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This is an explanation of the virtual memory behavior of the Red Hat Linux Advanced
Server 2.1 kernel. Where relevant, this paper also makes reference to the virtual memory
behavior of the 2.4.18 based kernels released by Red Hat.

The behavior of the virtual memory system (VM) in Red Hat Linux Advanced Server 2.1
is different from that seen in other Unix(tm) operating systems, and is also different than
previous and subsequent Red Hat Linux kernels.
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Introductory Terms
For those new to kernel virtual memory managers, or to the Linux virtual memory
manager in particular, we start by defining some terms which will later be used in
building an understanding of the various kernel subsystems which influence VM
performance.

• Virtual Memory: A system that combines physical memory along with some sec-
ondary storage device to give the appearance that a computer system has more
physical memory than is actually installed. A virtual memory system tries to ef-
ficiently allocate physical memory (RAM) among many competing demands, in-
cluding: kernel code, kernel global data, dynamically allocated kernel memory,
kernel caches (buffer, page, swap, and slab), application code, application stack
space, static application memory, and application heap.

• Page: Kernel memory management works on top of the computer system hardware
which manipulates memory in units called pages. Page size is determined solely by
the underlying hardware. The page size is 4096 bytes on IA32 hardware platforms.

• Buffer Cache: The buffer cache holds filesystem metadata, such as the inode tables,
direct blocks, indirect blocks, journals, superblocks and filesystem bitmaps. Buffer
replacement is triggered by new buffer allocations which cause the VM to evict old
buffers from the system’s inactive list.

• Page Cache: This is a read/write cache for files stored on a filesystem. It is re-
ported as Cached when the file /proc/meminfo is consulted. It includes regular
files opened for reading and writing, along with mmaped files, and pages of exe-
cutables currently in memory. (In 2.4.18 and later kernels, the page cache also con-
tains filesystem directories.) In addition, objects which appear in the file system
space but have no associated backing store (such as /proc files, pipes and FIFOs)
use memory in the page cache.

• Swap Cache: This is a read/write cache for process data and stack pages that have
been written to the swap device. It is reported as SwapCached when the file
/proc/meminfo is consulted. The swap cache should be considered a virtual
cache, since there is no separate bookkeeping for it in the kernel. It is, however, a
convenient concept, and we shall refer to it in subsequent sections.

• Active List: This is a collection of pages which the kernel has determined to be in
active use. The size of this list is reported as Active when the file /proc/meminfo
is consulted.

• Inactive List: This set of pages resides in memory, but the kernel has determined
that they are not in active use. These pages are candidates for eviction should the
system come under memory pressure. There are several fields which describe the
inactive list in the file /proc/meminfo :

• Inact_dirty: This is memory on the inactive list which may have been modi-
fied since is was last written to disk. These pages may need to be written to disk
before the associated page frames can be reallocated. All pages are categorized
as inact_dirty when they are placed on the inactive list. The kernel will even-
tually inspect the pages on this list, write them out to disk if necessary, and them
reclassify them as inact_clean .

• Inact_clean: This is memory on the inactive list which can be reclaimed im-
mediately since a valid copy exists on secondary storage.

• Inact_target: This a user tunable parameter specifying the target size of the
inactive list. If the kernel detects a memory shortfall, and the inactive list is
smaller than the target, the kernel will attempt to move pages from the active
list to the inactive list by aging them. The default value for inactive_target is
one-quarter of physical memory. This parameter can be changed by modifying
/proc/sys/vm/static_inactive_target .
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• Out of Memory Killer (OOM): The OOM is an algorithm which is invoked when the
system senses a potentially fatal shortage of memory. The kernel attempts to kill
processes on a ’most good for least harm’ basis. This algorithm is only invoked
when the system is truly out of memory and swap, and more memory is needed
by the kernel to avoid a deadlock situation.

• VM Killer: This algorithm is invoked after a critical shortage of memory has been
detected. It indiscriminately kills the process whose request for memory was im-
mediate and critical to the process, and where the request was impossible to satisfy.
In 2.4.9 and later kernels, this algorithm should never trigger. Such a trigger is con-
sidered a kernel bug. (In experimental kernels, the most commonly seen causes
of the VM killer invocation are poorly written filesystems and pathological VM
implementations.)

Inspecting Process Memory Usage and Tuning the VM
Virtual memory characteristics for individual processes can be found by inspecting
the status file underneath the /proc directory corresponding to a process’s PID.

