to the membership list through a multi-step transition process
whereby all members agree on the new addition. Transitions are coordinated by a dynamically selected
node. The command ’cman_tool join’ will initiate this procedure on a node and cause the node to join the
cluster.

A current member can leave the cluster by running the command ’cman_tool leave’. Again, the leave pro-
cess involves a multi-step transition process through which all remaining members agree on the membership
change. A node cannot leave the cluster (except by force) until all higher level clustering systems dependent
upon CMAN have shut down.

The failure of a cluster node is detected when its HELLO messages are not received by other members for
a predetermined number of seconds. When this happens, the remaining cluster members step through a
transition process to remove the failed node from the membership list. A failed node can rejoin the cluster
once it has been reset.

The cnxman cluster can suffer from a ”split-brain” condition in the event of a network partition. Two groups
of nodes can both form a cluster of the same name. If both clusters were to access the same shared data,
it would be corrupted. Therefore, cnxman must guarantee, using a quorum majority voting scheme, that
only one of the two split clusters becomes active. This means that to safely cope with split-brain scenarios,
cnxman must only enable cluster services when over half (a majority) of nodes are members. This behavior
can be modified by assigning an unequal number of votes to different machines.

To join the CMAN cluster, the cman_tool program gets the unique cluster name from the cluster configu-
ration file (through CCS.) This means that the definitive step of associating a node with a particular cluster
comes when the CCS daemon selects a cluster configuration file to use. Only nodes named in the cluster
configuration can join the cluster.

When a node joins the cluster, cnxman assigns it a unique, non-zero node ID (integers beginning with 1).
Once assigned, a node will retain its node ID for the life of the cluster – if the node leaves and rejoins the
same cluster it will have the same ID (cnxman does not reuse node ID’s for different nodes). Exported
cnxman functions can be used to get a listing of all nodes, current members, or to look up node information
(name, IP address, etc).

2.2.2 Service Manager

Service Manager (SM) manages which nodes are using which services. It uses ”Service Groups” to represent
different instances of services operating on dynamic groups of nodes in the cluster.

In the case of a symmetric service where all nodes can produce results independently, it is critical that all
nodes running the service agree on the service group membership while any are producing results. The
service group membership is often a factor determining the output of the cluster service – any disagreement
can result in inconsistent output. Because of this, the operation of the service must be temporarily suspended
when the group of nodes running the service changes. When the new group comes to agreement on the new
group membership, the operation of the service can be resumed 1.

It will be useful to add concepts associated with services to the definitions presented earlier. The new entities
are defined, along with their properties, followed by some general rules governing them.

1In a client-server architecture, the essential management and recovery functions, into which the group membership factor,
occur on the server only. Clients do not make independent decisions based on factors like service group membership, even if
they keep their own record of the nodes copied from the server. A transition from one membership group to another (including
necessary adjustments within effected services) occurs on the server without stopping the service on all clients. Replies to client
requests may at most be delayed momentarily as the server makes the adjustment.
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Entities

Cluster A group of nodes.
Node A machine that can join and leave a cluster.
Resource Something used by nodes in a cluster.
Service A program run by nodes in a cluster. Often related to

accessing a resource.
Service Group The group of nodes running an instance of a service.

The new addition is a service group which is a conceptual entity created and managed by SM. Nodes become
part of service groups through the services they use. GFS, GDLM and Fence are all symmetric services that
form service groups. A node mounting a GFS file system will become a member of a service group for each
of the three services.

Properties

Cluster

– name: unique name

– members: list of nodes that are members

Node

– name: unique name

– cluster: the cluster the node is member of

Resource

– name: unique name

– cluster: the name of the cluster whose members can use the resource

Service

– type: the type of service (GFS, GDLM, Fence Domain)

– level: the order of recovery among layered services

Service Group

– service: the type of service

– name: a unique name identifying the instance of the service in the cluster

– members: the group of nodes running the service instance together

Policies

• A service performs no function until it is instantiated.

• Any number of instances of a service can exist; each is distinct and identified by a unique name in the
cluster.

• A service group is the result of a service instantiation.

• A node that is a cluster member can instantiate services and join/leave the associated service groups.

• A node can be in any number of service groups at the same time.
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• An instance of a service is identified by a unique name in the cluster. Any cluster member instantiating
and joining a service of the same type and name will be in the same service group.

• To use a resource, a node may be part of multiple service groups, each controlling a different aspect of
sharing the resource.

• The unique name of a service instance is often based on the name of the shared resource to which the
service is supporting access.

One part of the Service Manager function should already be clear. SM is in charge of managing service groups
in the cluster. This involves instantiating them, managing nodes joining and leaving them, and managing
the recovery of the appropriate service groups when cluster nodes fail.

If a program needs to be cluster-aware and know which nodes are running it, it can become a SM service
with its instantiations managed as service groups. This can be done using the SM API detailed later. What
it means for a program to be under the management of SM is the topic of the next section.

Service Control

When we say that a service requires ”cluster management” we are referring to the fact that the service needs
to respond to certain cluster events as they occur. When a service registers to be managed/controlled by
SM, it provides a set of callback functions through which the SM can manage it given cluster events affecting
it. We refer to the use of these callback management functions as service ”control”. There are three control
methods that apply to services:

1. stop - suspend - membership of the service group will be changed.

2. start - recover - begin any recovery necessary given the new service group members.

3. finish - resume - all service group members have completed start.

When a service receives a ”stop” it is aware that other services will be reconfiguring themselves (recovering)
and may produce results inconsistent with the previous configuration of the cluster. The service is also
aware that it will be reconfigured itself and must not produce any results assuming a particular service
group membership.

When a service receives a ”start” it knows that other services at a lower level have completed their recovery
are are in a reliable state. It also knows that all nodes in the service group have received a stop, i.e. when it
starts it knows that no other group members will be operating based on the previous membership. The new
list of service group members is provided with the start. This service can now do its own recovery. When
done starting, the service notifies SM through an API callback function.

When a service receives a ”finish” it knows that all other members of the service group have completed their
start. Any recovery state can be cleared. (Recovery state may need to be maintained until finish is received
due to the fact that a service group member may fail while starting.) The service can safely resume normal
operation, aware that all service group members have recovered in agreement.

The three functions are ordinarily received by a service in order, but a stop can be received while starting if
a node in the group fails during start. Specific guarantees about the sequence and ordering of these control
functions as seen by a service will be given later.

Service Events

A service event is an occasion where a service group transitions from one set of members to a different set of
members. A complete event entails stop, start and finish. A service event is caused by one of the following:
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• A node joins the service group.

• A node leaves the service group.

• A node in the service group fails.

At present, SM allows one node to join or leave a service group at a time. Not until a currently joining or
leaving node has finished will another node be permitted to begin joining or leaving. Enhancements can be
added to overcome the limitations of this serialization.

A Connection Manager transition occurs when a cluster member fails or a node joins or leaves the cluster.
At the end of one of these transitions, the Service Manager is notified of the change. The only change that
interests SM is the failure of a cluster member. When this happens, SM looks through all service groups to
find if the failed node is a member of any. Any service group the failed node is part of is subject to a service
event to remove the node and recover the service on the remaining service group members.

As was briefly mentioned in the Connection Manager’s quorum description, SM will not start cluster services
if the Connection Manager determines that quorum is lost. While quorum is lost, stopped service groups
remain stopped but some service groups remain running (not stopped) because they were unaffected by the
specific node failure (the failed node wasn’t in the service group). When quorum is regained by a node
joining the cnxman cluster (or intervention to reduce the number of expected votes), SM service events will
continue with any stopped services being started.

These methods prevent services from being started in two split-brain clusters. However, an uneffected service
may have continued running in the original inquorate cluster while the same service is to be started in the
new, split, quorate cluster. Corruption of shared data is averted because the first service to be started in
the new cluster is the fencing service. When the fencing service is started it fences all the nodes partitioned
in the original inquorate cluster. Their access to shared storage will therefore be cut off before the same
services are started in the new cluster.

Layered Services

A fundamental issue in the cluster architecture design has emerged; it is that of ”layered services”. Services
often have a dependence upon each other. This creates layers of services where one layer relies on the layer
below it to operate. Coordinating all the levels is the job of the cluster manager. The cluster manager
relies functionally on no other cluster components and controls all the other clustering services based on its
first-hand knowledge of node state, relative service levels and service group membership.

A service has an intrinsic level based on its function. Lower level services provide functions for higher level
services. During recovery the service manager starts services from lowest level to highest. A high level service
could not start if the service it depends on has not yet started. (Multiple services can exist at the same level
and are started at once.)

GFS/LOCK DLM relies upon the Fencing service and the GDLM service to be completely recovered and
fully operational before it begins its own recovery. Therefore, both Fence and GDLM are lower service levels.

Service Types

The following table shows what constitutes a service group for each service type.

• A ”Fence Domain” (FD) is a service group created by the Fence service.

• A ”Lock Space” (LS) is a service group created by the GDLM service.
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• A ”Mount Group” (MG) is a service group created by the LOCK DLM service.

• A FD’s function is to I/O fence service group members that fail.

• A LS’s function is to manage locks held by service group members.

• A MG’s function is to send GFS recovery callbacks for service group members that fail.

2.3 GDLM

The GDLM lock manager is a VMS-like distributed lock manager. It follows the traditional VaxCluster
DLM model that many other commercial DLM’s have copied. The locking and recovery methods are not
particular to GFS or CLVM or any other application. GDLM was designed to depend only on the cluster
manager (CMAN) and can be used independently of any other systems.

In both the kernel and user space, GDLM exports a standard locking API that is as comprehensive as any
application would generally require. GDLM distinct features are the algorithms used internally to distribute
the lock management across all nodes in the cluster removing bottlenecks while remaining fully recoverable
given the failure of any node or number of nodes.

2.3.1 Lock Spaces

Applications can create and use their own GDLM lock spaces (minor applications can use a common ”default”
lock space). GDLM will return a lock space context pointer to any application that requests a lock space
with an arbitrary name. There is no limit to the number of lock spaces that can be created and used on a
single node or throughout the cluster.

Application instances on the same or different nodes in the cluster requesting lock spaces with the same
name will be a part of the same lock space. Each lock space can be created with specific features enabled
or disabled. GFS, for example, creates lock spaces for each of its file systems with the NOTIMERS flag set
indicating that GDLM should not return lock requests that have been waiting, ungranted, for too long.

2.3.2 Lock Requests and Conversions

Locks of a specified mode are requested against a named resource. GDLM’s maximum resource name length
is 64 bytes (GFS uses 12 or 24 byte resource names, depending on encoding style). The resource name is
not interpreted by GDLM, but treated as 64 binary bytes of data.

There is no limit to the number of locks that can be held at once by the same or different nodes against a
particular resource. The first node requesting a lock against a resource becomes the resource’s master.

Locks with the following modes can be requested against resources: Null (NL), Concurrent Read (CR),
Concurrent Write (CW), Protected Read (PR), Protected Write (PW), and Exclusive (EX). The standard
compatibility matrix for these modes is included in the technical specifications. GFS’s lock modes map to
NL, EX, CW and PR.

Once a lock is obtained against a resource, it can either be converted to a different mode or unlocked. (The
common conversion semantics are different from the narrower semantics used by GFS, although a translation



19

can effectively be made between them.) To convert an existing lock, GDLM returns with the first request a
random ”lock ID” that is used to reference the lock in subsequent requests.

A lock request can optionally specify a range. By default when no range is specified, the full range is
assumed. Multiple nodes can hold exclusive locks with non-overlapping ranges against a resource at once. A
lock request can also specify a Lock Value Block (LVB): 32 bytes of arbitrary data associated with a resource
that can be saved and retrieved with a lock request. Finally, parent locks can be specified in lock requests
to form hierarchical resource trees. Each level of the tree has a separate name space.

Time-out based deadlock detection can be enabled or disabled per lock space with the time-out period
configurable in the configuration file. A per request flag can also be set that causes GDLM to detect
conversion deadlock and resolve such events by temporarily demoting the granted mode of one or more locks
(this is a GFS-oriented feature.)

The resource directory provides a simple mapping of resource names to resource masters. It is distributed
across all nodes in a lock space using a shared hash function on resource names. All nodes are presently given
a directory weight of one resulting in equal distribution. (Configurable weights is a future enhancement.)

2.3.3 Callbacks

In DLM terminology, a callback is an AST (Asynchronous System Trap). An AST either reports that
an asynchronous lock request is complete or that an existing lock is blocking another lock that has been
requested (a Blocking AST). The AST function called by GDLM is provided by the application with each
lock request. An AST argument is also provided that will be passed back to the application to identify the
specific lock.

2.3.4 Node Failure

There are very few if any interesting external issues involved in node failure or recovery. The lock manager
will not (and should not) impose any special policy or requirements related to recovery on the applications.

When a node in a GDLM lock space fails (or leaves the lock space voluntarily) the CMAN Service Manager
restarts the lock space with the new set of nodes in the lock space service group. This is all invisible
externally. When GDLM adjusts to the new set of nodes (recovery), any locks held by previous nodes will
simply disappear and previously blocked requests will be granted.

2.4 LOCK DLM

LOCK DLM represents GFS in the symmetric clustering and locking world. It interacts with the external
GDLM lock manager, CMAN cluster manager and Fence system on behalf of GFS. It is primarily a bridge
interfacing with the API’s of these other systems. There are some minor GFS-specific functions it implements
itself so that external managers remain general-purpose and not tied to a specific product.

To support GFS, LOCK DLM plugs into GFS’s Lock Harness, providing the full set of functions required
by GFS. The LOCK DLM implementation of all these functions is detailed in the technical specifications.

At mount time for a specific GFS file system, LOCK DLM requires that the node already be a cluster
member, otherwise the mount fails. If the node is a cluster member LOCK DLM adds a reference count to
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the CMAN module preventing the node from leaving the cluster while GFS file systems dependent on the
cluster are mounted. (Other subsystems relying on CMAN also add reference counts when started for the
same purpose.)

A second important check at mount time handled by LOCK DLM is that the cluster name encoded in the
specific file system’s superblock (by gfs mkfs) matches the name of the cluster the node is in. This check is
necessary to prevent nodes from different clusters from mounting the same file system at once and quickly
corrupting it.

With respect to locking, LOCK DLM creates a new GDLM lock space for each file system at mount time.
The unique file system name (also available from the file system’s superblock) is used as the lock space name.
With respect to fencing, LOCK DLM checks that the node is a member of a fence domain at mount time.
If the node fails while the file system is mounted, the node will be fenced. LOCK DLM also creates its
own CMAN/SM Service Group at mount time which it calls a ”mount group”. The members of the mount
group are the nodes with that specific file system currently mounted. Nodes in a LOCK DLM mount group
are responsible for recovering the GFS journals of other mount group members if they fail. In this regard
LOCK DLM must also keep track of which journals the different mount group members are using.

2.5 Fence System

The fence daemon (fenced) must be started on each node after joining the cluster and before using GFS.
Fenced determines which nodes to I/O fence based on the ”fence domain” (FD) membership. The default
fence domain is a SM service group and the members are all nodes in the cluster running fenced.

When a node needs to be I/O fenced, fenced looks up the node-specific fencing parameters from CCS. It
then calls the specified fence agent to carry out the actual fencing.

Once a node joins an FD it will be fenced by another FD member if it fails before leaving. In practice, nodes
in the cluster join one common (”default”) FD before they use CLVM or a GFS file system. A node leaves
the default FD once it is done using CLVM/GFS – it can then be shut down without being fenced.

Any cluster member can join a fence domain and be subject to fencing, although it must be able to carry
out fencing operations on any other fence domain members.



Chapter 3

Technical Designs and Specifications

3.1 CCS

The cluster configuration file is kept in the /etc/cluster/ directory on each cluster node. Managing and
providing access to this file is the job of the CCS daemon, ccsd.

3.1.0.1 User Interface

3.1.0.2 Application Interface

3.1.0.3 Special CMAN Usage

3.1.0.4 Config Updates

21
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3.2 CMAN

CMAN is a general purpose, kernel based cluster manager designed to support other kernel and userland
systems dependant on cluster information and event notification. CMAN is also symmetric and quorum-
based; all cluster members are peers.

