

Red Hat Summit 2009 | Mike Snitzer2

Optimize Storage Performance
with Red Hat Enterprise Linux

Mike Snitzer <snitzer@redhat.com>
Senior Software Engineer, Red Hat
09.03.2009

Red Hat Summit 2009 | Mike Snitzer3

Agenda

● Block I/O Schedulers

● Linux DM Multipath

● Readahead

● I/O Topology

● Benchmarking and Analysis

● Conclusion

● Questions

Block I/O Schedulers

Red Hat Summit 2009 | Mike Snitzer5

Block I/O Schedulers – Overview

 “Artwork” inspired by http://lwn.net

http://lwn.net/

Red Hat Summit 2009 | Mike Snitzer6

Block I/O Schedulers – Complete Fair Queuing (CFQ)

● CFQ is the default I/O scheduler in RHEL

● Does best job over widest range of workloads

● One queue for each process submitting I/O

● Threads within a process get separate queues
● Round-robin among queues that have the same priority

● Ensures fairness among competing processes
● Priority is determined by scheduling class and priority level

● slice_idle determines how long CFQ will wait for additional
requests to arrive in a queue before switching to the next queue

● Provided workload is not seeky and application is I/O-bound
● echo $N > /sys/block/$DEVICE/queue/iosched/slice_idle

Red Hat Summit 2009 | Mike Snitzer7

Block I/O Schedulers – Complete Fair Queuing (CFQ)

● Offers various I/O nice levels similar to CPU scheduling

● Three scheduling classes with one or more priority levels

● Real-time (RT) - highest priority class, can starve others
● Best-effort (BE) – default scheduling class
● Idle - class that runs if no other processes need the disk

● Priority levels (0 -7) in the RT and BE scheduling classes

● I/O priority level is derived from CPU scheduling priority
● io_priority = (cpu_nice + 20) / 5

● See man: ionice (1), ioprio_get (2), ioprio_set (2)

● Refer to: Documentation/block/ioprio.txt

Red Hat Summit 2009 | Mike Snitzer8

Block I/O Schedulers – Deadline and Noop

● Deadline

● Attempts to ensure that no request is outstanding longer than
its expiration time; read requests have a shorter expiration

● Maintains 4 queues: Read/Write Sorted, Read/Write FIFO
● Pulls requests off the sorted queues in batches to

minimize seeks; fifo_batch controls sequential batch size
● Services Read or Write queues if request at respective

head expires; expiration times checked after each batch
● Refer to: Documentation/block/deadline-iosched.txt

● Noop

● Performs merging but avoids sorting and seek prevention
● Frequently recommended if using high-end array

Red Hat Summit 2009 | Mike Snitzer9

Block I/O Schedulers – Choosing wisely

● Can select the default I/O scheduler and override per device

● elevator={cfq|deadline|noop} on kernel command line (grub)
● echo {cfq|deadline|noop} > /sys/block/$DEVICE/queue/scheduler

● Deadline vs CFQ

● CFQ generally outperforms deadline on writes
● Deadline better on reads for server workloads
● If running server workloads like: NFS server, iSCSI target,

KVM (cache=off)
● Try CFQ w/ slice_idle=0 to improve CFQ read

performance; get closer to deadline read performance
● Future kernel work will solve this by using shared IO

contexts for workloads that interleave reads among
multiple threads

Linux DM Multipath

Red Hat Summit 2009 | Mike Snitzer11

Linux DM Multipath – Blacklist Configuration

● Multipath should only be interacting with appropriate devices

● Device blacklist can be established in /etc/multipath.conf, default:

● To check all invalid devices are blacklisted run: multipath -ll -v3
dm-0: blacklisted
dm-1: blacklisted
.
.
.

sda: bus = 1
sda: dev_t = 8:0
sda: size = 156250000
sda: vendor = ATA
sda: product = WDC WD800JD-75MS
sda: h:b:t:l = 0:0:0:0
sda: path checker = readsector0
 (config file default)

devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
devnode "^hd[a-z][[0-9]*]"