• /proc/$PID/status VmSize: The total size of the process’s memory footprint.
This includes the text segment, stack, static variables, data segment, and pages
which are shared with other processes.

• /proc/$PID/status VmLck: The amount of the process’s memory which is cur-
rently locked by the kernel. Locked memory cannot be swapped out.

• /proc/$PID/status VmRSS: The kernel’s estimate of the resident set size for this
process.

• /proc/$PID/status VmData: The amount of memory used for data by the pro-
cess. It includes static variables and the data segment, but excludes the stack.

• /proc/$PID/status VmStk: The amount of memory consumed by the process’s
stack.

• /proc/$PID/status VmExe: The size of the process’s executable pages, excluding
shared pages.

• /proc/$PID/status VmLib: The size of the shared memory pages mapped into
the process’s address space. This excludes pages shared using System V style IPC.

The following files found beneath /proc/sys/vm are tunable by sysctl.conf or by
simply writing values into the appropriate file.

• /proc/sys/vm/freepages: This file contains the values freepages.min , freep-
ages.low and freepages.high .

• freepages.high is the high memory watermark for the kernel. If the number
of available pages in the system drops below this value, the system will begin
to execute its normal background page eviction algorithm. This may involve
swapping pages to disk, evicting clean pages from the system caches, or cleaning
dirty pages in the system caches.

• freepages.low is the low memory watermark for the kernel. If the number of
available pages in the system drops below this value, the kernel will enter an
aggressive swapping mode in an attempt to bring the freepage count back above
this value.

• freepages.min is the number of pages reserved for kernel allocation. If the
number of allocable pages in the system drops below this value, any applica-
tions requesting memory will block. The kernel will then begin to reclaim pages
until the amount of free memory in the system is again above freepages.min .
Use caution when adjusting this value. If the value is set too low, the kernel may
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not have enough memory to execute the victim selection and page replacement
algorithm, resulting in a deadlock.

• /proc/sys/vm/min-readahead: The minimum number of disk blocks to read-
ahead when performing file reads.

• /proc/sys/vm/max-readahead The maximum number of disk blocks to
read-ahead when performing file reads. If memory is allocable, the kernel will
read up to this number of blocks, but a process will not block on a low memory
condition solely to perform the read-ahead.

Read-ahead applies only to files being read sequentially. It does not apply to
mmaped files or files being read non-sequentially. Initially, the kernel sets the
read-ahead window size to min-readahead. If subsequent reads are determined to
be sequential, the window size is slowly increased, up to max-readahead. The
kernel tracks a different read-ahead window for each file descriptor.

• /proc/sys/vm/buffermem: The values in this file control the amount of memory
which the kernel allocates to the buffer cache.

• buffermem.min_percent is the minimum percentage of memory that should
ever be allocated to disk buffers.

• buffermem.borrow_percent can indicate to the kernel that the buffer cache
should be pruned more aggressively than other system caches. This aggressive
pruning will begin when the buffer cache grows above this percentage of mem-
ory and the system subsequently comes under memory pressure.

• buffermem.max_percent is the maximum percent of memory the buffer cache
will occupy.

• /proc/sys/vm/pagecache The values in this file control the amount
of memory which should be used for page cache. The three fields
are pagecache.min_percent , pagecache.borrow_percent and
pagecache.max_percent , and are defined as in the buffermem above.

• /proc/sys/vm/kswapd The values in this file control the kernel swap daemon,
kswapd.

• kswapd.tries_base controls the number of pages kswapd tries to free in one
round. Increasing this number can increase throughput between memory and
the swap device, at the cost of overall system performance.

• kswapd.tries_min controls the minimum number of pages kswapd tries to free
each time it is called.

• kswapd.swap_cluster is the number of pages kswapd writes to the swap de-
vice in one chunk. Larger cluster sizes can increase the throughput on the swap
device, but if the number becomes too large, the device request queue will be-
come swamped, slowing overall system performance.

• /proc/sys/vm/bdflush The values in this file control the operation of the buffer
cache flushing daemon, bdflush. There are nine values in this file. Six are used by
2.4.9 based kernels.

• bdflush.nfract gives the percentage of blocks in the cache which, when dirty,
cause the kernel to arouse the bdflush.

• bdflush.ndirty is the maximum number of blocks to write out to disk each
time bdflush is called.

• bdflush.nrefill is the number of buffers the kernel tries to obtain each time
the kernel calls refill().
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• bdflush.nref_dirt is the number of dirty buffers which will cause bdflush to
wake up when we try to refill the buffer list.

