
Application White Listing

Steve Grubb   
Red Hat      



2

What is it?



3

What is it?

● Only applications on a whitelist can execute      
(e.g. - only things we know about)



4

How does a program execute?

● Bash checks if internal command and handles it

● If its a subshell, 

– forks and starts reading lines and performing them

● Else it: forks, sets up pipes, calls execve(filename, argv, envp)

● Kernel has a list of supported formats
– ia_32aout
– Flat
– Aout
– Script
– Em86
– Elf
– elf_fdpic

● It iterates through each handler until one accepts the file



5

How does a program execute?

● If its a script

– It must start with:   !# interpreter [optional arg]

– Re-execs as:  interpreter  [optional-arg]  filename  argv

– If execve fails with ENOEXEC, Bash
● Checks to see if its a directory
● Checks to see if execute bit is set
● Opens file and reads it

– Interprets it as a shell script

● If its an ELF file...



6

How does a program execute?

● Kernel opens and reads the file 
(ELF image)

● Kernel inspects the file and 
notes that its interpreter is ld.so

● Kernel loads ld.so into 
program's address space

● ld.so initializes and looks at the 
program's ELF image

● ld.so locates the library names

● Looks for RPATH record (not 
normally there)

● ld.so consults 
LD_LIBRARY_PATH to locate 
the first library (not normally 
used)

● Checks /etc/ld.so.cache

● ld.so opens, mmaps, and 
reads library

● ld.so resolves symbols

● Continues this until all libraries 
and libraries dependencies are 
loaded.

● Jumps to init and then main



7

What are the attack points

● Without privileges
– Downloading malware/escalation tools

– Changing search paths by environmental variables

– Code injection via LD_PRELOAD

● With privileges
– Modifying/replacing applications

– Installing new applications

– Inject malware into running processes via ptrace

– Change ELF interpreter in existing apps



8

Demonstrate Launches



9

Fanotify

● File Access Notifications

– Available since Linux 2.6.37

– Allows recursive monitoring within a mount point

– Allows user space to say yes or no to file access

– Hands the monitor an open file descriptor for reading

– Originally designed for virus scanning

● Drawbacks

– No notification on deletions, renames, or file moves

– Requires CAP_SYS_ADMIN



10

Fanotify Event

● Open a descriptor with fanotify_init(2)

● Passes a struct back to user space when something happens

struct fanotify_event_metadata {
       __u32 event_len;
       __u8 vers;
       __u8 reserved;
       __u16 metadata_len;
       __aligned_u64 mask;
       __s32 fd;
       __s32 pid;
};



11

What can we get from that?



12

What else can we get from that?



13

Access control policy

● Current policy is in the following format

– decision  subject=  object=

– decision pattern=

– Decision
● allow, allow_audit, deny, deny_audit

– Subject attributes
● All, auid, uid, sessionid, pid, comm, exe, 

exe_dir, exe_type, exe_device, pattern
– Object attributes

● All, path, dir, device, ftype, sha256hash

Can have multiple subject and objects, they are “anded”



14

Subject statements

● all – no args

● auid = number or name 

● uid = number or name

● sessionid = number

● pid = number

● comm = string up to 15 characters

● exe = full path to executable

● exe_dir = full path to directory or execdirs, systemdirs, untrusted

● exe_type = mime type (file --mime-type /path-to-file)

● exe_device – full path to device (/dev/sr0)



15

Object Statements

● all – no args

● path = string, full path

● dir = full path to directory or execdirs, systemdirs, unpackaged

● device = /dev/something

● ftype = mime type

● Sha256hash = hex number

execdirs: /usr, /bin, /sbin, /lib, /lib64, /usr/libexec
systemdirs: execdirs + /etc