CMAN has two main parts, the Connection Manager (Cnxman) and the Service Manager (SM). Cnxman
manages which nodes are in the cluster, handling things such as membership, transitions (joining and leaving
the cluster), and quorum. SM is quite separate and manages service groups instantiated by cluster services
in the kernel and userland. Services are dynamically registered with SM and are thereafter controlled with
standard callback functions. SM defines ”Service Groups” where each service group represents a collection
of nodes using a particular instance of a service.

The Cnxman portion of CMAN is activated and begins managing membership as soon as a node joins the
cluster. This is all that’s required for user level cluster information and notification to be available. The
cluster members, as reported by Cnxman, are simply all nodes that have joined the cluster.

The SM portion of CMAN will be unused on a node unless (until) a system that uses the SM is started.
This does not affect the Cnxman operation at all. SM combines the cluster membership information from
Cnxman with the particular service registrations to manage the Service Groups.

3.2.1 Cluster User Interface

A node must first join the cluster before any cluster services or applications will operate. To join the cluster,
a node must simply run the command: cman_tool join. This tells the CMAN kernel module to initiate the
process of joining the cluster. The command simply initiates the join process and returns before the process
is complete.

Different clusters may exist on the same network and must be distinguishable, so a cluster is uniquely
identified by a name defined in the cluster configuration file (see figure ??). The cman_tool program looks
up this name (from the CCS system) to determine what cluster to join. A cluster is initially formed by the
first node attempting to join it.

A cluster member can leave the cluster with the command: cman_tool leave. If other clustering systems
are still running on the node, this command will fail and report a ”busy” error (unless the force option is
used.)

CMAN gets the local node name from system_utsname.nodename when the kernel module is loaded. This
name can be changed through the cluster application interface covered below.

Cluster status and members, can be displayed on any member by viewing /proc/cluster/status and
/proc/cluster/nodes.

3.2.2 Cluster Application Interface

CMAN has a cluster socket API to allow userspace to communicate with the cluster manager and also to
provide some basic inter-node communication facilities. This API is defined in the header file cnxman-
socket.h and is summarized here 1.

1Information from Patrick Caulfield
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To use the interface, a socket of address family AF CLUSTER and type SOCK DGRAM must be created
as shown in figure 3.1 using the socket(2) system call. The returned file descriptor can be used as usual
with ioctl and to send and receive data.

fd = socket(AF_CLUSTER, SOCK_DGRAM, CLPROTO_CLIENT);

Figure 3.1: Cluster socket creation

3.2.2.1 Messages

CMAN supports sending and receiving data between cluster members on its cluster sockets. This is not a
high-speed bulk data channel. It is a packet based, reliable, unwindowed transport. Messages are limited to
1500 bytes. Client applications bind to an 8-bit port number in a manner similar to IP sockets - only one
client can be bound to a particular port at a time. Port numbers below 10 are special; activity on them will
not be blocked when the cluster is in transition or inquorate.

• sendmsg(2) is used to send messages to a specific node or to all other nodes in the cluster. The latter
will be sent as a broadcast/multicast message (depending on the cluster configuration) to all nodes
simultaneously. Nodes are specified by their node ID rather than IP address.

• recvmsg(2) receives messages from other cluster members. The sockaddr is filled in with the node ID
of the sending node. poll(2) is supported. recvmsg() can also receive informational messages which
are delivered as Out-Of-Band (OOB) messages if MSG OOB is passed to recvmsg().

3.2.2.2 Information

The following ioctl(2)’s are supported on cluster sockets to access cluster and node information.

• SIOCCLUSTER_NOTIFY

Tells CMAN to send the calling process a signal every time a node joins or leaves the cluster. The
argument passed is a signal number.

• SIOCCLUSTER_REMOVENOTIFY

Removes the signal notification.

• SIOCCLUSTER_GETMEMBERS

Returns a list of cluster members. The argument is either NULL (in which case the number of members
is returned) or a pointer to an array of struct cl_cluster_node which will be filled in.

• SIOCCLUSTER_GETALLMEMBERS

Same as previous, but also includes nodes that were previously members but are not any longer. Note
that this does not include configured nodes that have never joined the cluster, only nodes that were
once part of the current cluster.

• SIOCCLUSTER_ISQUORATE

Returns 1 if the cluster is currently quorate, 0 if not.
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• SIOCCLUSTER_ISACTIVE

Returns 1 if the node is a cluster member, 0 if not.

• SIOCCLUSTER_ISLISTENING

Returns 1 if a program on the specified node is listening on a given port number, 0 of not. The
parameter is a pointer to a struct cl_listen_request. This ioctl will wait until a response has been
received from the node or a cluster state transition occurs.

• SIOCCLUSTER_GET_VERSION

Returns the version number of the CMAN cluster software. The parameter is a struct cl_version
that is filled in.

• SIOCCLUSTER_GET_JOINCOUNT

Returns the number of active cluster subsystems on this node. Once this ”join count” is zero, the node
can properly leave the cluster.

• SIOCCLUSTER_BARRIER

Userspace interface to the barrier system. The parameter is a struct cl_barrier_info. See the
kernel documentation for more information. CAP ADMIN privilege is needed for this operation. (This
userspace access to the barrier system is not fully tested.)

• SIOCCLUSTER_SET_VOTES

Changes the number of votes cast by this member of the cluster. Quorum will be recalculated and the
other nodes notified. CAP ADMIN privilege is needed for this operation.

• SIOCCLUSTER_SETEXPECTED_VOTES

Changes the number of votes expected by the cluster. Quorum will be recalculated and the other nodes
notified. CAP ADMIN privilege is needed for this operation.

• SIOCCLUSTER_KILLNODE

Forcibly remove another member from the cluster. The parameter is a node number. CAP ADMIN
privilege is needed for this operation.

• SIOCCLUSTER_SERVICE_REGISTER

Registers a service with the Service Manager. The parameter is the service name. The cluster socket
itself identifies the user program to the SM in the kernel and must remain open for the lifetime of the
service program.

• SIOCCLUSTER_SERVICE_UNREGISTER

Unregisters a service with the Service Manager; takes no parameters apart from the cluster socket that
was originally used to register the service.

• SIOCCLUSTER_SERVICE_JOIN

Instructs SM to join the service group for the registered service associated with the cluster socket.
Takes no parameters.

• SIOCCLUSTER_SERVICE_LEAVE

Instructs SM to leave the service group for the registered and joined service associated with the cluster
socket. Takes no parameters.

• SIOCCLUSTER_SERVICE_SETSIGNAL

Tells CMAN to deliver a signal to the calling process when a change occurs in the service group
membership. The cluster socket must be associated with a registered service. The signal number is
the parameter.
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• SIOCCLUSTER_SERVICE_STARTDONE

The service program must use this ioctl when it has completed processing a start event from SM. The
parameter is the event ID of the start event that was processed.

• SIOCCLUSTER_SERVICE_GETEVENT

Returns details of the next service event for the service group associated with the cluster socket. The
parameter is a struct cl_service_event.

• SIOCCLUSTER_SERVICE_GETMEMBERS

Returns struct cl_cluster_node details for each node that was a service group member in the last
start event read by the GETEVENT ioctl.

• SIOCCLUSTER_SERVICE_GLOBALID

Returns the global unique ID of the service group associated with the registered and joined cluster
socket.

setsockopt(2) operations are used to start and stop CMAN on a node, configure multicast communications
and change the node name. They all require CAP ADMIN privilege and should only be used by cman_tool
and its derivatives.

3.2.3 Node Information

3.2.4 Membership

3.2.4.1 Joining the cluster

To join a cluster, a node begins listening on the network for HELLO messages from existing cluster members.
It sends a join request (JOINREQ) to the source of the first HELLO it hears. The node receiving the join
request will then begin a transition to add the new node to the cluster.

The first node to join the cluster will not hear any HELLO messages on the network and will wait for a
period of joinwait timeout seconds. Once this time has expired, the node will form the cluster by itself with
itself as the first member.

To prevent multiple nodes from forming initial clusters by themselves in parallel, nodes send a NEWCLUS-
TER message when they begin the join process. When a node waiting to form a cluster sees a NEWCLUSTER
message from another node it will back off and wait an additional period of time listening for a HELLO
message before forming a cluster on its own. The back off period is based on a simple hash of a node’s name
causing at least one node to back off a slightly shorter period of time than others. This node will then form
a cluster on its own and any other nodes waiting to form a cluster will see its HELLO message and join it.

The timeout values mentioned can be configured as follows and have the specified defaults if they are not:
joinwait timeout, default 11 seconds
join timeout, default 30 seconds

3.2.4.2 Heartbeats

When a node joins the cluster, the cman_hbeat thread is started to send heartbeat messages every hello timer
seconds.
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When the thread is awoken (by a timer) it sends a HELLO broadcast/multicast message to all other nodes
in the cluster. Upon getting this message, other nodes update the ”last hello” time for the sending node.

After sending HELLO, the heartbeat thread scans the list of cluster members looking at the last hello time
of each. If this time is beyond the deadnode timeout period a transition is started to remove the node from
the cluster. The thread also checks for a dead quorum device and recalculates quorum if one exists and has
failed.

The timing values mentioned can be configured as follows and have the specified defaults if they are not:
hello timer, default 5 seconds
deadnode timeout, default 21 seconds

3.2.4.3 Leaving the cluster

3.2.5 Transitions

3.2.6 Quorum

Quorum is implemented by a voting scheme where each node is given a number of votes to contribute to the
cluster when it joins. When the sum of votes from all cluster members is greater than or equal to a fixed
”quorum votes” value, quorum is declared. When nodes leave the cluster or fail, their votes are removed.
The cluster becomes inquorate when the sum of member votes falls below quorum votes.

The number of votes assigned to each node is a static property of a node set during configuration. By default,
if no votes value is specified, a node has 1 vote. The cluster’s ”expected votes” value is derived from this;
it is the sum of all possible votes (the sum of votes for all nodes in the config file.) Quorum votes is then
set to (expected_votes / 2) + 1. If all nodes are given the default 1 vote, quorum is achieved when over
half the nodes in the configuration file are members.

If more nodes join the cluster than were originally seen when the cluster was formed, the vote total of all
members will exceed expected votes. In this case the effective in-core expected votes value is dynamically
increased to the sum of all votes. To maintain the split-brain protection that quorum provides, this value
does not decrease when nodes subsequently leave the cluster and the vote count decreases.

An administrator can manually change the expected votes value in a running cluster with the command:
cman_tool expected <votes>. This must be done with caution to avoid split-brain clusters from becoming
quorate.

CMAN exports the kcl_is_quorate function in the kernel. It simply reports if the cluster is quorate or not.
An ioctl on a cluster socket (mentioned above) does the same for user space.

Quorum is simply a boolean global property of the cluster. In general, Cnxman continues running as usual
whether the cluster has quorum or not. Cluster services, however, are not enabled when the cluster is
inquorate. The enabling of cluster services is discussed further in a later section.

The following values can be configured as shown and have the specified defaults if they are not:
expected votes, default is sum of votes of all nodes
votes, default 1
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3.2.6.1 Quorum device

CMAN has a kernel interface to support in general devices or other mechanisms that can contribute to
quorum (figure 3.2). This may be particularly useful for clusters with two (or any even number) of votes. A
software module would be written to manage or use a specific quorum device. The module would register
with CMAN and simply report if the device is available/alive and contributing its votes to the current cluster
or not. The quorum device module would be registered on each cluster node.

int kcl_register_quorum_device(char *name, int votes);

int kcl_unregister_quorum_device(void);

int kcl_quorum_device_available(int yesno);

Figure 3.2: generic quorum device interface

3.2.6.2 Two-node clusters

Clusters with only two nodes are of particular interest. With the traditional quorum algorithm and the
traditional assignment of one vote per node, if one node fails the other will be unable to operate because the
cluster is inquorate.

option 1

This is the simplest but least interesting option and is only a partial solution to the problem. With this
option one node is given one vote and the other node is given zero votes. If the node with one vote fails,
quorum is lost and the remaining node is inoperable until the failed node returns. However, if the node with
zero votes fails, quorum will be maintained and the remaining node can continue running.

option 2

This option is to use a quorum device as described in the previous section. Both nodes and the quorum
device are all given one vote. Either node can fail and the remaining node can continue operating with
the quorum device accessible. A node must be able to exclusively claim ownership of the quorum device in
the event that it can no longer communicate with the other node. There are currently no quorum device
modules available for CMAN.

option 3

The third option is simple to use but more subtle to understand. In this arrangement, both nodes are given
one vote, but expected votes is set and fixed at one as an exception for this special two-node case. This
unusual behavior allows two things:

1. Split-brain can occur. Both nodes can form independent clusters by themselves, become quorate, and
begin enabling clustering services (fencing, lock manager, file system.) An explanation of how this
becomes safe is described next.

2. If both nodes form a cluster together (as would usually happen when there is no network-partition/split-
brain), then either one of the nodes can fail and the cluster will remain quorate, cluster recovery will
proceed, and the remaining node will continue operating. This is our aim.
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How is it safe to allow two-node split-brain to happen? As previously mentioned, during a split-brain event
both of the separately formed clusters become quorate and begin enabling cluster services independently. If
the GFS service level is enabled on both nodes, the file system would be quickly corrupted.

When cluster services are enabled, the lowest service level, namely, the Fence Domain (FD) service, is enabled
first. Not until the FD service has started will the higher level services be enabled (GDLM, GFS).

In the process of starting, the FD service handles the ”unknown node state problem” (UNSP - a larger, more
general issue discussed elsewhere.) When only two nodes are present, the solution to UNSP also prevents
harm from split-brain. The FD service solves the UNSP (and makes a two-node split-brain safe) by fencing
any nodes with ”unknown state” when the FD is first started in the cluster. Specifically, these are the nodes
listed in cluster.xml that have not joined the cluster by the time the FD is enabled.

In practice it would look like this: when there’s a split-brain, the FD service is started on both nodes which
will attempt to fence each other – it’s a race. The winner will go ahead enabling the other services and
operate by itself. The loser will either be rebooted or unable to access the storage depending on the fencing
method. Either way, GFS on the winner will operate safely.

If a Fibre Channel switch fencing method is used, it is possible that both nodes would succeed in fencing
each other from the storage and then both be stuck with GFS unable to access the file system. So, a fencing
method that reboots the other node is preferred to avoid this case.

The conditions illustrated above had both nodes starting up when they encounter the split-brain. Things
work slightly differently if split-brain happens while the nodes are both cluster members or one is a cluster
member and the other is starting up.

If both nodes a members and split-brain happens, services on both nodes are stopped and then restarted
in the layered fashion already mentioned. Once again there will be a fencing race which one node will win.
If one node is a member and the other is joining when a split-brain occurs, then the second node creates
its own separate cluster. The second node will fence the other when enabling services. Again, GFS will be
enabled and unfenced on only one node at any point in time.

3.2.7 Event Notification

There are three types of notification that result from a cluster event. The first two, kernel callbacks and user
signals, are simply available for general use and serve no specific purpose in this architecture. The third is
an internal notification from Cnxman to Service Manager which may result in SM initiating recovery for a
registered service.

3.2.7.1 Kernel callbacks

Any kernel subsystem can register a callback function with Cnxman (figure 3.3). It will be called when
the cluster has been reconfigured in some way. A ”reason” parameter in the callback indicates what has
occured and a node ID parameter is filled in with a node ID when relevant. Possible reasons are: CLUS-
TER RECONFIG, DIED, LEAVING, NEWNODE. A kernel subsystem must remove its registered callback
when it is shut down or removed from the kernel.
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int kcl_add_callback(void (*callback)(kcl_callback_reason, long));

int kcl_remove_callback(void (*callback)(kcl_callback_reason, long));

Figure 3.3: kernel callback interface

3.2.7.2 Userland signals

The SIOCCLUSTER NOTIFY ioctl on a cluster socket is used by a user program to register for cluster
event notification. CMAN will send the program a signal if the configuration changes. The specific signal
number is specified as the ioctl argument. (Also see Cluster Application Interface.)

