Cgroups: The Next Generation
RHEL 8 & Cgroups v2

Marc Richter
Principal Technical Account Manager
What we’ll be discussing today

- Intros
- Cgroup Basics
- What’s New in v2
- Demo
- Next Steps
/whois unclemarc

Linux Nerd since 1998
RHCE, cause that’s fun
Red Hatter since 2015
- Principal Technical Account Manager
Scout Leader since 2009
1 wife, 4 kids, 3 dogs = mild chaos
Why Cgroups?

Moving Parts
Modern computers are pretty dang busy. Even so-called “serverless” applications are but one of many jobs running on a single piece of hardware. We need tools to manage the balance of all the critical resources on the system. Cgroups are an important tool for performance tuning.
Performance Tuning? Hard! Do not want!
A Real World Problem

Database Server
Clustered database server, load would vary during the workday.

Mandatory Security Scanner
Periodic job to look for malware and other nastiness. Takes all the processor time it can get.

Cluster Agent
If on the same core as the scanner, would get starved for CPU during busy times. This would cause a fencing event.
A Real World Problem. Fixed

Create a control group
System was RHEL 6, so we used the libcgroup tools to create a cgroup under the CPU controller.

Set CPU Quota for new cgroup
We set the maximum CPU allowed to 60% of a single core.

Scanning Agent
When launched, the agent gets placed into the new control group. It can NEVER exceed the CPU Quota.

Profit!
The server stopped being fenced, as the cluster agent was never starved for CPU time.
“Tell me more about these wondrous cgroups…”

Kernel Based Controllers

Officially appeared in RHEL 6. Required manual configuration to enable and use.

Core systemd component

RHEL 7 and 8 both use cgroups v1 (same concept as cgroups in RHEL 6) as their default in systemd. Not optional, required for proper system operation. Not all controllers used by systemd.

Required for containers

Cgroups are a foundational component for containers, along with kernel namespaces and SELinux.
Version 1

Default in all RHEL
It's the only version available in RHEL 6 and RHEL 7 and is the default in RHEL 8

Controlled via a virtual filesystem
Mounted at /sys/fs/cgroup – this can be analyzed for current state and modified to change state. Many actions have commands or APIs rather than manually manipulating this filesystem

Cgroups are arranged under controllers
Each controller has a hierarchy under it. A process can end up existing in one or more cgroups at the same time. This can lead to some confusion
Version 2

Optional in RHEL 8
Can be enabled with a kernel boot option. Most commands are supported, some use cases are not yet in place.

Controlled via a virtual filesystem
Mounted at /sys/fs/cgroup – this can be analyzed for current state and modified to change state. Many actions have commands or APIs rather than manually manipulating this filesystem.

Single hierarchy
There is a single hierarchy for all cgroups. Controllers are enabled for sub trees in the hierarchy. A process can only exist in one cgroup at a time. This simplifies managing the processes a bit.
Version 2 Controllers in RHEL 8