Red Hat Summit 2009 | Mike Snitzer12

Linux DM Multipath – Filter Configuration

● “user_friendly_names yes” - simplifies LVM filtering of mpath
devices but different nodes won't have the same device names

● LVM should only allow use of multipath devices and non-mpath
devices (e.g. root on /dev/sda2) in /etc/lvm/lvm.conf:

filter = [“a|/dev/sda2|”, “a|/dev/mapper/mpath.*|”, “r|.*|”]

[size=50 GB][features="1 queue_if_no_path"][hwhandler="1 emc"]
_ round-robin 0 [prio=2][active]
 _ 0:0:1:0 sdg 8:96 [active][ready]
 _ 1:0:1:0 sds 65:32 [active][ready]
_ round-robin 0 [enabled]
 _ 0:0:0:0 sda 8:0 [active][ready]
 _ 1:0:0:0 sdm 8:192 [active][ready]

mpath0 (360060160ce831e00645e9544df08de11)

Red Hat Summit 2009 | Mike Snitzer13

Linux DM Multipath – Device Configuration

● Developers maintain hardware-specific multipath tuning in multipathd's
internal configuration table (hwtable)

● User overrides and extensions are possible by adding custom entries
to the 'devices' section of /etc/multipath.conf

● See man: multipath.conf (5)

● Consult hardware vendor about appropriate custom entries if you
have doubts about DM multipath's support for your hardware

● Contact Red Hat support if changes are needed

● Show multipathd's active config with:

'show config' in “multipathd -k” shell

Red Hat Summit 2009 | Mike Snitzer14

Linux DM Multipath – Proper configuration matters
Improved throughput of ALUA array with proper path_grouping_policy

Red Hat Summit 2009 | Mike Snitzer15

Linux DM Multipath – Future improvements

● Linux >= 2.6.31 switches DM multipath
from BIO-based to request-based

● Improves efficiency by moving multipath
layer below the I/O scheduler

● Reduces total number of requests
dispatched even when switching
paths frequently (small rr_min_io)

● Improves error-handling by providing DM
with more information about SCSI errors

● Adds dynamic load-balancing with 2 new
path-selectors:

● “queue-length” and “service-time” in
addition to “round-robin”

Readahead

Red Hat Summit 2009 | Mike Snitzer17

Readahead – Configuring

● Readahead attempts to improve performance of sequential file
reads by reading the file into memory before the app requests it

● Query a device's readahead with: blockdev --getra $DEVICE

● Set a device's readahead with: blockdev --setra $N $DEVICE

● Caveat: setting readahead too aggressively can waste
memory and hurt performance

● LVM inherits readahead from underlying PV when creating LV

● Change LV's readahead with:

lvchange -r {ReadAheadSectors|auto|none} ...
● “auto” allows the kernel to pick a suitable value, e.g.:

stripe_width=1024K, kernel's readahead=2*1024K
● “none” is the same as 0

Red Hat Summit 2009 | Mike Snitzer18

Readahead – Performance impact

512B Sectors MB/s
256 161
512 171

1024 201
2048 273
4096 295
8192 297

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

150

170

190

210

230

250

270

290

310

161
171

201

273

295 297

13GB sequential IO (dd w/ bs=128k)

 512B Readahead Sectors

I/O Topology

Red Hat Summit 2009 | Mike Snitzer20

I/O Topology – Quest for increased drive capacity

● Each sector on current 512 byte sector disks is quite a bit bigger than
512 bytes because of fields used internally by the drive firmware

● The only way to increase capacity is to reduce overhead associated
with each physical sector on disk

● Top: 8 x 512B sectors, each with overhead, needed to store 4KB of
user data

● Bottom: 4KB sector drives can offer the same with much less
overhead

Red Hat Summit 2009 | Mike Snitzer21

I/O Topology – Transitioning to 4KB

● 4K sector drives may or may not accept unaligned IO

● If they do accept unaligned IO there will be a performance penalty

● Vendors will support a legacy OS with drives that have a 512B
logical blocksize (external) and 4K physical blocksize (internal)