3.2.7.3 Service Manager control

When the cluster membership changes, Cnxman notifies the Service Manager. If a cluster member has failed,
SM will check if the failed node was a member of any service groups. If it was SM will coordinate recovery
for all service groups the node was in. If the node failure caused the cluster to lose quorum, SM will suspend
services the failed node was in, but not restart them until the cluster regains quorum. (The cluster may
regain quorum by a new node joining the cluster, the failed node rejoining, or by administrator intervention.)

A somewhat unusual phenomenon may arise given the behavior described here. This happens when a cluster
member fails causing the cluster to lose quorum. Service groups that were not used by the node are not
suspended by SM; these services are not affected by the departed node and need no recovery. These services
continue to run as usual even while the cluster is inquorate. This can also happen if a node simply leaves
the cluster causing quorum to be lost.

This behavior is safe in split-brain scenarios due to the way services are enabled in a newly formed cluster.
If a new split cluster is formed and becomes quorate, it will begin enabling services with the lowest level first
as usual. The low service level is I/O fencing. Nodes on the inquorate side of the split cluster, some of which
may still be running services, will be fenced by the fence domain on the quorate side of the cluster when the
fence domain is enabled. The services running in the inquorate cluster are then cut off from shared resources
before the same services are enabled in the new quorate cluster on the other side of the network partition.

3.2.8 Barriers

CMAN implements general cluster barriers. The barriers are used internally and are exported for external
use in the kernel (figure 3.4) and user space (shown previously.)2

kcl barrier register

Register a new barrier with the given name in which the given number of nodes are expected to participate.
This returns an error if the name is already registered with different number of nodes. It returns success
if the name is already registered with the same number of nodes or not registered. Note that registering a
barrier on one node registers it on all other nodes in the cluster as well. If the number of nodes is 0, the
barrier waits for all cluster members to join.

2Information from Patrick Caulfield
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int kcl_barrier_register(char *name, unsigned int flags, unsigned int nodes);

int kcl_barrier_wait(char *name);

int kcl_barrier_delete(char *name);

int kcl_barrier_setattr(char *name, unsigned int attr, unsigned long arg);

int kcl_barrier_cancel(char *name);

Figure 3.4: kernel barrier interface

kcl barrier wait

Enable the named barrier and wait for the barrier to be reached on all participating nodes. The return
values from this function may be 0: the barrier was reached by all nodes, -ESRCH: the cluster left a state
transition and the number of nodes specified for the barrier was not the special number 0, -EINTR: a signal
is waiting for the process that was waiting, -ENOTCONN: the barrier was canceled.

kcl barrier delete

Remove the named barrier from the system. AUTODELETE barriers are automatically removed when all
nodes have passed.

kcl barrier setattr

Set or change properties of a barrier with the following attribute options:

• BARRIER_SETATTR_AUTODELETE - Toggle the auto-delete flag.

• BARRIER_SETATTR_ENABLED - Enable the barrier (alternative to actually calling kcl_barrier_wait.)

• BARRIER_SETATTR_NODES - Change the expected number of nodes.

• BARRIER_SETATTR_CALLBACK - Set the kernel callback function for the barrier. The parameters are the
barrier name and an integer status (see return value for kcl_barrier_wait.)

• BARRIER_SETATTR_TIMEOUT - Set a time-out on an inactive barrier. Barriers otherwise have no time-
out.

kcl barrier cancel

Cancel an outstanding barrier. If a node is waiting on the barrier, -ENOTCONN is returned. If a callback
is set it is called with a status of -ECONNRESET.

3.2.9 Communications

Document messaging, cman_comms thread. All nodes must be visible to each other - some form of broadcast
medium required.

Document cnxman communications layer.
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3.2.10 Services

Cluster services in this context are subsystems like GFS, GDLM, or the Fence Domain system. Strict
control mechanisms are necessary between them and the cluster manager (especially through direct callback
functions.) As a symmetric cluster manager, CMAN/SM is designed to support symmetric services, although
server-based (asymmetric) services can naturally be used as well.

SM is agnostic regarding particular services and refers to all services generically, representing any service
instance as a Service Group. The separation between ”cluster members” as managed by Cnxman and ”service
group members” as managed by SM allows a great degree of flexibility. General properties of service groups
have already been listed in section 2.2.2.

3.2.11 Service API

The SM interface is given in service.h. A set of exported functions are called by a service to set things up
with SM and to shut down. Control flow in the other direction, SM to the service, is through the set of
callback functions each service provides with its registration.

3.2.11.1 Service formation

The basic functions for setting up a service on a node are shown in figure 3.5: register, join, leave, unregister.
The first two, register and join, set up a service and get it running on a node. The last two, leave and
unregister, shut down the service.

int kcl_register_service(char *name, int namelen, int level, struct kcl_service_ops *ops,

int unique, void *servicedata, uint32 *local_id);

void kcl_unregister_service(uint32 local_id);

int kcl_join_service(uint32 local_id);

int kcl_leave_service(uint32 local_id);

void kcl_global_service_id(uint32 local_id, uint32 *global_id);

void kcl_start_done(uint32 local_id, int event_id);

Figure 3.5: service.h service interface

kcl register service

When a service is instantiated on a node (as opposed to the service being available but not used in an
running context) it first calls kcl_register_service. This function sets up local structures for the service
but does not activate it or make the node known to the service group.

For registration the service provides a unique name to identify the service group. The name must distinguish
the service from others and among multiple instances of the service. The name may originate from a
command used to start the service or it may be the name of the specific resource the service instance is
providing access to. The service also provides a set of callback functions and an opaque context argument to
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be used with the callbacks. The level parameter is defined for each service in service.h. It is chosen according
to the dependencies between services. Register returns a locally unique ID that is used to reference the local
service group in subsequent calls.

kcl join service

After registration, a service calls kcl_join_service to actually join other cluster members in the given
service group. The local ID returned from registration is the only parameter. Once this function is called,
the first start callback from SM may be received; potentially before the join function returns. There may
also be an indefinite delay after the join function returns and before the first start callback is received. This
could be the case if the cluster is inquorate (as discussed below, services are not enabled/started until the
cluster is quorate.)

kcl global service id

Once started, a service may call kcl_global_service_id which returns a globally unique identifier for the
service group. This may be of general use to a service as the unique name used to register may not be
convenient to use in internal functions or communications.

kcl leave service

When a service wishes to shut down on a node, it should leave the service group using kcl_leave_service.
Again, the local ID is the only parameter. The service should continue to operate until the leave call returns.
Another node may fail during the process of leaving the service group and the service may be stopped and
started to handle the necessary recovery while waiting for the leave function to return. Before the leave
function returns a final stop will be the last callback the service receives.

kcl unregister service

Once a service has left the service group, the local structures can be removed by calling kcl_unregister_service
using the local ID for the final time.

kcl start done

This function is called by a service to notify SM that it has completed processing a start callback. The
service only need call this function for the most recent start callback in the event of interrupted recoveries.
The event ID parameter is the ID from the start callback to which the kcl_start_done call corresponds.

3.2.11.2 Service control

Cluster management is applied to services through the service callback functions in figure 3.6. A cluster
service is controlled by SM to whatever extent it reacts to the callbacks.

stop

The stop (or suspend) callback tells the service that the group membership is to change. The service instance
suspends operations to the extent that it would produce incorrect results while operating with multiple nodes
having inconsistent views of the service group membership. The stop callback is not acknowledged by the
service. In general, the service should process the stop synchronously, i.e. before its stop callback function
returns. The only stop parameter is the service’s context pointer.

The service must be able to handle a stop callback called at any time, even while it’s processing a start
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struct kcl_service_ops

{
int (*stop)(void *servicedata);

int (*start)(void *servicedata, uint32 *nodeids, int count, int event_id, int type);

void (*finish)(void *servicedata, int event_id);

}

Figure 3.6: service.h service control functions

callback or waiting for a finish callback, i.e. a stop can follow another stop, a start or a finish callback.

Stop will be called if a new node joins the service group or if a service group member leaves or fails. It
is guaranteed that stop will be called and will have returned on all service group members before a start
callback is delivered to any group members. Furthermore, it is guaranteed that if a node has failed, all
service groups the node was in have been stopped before any are started.

start

The start (or recover) callback tells the service that the group membership has been changed and provides
the updated member list. The start is delivered to the service on all members of the new service group. This
includes new members that have joined and excludes old members that departed. After a node joins a service
group, the first start callback is when the service actually begins its operation. The start is asynchronous
and it is an appropriate place for a service to do recovery or reconfigure to work with the new member list.
When this asynchronous processing of the start is complete, the service must call kcl_service_done (see
above) to notify SM.

If a service group member fails while the service is processing the start, all remaining group members will
receive a stop callback, regardless if the node has called kcl_service_done or not. The stop effectively
resets the nodes in the service group and prepares them to receive another start callback. If a node is still
processing a start when a stop is delivered, the start should abort. There is no need to call kcl_start_done
for an aborted start.

The event ID parameter is used to distinguish start callbacks, to match a specific finish callback to a specific
start and to match a kcl_start_done with a specific start. The nodeids parameter is an array of count
node ID’s that form the new service group membership. The service is responsible for freeing this memory.

finish

The finish (or resume) callback tells the service that all service group members have completed start pro-
cessing and have called kcl_start_done. This is an appropriate time for the service to resume normal
operations as it knows all group members have completed recovery. The event ID parameter is the same as
that used for the start for which the finish applies.

3.2.12 Service Events

Internal SM handling of events.
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3.3 GDLM

This section details the design, construction and unique advantages provided by GDLM.

3.3.1 Motivation

DLM’s are the de facto standard for high availability distributed locking. Several features of a DLM are the
basis for this and are covered below.

• Availability

DLM offers the highest possible form of availability. There is no number of nodes that can fail, and no
selection of nodes that can fail such that the DLM cannot recover and continue to operate.

• Performance

DLM achieves excellent performance by increasing the likelihood of local processing. This performance
advantage is a simple result of the way DLM’s are designed. Each node ”masters” locks that it creates.
When a node is operating on its own files/data, it is master of the corresponding locks and its requests
for the locks are immediate, requiring no network requests at all.

When multiple nodes are using the same locks and contending for exclusive access to them, the per-
formance becomes equivalent to a single lock server with one network request/reply.

Furthermore in the case of contention, the lock manager role of arbitrating among contending requests
is distributed among all nodes in the cluster, so there is no one node relied upon to handle all the work.
What can be very high load on a single server can be negligible when distributed across many nodes.
The slowdown caused by a heavily loaded lock manager disappears.

• Elimination of Bottlenecks

Bottlenecks in a cluster architecture severely limit both performance and scalability. DLM is designed
to eliminate any possible bottleneck. The following briefly describes this.

Bottleneck issues arise quickly when single machines are used as servers. This includes many things:
memory, CPU, and network limitations. A DLM, however, distributes lock traffic evenly across all
nodes. As more nodes are added, more distribution takes place to reduce any additional load.

Memory bottlenecks In a replicating lock manager, each lock server consumes memory to hold a copy
of the entire cluster’s lock state. This can become very large and if running on a GFS node, the lock
server or application can be forced to swap to disk.

A DLM distributes lock state (memory) among all nodes. When DLM locks are mastered locally, no
memory is replicated for them anywhere. For DLM locks mastered remotely, two copies of the lock are
kept, one in the memory of the node owning the lock and one on the lock’s master node. In contrast,
when using three redundant lock servers, there are four copies of every lock. Therefore, not only is
the DLM’s memory usage evenly distributed across all nodes, but simple calculations show the DLM’s
total usage to be half or less.

CPU bottlenecks A single lock manager must process all requests from all nodes in the cluster. If it
is also replicating state, it also has to process replication traffic among all redundant servers. The
limitations of the CPU can quickly be reached by adding nodes or increasing file system load. With a
DLM, just as before, all this processing is balanced across all nodes.

Network bottlenecks A DLM is not a replication system and therefore has far less network traffic which
consequently increases performance. A replicating lock server quickly becomes impractical because
of all the replication overhead. Operations become very slow because of heavy network traffic and
response is only as fast as the slowest server. Each replicating node added makes things worse.
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• Scalability

Many of the DLM characteristics mentioned above for performance also contribute to scalability. Bot-
tlenecks are very often a limitation to scalability which is why symmetric architectures (like GFS and
DLM) are designed with extra effort to be symmetric (it’s much simpler and quicker to manage things
asymmetrically from a single server, the problems are trivial in comparison.)

When all nodes using a DLM split the management tasks there is no one node or subset of nodes that
can become bogged down due to the addition of too many nodes or too much application load.

• Manageability

The DLM requires no special nodes or special programs that an administrator would need to manage.
The DLM maintains the symmetric ”all nodes are equal” concept. This is a fundamentally simpler
organization than other common systems that require various collections of nodes and lock management
programs to be understood, arranged, started, configured, and managed separately. Additionally, the
requirements of a separately managed lock management system are often different than the main
requirements presented by the real cluster being managed. The intersection of these two differing sets
of requirements can be confusing and far more work intensive than the management-free DLM.

• Kernel Implementation

When using DLM there are no user-space components that the kernel subsystems actively rely upon.
This can be a big benefit as loads increase and memory becomes scarce.

GFS is a kernel service and farming its functions out to user-space is not only slow but dangerous in
low-memory situations as it can lead to machine deadlocks. DLM being entirely in kernel space can
manage its own memory more directly.

This becomes even more important with the kernel part of CLVM, as it deals with suspended devices
which can cause page cache memory to balloon out of control while metadata is updated. As painfully
discovered, mixing user-space and kernel space in this way can result in complex deadlocks beyond our
control.

3.3.2 Requirements

External interfaces and behaviors:

• Support GFS’s lock request interface.

• Support CLVM’s lock request interface.

• Support standard DLM lock request interface.

• Support arbitrary independent lock spaces.

• Be fully recoverable from all possible failure conditions.

• Be stand-alone (independent of particular usage).

• Be self-configuring (no user input or management required).

• In-progress requests simply block during recovery.

• Requests processed and returned after a failed node’s locks are cleared.
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3.3.3 Lock Spaces

A lock space in a specific instance of the GDLM service. Any application that would like to take advantage
of distributed locking can create a lock space to use. As instances of the application on different nodes
request the same lock space name, they will operate together in the same lock space. The specific node ID’s
of the nodes in the lock space are provided each time the Service Manager starts the lock space following a
transition.

Within a lock space, resources an application references itself will exist; none others. The GFS application
must, of course, use a separate lock space for each file system because identical resource names will exist in
every file system. e.g ”inode 128”.

So, multiple independent lock spaces allow many applications (different types and different instances of the
same type) to operate at once independently from each other in the cluster.

3.3.3.1 Usage

This interface is used by GDLM applications such as GFS to request new lock spaces and subsequently
release them.

int gdlm_new_lockspace(char *name, int namelen, gdlm_lockspace_t **lockspace, int flags);

int gdlm_release_lockspace(gdlm_lockspace_t *lockspace);

Figure 3.7: gdlm.h lock space usage

gdlm_new_lockspace: The name and namelen parameters naturally refer to the name of the lock space
being requested. The lockspace parameter is the lock space context pointer returned to the application
to be used as the basis for future lock requests. When the function returns, the lock space can be used
immediately. The flags parameter can enable or disable certain features in a lockspace. Currently, the only
flag is NOTIMERS which causes requests to not be subject to time-outs after waiting for too long.

gdlm_release_lockspace: The lockspace parameter is the same context pointer as was returned from the
lock space creation.