Four currently supported

CPU
Memory
BLKIO
PIIDs
Exploring the virtual filesystem

```
[root@roland ~]# cd /sys/fs/cgroup/
[root@roland cgroup]# ls -la
total 0
dr-xr-xr-x.  5 root root 0 Jun  5 18:34 .
drwxr-xr-x.  7 root root 0 Jun  5 18:34 ..
-r--r--r--.  1 root root 0 Jun  5 18:36 cgroup.controllers
-rw-r--r--.  1 root root 0 Jun  5 18:36 cgroup.max.depth
-rw-r--r--.  1 root root 0 Jun  5 18:36 cgroup.max.descendants
-rw-r--r--.  1 root root 0 Jun  5 18:36 cgroup.procs
-r--r--r--.  1 root root 0 Jun  5 18:36 cgroup.stat
-rw-r--r--.  1 root root 0 Jun  5 18:36 cgroup.subtree_control
-rw-r--r--.  1 root root 0 Jun  5 18:36 cgroup.threads
drwxr-xr-x.  2 root root 0 Jun  5 18:34 init.scope
drwxr-xr-x.  37 root root 0 Jun  5 18:34 system.slice
drwxr-xr-x.  3 root root 0 Jun 13 08:37 user.slice
[root@roland cgroup]#
```
Exploring the virtual filesystem

```
[root@roland system.slice]# pwd
/sys/fs/cgroup/system.slice
[root@roland system.slice]# ls
atd.service  dev-mqueue.mount  polkit.service
auditd.service  firewalld.service  puppet.service
donlp.mount  io.bfq.weight  qemu-guest-agent.service
boot.mount  io.max  rhsmcertd.service
chrt  io.stat  rngd.service
chrt_regex  irqbalance.service  rsyslog.service
chrt_regex_regex  libstoragemgmt.service  smartd.service
chrt_regex_regex_regex  mcclog.service  sshd.service
cgroup.stat  memory.current  sssd.service
cgroup.subtree_control  memory.events  system-config.mount
chrt_regex_regex_regex_regex  memory.high  sys-kernel-debug.mount
chrt_regex_regex_regex_regex_regex  memory.low  systemd-journald.service
chrt_regex_regex_regex_regex_regex_regex  memory.max  systemd-logind.service
chrt_regex_regex_regex_regex_regex_regex_regex  memory.min  systemd-udevd.service
chrt_regex_regex_regex_regex_regex_regex_regex_regex  memory.stat  system-getty.slice
chrt_regex_regex_regex_regex_regex_regex_regex_regex_regex  memory.swap.current 'system-lvm2\x2d pvscan.slice'
chrt_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex  memory.swap.events 'system-sshd\x2dkeygen.slice'
chrt_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex  memory.swap.max 'system-systemd\x2d hibernate\x2d resume.slice'
chrt_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex  NetworkManager.service 'system-user\x2d runtime\x2d ddir.slice'
chrt_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex  pids.current tuned.service
chrt_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex  pids.events
chrt_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex_regex  pids.max
```
Exploring the virtual filesystem

```
[root@roland system.slice]# pwd
/sys/fs/cgroup/system.slice
[root@roland system.slice]# cat cgroup.subtree_control
memory pids
[root@roland system.slice]# 
```
Exploring the virtual filesystem

```
[root@roland system.slice]# cd sshd.service/
[root@roland sshd.service]# ls
cgroup.controllers  cgroup.procs  cgroup.type  memory.high  memory.stat  pids.current
cgroup.events      cgroup.stat    cpu.stat      memory.low    memory.swap.current pids.events
cgroup.max.depth   cgroup.subtree_control memory.current memory.max memory.swap.events pids.max
cgroup.max.descendants cgroup.threads memory.events memory.min memory.swap.max
[root@roland sshd.service]# cat cgroup.procs
727
[root@roland sshd.service]# ps aux | grep 727
root    727  0.0  0.9  92248  7656 ?    Ss   Jun05  0:00 /usr/sbin/sshd -D -oCiphers=aes256-gcm@openssh.com,wechat20-poly1305@openssh.com,aes256-ctr,aes256-cbc,aes128-gcm@openssh.com,aes128-ctr,aes128-cbc -oMACs=hmac-sha2-256-etm@openssh.com,hmac-sha1-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-256- etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha2-256,hmac-sha1,umac-128@openssh.com,hmac-sha2-512 -oGSSAPIKexAlgorithms=gss-gss-shal-,gss-group14-shal- -oKexAlgorithms=curve25519-sha256@li
```
Demo

Using systemctl and cgroups v2

In this demonstration, we’ll use the systemctl command to change the CPU quota of user “mrichter” on the fly. We’ll see what changes happen in the virtual filesystem. You’ll also meet Mr. Scope, an interesting character.
If Marc Forgot to Mention During the Demo...

```
[root@roland user-1000.slice.d]# pwd
/etc/systemd/system.control/user-1000.slice.d
[root@roland user-1000.slice.d]# ls
50-CPUQuota.conf
[root@roland user-1000.slice.d]# cat 50-CPUQuota.conf
# This is a drop-in unit file extension, created via "systemctl set-property"
# or an equivalent operation. Do not edit.
[Slice]
CPUQuota=100%
[root@roland user-1000.slice.d]#  
```

Persistence

Setting a property writes it to the `/etc/systemd/system.control` directory. This overrides drop-ins in `/etc/systemd/system/`
So unclemarc, should we be using cgroups v2?

Not fully implemented for all use cases
- libvirt
- runc
- Kubernetes

Version 1 remains the default
Support for v1 will remain for lifespan of RHEL 8 and will always be the default

libcgroup tools ARE most likely going away
It is time to move off of tooling that relies on the old-school RHEL 6 flavored libcgroup packages
Next Steps

Cgroups Blog Series
https://www.redhat.com/en/blog/authors/marc-richter

RHEL 8 System Documentation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/

Cgroups Kernel Doc
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
Questions?
Thank you

Red Hat is the world’s leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.