16

Patterns

Normal
dec=allow auid=4325 pid=4490 exe=/usr/bin/bash file=/usr/bin/ls
dec=allow auid=4325 pid=4490 exe=/usr/bin/bash file=/usr/lib64/ld-2.21.so
dec=allow auid=4325 pid=4490 exe=/usr/bin/ls file=/etc/ld.so.cache
dec=allow auid=4325 pid=4490 exe=/usr/bin/ls file=/usr/lib64/libselinux.so.1
dec=allow auid=4325 pid=4490 exe=/usr/bin/ls file=/usr/lib64/libcap.so.2.24

ld.so started
dec=allow auid=4325 pid=31684 exe=/usr/bin/bash file=/usr/lib64/ld-2.21.so
dec=allow auid=4325 pid=31684 exe=/usr/lib64/ld-2.21.so file=/usr/bin/ls
dec=allow auid=4325 pid=31684 exe=/usr/lib64/ld-2.21.so file=/etc/ld.so.cache
dec=allow auid=4325 pid=31684 exe=/usr/lib64/ld-2.21.so file=/usr/lib64/libselinux.so.1
dec=allow auid=4325 pid=31684 exe=/usr/lib64/ld-2.21.so file=/usr/lib64/libcap.so.2.24



17

Patterns

LD_PRELOAD
dec=allow auid=4325 pid=31728 exe=/usr/bin/bash file=/usr/bin/ls
dec=allow auid=4325 pid=31728 exe=/usr/bin/bash file=/usr/lib64/ld-2.21.so
dec=allow auid=4325 pid=31728 exe=/usr/bin/ls 
file=/usr/lib64/libaudit.so.1.0.0
dec=allow auid=4325 pid=31728 exe=/usr/bin/ls file=/etc/ld.so.cache
dec=allow auid=4325 pid=31728 exe=/usr/bin/ls file=/usr/lib64/libselinux.so.1
dec=allow auid=4325 pid=31728 exe=/usr/bin/ls file=/usr/lib64/libcap.so.2.24



18

Sample policy
# Prevent execution by ld.so
deny_audit pattern=ld_so all

# Don't allow LD_PRELOAD
deny_audit pattern=ld_preload all

# Don't allow unpackaged executables
deny_audit exe_dir=execdirs exe=untrusted all

# Only allow system ELF Applications
allow all dir=execdirs ftype=application/x-executable
deny_audit all ftype=application/x-executable

# Only allow system ELF libs
allow all dir=execdirs ftype=application/x-sharedlib
deny_audit all ftype=application/x-sharedlib

# Only allow system python executables and libs
allow all dir=execdirs ftype=text/x-python
allow exe=/usr/bin/python2.7 dir=execdirs ftype=text/x-python
deny_audit  all ftype=text/x-python



19

Design



20

Shipped policy design goals

● 1) No bypass of security by executing programs via ld.so.

● 2) No injection of code by LD_PRELOAD

● 3) All approved executables must be packaged or trusted. 
Unpackaged or untrusted programs can't run.

● 4) Elf and python files/shared objects must come from system 
directories.

– This prevents LD_LIBRARY & PYTHON_LIBRARY 
redirection to an attacker controlled dir.

● 5) Other languages are not allowed or must be enabled.



21

Stats report

Allowed accesses: 14354
Denied accesses: 0

File access attempts from oldest to newest as of Thu Sep 29 19:00:49 2016

        FILE                                                ATTEMPTS
---------------------------------------------------------------------------
/usr/lib64/libnspr4.so                                          5
/usr/sbin/unix_chkpwd                                           3
/usr/lib64/libcrypt-2.23.so                                     4
/usr/lib64/libaudit.so.1.0.0                                    4
/usr/lib64/libcap-ng.so.0.0.0                                   4

---

Object queue size: 4096
Object slots in use: 3073
Object hits: 4104
Object misses: 5949
Object evictions: 2876



22

Demo



23

Findings (so far...)

● Some applications are putting code in your homedir
– Kodi

– R Studio

– libreoffice



24

Refinements
● Fanotify needs kernel work

– Need to know open is because of execve
● Improved cache management
● Required for accurate pattern matching

– Really wished we could get notification on process 
exit

● Improve cache management
– More efficient if we had a stat buf passed in event

● Needs to handle  yum/dnf/rpm  install/update/remove

● Other trust sources besides rpm database such as SWID



  

         Questions?

sgrubb @redhat.com

github.com/stevegrubb/fapolicyd


