
Introduction to
Containers, Kubernetes,
and Cloud Technology

Patrick Ladd
Poughkeepsie ACM

November 2021

pmladd@gmail.com / pladd@redhat.com /
people.redhat.com/pladd

mailto:pmladd@gmail.com
mailto:pladd@redhat.com
http://people.redhat.com/pladd

Containers

What is a container?

A. A file format
B. A runtime environment
C. A process

Containers

What is a container?

A. A file format
B. A runtime environment
C. A process
✓ All of the above

Container Technology

Containers

"Linux Containers" is a Linux kernel feature to contain a group of processes in an
independent execution environment

The kernel provides an independent application execution environment for each
container including:

● Independent filesystem
● Independent network interface and IP address
● Usage limit for resources - memory / CPU time / etc.

Linux containers are realized with integrating many existing Linux features. There are
multiple container management tools such as lxctools, libvirt and docker. They may use
different parts of these features.

Container History

Containers
≠

Virtualization

Underlying Technology

Enabling Technology in Linux has been present for many years

● Namespaces
○ Process
○ Network
○ Filesystem
○ User
○ IPC
○ UTS (UNIX Technology Services)

● cgroups - Control Groups
● Union (overlay) Filesystems

Namespces

Process Namespaces

Original UNIX Process Tree

● First process is PID 1
● Process tree rooted at PID 1
● PIDs with appropriate privilege may

inspect or kill other processes in the tree

Linux Namespaces

● Multiple, nested process trees
● Nested trees cannot see parent tree
● Process has multiple PIDs
● One for each namespace it is a member of

Network Namespaces

Presents an entirely separate set of network
interfaces to each namespace

● All interfaces including loopback are
virtualized

● Ethernet bridges may be created
○ ip link add name veth0 type

veth peer name veth1 netns
<pid>

● Routing process in global namespace to
route packets

/
/home/bob
/shared

Filesystem Namespaces

Clone / Replace list of mounted filesystems

● Similar to chroot
● Allows isolation of all mount points,

not just root
● Attributes can be changed between

namespaces (read only, for instance)
● Used properly, avoids exposing

anything about underlying system

/
/mnt
/var
/var/lib/containers/xxxx
/var/lib/containers/yyyy
/usr
...

/private

/shared_data

/
/alsoshared

User Namespaces

Replace / Extend UID / GID

● Delete unneeded UID / GID from container
● Add / change UID / GID map inside

container
● Use: root privilege in container, user

privilege in base OS

IPC Namespaces

Similar to network namespaces

● Separate interprocess communications resources
● Sys V IPC
● POSIX messaging

UTS Namespaces

UTS : UNIX Technology Services

Change inside container:

● Hostname
● Domain

Feature availability

Filesystem separation - Mount namespace (kernel 2.4.19)

Hostname separation - UTS namespace (kernel 2.6.19)

IPC separation - IPC namespace (kernel 2.6.19)

User (UID/GID) separation - User namespace (kernel 2.6.23〜kernel 3.8)

Processtable separation - PID namespace (kernel 2.6.24)

Network separation - Network Namespace (kernel 2.6.24)

Usage limit of CPU/Memory - Control groups (kernel 2.6.24)

Namespaces Summary

Isolation / Modification of Container processes from host

● PIDs
● Network
● Filesystems
● UID/GID
● IPC
● Hostname / Domain

See documentation on clone() system call for more complete details on
functionality (Warning: systems programmer jargon territory)

cgroups

Control Groups

● Control allocation of resources to processes running on a system
● Hierarchical and can be dynamically added, changed and removed
● Made up of several subsystems also called Resource Controllers

● cgroups-v1 since kernel 2.6.24
● You must install userspace tools

○ Install libcgroup

Resource Controllers

● blkio — this subsystem sets limits on input/output access to and from block devices such as
physical drives (disk, solid state, USB, etc.)