• dummy

• bdflush.age_buffer is the maximum amount of time, in seconds, that a dirty
buffer may remain in memory without being flushed.

• bdflush.age_super is the maximum amount of time, in seconds, that a dirty
superblock may remain in memory without being flushed.

• dummy

• dummy

With these terms and tunable parameters in mind, we now turn to explaining the
algorithms controlling Linux VM behavior.

Linux Caching
They motivation behind using caches is to speed access to frequently used data. In
early versions of Linux, only disk blocks were cached. The idea has expanded as
the Linux kernel has matured. For example, the kernel can now cache pages which
are queued up to be written to the swap device. The kernel can also read-ahead when
disk block requests are made, on the assumption that the extra data will eventually be
requested by some process. Writes are also cached before being written to disk. (And
indeed, sometimes information will never hit the disk before being deleted. Com-
mon examples are the intermediate files produced by the GNU C compiler. These
files often have a very short existence and typically spend their entire lifetime in the
cache.)

The system benefits from a judicious use of cache, but when applications or the kernel
need memory, kernel caches are the natural choice for memory reclamation.

When a Linux system is not under memory pressure, all of the kernel’s caches will
slowly grow over time as larger and larger parts of the executing processes’ locality
are captured in memory. This behavior illustrates a fundamental in Linux design
philosophy: Any resource that is otherwise unused should be exploited to minimize
the time a process spends executing or waiting in the kernel. It is better for a resource
to be allocated and possibly unused than for the resource to be idle. This is often
distilled into the phrase make the common case fast.

The Slab Cache

Because the kernel does not (and in fact, cannot) use the C standard library, many of
the library functions that Unix developers regularly use have been reimplemented
within the kernel. These include things like string manipulation routines (such as
strnlen() and ffs()), file system and network access routines (such as fopen() and
inet_addr()), and dynamic memory management routines (malloc() and free()).

Because efficient and fast memory allocation and deallocation routines are so critical
to kernel performance, there has been much work done over many years to optimize
the performance of these routines. In fact, these routines are considered so critical
that many of them have been hand coded in assembly language for each architecture
on which Linux runs. For a segment of code which may execute several hundred-
thousand times a second, a savings of two or three machine instructions can be sub-
stantial.

The original kernel dynamic memory management algorithm was based on the
Buddy System, and was implemented by Linus in very early (0.x) versions of Linux.
Under the buddy system, free kernel memory is partitioned into lists. Each list
contains blocks of a fixed size, ranging from 32 to 131056 bytes. Kernel memory
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allocations retrieved blocks from the list appropriate for the requested memory
size. As lists were depleted, blocks could be borrowed from other lists and split or
coalesced as necessary. Similarly, if a list contained too many blocks, blocks could be
split or coalesced and moved to other lists.

The current kernel dynamic memory management algorithm still uses a descendant
of the original buddy system allocator. But it also contains a much more sophisticated
allocator referred to as the slab cache allocator. In the 2.4 series of kernels, the buddy
system allocator has been subsumed by the slab cache allocator.

In a slab cache allocator, many of the structures which are repeatedly created and
destroyed by the kernel (such as inodes, buffer heads, vm_area structs, and dentries)
have their own separate caches. New objects are allocated from a dedicated cache,
and returned to the same cache when deallocated. The slab cache is a very fast allo-
cator because it minimizes the initialization which must be done when an allocated
object is reused, and it avoids the serious twin problems of cache-line contention and
cache-line underutilization found in power-of-two allocators like the buddy system.

The slab cache allocator receives its name from the fact that each of the caches it
manages is comprised of one or more areas of memory, called slabs. Each slab contains
one or more objects of the specified type.

The file /proc/slabinfo contains information about the slab caches in the system.
The file is divided in to two parts. The first part gives information about the slab
caches in the system which are dedicated to particular objects. The second part of
this file reports on fixed size general purpose caches. Objects which do not have a
dedicated slab cache receive allocations from these general purpose caches.

Each line in /proc/slabinfo contains six fields. Machines running SMP kernels will
contain an additional two fields per line. The fields are defined as follows:

• cname: The name of the cache. The cache name is typically comprised of the name
of the object served by the cache, followed by the string _cache , although the ker-
nel does not enforce this naming convention.

• num-active-objs: The number of objects which have been allocated from this
cache and which have not yet been released by the kernel.