3.3.3.2 Functions: lockspace handling

Within GDLM a lock space is represented by a gd_ls_t structure called the ”lockspace” or ”ls” struct. It
is analogous to a file system’s superblock structure. The following functions deal with lockspace structures.

gd_ls_t *find_lockspace_by_global_id(uint32 id)
Searches GDLM’s global list of lockspaces to find one with the specified (global) ID. (A lockspace global ID
is defined later.)

gd_ls_t *find_lockspace_by_name(char *name, int namelen)
Searches GDLM’s global list of lockspaces to find one with the specified name.
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Null no access is requested
Concurrent Read read access is requested with no other restriction
Concurrent Write write and read access is requested with no other restriction
Protected Read read access is requested with no write access granted to

other processes
Protected Write write and read access is requested with no write access

granted to other processes
Exclusive read and write access is requested with no read or write

access granted to other processes

Table 3.1: Resource Lock Mode Description

gd_ls_t *allocate_ls(int namelen)
Allocates memory for and returns a gd_ls_t structure for a lockspace with a name of specified length.

void free_ls(gd_ls_t *ls)
Frees the specified lockspace structure.

int new_lockspace(char *name, int namelen, gdlm_lockspace_t **lockspace, int flags)
Allocates and initializes a unique lockspace with given name. Registers and joins a corresponding Service
Manager service group using the lockspace name.

int gdlm_release_lockspace(gdlm_lockspace_t *lockspace)
Leaves the Service Manager service group associated with the lockspace and deallocates everything associated
with the given lockspace. The lockspace must continue all its regular group functions until the function
leaving the service group has returned.

int gdlm_new_lockspace(char *name, int namelen, gdlm_lockspace_t **lockspace, int flags)
Does system-level GDLM initialization if not done already. Calls new_lockspace shown above.

3.3.4 Resources, Locks and Queues

There are two fundamental objects in a lock space: a resource block (RSB) representing a resource and a
Lock Block (LKB) representing a lock. (These terms are inherited from VaxCluster nomenclature.) The two
corresponding internal structures are: gd_res_t, gd_lkb_t.

An LKB contains a pointer to the RSB it is held against. The node owning the lock is identified in the
LKB’s nodeid field. An LKB also has a granted mode and requested mode. Both modes are valid while an
LKB is being converted, otherwise only the granted or requested mode is valid. The following table shows
the possible LKB modes and their compatibility and table 3.1 gives a general interpretation of the modes.

NL CR CW PR PW EX
NL 1 1 1 1 1 1
CR 1 1 1 1 1 0
CW 1 1 1 0 0 0
PR 1 1 0 1 0 0
PW 1 1 0 0 0 0
EX 1 0 0 0 0 0

An RSB contains its unique identifying name in addition to three lock queues. The name is treated as
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Figure 3.8: An RSB’s lock queues

an arbitrary binary sequence of data up to 64 bytes in length; it is not interpreted by GDLM. The three
lock queues are: granted, converting and waiting. The granted queue contains currently granted locks on
the resource. The convert queue contains granted locks that are being converted to a requested mode not
compatible with existing granted locks. The wait queue contains ungranted locks with requested modes
incompatible with the granted mode of existing granted locks.

An RSB has a master node that is defined in the Resource Directory. The first node to request a lock on an
RSB becomes its master. A subsequent node wanting to lock the RSB must first look up the master node ID
in the Resource Directory. The locks from all nodes against an RSB are kept in the master RSB’s queues.

A node holding a lock against a remotely mastered RSB also keeps a local copy of the RSB. This is where
the node keeps a copy of its own locks which officially exist on the master RSB. These copies are used in
recovery if the master node of the RSB fails.

The node ID in the master RSB is set to zero (res_nodeid). The LKB’s owned by the RSB master also
have node ID’s set to zero, otherwise the node ID identifies the owner. In the case of a non-master RSB
copy, the RSB node ID identifies the master and the LKB’s (all locally owned) also have node ID’s of the
master node. Figure 3.8 gives a simple illustration.

When a lock is requested or converted, its requested mode is compared with the granted mode of all existing
locks on a resource. If it is compatible with them the request is granted immediately and the lock is placed
on the RSB granted queue. If the request is not compatible with existing locks, ”blocking AST’s” are sent to
the nodes holding the locks preventing the request from being granted. The request is kept on the converting
or waiting queue.

Whenever a lock is converted to a lower mode or unlocked an attempt is made to grant locks on the convert
and wait queues. Demoting a lock to a lower mode will never block.

3.3.4.1 Lock ID’s

When a new LKB is created it is assigned an ID that is used to identify and look up the LKB uniquely in
the lockspace. The LKB can be referenced using its ID without referring to the resource it’s held against.
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The LKB ID’s are unique only within the context of the local lockspace, i.e. the same LKB ID may refer to
a different lock if used on another machines or in another lockspace.

LKB ID’s are 32 bits and have two 16 bit parts. The bottom 16 bits are a random number between 0 and
lockidtbl size-1. This random number specifies the bucket for the LKB in the lockspace’s lockidtbl hash table
(holds all LKB’s in the lockspace.) The upper 16 bits are a sequentially assigned per-bucket id. (Because
the 16 bit ID’s per bucket can roll over, a new ID must be checked against the ID of all LKB’s in the bucket
to avoid duplication.)

When a lock is held against a remotely mastered RSB, one LKB exists on the node holding the lock and
another LKB representing the same lock exists on the master (the ”master copy” or MSTCPY.) In addition
to its own ID, an LKB saves the ID of the matching LKB on the remote node. Both local and remote ID’s
are included in messages between nodes, each node using the ID appropriate for its own LKB and simply
saving the other to include in messages. For a local lock held against a locally mastered RSB, the remote
LKB ID is not used.

3.3.4.2 Functions: RSB/LKB structures

int find_or_create_rsb(gd_ls_t *ls, gd_res_t *parent, char *name, int namelen,
int create, gd_res_t **rp)

Find an RSB with given name in lockspace’s RSB list and return it. If create is set and the RSB is not
found, create an RSB with the given name and return it. When an RSB is found, increment reference count
of the structure. When a parent RSB is provided, both name and parent must match to return an existing
RSB.

void release_rsb(gd_res_t *r)
Decrement the reference count of the RSB structure. Remove it from the lockspace’s RSB list and deallocate
if the reference count becomes zero. Also decrement the reference count of the parent RSB if one exists.
Remove the resource directory entry for the RSB if it was removed.

void hold_rsb(gd_res_t *r)
Increment the reference count of the RSB structure.

gd_res_t *search_hashchain(osi_list_t *head, gd_res_t *parent, char *name, int namelen)
Search the given list for an RSB with given name.

void lkb_add_ordered(osi_list_t *new, osi_list_t *head, int mode)
Insert a lock’s list element into the given list in order of mode.

void lkb_enqueue(gd_res_t *r, gd_lkb_t *lkb, int type)
Put a lock on the RSB queue specified by type (granted, converting or waiting).

int lkb_dequeue(gd_lkb_t *lkb)
Remove a lock from whichever RSB queue it is on.

int lkb_swqueue(gd_res_t *r, gd_lkb_t *lkb, int type)
A combination of the previous two operations done atomically, removing the lock from a queue and add it
to a new one.

void res_lkb_enqueue(gd_res_t *r, gd_lkb_t *lkb, int type)
int res_lkb_dequeue(gd_lkb_t *lkb)
int res_lkb_swqueue(gd_res_t *r, gd_lkb_t *lkb, int type)
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Versions of above that lock the RSB before doing the operation.

gd_lkb_t *create_lkb(gd_ls_t *ls)
Allocate a new LKB structure with a new unique ID.

void release_lkb(gd_ls_t *ls, gd_lkb_t *lkb)
Remove the given LKB from a lockspace’s LKB hash table (lockidtbl) and free it.

gd_lkb_t *find_lock_by_id(gd_ls_t *ls, gdlm_lkid_t lkid)
Look up the LKB with given ID in a lockspace’s LKB hash table (lockidtbl).

3.3.5 Cluster Management

A GDLM lockspace is managed by the Service Manager as a Service Group. Each time SM gives the
lockspace the ”start” callback, the group of node ID’s using the lockspace is provided. A lockspace keeps
two lists relative to nodes: ls_nodes and ls_nodes_gone. How and when these lists are updated is covered
in the Recovery section. In general, the ls_nodes list is the current group of nodes in the lockspace. The
ls_nodes_gone list is empty except during recovery when it contains nodes that were in the previously
running lockspace but are not in the present lockspace.

Any node using a lockspace is represented by one gd_node_t structure in a global GDLM node list. This
structure contains globally constant (not variable or lockspace-specific) properties of a node: its unique node
ID and IP address (both from the cluster manager).

The gd_csb_t structure represents a node in the context of a specific lockspace (Cluster System Block is
a term from VaxClusters). It points to the global gd_node_t structure and contains the lockspace-specific
property gone_event, an event ID discussed later identifying the transition during which the node left the
lockspace.

When a lockspace is created and becomes a Service Group, SM returns for it two ID’s. A local ID that
uniquely identifies the lockspace on the node and a global ID that uniquely identifies the lockspace in the
cluster. The global ID is the most widely used as it is part of all inter-node GDLM communications.

3.3.5.1 Functions: node information

gd_node_t *allocate_node(void)
Allocate a node structure for the global nodes list.

void free_node(gd_node_t *node)
Free a node structure.

gd_csb_t *allocate_csb(void)
Allocate a CSB structure for a lockspace-specific nodes list.

void free_csb(gd_csb_t *csb)
Free a CSB structure.

gd_node_t *search_node(uint32 nodeid)
Search the global nodes list for a node structure with specified node ID.

void put_node(gd_node_t *node)
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Release a reference on a global node structure. When the reference count reaches zero, release it.

int get_node(uint32 nodeid, gd_node_t **ndp)
Return an existing node structure with specified node ID, incrementing its reference count or allocate a new
node structure with the specified node ID

int init_new_csb(uint32 nodeid, gd_csb_t **ret_csb)
Return a new lockspace-specific CSB structure with specified node ID. The CSB structure points to a global
node structure for the node in question that contains the node’s global properties.

void release_csb(gd_csb_t *csb)
A combination of put_node and free_csb.

uint32 our_nodeid(void)
Returns the local node ID. This value is obtained from the cluster manager when the lockspace is first
started.

void add_ordered_node(gd_ls_t *ls, gd_csb_t *new)
Add a CSB structure to a lockspace’s nodes list in order of node ID’s.

int in_nodes_gone(gd_ls_t *ls, uint32 nodeid)
Returns TRUE if a node with specified node ID is in a lockspace’s ls_nodes_gone list.

3.3.5.2 Control mechanics

A lockspace is controlled by the Service Manager using the three functions discussed in section 2.2.2. The
following describes how GDLM handles these three callback functions and responds to the cluster events
they signal. This is the management of the recovery process. The details of the recovery process itself are
left for a later section.

GDLM has a specific thread (gdlm_recoverd) in charge of processing control input from the Service Manager.
This thread also carries out the recovery routines it initiates. This is a global thread that works on behalf
of all GDLM lock spaces.

start

When SM calls a lockspace’s gdlm_ls_start function, it means that the lockspace should be enabled to do
request processing. To do that the lockspace must step through a recovery procedure cooperatively with
all nodes in the lockspace. This recovery process is executed asynchronously by the gdlm_recoverd thread.
When recovery is done, the lockspace signals to SM that it’s done using the kcl_start_done function.

The gdlm_ls_start function allocates a gd_recover_t structure to record the relevant information for
asynchronous processing of the start. The structure saves the list of node ID’s provided by SM that represent
the new lockspace membership. The start is unique and sequentially ordered among other control functions
by the ”event ID” provided by SM in each start callback. The event ID is saved in gd_recover_t and in
the lockspace’s ls_last_start field.

stop

When SM calls a lockspace’s gdlm_ls_stop function, it means there is a forthcoming change to the lockspace’s
membership and the lockspace should stop normal processing so all lockspace nodes can reconfigure. If the
lockspace were to continue processing requests after stop, the lockspace would produce inconsistent results
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as different nodes may be operating on the basis of differing lockspace membership. Stopping the lockspace
while all nodes adjust the membership and perform recovery is essential to correct operation.

The gdlm_ls_stop function acquires the lockspace’s in_recovery lock in write mode. This lock is held
in read mode by all processes while processing requests in GDLM (also by gdlm_recvd while processing
remote requests.) Acquiring this lock guarantees that when the stop callback returns to SM, no further lock
processing will occur. The lockspace’s ls_last_stop field is set to the current value of ls_last_start.

finish

When SM calls a lockspace’s gdlm_ls_finish function, it means all nodes that received the prior start have
completed recovery. The finish callback is accompanied by an event ID that matches the event ID of the
start to which the finish applies. This is saved in the lockspace’s ls_last_finish field.

Callback processing

Once a lockspace is created, the first SM callback it receives is a start. This arrives during or immediately
after the return of kcl_join_service (from the SM API).

After a lockspace receives any of the callbacks above (stop, start, finish), gdlm_recoverd looks at the state
recorded from the callback (or callbacks, because the callbacks are processed asynchronously multiple can be
received between processing of the last) to determine what needs to be done. The possible items recorded by
the callback functions are: flags indicating which callback functions have been received since last checking,
new gd_recover_t struct(s) from start, and the ls_last_stop, ls_last_start, ls_last_finish values.

For any lockspace that may have some recovery to handle, the gdlm_recoverd thread calls do_ls_recovery.
The first thing done by this function is a call to next_move that collects and combines all the unprocessed
callback state and decides what the next action should be. All possible combinations of callback state can
be reduced to one of the following which next_move will return: DO STOP, DO START, DO FINISH,
DO FINISH STOP, DO FINISH START. If the move includes a start, then the relevant gd_recover_t
struct is returned as well.

The next_move function combines SM callbacks to arrive at one of the ”DO” values summarized in the
following list. Because the callbacks are processed asynchronously and only a start is acknowledged when
completed, multiple callbacks can arrive between processing. The event ID’s recorded for each start in the
gd_recover_t struct and the values ls_last_stop, ls_last_start, ls_last_finish allow the ordering
of the callbacks to be determined.

• DO STOP: A lone stop was received, or a start was received followed by a stop.

• DO START: A lone start was received, or a stop was received followed by a start.

• DO FINISH: A lone finish was received.

• DO FINISH STOP: A finish was received followed by a stop, or a finish was received followed by a
start followed by a stop.

• DO FINISH START: A finish was received followed by a stop followed by a start.

do_ls_recovery combines the ”DO” value from next_move with the current lockspace state to deter-
mine what recovery functions to call and to assign the next lockspace state. The main recovery function
ls_reconfig is called when a DO START or DO FINISH START is returned from next_move.
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3.3.5.3 Recovery states

A lockspace is moved through the states (ls_state) listed below by do_ls_recovery. The next state
is determined by a combination of the next_move value and the success or failure of ls_reconfig, the
recovery function called by do_ls_recovery. Figure 3.9 shows the state transitions. In the figure, START,
STOP, FINISH, FINISH STOP, FINISH START represent the next_move values shown above. The ”ok”
and ”error” values represent the result of ls_reconfig. The recovery routines in ls_reconfig can return
an error if a lockspace member node fails during recovery.

• INIT: A lockspace is created in this state. Waiting for a start.

• INIT DONE: A lockspace is done with recovery from its first start. Waiting for a finish.

• CLEAR: A lockspace is not in any recovery state having finished the previous recovery successfully.

• WAIT START: A lockspace has received a stop or the recovery for the last start has failed. Waiting
for a start.

• RECONFIG DONE: A lockspace is done with recovery from a start. Waiting for a finish.

3.3.5.4 Functions: recovery management

gd_recover_t *allocate_recover(void)
Called from gdlm_ls_start to allocate a gd_recover_t structure with which to save the state associated
with the start for asynchronous processing. This state includes the list of nodes being started and the event
ID of the start.

void free_recover(gd_recover_t *gr)
Frees a gd_recover_t structure.

int gdlm_ls_stop(void *servicedata)
GDLM’s stop function called by the Service Manager.

int gdlm_ls_start(void *servicedata, uint32 *nodeids, int count, int event_id, int type)
GDLM’s start function called by the Service Manager.

void gdlm_ls_finish(void *servicedata, int event_id)
GDLM’s finish function called by the Service Manager.

void enable_locking(gd_ls_t *ls, int event_id)
Enable locking based on the completion of recovery for the event with specified ID. Locking will not be
enabled if a more recent stop event has arrived. Locking is enabled by setting the LS RUN lockspace bit
and unlocking the in_recovery write lock.

int ls_reconfig(gd_ls_t *ls, gd_recover_t *gr)
Called when a lockspace is started to do recovery.

int ls_first_start(gd_ls_t *ls, gd_recover_t *gr)
Called in place of ls_reconfig to do first-time recovery (which is reduced) the first time a lockspace is
started.