● cpu — this subsystem uses the scheduler to provide cgroup tasks access to the CPU
● cpuacct — this subsystem generates automatic reports on CPU resources used by tasks in a

cgroup
● cpuset — this subsystem assigns individual CPUs (on a multicore system) and memory nodes to

tasks in a cgroup
● devices — this subsystem allows or denies access to devices by tasks in a cgroup
● freezer — this subsystem suspends or resumes tasks in a cgroup
● memory — this subsystem sets limits on memory use by tasks in a cgroup, and generates

automatic reports on memory resources used by those tasks
● net_cls — this subsystem tags network packets with a class identifier (classid) that allows the

Linux traffic controller (tc) to identify packets originating from a particular cgroup task
● net_prio — this subsystem provides a way to dynamically set the priority of network traffic per

network interface
● ns — the namespace subsystem

Union (overlay) Filesystems

Union Filesystems

● Stacked / Layered Storage
● Copy on write
● Many available underlying

implementations
○ Aufs
○ OverlayFS
○ Btrfs
○ LVM
○ Device mapper

Container Security

CONTAINERS ARE NOT SECURE BY
DEFAULT

Container Isolation with SELinux

SELinux - Learn More

Coloring books!

Container Commandos! - sequel to the Selinux Coloring Book

https://github.com/mairin/coloringbook-container-commandos/blob/main/Web.pdf
https://github.com/mairin/selinux-coloring-book/blob/master/PDF/en/selinux-coloring-book_USLetter-Stapled.pdf

Container Tooling

Tooling

Container Operations

● Build Container Images
○ Originally - dockerfile
○ Now - many options

● Manage Container Images
○ Manage layers / Dependencies
○ Download / Upload - Container registries
○ List / Delete
○ Naming / Tagging

● Run Container Images
○ Image name
○ Namespace data
○ Mountpoints
○ Exposed Ports
○ et. al.

Tooling

Docker vs. docker

● Bundles all operations in daemon
running as root

Emergence of OCI (Open Container
Initiative) - 2015

● Runtime Specification
● Image Specification

Proliferation of Tools

● Podman / Buildah / Skopeo
● cri-o - Container Runtime for OpenShift

Podman / Buildah / Skopeo

Red Hat implementation of OCI Standards

● Podman - Container Runtime
○ New / in progress - rootless Podman

● Buildah - Build Container Images
○ Traditional dockerfile
○ Layer from result of container run
○ bash script
○ Direct mount to local machine

● Skopeo
○ Copy to/from multiple different registries
○ No local copy required

Giant
Multi-Purpose

Root
Daemons

Container Orchestration

More Containers - More Problems

● “Container Orchestration”
○ Managing containers at scale, even on a

single machine, is a problem
○ Deployment
○ Networking
○ Management

● Docker Swarm - 2016
○ Simplicity as the goal
○ Lacking many features - suitable for some

single-host orchestration

Kubernetes

Enter Kubernetes

● Kubernetes - Summer 2014
○ Google project
○ Kubernetes (κυβερνήτης, Greek for "helmsman"

or "pilot" or "governor")
○ Abbreviated “k8s”
○ Based on “Project Borg” - original name was

“Project 7” for “Seven of Nine” from Star Trek
○ Now run by CNCF (Cloud Native Computing

Foundation)
○ Many other companion projects now part of

CNCF - see trail map

https://www.cncf.io/
https://www.cncf.io/
https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png

Kubernetes Principles

“Pets vs Cattle”

● Pods / Nodes are subject to being terminated at any time for any reason
● Clusters / Applications should be architected for this

○ No dependencies on particular nodes / containers running continuously
○ Use k8s features to build application redundancy

● Pod IP addresses are ephemeral - should be grouped in services

Redundancy

Multi-tenancy

Kubernetes Architecture

https://kubernetes.io/docs/concepts/overview/components/

Node Types:

● Master(s): Machine(s) for managing the
cluster a.k.a. control plane

● Node(s): Workers for scheduling pods on

Master software components:

● API server
● etcd - key/value pair storage of cluster

state
● Scheduler - manages placement of pods
● Controller Manager - works to maintain

cluster in currently specified state

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/

Kubernetes Architecture

https://kubernetes.io/docs/concepts/overview/components/

Major Node software:

● Kubelet: manages node state via API
● Kube-proxy: Cluster network plugin
● Plugin Network: manages actual

implementation of cluster network
● cAdvisor: basic metrics gathering

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/

Kubernetes Objects

● Stored in etcd
● Accessed by API
● State information for cluster
● YAML Syntax

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2 # tells deployment to run 2 pods matching the template
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Kubernetes Terms / Concepts