• total-objs: the total number of objects this cache can allocate before it must grow
itself.

• object-size: the size of the object, in bytes.

• num-active-slabs: the number of active slabs in this cache.

• total-slabs: the total number of slabs in this cache.

• num-pages-per-slab: the number of pages needed to store a single slab in this
cache.

On SMP systems, the kernel maintains per-CPU slab caches in addition to the global
cache. These per-CPU caches eliminate most cache contention among processes, at
the cost of an increase in allocator overhead. The file /proc/slabinfo contains two
additional fields concerning the per-CPU caches on SMP systems.

• batchcount: the number of objects that get transferred between the global pool
and the per-CPU pools in one transaction when the per-CPU pools grow or shrink.

• limit: the maximum number of unused objects in a per-CPU pool before the pool
starts returning memory to the global pool.
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Zones

Early versions of Linux mapped all physical memory into the kernel’s address space.
Because of the limited size of the x86 address bus, early Linux systems were restricted
to accessing 1GB of physical memory.

With the introduction of the 2.4 kernel series, Linux is able to take advantage of the
Intel Physical Address Extension (PAE) hardware available on high-end workstations
and servers. This hardware allows the kernel to access up to 64GB of physical mem-
ory, but it requires that different areas of physical memory be treated differently by
the kernel.

The kernel divides the x86 address space into three areas, called zones. Memory in
the 0 to 16MB-1 physical address range falls into the ISA DMA zone. Older I/O cards
and some modern cards with unusual hardware limitations must do all of their DMA
I/O from this zone. (Common examples of modern cards which must do DMA I/O
from the ISA zone include some PCI sound cards.)

Memory from 16MB to just slightly under 1GB is referred to as the normal kernel zone.
Memory in this zone can be used by the kernel for any purpose other than ISA DMA.

Memory above 1GB is referred to as the high memory (or himem) zone. Memory in this
zone can be used by userspace applications. The kernel can also make limited use
of this memory. In stock 2.4.x kernels, the kernel can only store pages from the page
cache in himem.

One of the largest potential causes of deadlock in a himem enabled kernel is caused
by a condition known as zone memory imbalance. This condition occurs when a par-
ticular memory zone consumes almost all of it’s free memory, but adequate physical
memory in other zones indicate to the kernel that it can safely increase the system
workload. The system itself may have plenty of free memory, but that memory is not
suitable for some task which the kernel is required to perform.

A common situation seen during the development stage of the Advanced Server ker-
nel occurred on machines with large amounts of physical RAM running processes
with large memory footprints. These processes had plenty of memory in which to
execute, but the processes’ pages tables would not fit into the normal kernel zone.
The situation resulted in either livelock or deadlock, depending upon the exact job
mix presented to the machine. It was this observation which led the Red Hat kernel
development team, along with members of the open source community, to develop a
patch which allowed the kernel to migrate pagetables to himem if necessary.

The Red Hat Linux Advanced Server kernel also adds the ability to do per-zone bal-
ancing. In per-zone balancing, the kernel can move pages between physical memory
zones in order to better balance used and free space in each zone. In addition, the
Red Hat Linux Advanced Server kernel implements per zone lists. With per zone
lists, each memory zone contains separate active and inactive lists, which help sup-
port the per zone balancing algorithm.

Questions about the Linux Virtual Memory Management

• How is memory allocated to a process?

The typical method for an application to allocate memory is via one of the standard
library dynamic memory allocation calls (malloc(3), calloc(3), and others). When
one of these functions is invoked, the allocation is handled by the standard library.
If the allocation succeeds, the process may receive memory which it had previously
used and returned to the allocator, or the allocation request may have caused the
allocator to request additional memory from the kernel via the brk() system call.

When the allocator requests memory from the kernel, the kernel creates the page
table entries for the requested pages. All entries initially point to a special page in
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the kernel called the ZERO_PAGE. Each entry is then marked as copy-on-write, and
the associated page is referred to as a COW page. Only when the process actually
writes to these pages are new physical page frames allocated for pages.

Thus, for a particular process, an allocation may succeed, but when the process
begins to write to the newly allocated pages, memory pressure may lead to delays
as the kernel tries to find physical memory in which to place the newly allocated
pages.

• How is data chosen to be dropped from the cache(s) and/or moved out to swap?