● Misaligned requests will force drive to perform a read-modify-write

● Vendors working on techniques to mitigate the R-M-W in firmware

● Without mitigation, the drop in performance is quite significant
due to an extra revolution; inducing latency and lowering IOPS

Red Hat Summit 2009 | Mike Snitzer22

I/O Topology – Alignment

● DOS partition tables default to putting the first partition on LBA 63

● Desktop-class 4KB drives can be formatted to compensate for DOS
partitioning

● sector 7 is the lowest aligned logical block, the 4KB sectors start
at LBA -1, and consequently sector 63 is aligned on a 4KB
boundary

● Linux >= 2.6.31 allows partition tools, LVM2, etc to understand that
this compensation is being used (alignment_offset=3584 bytes),
from:

/sys/block/$DEVICE/alignment_offset

Red Hat Summit 2009 | Mike Snitzer23

I/O Topology – Performance I/O hints

● Linux >= 2.6.31 also provides the ability to train upper storage
layers based on hardware provided I/O hints

● Preferred I/O granularity for random I/O
● minimum_io_size - the smallest request the device can

perform w/o incurring a hard error or a read-modify-write
penalty (e.g. MD's chunk size)

● Optimal sustained I/O size
● optimal_io_size - the device's preferred unit of receiving

I/O (e.g. MD's stripe width)
● Available through sysfs:

/sys/block/$DEVICE/queue/minimum_io_size

/sys/block/$DEVICE/queue/optimal_io_size

Red Hat Summit 2009 | Mike Snitzer24

I/O Topology – How it is made possible in Linux

● It all starts with the SCSI and ATA protocols

● The standards have been extended to allow devices to
provide alignment and I/O hints when queried

● Not all hardware will “just work” -- help vendors help you
● Linux now retrieves the alignment and I/O hints that a device

reports

● Uniform sysfs interface works for all Linux block devices!
● Linux DM and LVM2 have been updated to be “topology-aware”

● Linux MD, XFS, and libblkid are also “topology-aware”;
more to come

● Thanks to Martin K. Petersen for implementing Linux's I/O
Topology support (and for much of the content and all diagrams
in this section!)

Benchmarking and
Analysis

Red Hat Summit 2009 | Mike Snitzer26

Benchmarking and Analysis – General advice

● Benchmark each layer in the I/O stack from the bottom up

● Use target application workload to help select appropriate
synthetic benchmarks

● After establishing baseline with synthetic benchmarks the most
important benchmark is the target application

● Buffered I/O throughput benchmarks must perform more I/O
than RAM can cache

● Clean caches before each iteration of buffered I/O throughput
benchmarks:

● Remount FS or Reboot system
● Drop caches: echo 3 > /proc/sys/vm/drop_caches

● Refer to: Documentation/sysctl/vm.txt

Red Hat Summit 2009 | Mike Snitzer27

Benchmarking and Analysis – Benchmarking tools

● dd: test buffered and direct IO, provided by coreutils rpm

● buffered vs direct IO (iflag/oflag=direct avoids page cache)

● fio (Flexible IO tester): http://freshmeat.net/projects/fio/

● Works on both block devices and files

● Maintained by Jens Axboe (maintainer of Linux's Block layer)

● ffsb (Flexible Filesystem Benchmark): http://sf.net/projects/ffsb/

● tiobench (threaded i/o tester): http://tiobench.sourceforge.net/

● IOzone: http://www.iozone.org

● fs_mark (simulate mail servers): http://fsmark.sf.net/

● fsx: part of the LTP: http://ltp.sourceforge.net/tooltable.php

● compilebench (fs aging): http://oss.oracle.com/~mason/compilebench/

http://freshmeat.net/projects/fio/
http://sf.net/projects/ffsb/
http://tiobench.sourceforge.net/
http://www.iozone.org/
http://fsmark.sf.net/
http://ltp.sourceforge.net/tooltable.php
http://oss.oracle.com/~mason/compilebench/

Red Hat Summit 2009 | Mike Snitzer28

Benchmarking and Analysis – Analysis tools

● iostat: analyze CPU and I/O statistics, provided by coreutils rpm

● Useful to run in conjunction with benchmark or target application

● blktrace: generate traces of the I/O traffic on block devices

● Provides visibility of very detailed I/O event trace information (I/O
request sizes, dispatches, merges, etc).