44

CLEAR

WAIT
START

RECONFIG
DONE

INIT
DONEINIT

(START & ok)

STOP, FINISH_STOP, (START & error),
(FINISH_START & error)

STOP,
(START & error)

(START & ok),
(FINISH_START & ok)

STOP,
        (START & error)

(START & ok)

FINISH

FINISH
(START & ok),

      (FINISH_START & ok)

     STOP, FINISH_STOP,
       (START & error),
(FINISH_START & error)

(START & ok)

STOP,
(START & error)

Figure 3.9: Lockspace recovery states
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void clear_finished_nodes(gd_ls_t *ls, int finish_event)
Called when a finish is received to remove node structures from the ls_nodes_gone list of nodes for which
recovery was conducted.

int next_move(gd_ls_t *ls, gd_recover_t **gr_out, int *finish_out)
Combines the state recorded from Service Manager callback functions to determine what recovery action to
take next.

void do_ls_recovery(gd_ls_t *ls)
Step through the lockspace recovery states based on input from next_move and the success or failure of
recovery routines (ls_reconfig) that it calls.

gd_ls_t *get_work(int clear)
Called by the gdlm_recoverd thread to get a lockspace for which recovery is necessary. A lockspace is
marked as needing recovery attention with the WORK flag set by ctrld_kick.

int gdlm_ctrld(void *arg)
The top-level gdlm_recoverd function that processes recovery for lockspaces.

void ctrld_kick(gd_ls_t *ls)
Marks a lockspace as needing recovery attention. Called by Service Manager callback functions on the
lockspaces referenced.

3.3.5.5 Cluster information

In addition to being controlled by the cluster manager in response to cluster transitions, GDLM needs to
query the cluster manager for some basic information. First, GDLM needs to know the node ID of the node
it’s running on, i.e. its own node ID. Second, GDLM needs to look up the IP address of another node ID.
The Service Manager provides lock space membership in terms of node ID’s. GDLM needs to communicate
with these nodes and therefore also needs IP addresses. There are basic exported CMAN functions that
provide this information along with a variety of other information that is unused.

3.3.6 Lock Requests

This section discusses the primary function of GDLM, the processing of asynchronous lock requests. It
begins with the exported lock request API and continues with details of the internal request processing.

3.3.6.1 Usage

Figure 3.10 shows the GDLM locking interface comprised of the two functions gdlm_lock and gdlm_unlock.
Before a description of their use in an application, one GDLM structure used in the interface, gdlm_lksb_t,
should be described.

Shown in figure 3.11, the Lock Status Block (LKSB, another term from VaxCluster’s DLM) is a structure
used for both input and output parameters. Every lock request must be accompanied by an LKSB structure
allocated by the application.

The LKSB provides a place for GDLM to return results of a request. The results are ready and can be read
by the application once the asynchronous completion callback (AST) is called. There can be multiple parts
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int gdlm_lock(gdlm_lockspace_t *lockspace, uint32 mode, gdlm_lksb_t *lksb, uint32 flags,

void *name, unsigned int namelen, gdlm_lkid_t parent,

void (*lockast)(void *astarg), void *astarg, void (*bast)(void *astarg, int mode),

gdlm_range_t *range);

int gdlm_unlock(gdlm_lockspace_t *lockspace, gdlm_lkid_t lkid, uint32 flags, gdlm_lksb_t *lksb,

void *astarg);

Figure 3.10: gdlm.h locking interface

to the result, but the main one is the ”status” (sb_status). The status indicates the success or failure of
the request in general; if successful (status is zero) the other results are valid. The second result is the lock
ID (sb_lkid) of the granted lock that is used for conversions and to unlock. The third result is the LVB
(sb_lvbptr) which is described in a later section and the fourth result is flags (sb_flags) containing extra
information.

The LKSB is also how an application provides input for requests. The lock ID field is used to specify a lock
to convert or unlock. The LVB field is used to update a resource’s LVB in conjunction with a conversion or
unlock.

struct gdlm_lksb

{
int sb_status;

gdlm_lkid_t sb_lkid;

char sb_flags;

char *sb_lvbptr;

};
typedef struct gdlm_lksb gdlm_lksb_t;

Figure 3.11: gdlm.h lock status block

Making a lock request

Acquiring a lock on a resource is a matter of calling gdlm_lock with proper parameters. Calling one
of the functions in figure 3.10 is often referred to as ”queuing a request” because the result is returned
asynchronously. If the function call returns a non-zero value, the request failed to be queued, will not be
processed, and no AST will be called.

The essential elements of a lock request are: a resource name and length, the mode of lock being requested,
an LKSB reference for input and output values, a completion callback function pointer, a blocking callback
function pointer, and a parameter to include in both callback functions. Additional settings are: a parent
lock ID for hierarchical locking, a range to do range locking and flags. The following list explains each
parameter to gdlm_lock.

• lockspace: the service needing to use GDLM should create its own lockspace. The lockspace pointer
is returned by GDLM when a lockspace is created (figure 3.7) by the application and it provides a
context for all subsequent GDLM lock requests.

• mode: the mode of the requested lock (table 3.1).

• lksb: a pointer to a Lock Status Block allocated by the application per lock. When an initial lock
request is complete (the AST is called), the LKSB status field gives the result of the operation. A
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status of zero means the requested lock has been granted. A status of -EAGAIN means the NOQUEUE
flag was used and the requested lock could not be granted immediately. Other errors mean there was
some kind of non-standard internal error.

If the request was successful, the LKSB lock ID field was filled in by GDLM with the granted lock’s
unique ID (per-node). This ID must be used as input in the same field for subsequent conversions or
unlocking of the lock.

• flags: NOQUEUE means the request should not be queued if the lock cannot be granted immediately.
If this is the case, the request should return -EAGAIN in the LKSB status field. CONVERT must be
set if the request is a conversion of an existing lock. QUECVT forces a conversion to the back of the
convert queue. All other conversion requests ahead of it must be granted before it can, enforcing a
FIFO ordering on the convert queue. This can be used to avoid indefinite postponement and is only
applicable when converting a lock to a more restrictive mode. CONVDEADLK allows GDLM to demote
the granted state of a converting lock to avoid conversion deadlock.

• name: the name of the resource being locked. Treated as an arbitrary array of binary data.

• namelen: the name length in bytes.

• parent: the parent lock ID used for hierarchical locking. (See section on hierarchical locking.)

• lockast: the function GDLM should call when the request completes.

• astarg: the parameter GDLM should include in callback functions related to the lock being requested.
Generally used by the application to identify the specific lock to which the callback pertains.

• bast: the function GDLM should call when the lock being requested blocks another request. Using this
function’s mode parameter, GDLM specifies the mode that the blocked request has requested.

• range: a structure specifying a range with start and end values. (See section on range locking.)

If AST routines or the AST parameter are provided in conversion requests, they overwrite the previously set
values. AST routines should avoid blocking; they may submit other GDLM requests.

Making an unlock request

To release a lock from a resource the gdlm_unlock function is used. The following list describes the function
parameters.

• lockspace: see previous description

• lkid: the lock ID of the lock being released. In gdlm_lock this value is specified in the LKSB.

• flags: CANCEL means that any outstanding request for the specified lock should be canceled. If the
request was a conversion, the lock will be returned to its previously granted state. The LKSB status
returned for the canceled request will be -GDLM ECANCEL.

• lksb: the result of the unlock is returned in the status field. A status of -GDLM EUNLOCK indicates
success. An unlock should never fail.

• astarg: the parameter GDLM should include in the completion callback function. The AST function
used in the prior gdlm_lock call is called by GDLM when the unlock is complete.
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3.3.6.2 Request processing

There are three possible outcomes when an application queues a new lock request. Three similar results are
possible for a conversion request.

Possible outcomes for a queued lock request (a Failed result is only possible when the request includes the
NOQUEUE flag):

1. Finished. A new LKB is on the RSB’s granted queue and a completion AST indicating success is sent
to the application.

2. Failed. No new LKB exists and a completion AST indicating ”try again” is sent to the application.

3. Delayed. A new LKB is on the RSB’s wait queue and blocking AST’s are sent to applications holding
locks blocking the request.

Possible outcomes for a queued conversion request:

1. Finished. The LKB remains on the RSB’s granted queue and a completion AST indicating success is
sent to the application.

2. Failed. The LKB remains on the RSB’s granted queue (with no mode change) and a completion AST
indicating ”try again” is sent to the application.

3. Delayed. The LKB is on the RSB’s convert queue and blocking AST’s are sent to applications holding
locks blocking the request.

The following sequences show the main steps and functions involved in processing lock requests. Each
outcome type (finished, failed, delayed) is considered individually for both locally and remotely mastered
RSB’s. Each request sequence begins in the unspecified context of an arbitrary application. Generally, each
numerical step (1, 2, 3...) is called by the previous, forming a call trace. This is broken either by a transition
to remote processing on a master node (M1, M2...), or by a change in thread context where the new thread
is specified in brackets, e.g. [gdlm_recvd]. Each step performed on a remote master (M1, M2...) is called
by the top-level process_cluster_request() that runs in the gdlm_recvd context.

A. local new request finishes

1. dlm_lock()
checks input params
creates new LKB

2. dlm_lock_stage1()
find_or_create_rsb() returns RSB, finding existing or creating new
master lookup for new RSB (local or remote)

3. dlm_lock_stage2()

4. dlm_lock_stage3()
can_be_granted() returns TRUE
grant_lock() adds LKB to RSB’s granted queue and queues completion AST
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5. deliver_ast() [gdlm_astd]
sets LKSB status to 0
calls application AST

B. local new request fails

1-3. A.1-3

4. dlm_lock_stage3()
can_be_granted() returns FALSE
marks LKB to be deleted
queues completion AST

5. deliver_ast() [gdlm_astd]
sets LKSB status to -EAGAIN
calls application AST
frees LKB

C. local new request is delayed

1-3. A.1-3

4. dlm_lock_stage3()
can_be_granted() returns FALSE
adds LKB to RSB’s waiting queue
send_blocking_asts() queues local BAST’s and sends remote BAST messages

Later, within the context of another request that unlocks or down-converts a
lock on the same RSB:

5. grant_pending_locks()
can_be_granted() returns TRUE
grant_lock() adds LKB to RSB’s granted queue and queues completion AST

6. deliver_ast() [gdlm_astd]
sets LKSB status to 0
calls application AST

D. local conversion request finishes

1. dlm_lock()
checks input params

2. convert_lock()
find_lock_by_id() finds LKB being converted

3. dlm_convert_stage2()
can_be_granted() returns TRUE
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grant_lock() leaves LKB on RSB’s granted queue and queues completion AST
grant_pending_locks() grants unblocked LKB’s

4. deliver_ast() [gdlm_astd]
sets LKSB status to 0
calls application AST

E. local conversion request fails

1-2. D.1-2

3. dlm_convert_stage2()
can_be_granted() returns FALSE
adds LKB back to RSB’s granted queue with original mode
queues completion AST

4. deliver_ast() [gdlm_astd]
sets LKSB status to -EAGAIN
calls application AST

F. local conversion request is delayed

1-2. D.1-2

3. dlm_convert_stage2()
can_be_granted() returns FALSE
adds LKB to RSB’s convert queue
send_blocking_asts() queues local BAST’s and sends remote BAST messages

Later, within the context of another request that unlocks or down-converts a
lock on the same RSB:

4. grant_pending_locks()
can_be_granted() returns TRUE
grant_lock() adds LKB to RSB’s granted queue and queues completion AST

5. deliver_ast() [gdlm_astd]
sets LKSB status to 0
calls application AST

G. remote new request finishes

1. dlm_lock()
checks input params
creates new LKB

2. dlm_lock_stage1()
find_or_create_rsb() returns local RSB, finding existing or creating new
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master lookup for new RSB (local or remote)

3. dlm_lock_stage2()

4. remote_stage()
add_to_lockqueue() adds LKB to list awaiting reply (LQSTATE_WAIT_CONDGRANT)

5. send_cluster_request()
forms request message (REMCMD_LOCKREQUEST)
sends request to master node

M1. process_cluster_request() [gdlm_recvd]

M2. remote_stage2()
creates new master LKB

M3. dlm_lock_stage3()
can_be_granted() returns TRUE
grant_lock() adds LKB to RSB’s granted queue
reply_and_grant() sends completion/granted reply to requesting node

6. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB

7. process_lockqueue_reply()
remove_from_lockqueue() removes LKB from list awaiting reply
adds LKB to local RSB’s granted queue
queues completion AST

8. deliver_ast() [gdlm_astd]
sets LKSB status to 0
calls application AST

H. remote new request fails

1-5. G.1-5

M1. process_cluster_request() [gdlm_recvd]

M2. remote_stage2()
creates new master LKB

M3. dlm_lock_stage3()
can_be_granted() returns FALSE
marks LKB to be deleted

M4. frees LKB
M5. sends reply to requesting node

6. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB
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7. process_lockqueue_reply()
remove_from_lockqueue() removes LKB from list awaiting reply
marks LKB to be deleted
queues completion AST

8. deliver_ast() [gdlm_astd]
sets LKSB status to -EAGAIN
calls application AST
frees LKB

I. remote new request is delayed

1-5. G.1-5

M1. process_cluster_request() [gdlm_recvd]

M2. remote_stage2()
creates new master LKB

M3. dlm_lock_stage3()
can_be_granted() returns FALSE
adds LKB to RSB’s waiting queue
send_blocking_asts() queues local BAST’s and sends remote BAST messages

M4. sends reply to requesting node

6. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB

7. process_lockqueue_reply()
remove_from_lockqueue() removes LKB from list awaiting reply
adds LKB to local RSB’s waiting queue

Later, within the context of another request that unlocks or down-converts a
lock on the same RSB:

M5. grant_pending_locks()
can_be_granted() returns TRUE
grant_lock() adds LKB to RSB’s granted queue
remote_grant() sends granted message to requesting node (REMCMD_LOCKGRANT)

8. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB
adds LKB to local RSB’s granted queue
queues completion AST

9. deliver_ast() [gdlm_astd]
sets LKSB status to 0
calls application AST

J. remote conversion request finishes
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1. dlm_lock()
checks input params

2. convert_lock()
find_lock_by_id() finds LKB being converted

3. remote_stage()
add_to_lockqueue() adds LKB to list awaiting reply (LQSTATE_WAIT_CONVERT)

4. send_cluster_request()
forms request message (REMCMD_CONVREQUEST)
sends request to master node

M1. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets master LKB

M2. dlm_convert_stage2()
can_be_granted() returns TRUE
grant_lock() leaves LKB on RSB’s granted queue
reply_and_grant() sends completion/granted reply to requesting node

5. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB

6. process_lockqueue_reply()
remove_from_lockqueue() removes LKB from list awaiting reply
adds LKB to local RSB’s granted queue
queues completion AST

7. deliver_ast() [gdlm_astd]
sets LKSB status to 0
calls application AST

K. remote conversion request fails

1-4. J.1-4

M1. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets master LKB

M2. dlm_convert_stage2()
can_be_granted() returns FALSE
adds LKB back to RSB’s granted queue with original mode

M3. sends reply to requesting node

5. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB

6. process_lockqueue_reply()
remove_from_lockqueue() removes LKB from list awaiting reply
adds LKB back to RSB’s granted queue with original mode
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queues completion AST

7. deliver_ast() [gdlm_astd]
sets LKSB status to -EAGAIN
calls application AST

L. remote conversion request is delayed

1-4. J.1-4

M1. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets master LKB

M2. dlm_convert_stage2()
can_be_granted() returns FALSE
adds LKB to RSB’s convert queue

M3. sends reply to requesting node

5. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB

6. process_lockqueue_reply()
remove_from_lockqueue() removes LKB from list awaiting reply
adds LKB to local RSB’s convert queue

Later, within the context of another request that unlocks or down-converts a
lock on the same RSB:

M4. grant_pending_locks()
can_be_granted() returns TRUE
grant_lock() adds LKB to RSB’s granted queue
remote_grant() sends granted message to requesting node (REMCMD_LOCKGRANT)

7. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB
adds LKB to local RSB’s granted queue
queues completion AST

8. deliver_ast() [gdlm_astd]
sets LKSB status to 0
calls application AST

3.3.6.3 Unlock request processing

Unlock requests are asynchronous and are processed much like conversion requests. Unlock requests can only
succeed, however; they will never fail or be delayed in the sense of new or conversion requests. The following
two sequences show the steps in processing unlock requests for local and remotely mastered locks.

