
Linux Network Recieve Stack
Monitoring and Tuning Deep Dive
NYRHUG Monthly Meeting January 2017

Patrick Ladd
Technical Account Manager
Red Hat
pladd@redhat.com

Slides available at http://people.redhat.com/pladd

What’s a TAM?

– Premium named-resource support

– Proactive and early access

– Regular calls and on-site engagements

– Customer advocate within Red Hat and upstream

– Multi-vendor support coordinator

– High-touch access to engineering

– Influence for software enhancements

– NOT Hands-on or consulting

Disclaimers
● This presentation is the result of some research I got into in the

last month

● Information is distilled from several sources, including

– https://access.redhat.com/articles/1391433

– https://blog.packagecloud.io/

– https://www.privateinternetaccess.com/blog/author/piaresearch/

– https://www.kernel.org/doc/Documentation/networking/scaling.txt

– Linux Kernel Development (2nd Edition) – Robert Love

● I am not a kernel developer – my answer to some (many?)
questions may be “I am not a kernel developer”

Strategy
How to approach this

Deep Dive Into
the Kernel

“Use the source
Luke”

What to change

“Knobs”

How to Monitor

“What’s Happening”

“Under the Hood”

Overview
Path of a received packet

Packet arrival at NIC

DMA copy to Ring Buffer

Hardware Interrupt

ksoftirqd “bottom half”

Hardware Interrupt “top half”

‘skb’ structures passed up to network layer

Protocol layers process and deliver to socket queues

PCI Initialization
● PCI devices are identified by registers in PCI configuration space

● Device drivers are compiled with a list of PCI device IDs that they
can control (MODULE_DEVICE_TABLE)

● The kernel uses these tables to determine which device drivers to
load

● PCI probe functions of the device drivers are called to set up
devices

PCI Probe Tasks (typical)
● Enable the device

● Request memory range & I/O ports

● Set DMA mask

● Register ethtool functions supported by driver

● Watchdog task setup

● net_device_ops structure setup

– Function pointers for opening, sending data, setting MAC, etc.

● net_device struct creation

softirq Subsystem Initialization

smpboot.c

CPU 0 CPU 1

ksoftirqd/0 ksoftirqd/1

1. Create ksoftirqd kernel
threads (1 per CPU)

2. ksoftirqd processing
 loops started

softnet_data Poll list

softirq_vec handlers

softirq_pending bits

3. Per CPU data
structures created

net/core/dev.c

Kernel

net_dev_init

4. Softirq handler
(net_rx_action) for
NET_RX_SOFTIRQ
registered

Network Device Initialization
● net_device_ops Data Structure

– Function pointers to driver implementation of function
static const struct net_device_ops igb_netdev_ops = {
 .ndo_open = igb_open,
 .ndo_stop = igb_close,
 .ndo_start_xmit = igb_xmit_frame,
 .ndo_get_stats64 = igb_get_stats64,
 .ndo_set_rx_mode = igb_set_rx_mode,
 .ndo_set_mac_address = igb_set_mac,
 .ndo_change_mtu = igb_change_mtu,
 .ndo_do_ioctl = igb_ioctl,

● ethtool_ops Data Structure

static const struct ethtool_ops igb_ethtool_ops = {
 .get_settings = igb_get_settings,
 .set_settings = igb_set_settings,
 .get_drvinfo = igb_get_drvinfo,
 .get_regs_len = igb_get_regs_len,
 .get_regs = igb_get_regs,

NIC Data Processing “Top Half”
1. Received
 by NIC

RAM (ring buffer(s))

2. DMA

CPU /
Chipset

Driver4. Runs
 IRQ Handler

5. IRQ Cleared

6. NAPI started

3. IRQ Raised

NAPI (New API) Processing

CPU 0

ksoftirqd/0

softnet_data Poll list

softirq_vec handlers

softirq_pending bits

1. NAPI poller is
added to poll_list

Driver

2. softirq_pending
bit set

3. run_ksoftirqd checks
softirq_pending bit

run_ksoftirqd()

if pending
 __do_softirq()

4. Registered handler
called from softirq_vec
handlers

__do_softirq()

net_rx_action()

Packets are processed through
polling from the poll list until all
packets are processed or
specified limits are reached

Interrupts are re-enabled after
polling stops

NAPI Advantages
● Reduced interrupt load

– Without NAPI: 1 interrupt per packet high CPU load→

– With NAPI: polling during high packet arrival times

● No work to drop packets if kernel is too busy

– Ring buffer overwrite by NIC

● Device drivers have been re-written to support and enable NAPI
by default

Multiqueue /
RSS (Receive Side Scaling)

● NIC with Multiple Send/Receive Queues

– Explore with “ethtool -l {ifname}”

– Modify with “ethtool -L {ifname} {parm} {value}”

– Each has it’s own interrupt

● Used to distribute queue among multiple CPUs

● Examine /proc/interrupts for details

● Manual steering or dynamic

● Some systems run irqbalance daemon

– Distribution

● Typically a fixed hash function of header data (IP addr & port are
common)

● Some NICs support programmable hashes “n-tuple” (ethtool –
config-ntuple)

