VNC securityThe VNC server capability provides access to the graphical console of the guest VM across the network. This has a number of security considerations depending on the deployment scenarios. Without passwordsThe simplest VNC server setup does not include any form of authentication. For this setup it is recommended to restrict it to listen on a UNIX domain socket only. For example qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc This ensures that only users on local box with read/write access to that path can access the VNC server. To securely access the VNC server from a remote machine, a combination of netcat+ssh can be used to provide a secure tunnel. With passwordsThe VNC protocol has limited support for password based authentication. Since the protocol limits passwords to 8 characters it should not be considered to provide high security. The password can be fairly easily brute-forced by a client making repeat connections. For this reason, a VNC server using password authentication should be restricted to only listen on the loopback interface or UNIX domain sockets. Password authentication is not supported when operating in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password authentication is requested with the password option, and then once QEMU is running the password is set with the monitor. Until the monitor is used to set the password all clients will be rejected. qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio (qemu) change vnc password Password: ******** (qemu) With x509 certificatesThe QEMU VNC server also implements the VeNCrypt extension allowing use of TLS for encryption of the session, and x509 certificates for authentication. The use of x509 certificates is strongly recommended, because TLS on its own is susceptible to man-in-the-middle attacks. Basic x509 certificate support provides a secure session, but no authentication. This allows any client to connect, and provides an encrypted session. qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio In the above example /etc/pki/qemu should contain at least three files, ca-cert.pem, server-cert.pem and server-key.pem. Unprivileged users will want to use a private directory, for example $HOME/.pki/qemu. NB the server-key.pem file should be protected with file mode 0600 to only be readable by the user owning it. With x509 certificates and client verificationCertificates can also provide a means to authenticate the client connecting. The server will request that the client provide a certificate, which it will then validate against the CA certificate. This is a good choice if deploying in an environment with a private internal certificate authority. qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio With x509 certificates, client verification and passwordsFinally, the previous method can be combined with VNC password authentication to provide two layers of authentication for clients. qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio (qemu) change vnc password Password: ******** (qemu) With SASL authenticationThe SASL authentication method is a VNC extension, that provides an easily extendable, pluggable authentication method. This allows for integration with a wide range of authentication mechanisms, such as PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more. The strength of the authentication depends on the exact mechanism configured. If the chosen mechanism also provides a SSF layer, then it will encrypt the datastream as well. Refer to the later docs on how to choose the exact SASL mechanism used for authentication, but assuming use of one supporting SSF, then QEMU can be launched with: qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio With x509 certificates and SASL authenticationIf the desired SASL authentication mechanism does not supported SSF layers, then it is strongly advised to run it in combination with TLS and x509 certificates. This provides securely encrypted data stream, avoiding risk of compromising of the security credentials. This can be enabled, by combining the ’sasl’ option with the aforementioned TLS + x509 options: qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio Generating certificates for VNCThe GNU TLS packages provides a command called certtool which can be used to generate certificates and keys in PEM format. At a minimum it is necessary to setup a certificate authority, and issue certificates to each server. If using certificates for authentication, then each client will also need to be issued a certificate. The recommendation is for the server to keep its certificates in either /etc/pki/qemu or for unprivileged users in $HOME/.pki/qemu. Setup the Certificate AuthorityThis step only needs to be performed once per organization / organizational unit. First the CA needs a private key. This key must be kept VERY secret and secure. If this key is compromised the entire trust chain of the certificates issued with it is lost. # certtool --generate-privkey > ca-key.pem A CA needs to have a public certificate. For simplicity it can be a self-signed certificate, or one issue by a commercial certificate issuing authority. To generate a self-signed certificate requires one core piece of information, the name of the organization. # cat > ca.info <<EOF cn = Name of your organization ca cert_signing_key EOF # certtool --generate-self-signed \ --load-privkey ca-key.pem --template ca.info \ --outfile ca-cert.pem The ca-cert.pem file should be copied to all servers and clients wishing to utilize TLS support in the VNC server. The ca-key.pem must not be disclosed/copied at all. Issuing server certificatesEach server (or host) needs to be issued with a key and certificate. When connecting the certificate is sent to the client which validates it against the CA certificate. The core piece of information for a server certificate is the hostname. This should be the fully qualified hostname that the client will connect with, since the client will typically also verify the hostname in the certificate. On the host holding the secure CA private key: # cat > server.info <<EOF organization = Name of your organization cn = server.foo.example.com tls_www_server encryption_key signing_key EOF # certtool --generate-privkey > server-key.pem # certtool --generate-certificate \ --load-ca-certificate ca-cert.pem \ --load-ca-privkey ca-key.pem \ --load-privkey server-key.pem \ --template server.info \ --outfile server-cert.pem The server-key.pem and server-cert.pem files should now be securely copied to the server for which they were generated. The server-key.pem is security sensitive and should be kept protected with file mode 0600 to prevent disclosure. Issuing client certificatesIf the QEMU VNC server is to use the x509verify option to validate client certificates as its authentication mechanism, each client also needs to be issued a certificate. The client certificate contains enough metadata to uniquely identify the client, typically organization, state, city, building, etc. On the host holding the secure CA private key: # cat > client.info <<EOF country = GB state = London locality = London organization = Name of your organization cn = client.foo.example.com tls_www_client encryption_key signing_key EOF # certtool --generate-privkey > client-key.pem # certtool --generate-certificate \ --load-ca-certificate ca-cert.pem \ --load-ca-privkey ca-key.pem \ --load-privkey client-key.pem \ --template client.info \ --outfile client-cert.pem The client-key.pem and client-cert.pem files should now be securely copied to the client for which they were generated. Configuring SASL mechanismsThe following documentation assumes use of the Cyrus SASL implementation on a Linux host, but the principals should apply to any other SASL impl. When SASL is enabled, the mechanism configuration will be loaded from system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user, an environment variable SASL_CONF_PATH can be used to make it search alternate locations for the service config. The default configuration might contain mech_list: digest-md5 sasldb_path: /etc/qemu/passwd.db This says to use the ’Digest MD5’ mechanism, which is similar to the HTTP Digest-MD5 mechanism. The list of valid usernames & passwords is maintained in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2 command. While this mechanism is easy to configure and use, it is not considered secure by modern standards, so only suitable for developers / ad-hoc testing. A more serious deployment might use Kerberos, which is done with the ’gssapi’ mechanism mech_list: gssapi keytab: /etc/qemu/krb5.tab For this to work the administrator of your KDC must generate a Kerberos principal for the server, with a name of ’qemu/somehost.example.com@EXAMPLE.COM’ replacing ’somehost.example.com’ with the fully qualified host name of the machine running QEMU, and ’EXAMPLE.COM’ with the Kerberos Realm. Other configurations will be left as an exercise for the reader. It should be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data encryption. For all other mechanisms, VNC should always be configured to use TLS and x509 certificates to protect security credentials from snooping.