● blkparse: reads blktrace events to produce human-readable output

● Google for “blktrace user guide”

● Seekwatcher: generates graphs from blktrace output

● Helps visualize I/O patterns and performance

● Maintained by Chris Mason – the lead developer of Btrfs

● http://oss.oracle.com/~mason/seekwatcher/

http://oss.oracle.com/~mason/seekwatcher/

Red Hat Summit 2009 | Mike Snitzer29

Benchmarking and Analysis – Seekwatcher output

Conclusion

Red Hat Summit 2009 | Mike Snitzer31

Conclusion

Linux storage performance tuning is nuanced but quite
approachable if you take a bottom up approach

● Careful selection of I/O scheduler and associated tuning
● Properly filter and configure multipath LUNs
● Tune readahead
● Leverage “I/O topology-aware” Linux and associated utilities
● Benchmark all layers to assess impact of various tunings

Slides available here:

http://people.redhat.com/msnitzer/snitzer_rhsummit_2009.pdf

http://people.redhat.com/msnitzer/snitzer_rhsummit_2009.pdf

Red Hat Summit 2009 | Mike Snitzer32

Appendix

I/O Topology

Red Hat Summit 2009 | Mike Snitzer35

I/O Topology – Physical and Logical sectors

● Distinction between Physical and Logical sector size can be visualized
as the Firmware (internal) and OS (external) sector size respectively

● Enterprise-class: physical=logical=4K; misaligned IO not allowed

● Desktop-class: physical=4K, logical=512; misaligned IO allowed

● /sys/block/$DEVICE/queue/physical_block_size

● /sys/block/$DEVICE/queue/logical_block_size

● The SCSI and ATA protocol extensions that make distinction possible:

● SCSI: physical block size and alignment via READ CAPACITY(16)

● ATA: physical block size in IDENTIFY word 106, alignment in
IDENTIFY word 209

● SCSI block commands spec provides "Block Limits VPD page" to
report performance I/O hints

Linux MD and LVM

Red Hat Summit 2009 | Mike Snitzer37

Linux MD and LVM – MD chunk size

● MD chunk size governs the unit of I/O that is sent to each raid
member

● Relevant for MD raid levels: 0, 4, 5, 6, 10
● MD's default chunk size is 64K
● Should always be > 8-16K to avoid drive firmware's

readahead cutoff; otherwise sequential reads suffer
● Smaller (32-64K) for sequential I/O from a single client
● Larger (256-512K) for random I/O from single client or

multiple clients doing sequential I/O
● Customer case-study, MD raid5 performance:

● Using 4K * 6, had 30MB/s; dropped to 8MB/s under load
● Using 256K * 6, consistently saw 110MB/s to 170MB/s

Red Hat Summit 2009 | Mike Snitzer38

Linux MD and LVM – LVM on MD

● Each LVM2 PV has a number of physical extents of a fixed size
(physical extent size, or PE size). The PE size must always be
a power of 2. The default is 4 MB and it must be at least 1 KB.

● LVM on MD performs best if the underlying raid is using 2^N
data disks:

● Raid5: 2^N+1 drives (e.g 3, 5, 9, etc).
● Raid6: 2^N+2 drives (e.g 4, 6, 10, etc).

● Make certain that the start of an LVM2 PV's data area (pe_start)
is aligned on a full MD stripe width boundary:

● chunk_size=64K * 4 data disks, stripe_width=256K
● RHEL 5: pvcreate --dataalignment 256K ...
● RHEL 4: pvcreate --metadatasize $((256-4))K