A. local unlock request
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1. dlm_unlock()
checks input params

2. dlm_unlock_stage2()
removes LKB from RSB granted queue
marks LKB to be deleted
queues completion AST

3. deliver_ast() [gdlm_astd]
sets LKSB status to -GDLM_EUNLOCK
calls application AST

B. remote unlock request

1. dlm_unlock()
checks input params

2. remote_stage()
add_to_lockqueue() adds LKB to list awaiting reply (LQSTATE_WAIT_UNLOCK)

3. send_cluster_request()
forms request message (REMCMD_UNLOCKREQUEST)
sends request to master node

M1. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets master LKB

M2. dlm_unlock_stage2()
removes LKB from RSB granted queue
frees LKB

M3. sends reply to requesting node

4. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB

5. process_lockqueue_reply()
remove_from_lockqueue() removes LKB from list awaiting reply
removes LKB from local RSB’s granted queue
queues completion AST

6. deliver_ast() [gdlm_astd]
sets LKSB status to -GDLM_EUNLOCK
calls application AST

3.3.6.4 Canceling a request

An outstanding request can be canceled using the gdlm_unlock with the CANCEL flag. The gdlm_unlock
return value or the completion AST status will be -EINVAL if the lock is granted before the request can
be canceled. When successful, the cancel will cause the lock to be returned to its previously granted state
(or deleted in the case of an initial request being canceled) and the completion AST status will be set to
-GDLM ECANCEL.



56

3.3.6.5 AST handling

The gdlm_astd thread is dedicated to calling completion and blocking AST functions in all lock spaces.
Each LKB saves AST function pointers (and an argument pointer) that were provided in the request for the
lock represented by the LKB. When a completion or blocking AST for the lock is needed, the LKB is placed
on a global list of LKB’s requiring ASTs to be called (ast_queue).

While LKB’s exist on the ast_queue, the thread removes one at a time in the process_asts function. The
deliver_ast function is then used to call either the completion or blocking AST for the LKB (it is called
twice, once for each, if both types are needed). These routines must be aware that an LKB can be placed
back on the ast_queue at any time once it has been removed for either type of AST. Locks must not be
held while calling the application AST function because it may call back into GDLM with another request
that can potentially queue another AST for the same LKB.

After delivering an AST, the gdlm_astd thread will free the LKB if the AST delivery was the last step in
deleting it. This can also result in the associated RSB being freed.

Within the locking routines, the queue_ast function is called with an LKB and AST type to cause an AST
to be delivered. In the previous request processing sequences, this was referred to as ”queues completion
AST” or ”queues local BAST’s”. This will add the LKB to the local ast_queue if the LKB is local. If
the LKB is remote, the function sends a message that will cause the remote node to add the LKB to its
ast_queue. Remote completion ASTs are queued on the remote node implicitly with a message to a remote
node indicating that a request has been granted.

3.3.7 Resource Directory

A lock space’s Resource Directory (RD) stores the mapping of resource names to master node ID’s. RD
lookup requests provide a resource name as input and the reply contains the node ID of the master. If the
requested RSB name is not in the RD, a new RD entry is created with the requested name and the master
node set to the requesting node.

Every node in the lockspace operates a fraction of the RD. A hash function common to all nodes statically
translates a resource name to a RD node ID. The RD segment on this node identifies the master node for
the resource. So, an RSB has two associated node ID’s. The first is the node holding the RD mapping and
the second is the master node. These two may or may not be the same; the former is static and the later
dynamic.

An RD entry is represented by a gd_resdata_t structure. This structure contains a resource name and the
node ID of the RSB’s master. Each node keeps its RD entries on a hash table (ls_resdir_hash). The lower
16 bits of a resource name’s hash value are used for this hash table while the upper 16 bits of the hash value
are used to determine the RD node.

When a node requests a lock on an RSB that does not exist locally, a RD lookup must take place to determine
the RSB’s master. The master ID is saved in the RSB so further lock requests on the RSB do not require
an RD lookup. This lookup step, mentioned in the previous section simply as ”master lookup for new RSB”
may be a local or remote operation. It will most likely be remote (more likely with more nodes in the lock
space) because the RD hash function evenly distributes the RD entries among nodes.

In the best case for a new lock request, no network requests are needed: the the RD lookup is local and the
master becomes local. In the worst case, two network requests are needed: the RD lookup is remote and a
master exists that is remote.
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The following steps are involved in looking up a resource master. It begins in dlm_lock_stage1() after
get_directory_nodeid() returns a remote node ID; it is an expansion of the step in the previous section
labeled ”master lookup for new RSB”.

1. remote_stage()
add_to_lockqueue() adds LKB to list awaiting reply (LQSTATE_WAIT_RSB)

2. send_cluster_request()
forms request message (REMCMD_LOOKUP)
sends request to node

RD1. process_cluster_request() [gdlm_recvd]

RD2. get_resdata()
finds existing entry for given name or creates new entry

RD3. sends reply to requesting node

3. process_cluster_request() [gdlm_recvd]
find_lock_by_id() gets LKB

4. process_lockqueue_reply()
remove_from_lockqueue() removes LKB from list awaiting reply
sets RSB master node ID

3.3.7.1 Removing entries

When a master RSB is deleted its resource directory entry is also deleted. After unlinking the RSB from
the local RSB list, the master node sends a removal message to the resource’s directory node (or removes
it directly if the directory node is also be the master node.) RD removal messages are asynchronous and
unacknowledged which can lead to a variety of special cases described in the following.

Case 1
Problem: An RSB is deleted on master node M and an RD removal message is sent to node D. Node L
sends a RD lookup to node D for same resource. Node D receives the lookup before the removal and a
message specifying node M as master is returned to node L even though node M no longer has any record of
the resource. Case 3 can arise here if a lookup now originates on node M. Case 2 occurs when the removal
message from node L is processed by node D.

Solution: Node L sends its lock request to node M. Node M recreates the RSB and becomes the master for
the resource again. When node M processes the lock request from L in remote_stage2() it passes create=1
into find_or_create_rsb() to permit creation of a new RSB.

Case 2
Problem: In the previous example, the removal message processed on node D must not remove the entry
because it is now in use again, having just been sent to node L. The removal message is invalid having
been meant for the previous ”version” of the specific RD entry. The removal message must be recognized as
invalid and ignored by node D.

Solution: A counter is kept on each RD entry that is incremented for each lookup. The counter is returned
with the lookup reply and is then included with the lock request when sent to the master node. The master
node keeps track of the latest counter value for the RSB. When the master sends a removal message to the



58

directory node, it includes the latest counter value it has observed. Ordinarily, this matches the counter
value in the RD and the entry is removed.

In the case where a lookup has occurred for the RD entry just before the removal message is received, as in
the example above, the RD entry will have a larger counter value than the removal request. If this is the
case the removal request is ignored.

Case 3
Problem: In the first example, a new request on node M could occur after M has sent the removal request,
and after L’s RD lookup. A lookup from M will be sent to node D for the resource. Node D will reply
indicating that M itself is the master.

Solution: Node M should accept that the RD may indicate it is the master of a resource it is looking up.

Handling removal requests during recovery is simple. Because the resource directory is rebuilt during recovery
from existing RSB’s, removal requests for deleted RSB’s can be discarded. Also, lookup counters in all RD
entries and in all RSB’s are reset to one to avoid the large task of finding correct counter values (there are
no removal races to contend with during recovery so resetting all counters to one disrupts nothing.)

3.3.7.2 Functions: resource directory

uint32 name_to_directory_nodeid(gd_ls_t *ls, char *name, int length)
Returns the node ID of the directory node for the named resource.

uint32 get_directory_nodeid(gd_res_t *rsb)
Calls the previous function with the name of the RSB.

uint32 rd_hash(gd_ls_t *ls, char *name, int len)
Using the given name, compute a scaled hash value for the resource directory.

void add_resdata_to_hash(gd_ls_t *ls, gd_resdata_t *rd)
Add a new resource data struct to the resource directory hash table.

gd_resdata_t *search_rdbucket(gd_ls_t *ls, char *name, int namelen, uint32 bucket)
Search a hash table list for a resource data struct matching given name.

void remove_resdata(gd_ls_t *ls, uint32 nodeid, char *name, int namelen, uint8 sequence)
Remove resource data struct for given name from resource directory hash table.

int get_resdata(gd_ls_t *ls, uint32 nodeid, char *name, int namelen, gd_resdata_t **rdp, int recovery)
Find and return a resource data structure for given name, creating a new one if none is found.

3.3.8 Hierarchical Locking

Hierarchical locks allow structured or optimized forms of locking by applications. In particular, resources
related in a tree structure are often a good candidate for hierarchical locks.
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Figure 3.12: Hierarchical Locking

3.3.8.1 Usage

A ”resource tree” is an association of parent/child RSB’s. The resource tree is created using the parent
parameter of the gdlm_lock function. An entire resource tree is mastered on the same node, a fact applica-
tions can use to optimize performance. As stated earlier, only local processing is required when a node locks
RSB’s it has mastered.

Given RSB A locked with LKB L1, a child-RSB B can be locked by requesting L2 for B and using L1 as the
parent. A will be parent of B and L1 will be parent of L2.

The resource name space at each level of a resource tree is distinct, so child-RSB’s with the same name but
different parents are separate. Figure 3.12 illustrates these concepts. Each square represents a unique RSB
and each circle a unique LKB. A solid arrow represents an RSB parent pointer and a dotted arrow an LKB
parent pointer. The ”L1”, ”L2”, etc designations correspond to LKB ID’s. Resource names in the figure are
letters ”A” to ”D”. The sample ”lock” function takes a resource name and parent lock ID. The figure can
be read from top to bottom as a sequence of operations.

3.3.8.2 Resource tree structure

The lockspace has a list of all root resources (ls_rootres, res_rootlist) and a root resource has a list of
all its sub-resources (res_subreslist). So, a resource tree is kept in a flat list belonging to the root. All
RSB’s have a depth (root depth is 1), a pointer to the parent RSB (root parent is null), and a pointer to
the root RSB (root points to itself).

A lock also keeps a pointer to its parent lock and a parent lock keeps a count of its children (but no list).
While a lock has a positive child count it cannot be unlocked. This ensures that the resource tree remains
connected.
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3.3.9 Lock Value Blocks

A Lock Value Block (LVB) is 32 bytes of memory associated with a resource that is read and written by
applications using locks against the RSB. The LVB data is read from or written to memory provided by the
application and referenced in the LKSB (figure 3.11).

3.3.9.1 Usage

An application can write data to an RSB’s value block by:

1. Obtaining a lock on the RSB with a mode of EX or PW.

2. Setting the LKSB’s sb_lvbptr field to point at the data to be written.

3. Converting or unlocking the lock using the VALBLK flag in the request.

An application can read the data from an RSB’s value block by:

1. Setting the LKSB’s sb_lvbptr field to point at the memory where data should be written.

2. Converting or requesting a new lock using the VALBLK flag.

These rules imply that while an application holds a lock on an RSB in a mode greater than NL, the RSB’s
value block will not change. Holding a NL lock on an RSB guarantees nothing about the future contents of
the LVB.

3.3.9.2 Value block copying

Figure 3.13 shows two locks held against a resource; one local and one remote. The resource’s value block is
in use by both nodes. Each copy of the value block in the system is illustrated. The master node maintains
the official copy (LVB A), referenced by the master RSB structure. Local LKB’s point to the LVB memory
provided by the application through an LKSB (LVB’s B and D). Memory is allocated by the RSB master
to keep a copy of the remote lock’s LVB (LVB C).

Copying of LVB values is illustrated using figure 3.13 for the following lock operations.

Node Operation type Mode Copying
1 initial request any A → B
2 initial request any A → C, C → E, E → D
1 conversion NL to higher A → B
1 conversion EX to lower B → A
2 conversion NL to higher A → C, C → E, E → D
2 conversion EX to lower D → F, F → C, C → A
1 unlock EX B → A
2 unlock EX D → F, F → C, C → A
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Figure 3.13: Lock Value Blocks

3.3.10 Lock Ranges

The range parameter in the lock request function allows a lock to be requested against part of a resource
instead of the whole thing. This can be used to support things such as POSIX/fcntl() locking.

3.3.10.1 Usage

There are some simple rules governing the behavior of range locking:

• A lock request can specify a range (start and end values) by passing a pointer to a gdlm_range_t
structure (figure 3.14.)

• The maximum range (0 - FFFFFFFF.FFFFFFFF) is used if no range is specified in a request.

• A conversion request can be used to change a lock’s mode, range, or both.

• Two locks on a resource are incompatible if their modes are incompatible and their ranges overlap.

• Unlock requests operate as usual and do not specify ranges; a lock is released with whatever range it
presently has.

• Blocking callbacks do not currently include the range specified by a blocked request. This will be added
if it becomes useful.

3.3.11 Deadlock

GDLM does not search for possible deadlocks in a lockspace. There are two features that can help an
application, however. The first is request timers. After waiting ungranted for a configurable period of time,
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struct gdlm_range

{
uint64 ra_start;

uint64 ra_end;

};
typedef struct gdlm_range gdlm_range_t;

Figure 3.14: gdlm.h lock range structure

a lock request will time out, be canceled and a status of -EDEADLOCK will be returned. This can be a
signal to the application of potential deadlock. The application can make the request again or take some
other action. This feature can be disabled when creating a lock space using the NOTIMERS flag (timers
are not used in GFS lock spaces). The feature could also be enabled and disabled per request.

If an application is making requests in such a way that conversion deadlock can occur, GDLM has a special
flag that can be set per request (CONVDEADLK) that causes conversion deadlocks to be detected and
forcibly resolved internally. The method of resolution is to demote to NULL the granted mode of one or
more converting locks so that one of the requests can proceed. The locks that are demoted remain queued
for their requested modes and will complete when they are granted. When the affected locks complete,
however, the DEMOTED flag is set in the LKSB to notify the application that the originally granted mode
was released in the process of promotion.

3.3.12 Recovery

Each node in a lock space performs the same series of recovery steps in parallel. Barriers are used to
synchronize all the nodes at the end of some steps. This is necessary only when a step relies on the previous
being completed on all nodes.

Many recovery steps involve requesting information from other nodes, so during recovery all nodes must be
ready to send requested information to the others. As previously mentioned, the gdlm_recoverd thread
executes the recovery steps while the gdlm_recvd thread processes requests received from other nodes in
addition to replies to its own requests.

3.3.12.1 Blocking requests

As previously mentioned, the in_recovery lock held in write mode is used to block request processing
during recovery. Local requests attempt to acquire the lock in read mode and block until the write lock is
released when recovery is complete. This means that a context making an asynchronous lock request will
block during recovery.

The gdlm_recvd thread also acquires in_recovery in read mode while processing remote requests. However,
this thread must continue to function during recovery and cannot block. Therefore, if a request that is not
recovery-related is received and would block on in_recovery, it is saved on a list of delayed requests to be
processed after recovery completes. This is the lockspace’s ”requestqueue” list.

The requestqueue should not contain an excessive number of delayed requests because most new requests
block in the requesting context before any remote operations are initiated. The requestqueue holds requests
that were being processed on other nodes when recovery began. It may also hold requests that were made
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and sent from nodes on which recovery was initiated slightly later than on other nodes.

3.3.12.2 Update node list

As the first recovery step, the function ls_nodes_reconfig is called to update a lockspace’s ls_nodes
and ls_nodes_gone lists (mentioned previously) based on the latest member list from the cluster manager.
Node structures for departed members (those in ls_nodes but not in the latest member list) are moved to
ls_nodes_gone. Node structures are added to ls_nodes for new members.

The number of departed nodes is returned to the caller, but before returning a barrier is used to wait for all
nodes to complete this step of adjusting the lockspace membership. This is necessary because the next step
depends on all nodes using the new membership as the basis for rebalancing directory entries.

The first time a lockspace is started and performs recovery, a shortened version of this function is used
(ls_nodes_init) that simply adds node structures to the ls_nodes list for all current members.