Sample RSS ethtool output
ethtool -l eth0
Channel parameters for eth0:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 8
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 4

ethtool -l eth0
Channel parameters for eth0:
Cannot get device channel parameters
: Operation not supported

Multiqueue /
RSS (Receive Side Scaling)

● Recommendations:

– Enable for latency concerns or when interrupt bottlenecks form

– Lowest latency:

● 1 queue per CPU or max supported by NIC

– Best efficiency:

● Smallest number with no overflows due to CPU saturation
● Aggressive techniques:

– Lock IRQ & userspace process to CPU

– Custom n-tuple setups (i.e. “all TCP/80 to CPU1)

Network Data Processing “Bottom Half”

net_rx_action

softnet_data Poll list

Driver

1. poll_list entry
received

2. Budget and
 Elapsed Time
 Checked*

3. Driver poll
 function called

RAM (ring buffer)

mydrv_poll()

4. Packet harvested
 from ring buffer

napi_gro_receive

5. Packets passed
 for possible GRO

net_receive_skb

GRO List

6. Packets coalesced or
 passed on toward
 protocol stacks

NAPI Exit
● Exits when:

– No more NAPI poll structures to process

– netdev_budget Exceeded

● Each driver hardcoded budget for one NAPI structure of 64
● Default is 300
● → Approximately 5 driver poll calls

– softirq Time Window Exceeded

● 2 “jiffies”
● If no structures remain, re-enable IRQ interrupt

Network Data Processing (Continued)

CPU 0

netif_receive_skb

Packet input queue

1. If RPS enabled,
 enqueue to backlog

enqueue_to_backlog

2. Packets added to
per CPU input queue

poll_list

3. backlog NAPI added
 to poll_list with IPI

process_backlog
__netif_receive_skb_core

4. Packets harvested
 from input queue

5. Packets returned to
main flow

Packet Taps (PCAP)

To Protocol Layers

6. Packets
copied to
any taps

Monitoring

Monitoring
● ethtool -S {ifname} – Direct NIC level Statistics

– Hard to use – no standards, variation between drivers or even different
releases of same driver

– May have to resort to reading the driver source or NIC datasheet to
determine true meaning

● /sys/class/net/{ifname}/statistics/ – Kernel Statistics

– Slightly higher level

– Still some ambiguity in what vales are incremented when

– May need to read source to get exact meanings

● /proc/net/dev – Kernel Device Statistics

– Subset of statistics from above for all interfaces

– Same caveats as above

Monitoring
● Monitoring SoftIRQs

– watch -n1 grep RX /proc/softirqs

● Packets dropped by the kernel: dropwatch

dropwatch -l kas start
Initalizing kallsyms db
dropwatch> start
Enabling monitoring…
Kernel monitoring activated.
Issue Ctrl-C to stop monitoring
1 drops at skb_queue_purge+18 (0xffffffff8151a968)
41 drops at __brk_limit+1e6c5938 (0xffffffffa0a1d938)
1 drops at skb_release_data+eb (0xffffffff8151a80b)
2 drops at nf_hook_slow+f3 (0xffffffff8155d083)

Finding the Bottleneck
● Drops at NIC level:

– ethtool -S {ifname}
 rx_errors: 0
 tx_errors: 0
 rx_dropped: 0
 tx_dropped: 0
 rx_length_errors: 0
 rx_over_errors: 3295
 rx_crc_errors: 0
 rx_frame_errors: 0
 rx_fifo_errors: 3295
 rx_missed_errors: 3295

Finding the Bottleneck
● IRQs out of balance

– egrep “CPU0|{ifname}” /proc/interrupts
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5
 105: 1430000 0 0 0 0 0 IR-PCI-MSI-edge eth2-rx-0
 106: 1200000 0 0 0 0 0 IR-PCI-MSI-edge eth2-rx-1
 107: 1399999 0 0 0 0 0 IR-PCI-MSI-edge eth2-rx-2
 108: 1350000 0 0 0 0 0 IR-PCI-MSI-edge eth2-rx-3
 109: 80000 0 0 0 0 0 IR-PCI-MSI-edge eth2-tx

● Check irqbalance service or manual IRQ settings

Finding the Bottleneck
● Insufficient netdev_budget for traffic

– cat /proc/net/softnet_stat
0073d76b 00000000 000049ae 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000000d2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0000015c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

– Rows are by CPU

● 1st column: number of frames received by the interrupt
handler

● 2nd column: number of frames dropped due to
netdev_max_backlog being exceeded

● 3rd column: number of times ksoftirqd ran out of
netdev_budget or CPU time when there was still work to be
done

● Overall system load – overloaded CPU not spending enough time
processing SoftIRQs

General Tuning

Tuned
● Profile driven adaptive tuning daemon

– Install
yum install tuned
systemctl enable tuned
systemctl start tuned

– Examine profiles (or look in /etc/tune-profiles)
tuned-adm list
Available profiles:
- throughput-performance
- default
- desktop-powersave
- enterprise-storage
...

– Activate a profile
tuned-adm profile throughput-performance
Switching to profile 'throughput-performance'
...