The page replacement policy in the Red Hat Linux 2.4.18 kernel is based on a mod-
ified LRU algorithm. The two main LRU lists maintained by the kernel are the
active and inactive page lists. Pages on the active list are scanned and aged up or
down according to their referenced bits. The referenced bits include those in the
page tables (in the case of a mapped page), and the page’s referenced bit (which is
set when the page cache is accessed, or any buffer cache entries on the page are ac-
cessed). Once a page has not been accessed for a period of time, the age of the page
hits zero and the page is moved from the active list to the inactive list. Memory is
then reclaimed from the inactive list and released into the free pool.

In the 2.4.9-e kernels, the kernel scans page tables as a separate step from scanning
the active list. This scanning is done using the traditional Unix clock algorithm.
Pages that have not been accessed since the last scan and have an age of 0 are
swapped out. The rest of the process is similar to 2.4.18.

• What is the difference in the way the kernel treats mmaped pages, disk blocks, text pages,
shared text pages, etc., when evicting pages from memory?

When memory is reclaimed from the LRU lists, all pages are treated identically.
Any differences in reclaim are the result of access causing the page’s age to in-
crease, and subsequently remain on the active list for a longer period of time.

In the 2.4.9-e kernel, pages mapped into a process’s address space must be evicted
from all pages tables which reference them before they are candidates for recla-
mation. This is because a single physical page may be mapped into the address
space of multiple processes. For example, the pages from the standard library are
mapped into the address space of almost every userspace process. The 2.4.18 ker-
nel simplifies this process by removing a page from all page tables at the same
time, thus avoiding a complete second pass of the clock algorithm over the page
tables.

• What do the terms major page fault and minor page fault mean?

A major page fault occurs when a process must access the disk or swap device to
satisfy the page request. A minor page fault indicates that, although the page table
entry for a page was not valid, the page request can be satisfied without accessing
the disk. This can occur when, for example, the page was found in the swap cache,
or when a new page is created and the page table entry points to the ZERO_PAGE.

• What is the overhead, in terms of space and time, of using a PAE enabled kernel as compared
to an SMP kernel?

PAE doubles the size of page table entries from 32 bits to 64 bits, as well as adding
a small third level to the page tables. This means the maximum amount of kernel
memory consumed by page tables per process is doubled to slightly more than
6MB. In the 2.4.18 kernels shipped by Red Hat, this memory comes out of the
~700MB of available memory in the normal kernel zone. In the Red Hat Linux Ad-
vanced Server series of kernels, page tables can be located anywhere in physical
memory.

9



Virtual Memory Behavior in Red Hat Linux Advanced Server 2.1

The performance impact is highly workload dependent, but on a fairly typical ker-
nel compile, the PAE penalty works out to be around a 1% performance hit on Red
Hat’s test boxes. Testing with various other workload mixes has given performance
hits ranging from 0% to 10%.

• What symptoms are there when the system is coming under memory pressure? What tools
can be used to monitor the system to watch for this?

The vmstat(8) program can be used to monitor system virtual memory activity.
Among other things, it shows the amount of space allocated on the swap device,
the number of unused pages in RAM, the sizes of the buffer and page cache, and
the number of blocks swapped in and out over a given period of time.

When both free and swap free are very low the OOM algorithm will be invoked in
an attempt to keep everything except the killed process(es) running.

The 2.4.18 kernels provided by Red Hat contain a line tagged as Committed_AS in
/proc/meminfo . This line indicates the amount of memory which applications
have allocated. When this number exceeds the amount of installed RAM, you
should assume that the system will eventually come under memory pressure.
When this number is larger than the total of RAM and swap on the system, you
should assume that the system may eventually consume all memory resources
and thus may need to invoke the OOM killer.

• Why is my system using swap if I have memory free?

In the 2.4.9.e kernels, processes reserve space on the swap device before their con-
stituent pages are written out. After the reservation takes place, the kernel may
determine that no swapping is in fact needed. These pages still show up in the
swap used entry in the output of top(1), however. To determine actual swapping
activity, the system administrator should consult the si and so columns in the
output of vmstat(8).

In addition, once the kernel begins to sense memory pressure, it may preemptively
wake up kswapd and begin low priority swapping of inactive pages in an attempt
to free pages before the memory situation becomes critical. If pages are swapped
out, they will not be swapped back in until they are referenced, even if there is
sufficient physical memory to hold them.

Finally, when a page is written to swap, the swap space it occupies is not recovered
until swapspace itself is nearly full. This is done because a page that is swapped
out and then back in might not be written to again. Keeping a copy on the swap
disk allows us to avoid writing the page out a second time.
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