3.3.12.3 Rebuild resource directory

The second recovery step, resdir_rebuild_local, rebuilds the resource directory on the new group of
nodes. Even if nodes are only being added this step is necessary because the directory segment mapped to
each node will change with the change in node count.

A node first clears all existing RD entries in resdir_clear. In the main body of this step the node sends a
RECOVERNAMES request to each node asking for the resource names that it (the requesting node) is now
in charge of keeping in its segment of the directory. When a node receives this request, it looks through its
list of RSB’s for which it is master and calculates the resource directory node for each (based on the name.)
If the calculated directory node ID matches the requesting node’s ID, the RSB name is included in the reply
to the requesting node. The function on the receiving end is resdir_rebuild_send.

In resdir_reuild_local, each RECOVERNAMES request is synchronous. When the reply is received, all
the RSB names are read from the returned data and new RD entries are created for each, the master being
set to the ID of the node replying. Multiple requests and replies may be needed to one node to transfer all
the names. Specially formated reply data indicates the end of the resource names a node has to send. To
handle these multiple requests, each request contains the last RSB name that was received. This is used by
the node sending the names to find the next starting point.

Waiting for a RECOVERNAMES reply must be interruptible as the other node (or any other node) may
have failed requiring the current recovery process to be aborted.

3.3.12.4 Clear defunct requests

A node will next purge resource directory related requests that are in progress (lookups, removals, replies)
in purge_requestqueue. All these requests that originated before recovery are now invalid due to the
rebuilding of the directory. Nodes with outstanding requests of this type will resend them to the appropriate
nodes once recovery is complete.

Requests received by a node after recovery has begun are saved on the lockspace’s requestqueue. It is from
this list that the requests are removed. In addition, requests from failed nodes are also removed from the
requestqueue at the same time.
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At this point a barrier is used to wait for all nodes to finish rebuilding the resource directory (again, waiting
will be interrupted and recovery aborted if a node fails.)

3.3.12.5 Mark requests to resend

During normal operation, LKB’s for outstanding remote requests are kept on the lockspace’s ”lockqueue”
list. The LKB’s ”lockqueue state” defines the exact reason for being on the lockqueue. An LKB is removed
from the lockqueue when the reply for the request is processed.

Due to recovery, some of the outstanding LKB requests on the lockqueue may need adjustment. The
lockqueue_lkb_mark function goes through the lockqueue and flags some LKB’s for special handling during
recovery and some for resending after recovery.

If an LKB has a lockqueue state of WAIT RSB it is a new lock request and a resource directory lookup is
in progress. The LKB is flagged (LQRESEND) to have the lookup resent after recovery (probably to a new
directory node.) If the destination node for the lookup is still alive and received the request after recovery
began, its purge_requestqueue will remove it. Or, if the destination node processed the request before
recovery began, the requesting node may have a reply in its own requestqueue. This reply would also be
purged (by the local purge_requestqueue.) All the purging sets the stage for cleanly resending the requests
when recovery finishes.

The other lockqueue LKB’s of interest are those with outstanding requests sent to nodes that are now gone.
These requests are flagged to be resent (LQRESEND) to the new master node when recovery finishes (the
new master node will be determined later in recovery.)

Among those LKB’s marked for resending, if an LKB has a lockqueue state of WAIT CONDGRANT it is a
new lock request that does not yet have a granted state. This LKB is additionally flagged with NOREBUILD
to prevent it from being rebuilt on the new RSB master later in recovery.

Also among LKB’s marked for resending, an LKB may have a lockqueue state of WAIT CONVERT. The
LQCONVERT flag is set on these to indicate that when the lock is rebuilt on the new RSB master, the LKB
should be considered granted, not converting, as the conversion request will be resent to the new master
when recovery finishes.

If the recovery as a whole is due to nodes being added and not removed, the main recovery ends here.
The Service Manager is notified through kcl_start_done that local recovery is complete. The last steps
of cleanup and resending requests will occur when the finish callback from SM signals that all nodes have
completed.

3.3.12.6 Clear defunct locks

The next step is restbl_lkb_purge which deletes locks held by departed nodes from all mastered RSB’s.
This results in releasing LKB’s in addition to RSB’s which subsequently have no locks remaining. The
purge_queue function is applied to each of the lock queues of an RSB. It should be clear that this step only
applies to master RSB’s. Non-master RSB copies only maintain copies of locally held locks and no locks for
other nodes that may have failed.

The only inter-node communication that may arise in this step is the sending of resource directory removal
messages when RSB’s are released. When sent during recovery, these messages go through the recovery-
specific communication routines.
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3.3.12.7 Update resource masters

The restbl_rsb_update function assigns new master nodes to RSB’s that were mastered on departed nodes.
All nodes go through their list of RSB copies (i.e. RSB’s they are not master of) and for those that specify
a departed node as master, a lookup request is sent to the resource directory. The first node to look up the
new master ID becomes the master (just as lookups work in normal operation.) When other nodes look up
the master of the same RSB, the new master node ID is returned. In this way, new masters are assigned
and new master node ID’s are updated in the non-master RSB copies.

The rsb_master_lookup function is called by restbl_rsb_update to find the master of a particular RSB. If
the directory node for the RSB happens to be local, the lookup is immediate. If the directory node is remote,
an asynchronous lookup message (GETMASTER) is sent to the directory node and the RSB is added to the
lockspace’s ”recover list”.

The recover list is used for different purposes during recovery; at this stage it contains RSB’s for which
directory lookups are outstanding. A temporary message ID is also generated that is both saved in the RSB
and sent with the lookup message. The message ID allows the reply to be matched with the correct RSB
without sending the entire resource name in the reply.

The RD lookup is sent as a recovery-specific message (so it is processed and not added to the requestqueue)
and is handled on the directory node like an ordinary lookup. On the requesting node, restbl_rsb_update_recv
is called to handle the reply. This function finds the particular RSB in the lockspace’s recover list using the
returned message ID, removes the RSB from the recover list and updates the RSB’s master node ID. The
set_new_master function is called to propage the new master ID to the RSB’s LKB’s and sub-RSB’s.

When all lookup requests have been sent, restbl_rsb_update sleeps until the recover list is empty (all replies
received and RSB’s updated and removed from the list.) Once again, a node failure before the completion
of this step must abort the current recovery process.

3.3.12.8 Rebuild locks on new masters

Once new RSB masters are known, a node’s local copies of the locks it holds (against the remastered RSB’s)
must be rebuilt on them. To do this rebuilding the rebuild_rsbs_send function goes through each root
RSB that has a new remote master and sends all its LKB’s (and sub-RSB’s and their LKB’s) to the new
master node in a NEWLOCKS message. These non-master RSB copies are put on the lockspace’s recover
list when the LKB’s are sent to the new master. A count is also kept in these RSB’s of the number of its
LKB’s that have been sent. NEWLOCKS messages are asynchronous.

When a new master receives LKB’s in a NEWLOCKS message (rebuild_rsbs_recv), it creates master
LKB copies and adds them to its master RSB. It then returns to the sending node in a NEWLOCKIDS
message a list of LKB ID’s corresponding to the new LKB’s that it created. In this message, each new LKB
ID is preceded by the ID of the remote node’s corresponding LKB ID. (As mentioned earlier, a node must
know the remote ID of a corresponding LKB so it can be included in messages referring to the lock.)

When the sending node receives a NEWLOCKIDS message (rebuild_rsbs_lkids_recv) it extracts the
pairs of LKB ID’s from the data. The first ID is used to find its own LKB and the second is saved in this
LKB as the new remote LKB ID. When a new LKB ID is received, the RSB’s sent-LKB count is decremented.
When this count becomes zero the RSB is removed from the recover list. The rebuild_rsbs_send function
completes when the recover list is empty.

Two factors affect how rebuild_rsbs_send packs LKB’s into messages for sending. For efficiency, as many
consecutive LKB’s destined for the same node are packed into one message as possible. So, LKB’s for
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multiple RSB’s remastered to the same node may be sent in one message. This only occurs to the extent
that sequential RSB’s in the root list are mastered on the same new node (RSB’s are not skipped over to
find those that can be sent together.) Second, all the LKB’s a node holds against an RSB may not fit in one
message (this is especially likely for resource trees.)

For these reasons a message may become full at any point and the routines packing LKB’s into messages
must be able to start a new message to the same or a different node at any point.

After this step the main recovery is complete and the the Service Manager is notified via kcl_start_done.

3.3.12.9 Finish and cleanup

After all nodes complete the main recovery and notify the Service Manager, SM on each will call the
lockspace’s finish callback. Once again, the gdlm_recoverd thread does the processing for this callback
based on the current state (RECONFIG DONE) and output of next_move (DO FINISH).

First, the clear_finished_nodes function removes node structures from the ls_nodes_gone list. In the
case of cascading failures and restarted recovery procedures, there may be nodes from a more recent recovery
event in the list as well. A node’s gone_event indicates the recovery event corresponding to its departure.
Using this and the most recent finish_event value in the lockspace, nodes with a gone_event value less
than or equal to the last finish_event are removed.

Second, the enable_locking function releases the recovery’s write lock on in_recovery allowing requests
that blocked for recovery to continue. This is only permitted, however, if there has not been another stop
callback for a new recovery since the finish callback was received.

Finally, the finish_recovery function gets requests going that were affected during recovery. The resend_cluster_requests
function resends requests that were previously marked as needing to be resent. The restbl_grant_after_purge
function grants lock requests that can now be granted because locks from failed nodes were purged. The
process_requestqueue function processes requests that were received during recovery and saved on the
requestqueue.

3.3.12.10 Event waiting

There are two types of event waiting used during recovery. The first is a kind of barrier in which all nodes
wait for a specific status bit to be set on all other nodes before proceeding. The second type waits for a
local function, provided as a parameter, to return non-zero. The test function is called repeatedly to check
if the wait can complete. Both of these waiting methods must abort and return an error if the lockspace is
stopped due to a node failure. When this happens, the current recovery process will be aborted so a new
one can be started.

Two functions are used for the first barrier-style waiting method. The first, gdlm_wait_status_all, polls
all nodes in the lockspace, waiting for a specified bit to be set (bit provided as a function parameter.) The
second, gdlm_wait_status_low, also waits for a specified bit to be set, but only on the node in the lockspace
with the lowest node ID.

To wait for a given status bit, X, to be set on all nodes, the lockspace member with the lowest node ID calls
gdlm_wait_status_all(X) and other lockspace members call gdlm_wait_status_low(X_ALL). When wait
function returns on the low node, it sets status bit X ALL which the other nodes then see. All nodes then
continue. This approach results in O(N) messages instead of O(N^2) all-to-all messages.
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The second, local, type of wait function is gdlm_wait_function for which a test function is provided as a
parameter. This wait function returns to the caller only when the test function returns a non-zero value
or the lockspace has been stopped for another recovery (in which case the wait function returns a non-zero
error value.)

3.3.12.11 Functions: Request queue

void add_to_requestqueue(gd_ls_t *ls, int nodeid, char *request, int length)
Saves a message for processing later (when recovery finishes.) Allocates a struct rq_entry along with a
buffer to hold the message and adds it to the lock space’s requestqueue.

void process_requestqueue(gd_ls_t *ls)
Removes each saved message from the lock space’s requestqueue and processes the message as usual in
process_cluster_request. N.B. cluster requests usually processed by gdlm_recvd thread, but these are
processed by gdlm_recoverd.

void purge_requestqueue(gd_ls_t *ls)
Looks through all saved messages in requestqueue and removes those related to the resource directory
(lookups, replies, removals) and those from departed nodes.

3.3.12.12 Functions: Nodes list

int ls_nodes_reconfig(gd_ls_t *ls, gd_recover_t *gr, int *neg_out)
Removes departed nodes from the lock space’s ls_nodes list based on the new member list saved in the
gd_recover_t struct. The removed node structs are moved to ls_nodes_gone. Adds entries to ls_nodes
for new nodes. Returns the number of departed nodes through the last parameter.

int ls_nodes_init(gd_ls_t *ls, gd_recover_t *gr)
Adds an entry to the lock space’s ls_nodes list for each of the lock space members saved in the gd_recover_t
struct.

int nodes_reconfig_wait(gd_ls_t *ls)
Waits for all nodes in the lock space to complete ls_nodes_reconfig (or the equivalent ls_nodes_init for
new members.)

void clear_finished_nodes(gd_ls_t *ls, int finish_event)
Called to finish a particular recovery event. The finish_event event ID corresponds to the recovery event
to which the finish callback refers. The function removes node structs from ls_nodes_gone for departed
nodes which left the lock space no later than the given event. The event ID is recorded for a node when it
departs by ls_nodes_reconfig.

3.3.12.13 Functions: Resource directory

int resdir_rebuild_local(gd_ls_t *ls)
Rebuilds resource directory entries that map into the calling node’s directory segment. Sequentially collects
resource names for existing RSB’s from all nodes in the cluster via a RECOVERNAMES request. Adds a
new RD entry for each name returned with a master node ID set to the replying node.

int resdir_rebuild_send(gd_ls_t *ls, char *inbuf, int inlen, char *outbuf, int outlen, uint32 nodeid)
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Processes a RECOVERNAMES request from a node in resdir_rebuild_local. Goes through all locally
mastered resources and returns the name of each that maps to the requesting node. Multiple request/reply
messages are usually needed to transfer all the data, so starting resource names are included in requests.

int resdir_rebuild_wait(gd_ls_t *ls)
Waits for all nodes in the lock space to complete resdir_rebuild_local. Uses the lock space status bits
RESDIR VALID and RESDIR ALL VALID.

void gdlm_resmov_in(gd_resmov_t *rm, char *buf)
Copies a resource name record from a RD rebuild message, handling byte swapping.

void resdir_clear(gd_ls_t *ls)
Removes and frees all local RD entries from the lock space’s RD hash table.

3.3.12.14 Functions: Lock queue

void lockqueue_lkb_mark(gd_ls_t *ls)
In-progress LKB requests waiting on the lock space’s lockqueue are flagged as needing to be resent if the
requests were sent to a departed node or if the request was related to a resource directory operation.

void resend_cluster_requests(gd_ls_t *ls)
Resend LKB requests waiting on the lock space’s lockqueue that were flagged by lockqueue_lkb_mark. If
the LKB has been remastered to the local node, it no longer needs to be sent anywhere, but simply processed
locally.

void process_remastered_lkb(gd_lkb_t *lkb, int state)
Called by resend_cluster_request to process an LKB request locally. Before recovery the request was
remote and waiting for a remote reply but the recovery process resulted in the request now being local.

3.3.12.15 Functions: Purging locks

int restbl_lkb_purge(gd_ls_t *ls)
Remove and free all LKB’s that are held by departed nodes.

int purge_queue(gd_ls_t *ls, osi_list_t *queue)
Same as previous, but acts on an arbitrary queue (granted, convert, wait) of an arbitrary RSB.

void restbl_grant_after_purge(gd_ls_t *ls)
Go through all RSB’s and grant locks on convert and wait queues that can be granted. There may be
grantable locks due to locks from departed nodes being purged.

3.3.12.16 Functions: Updating resource masters

int restbl_rsb_update(gd_ls_t *ls)
Goes through local root resources and for each RSB with a master that has departed and looks up the new
master node ID from the resource directory. All RD requests are made individually and asynchronously.
The requesting node may become the master itself as the RD assigns mastery to the first node to look up
the new master. RSB’s being updated are kept in the recover list while awaiting a reply.
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int restbl_rsb_update_recv(gd_ls_t *ls, uint32 nodeid, char *buf, int length, int msgid)
Processes the reply for a RD lookup made from restbl_rsb_update. Removes the RSB corresponding to the
reply from the lock space’s recover list and sets the new master node ID in the RSB. Calls set_new_master
to propagate the new master ID to LKB’s on the RSB.

int rsb_master_lookup(gd_res_t *rsb, gd_rcom_t *rc)
Finds the master node ID for the given RSB from the resource directory. Does a local lookup if the resource
name maps to the local RD segment, or sends a lookup request to a remote node, keeping the RSB in the
recover list while awaiting a reply.

void set_new_master(gd_res_t *rsb)
Propagates the new master node ID, already set in the given root RSB, to the LKB’s, sub-RSB’s and their
LKB’s.

void set_rsb_lvb(gd_res_t *rsb)
Called by set_new_master when a local RSB copy has become the real master RSB in the lock space. This
function goes through all LKB’s attempting to find an up to date copy of the LVB to assign to the RSB. If
none are found, the LVB on a remastered RSB is zeroed.

void set_master_lkbs(gd_res_t *rsb)
Called by set_new_master to propagate the RSB’s node ID to LKB’s on the three queues (granted, convert,
waiting.)

void set_lock_master(osi_list_t *queue, int nodeid)
Called by set_master_lkbs to set the node ID on all LKB’s in a list.