● Pod: Smallest schedulable entity - runtime
grouping of 1 or more containers
○ All scheduled on same node
○ Dedicated unique IP address

● Sidecar: Secondary / helper containers in a
pod other than the “primary” container

● Namespace: Project-based mechanism to
separate applications from each other -
allows for multiple users / teams /
applications to be deployed on a single cluster

● Label: A way to identify characteristics of
particular pods or other k8s objects

● Selector: A way to pick k8s objects based on
common characteristics, especially labels

● ConfigMaps and Secrets: Storage location
for common configuration data used by
pods

Kubernetes Scheduling

● Bare pods - not recommended
● ReplicaSet: group of pods with defined number of

identical deployed pods
● StatefulSet: group of pods with defined

requirements for ordering / scaling - used to
manage stateful applications

● DaemonSet: group of pods with on pod deployed
to each node with specified labels. Most often
used for utility services

Deployments: Managed rollout of pods / ReplicaSets

In newer versions:

● Jobs: Runs pods until a specific number are
successfully executed

● CronJob: Runs jobs at specific intervals

Scheduling controls:

Filtering & Scoring

● Resource requests (CPU / memory /
Network / other & custom)

● Taints & Tolerations
● nodeSelector

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Kubernetes Networking

● Pods do not generally operate with Node
IPs - they use a cluster virtual network

● Pods are assigned unique ephemeral IP
addresses on the cluster’s virtual
network

● Accessing pods this way is discouraged
Instead use one of:

● Service: A set of pods addressable
through a common IP / DNS name

● Ingress: External access to Services

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/

Kubernetes Storage

Ephemeral Storage

● Many built-in types supported, only guaranteed for life of container

Persistent Storage

● Static - pre-allocated by cluster
● Dynamic - managed by a StorageClass
● PersistentVolume (PV):

○ Provide storage to mount into a pod
○ Characteristics:

■ Read / Write or Read Only
■ Once or Many

● PersistentVolumeClaim (PVC):
○ Mapping of a PV onto a particular pod or pods

https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Kubernetes Storage - Continued

Snapshots - lifecycle controlled by VolumeSnapshotClass

Many storage providers available:

● awsElasticBlockStore - AWS Elastic Block Store (EBS)
● azureDisk - Azure Disk
● azureFile - Azure File
● cephfs - CephFS volume
● csi - Container Storage Interface (CSI)
● fc - Fibre Channel (FC) storage
● flexVolume - FlexVolume
● gcePersistentDisk - GCE Persistent Disk
● glusterfs - Glusterfs volume
● hostPath - HostPath volume (for single node testing only; WILL NOT WORK in a multi-node cluster; consider using local

volume instead)
● iscsi - iSCSI (SCSI over IP) storage
● local - local storage devices mounted on nodes.
● nfs - Network File System (NFS) storage
● portworxVolume - Portworx volume
● rbd - Rados Block Device (RBD) volume
● vsphereVolume - vSphere VMDK volume

https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshot-classes/

Kubernetes Security

● Namespaces
● Security Profiles

○ Privileged
○ Baseline
○ Restricted

● Authentication / Authorization

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/controlling-access/

Supporting Infrastructure

Kubernetes is Incomplete

● Running bare kubernetes is hard!
● Distributions of Kubernetes fill out the experience for consumption

Things to look for in a bundle

● Container Registry
● Networking Plugin
● Operators
● CI/CD Pipelines
● API Extensions
● Management Tools
● Logging & Metrics
● Security Tooling

○ Authentication / Authorization / Encryption
○ Image Scanning
○ Runtime Scanning
○ Policy Enforcement

● Service Mesh
● Cross Cluster Connectivity
● Multi-Cluster Management

Shameless Plug

I work for Red Hat - our Kubernetes distribution is Red Hat OpenShift

I think it’s the best (even though I’m biased)

https://www.redhat.com/en/technologies/cloud-computing/openshift

https://www.redhat.com/en/technologies/cloud-computing/openshift

Acknowledgements:
Some figures copied from:
https://platform.sh/blog/2020/the-container-is-a-lie/
https://wikipedia.org/
https://kubernetes.io/

Slides available at: https://people.redhat.com/pladd/

Thank you!

https://platform.sh/blog/2020/the-container-is-a-lie/
https://wikipedia.org/
https://kubernetes.io/
https://people.redhat.com/pladd/