Numad
● Intelligently move processes and memory among NUMA domains

– Activate
systemctl enable numad
systemctl start numad

– For more information
man numad

Hardware Tuning

HowTo: Persist ethtool settings
● For all techniques: https://access.redhat.com/solutions/2127401

● RHEL 5,6,7 without NetworkManager

In /etc/sysconfig/network-scripts/ifcfg

ETHTOOL_OPTS=“-G ${ifname} {parm} {value}”

● RHEL 6,7 with NetworkManager

– Network manager dispatcher script
(https://access.redhat.com/solutions/2841131)

– In /etc/NetworkManager/dispatcher.d/

#!/bin/bash
if ["$1" = "eth0"] && ["$2" = "up"]; then
 ethtool -K "$1" rx off gro off lro off
fi

● ifup-local or udev rules

HowTo: Persist Kernel Tunables
● https://access.redhat.com/solutions/2587

● Runtime:

– sysctl -w {parm}={value}

– echo {value} > /proc/sys/{parmtree…}/{parm}

● Persistent

– RHEL7:

● Add {myname}.conf file in /etc/sysctl.d/

– Prior to RHEL7:

● Insert or update parameter in /etc/sysctl.conf

Adapter Buffer Sizes
● Customize the size of RX ring buffer(s)

– “ethtool –g {ifname}” to View

● # ethtool -g eth3
Ring parameters for eth3:
Pre-set maximums:
RX: 8192
RX Mini: 0
RX Jumbo: 0
TX: 8192
Current hardware settings:
RX: 1024
RX Mini: 0
RX Jumbo: 0
TX: 512

– “ethtool –G {ifname} [rx N] [rx-mini N] [rx-
jumbo N] [tx N]” to Alter

Backlog Queue (2nd column of softnet_stat)

● Increase the netdev_max_backlog

– May need increase for multiple 1GB adapters or single 10GB

– Double, if rate decreases, double and test again. Repeat until
optimum size found.

– sysctl net.netdev_max_backlog
netdev_max_backlog=1000

– sysctl -w net.core.netdev_max_backlog=2000

SoftIRQ time (3rd column of softnet_stat)

● Increase the netdev_budget

– Seldom needed on 1GB adapters, 10GB and above may need

– sysctl net.core.netdev_budget
net.core.netdev_budget=300

– sysctl -w net.core.netdev_budget=600

Interrupt Coalesce (IC)
● Modern NICs support collecting packets together before issuing

interrupt

– “ethtool –c {ifname}” to View

ethtool -c eth3
Coalesce parameters for eth3:
Adaptive RX: on TX: off
stats-block-usecs: 0
sample-interval: 0
pkt-rate-low: 400000
pkt-rate-high: 450000

rx-usecs: 16
rx-frames: 44
rx-usecs-irq: 0
rx-frames-irq: 0

– “ethtool –G {ifname} {parm} {value}” to Alter

Adapter Offloading
● NIC Hardware Assist processing some protocol features

– GRO: Generic Receive Offload

– LRO: Large Receive Offload

– TSO: TCP Segmentation Offload

– RX check-summing = Processing of receive data integrity

– “ethtool –k {ifname}” to View

Features for eth0:
rx-checksumming: on
tx-checksumming: on
scatter-gather: on
tcp-segmentation-offload: on
udp-fragmentation-offload: off
generic-segmentation-offload: on
generic-receive-offload: on
large-receive-offload: on
rx-vlan-offload: on
tx-vlan-offload: on
ntuple-filters: off
receive-hashing: on

– “ethtool –K {ifname} {parm} {value}” to Alter

Module Parameters
● Other special settings for your NIC hardware

– Identify driver with “lsmod”

– “modinfo {driver_module}” to View

Software Tuning

GRO (Generic Receive Offload)
● Combine “similar” packets into larger packets

– Implemented in software

– LRO has some issues – information loss

– GRO is more restrictive

● See stack location on “Network Processing Bottom Half” slide

RPS (Receive Packet Steering)
● “RSS in software”

– Routes packets to particular CPUs based on hash

● Advantages over RSS

– Usable with any NIC

– Easier to add custom filters

– Does not increase HW interrupt rate

● Configuration:

– Bitmap in /sys/class/net/{ifname}/queues/rx-{n}/rps_cpus

RPS (Receive Packet Steering)
● Recommendations:

– Set rps_cpus to CPUs in same NUMA domain as interrupting
CPU

– May be redundant if RSS is enabled

● If much larger number of hardware CPUs than queues, RSS
for CPUs in same NUMA domain

– If packet flows are non-uniform, CPU load imbalance could be a
problem

● Investigate flow limits if this occurs

RFS (Receive Flow Steering)
● https://access.redhat.com/solutions/62885

● Steer packets to CPU processing application is running on

● Increase CPU cache hit rate by improving locality of reference

– Configure
● /sys/class/net/{ifname}/queues/rps_cpus

● /sys/class/net/{ifname}/queues/rps_flow_count

– sysctl -w net.core.rps_sock_flow_entries=32768

THANK YOU

Patrick Ladd
Technical Account Manager
Red Hat
pladd@redhat.com

Slides available at http://people.redhat.com/pladd

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