3.3.12.17 Functions: Recover list

int recover_list_empty(gd_ls_t *ls)
Test if reocvery list is empty.

int recover_list_count(gd_ls_t *ls)
Returns the number of entries in the recovery list.

void recover_list_add(gd_res_t *rsb)
Adds the given RSB to the recover list if it’s not already there.

void recover_list_del(gd_res_t *rsb)
Removes the given RSB from the recover list.

gd_res_t *recover_list_find(gd_ls_t *ls, int msgid)
Returns an RSB from the recover list with the specified message ID.

void recover_list_clear(gd_ls_t *ls)
Removes all RSB’s from the recover list.

3.3.12.18 Functions: Rebuilding locks

int rebuild_rsbs_send(gd_ls_t *ls)
Sends LKB’s for a newly remastered RSB to the new master node (in a NEWLOCKS message.) This also
includes sub-RSB’s their LKB’s.
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int rebuild_rsbs_recv(gd_ls_t *ls, int nodeid, char *buf, int len)
Receives new locks for a recently mastered RSB from the holder of the locks. Creates master LKB copies
(MSTCPY) for the locks on the RSB queues. Returns the local lock ID’s of the newly created MSTCPY
LKB’s to the sending node.

int rebuild_rsbs_lkids_recv(gd_ls_t *ls, int nodeid, char *buf, int len)
Receives new remote lock ID’s from a master node to which locks were sent in rebuild_rsbs_send.

gd_res_t *deserialise_rsb(gd_ls_t *ls, int nodeid, gd_res_t *rootrsb, char *buf, int *ptr)

int deserialise_lkb(gd_ls_t *ls, int rem_nodeid, gd_res_t *rootrsb,
char *buf, int *ptr, char *outbuf, int *outoffp)

gd_lkb_t *find_by_remlkid(gd_res_t *rootrsb, int nodeid, int remid)

gd_lkb_t *search_remlkid(osi_list_t *statequeue, int nodeid, int remid)

gd_res_t *find_by_remasterid(gd_ls_t *ls, int remasterid, gd_res_t *rootrsb)

void fill_rcom_buffer(gd_ls_t *ls, rcom_fill_t *fill, uint32 *nodeid)

gd_res_t *next_remastered_rsb(gd_ls_t *ls, gd_res_t *rsb)

int pack_rsb_tree(gd_ls_t *ls, gd_res_t *rsb, rcom_fill_t *fill)

int pack_rsb_tree_remaining(gd_ls_t *ls, gd_res_t *rsb, rcom_fill_t *fill)

int pack_subrsbs(gd_res_t *rsb, gd_res_t *in_subrsb, rcom_fill_t *fill)

int pack_one_subrsb(gd_res_t *rsb, gd_res_t *subrsb, rcom_fill_t *fill)

int pack_lkb_remaining(gd_res_t *r, rcom_fill_t *fill)

int pack_lkb_queues(gd_res_t *r, rcom_fill_t *fill)

int pack_lkb_queue(gd_res_t *r, osi_list_t *queue, rcom_fill_t *fill)

int pack_one_lkb(gd_res_t *r, gd_lkb_t *lkb, rcom_fill_t *fill)

void serialise_rsb(gd_res_t *rsb, char *buf, int *offp)

int lkbs_to_remaster(gd_res_t *r)

gd_res_t *next_subrsb(gd_res_t *subrsb)

int rsb_length(gd_res_t *rsb)

void serialise_lkb(gd_lkb_t *lkb, char *buf, int *offp)

int lkb_length(gd_lkb_t *lkb)

void get_bytes(char *bytes, int *len, char *buf, int *offp)
char get_char(char *buf, int *offp)
uint64 get_int64(char *buf, int *offp)
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int get_int(char *buf, int *offp)
void put_char(char x, char *buf, int *offp)
void put_bytes(char *x, int len, char *buf, int *offp)
void put_int64(uint64 x, char *buf, int *offp)
void put_int(int x, char *buf, int *offp)

void rebuild_freemem(gd_ls_t *ls)

rebuild_node_t *find_rebuild_root(gd_ls_t *ls, int nodeid)

void have_new_lkid(gd_lkb_t *lkb)

void need_new_lkid(gd_res_t *rsb)

void expect_new_lkids(gd_res_t *rsb)

3.3.12.19 Functions: Event waiting

int gdlm_recovery_stopped(gd_ls_t *ls)

void gdlm_wait_timer_fn(void *data)

int gdlm_wait_function(gd_ls_t *ls, int (*testfn)(gd_ls_t *ls))

int gdlm_wait_status_all(gd_ls_t *ls, unsigned int wait_status)

int gdlm_wait_status_low(gd_ls_t *ls, unsigned int wait_status)

3.3.13 Communications

The ”lowcomms” communications layer is responsible for maintaining network connections between nodes
and sending and receiving messages. It is common to all lockspaces: one set of TCP socket connections and
one set of threads. This requires a lockspace identifier to be included in the header of all messages. The
lowcomms subsystem uses two kernel threads, gdlm_sendd and gdlm_recvd.

The send and receive API’s use the same node ID’s used in the rest of GDLM. IP addresses are looked
up for new node ID’s from the cluster manager (which originally provided the node ID’s to GDLM in the
”start” callback’s member list.) The default TCP port for GDLM sockets is 21064 and can can be changed
by setting gdlm/tcp port in the gdlm.ccs configuration file.

3.3.13.1 Sending requests

Messages are sent by the gdlm_sendd thread; this prevents threads that initiate messages from blocking and
promotes merging of messages. A struct writequeue_entry is a unit of data that will be sent to another
node. A list of these entries is kept per remote node connection.

When a message is to be sent, the function lowcomms_get_buffer is first called. It is given the destination
node ID and the length of the message. This function returns a pointer to a data buffer into which the
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message can be written. When the message has been filled in, the function midcomms_send_buffer is called
which transforms data into network byte order and calls lowcomms_commit_buffer to queue the message
for sending.

If lowcomms_get_buffer finds no existing writequeue entries for the given node ID’s connection, a new entry
structure is allocated along with a single page for the data. The page address is returned to the caller as the
buffer into which the message can be copied. A pointer to the entry is also returned as the message handle
for committing it.

If lowcomms_get_buffer finds an existing writequeue entry to the given node and if the requested length
will fit into the remaining space in the entry’s page, then the current offset into the existing page is returned
to the caller as the message buffer. In this way messages can be combined, reducing network transmissions
especially when many small messages are sent.

3.3.13.2 Receiving requests

Messages are received by the gdlm_recvd thread. This thread also does the GDLM processing for the
messages it receives. When data becomes available on the socket for a remote connection, the connection
structure is added to a global list of connections with data to receive. A page is allocated per connection
into which a message is copied. The message is passed to midcomms_process_incoming_buffer which
transforms data into host byte order and then calls process_cluster_request for ordinary messages or
process_recovery_comm for recovery-specific requests.

3.3.13.3 Recovery requests

The function rcom_send_message is used by recovery routines to send messages and data to other nodes. If
data is expected in reply, the function is synchronous, waiting for the reply data. The routine will return an
error if the lock space is stopped while waiting for a reply.

3.3.13.4 Functions: low-level communications

void lowcomms_data_ready(struct sock *sk, int count_unused)

void lowcomms_write_space(struct sock *sk)

void lowcomms_connect_sock(struct connection *con)

void lowcomms_state_change(struct sock *sk)

int add_sock(struct socket *sock, struct connection *con)

void close_connection(struct connection *con)

int receive_from_sock(struct connection *con)

int accept_from_sock(struct connection *con)

int connect_to_sock(struct connection *con)
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int create_listen_sock()

struct writequeue_entry *new_writequeue_entry(struct connection *con, int allocation)

struct writequeue_entry *lowcomms_get_buffer(int nodeid, int len, int allocation , char **ppc)

void lowcomms_commit_buffer(struct writequeue_entry *e)

void free_entry(struct writequeue_entry *e)

int send_to_sock(struct connection *con)

int lowcomms_close(int nodeid)

int lowcomms_send_message(int nodeid, char *buf, int len, int allocation)

void process_sockets()

void process_output_queue()

void process_state_queue()

void clean_writequeues()

int read_list_empty()

int gdlm_recvd(void *data)

int write_and_state_lists_empty()

int gdlm_sendd(void *data)

void daemons_stop()

int daemons_start()

int lowcomms_max_buffer_size()

int lowcomms_start()

3.3.13.5 Functions: mid-level communications

void host_to_network(void *msg)

void network_to_host(void *msg)

void copy_from_cb(void *dst, const void *base, unsigned offset, unsigned len, unsigned limit)

int midcomms_process_incoming_buffer(int nodeid, const void *base,
unsigned offset, unsigned len, unsigned limit)

void midcomms_send_buffer(struct gd_req_header *msg, struct writequeue_entry *e)
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int midcomms_send_message(uint32 nodeid, struct gd_req_header *msg, int allocation)

3.3.13.6 Functions: recovery communications

int rcom_response(gd_ls_t *ls)

int rcom_send_message(gd_ls_t *ls, uint32 nodeid, int type, gd_rcom_t *rc, int need_reply)

void rcom_process_message(gd_ls_t *ls, uint32 nodeid, gd_rcom_t *rc)

void process_reply_sync(gd_ls_t *ls, uint32 nodeid, gd_rcom_t *reply)

void process_reply_async(gd_ls_t *ls, uint32 nodeid, gd_rcom_t *reply)

void rcom_process_reply(gd_ls_t *ls, uint32 nodeid, gd_rcom_t *reply)

void process_recovery_comm(uint32 nodeid, struct gd_req_header *header)

3.3.14 Future Work

GDLM can be enhanced with the following features:

• Dynamic lock remastering. The master node of a resource is changed while the lock space is operating.
The new master is chosen due to its high volume of lock operations against the resource relative to the
current master node.

• Lock directory weights. A static ”weight” value is assigned to certain nodes that causes a larger segment
of the lock directory to be stored on them or none at all.

• Dedicated lock servers. One or more nodes can be designated as resource masters in a lock space. This
replaces the common policy where the first node to lock a resource becomes its master.

3.4 LOCK DLM

TODO: add details of LOCK DLM design and implementation.

3.5 Fence

TODO: add details of Fencing system design and implementation.
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3.6 Appendix A: Practical Usage

A summary of all the practical steps required to set up and use the software described in this document.

3.7 Appendix B: Service Group Examples
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clustername: "alpha"

MG: "X"

LS: "X"

FD: "default"

MG: "Y"

1 432 98765 A B

LS: "Y"

MG: "Z"

LS: "Z"

Nodes

CMAN/SM
Service
Groups

CMAN/Cnxman
cluster

Three GFS file systems in use with names X, Y and Z.

gfs_mkfs -p lock_dlm -t alpha:X -j 12 /dev/volume1
gfs_mkfs -p lock_dlm -t alpha:Y -j 12 /dev/volume2
gfs_mkfs -p lock_dlm -t alpha:Z -j 12 /dev/volume3

Nodes 1-A:      ccsd -d /dev/alpha_cca
Nodes 1-A:      cman_tool join

Nodes 1,2,3,4:  mount -t gfs /dev/volume1 /dir
Nodes 5,6:      mount -t gfs /dev/volume2 /dir
Nodes 7,8,9:    mount -t gfs /dev/volume3 /dir

Example: node 9 fails
Nodes 1,2,3,4,5,6,7,8,A: Cnxman detects failure
Nodes 1,2,3,4,5,6,7,8,A: Cnxman transition removes node 9 from cluster
Nodes 1,2,3,4,5,6,7,8,A: Cnxman tells SM of new cluster membership
Nodes 1,2,3,4,5,6,7,8,A: SM stops service group FD-"default"
Nodes 7,8: 														SM stops service group LS-"Z"
Nodes 7,8:														 SM stops service group MG-"Z"
Nodes 1,2,3,4,5,6,7,8,A: SM starts FD-"default" and 9 is fenced by the
                         member of FD-"default" with the lowest ID (1)
Nodes 7,8: 														SM starts LS-"Z" and GDLM recovers lock space "Z"
Nodes 7,8: 														SM starts MG-"Z" and GFS recovers journal of 9

Figure 3.15: Service Groups Example 1



77

clustername: "alpha"

MG: "V"

LS: "V"

FD: "default"

MG: "Y"

1 432 98765 A B

LS: "Y"

MG: "Z"

LS: "Z"

Nodes

CMAN/SM
Service
Groups

CMAN/Cnxman
cluster

Five GFS file systems in use with names V, W, X, Y and Z.

gfs_mkfs -p lock_dlm -t alpha:V -j 12 /dev/volume1
gfs_mkfs -p lock_dlm -t alpha:W -j 12 /dev/volume2
gfs_mkfs -p lock_dlm -t alpha:X -j 12 /dev/volume3
gfs_mkfs -p lock_dlm -t alpha:Y -j 12 /dev/volume4
gfs_mkfs -p lock_dlm -t alpha:Z -j 12 /dev/volume5

Nodes 1-A:      ccsd -d /dev/alpha_cca
Nodes 1-A:      cman_tool join

Nodes 2,3,4,5:  mount -t gfs /dev/volume1 /dir1
Nodes 7,8:      mount -t gfs /dev/volume2 /dir2
Nodes 1,2,3,4:  mount -t gfs /dev/volume3 /dir3
Nodes 5,6:      mount -t gfs /dev/volume4 /dir4
Nodes 7,8,9:    mount -t gfs /dev/volume5 /dir5

Example: node 9 fails
Nodes 1,2,3,4,5,6,7,8,A: Cnxman detects failure
Nodes 1,2,3,4,5,6,7,8,A: Cnxman transition removes node 9 from cluster
Nodes 1,2,3,4,5,6,7,8,A: Cnxman tells SM of new cluster membership
Nodes 1,2,3,4,5,6,7,8,A: SM stops service group FD-"default"
Nodes 7,8: 														SM stops service group LS-"Z"
Nodes 7,8:														 SM stops service group MG-"Z"
Nodes 1,2,3,4,5,6,7,8,A: SM starts FD-"default" and 9 is fenced by the
                         member of FD-"default" with the lowest ID (1)
Nodes 7,8: 														SM starts LS-"Z" and GDLM recovers lock space "Z"
Nodes 7,8: 														SM starts MG-"Z" and GFS recovers journal of 9

MG: "X"

LS: "X"

MG: "W"

LS: "W"

Example: node 5 fails
Nodes 1,2,3,4,6,7,8,9,A: Cnxman detects failure
Nodes 1,2,3,4,6,7,8,9,A: Cnxman transition removes node 5 from cluster
Nodes 1,2,3,4,6,7,8,9,A: Cnxman tells SM of new cluster membership
Nodes 1,2,3,4,6,7,8,9,A: SM stops service group FD-"default"
Nodes 2,3,4: 												SM stops service group LS-"V"
Node  6:                 SM stops service group LS-"Y"
Nodes 2,3,4:             SM stops service group MG-"V"
Node  6:  														 SM stops service group MG-"Y"
Nodes 1,2,3,4,6,7,8,9,A: SM starts FD-"default" and 5 is fenced by the
                         member of FD-"default" with the lowest ID (1)
Nodes 2,3,4: 												SM starts LS-"V" and GDLM recovers lock space "V"
Node  6:                 SM starts LS-"Y" and GDLM recovers lock space "Y"
Nodes 2,3,4:													SM starts MG-"V" and GFS recovers journal of 5
Node  6:                 SM starts MG-"Y" and GFS recovers journal of 5

Figure 3.16: Service Groups Example 2


