
SECURITY POLICY
COMPLIANCE WITH
PUPPET AND
ANSIBLE
Sean M. Shore

Best Buy

MSP RHUG Dec 2017

THE PROBLEM

�  Quarterly SOX and
annual PCI audits

�  Ever-expanding list of
controls and covered
servers

�  Enormous legacy
environment of
artisanally-handcrafted
servers

THE PROBLEM: ENFORCEMENT

�  Constant drift – except for a greenfield internal cloud environment, all
servers maintained individually and ad hoc

�  No mechanism for enforcement, no way to add new controls

�  /etc/sudoers copied from server to server, no cleanup, no review

�  Impossible to provide auditors with concise list of admin privileges

THE PROBLEM: REPORTING

�  No reasonable way to gather data
for auditors
�  Operations staff log into servers

individually and copy files

�  Invalid/incomplete results

�  No way to ensure proper standards
on new builds outside the cloud
environment

�  End result: internal auditor findings
to remediate

THE PROBLEM: LIMITED PUPPET

�  Existing Puppet 3.x open source environment, limited to greenfield new
VMs

�  Ignored large legacy environment including physicals, RHEL 5, HP-UX,
etc.

�  Even in greenfield environment, sudoers was not fully maintained via
Puppet
�  Default /etc/sudoers enforced by Puppet, but all customizations manually copied and

edited

STEP 1: ENFORCEMENT

�  Goal: safely extend existing Puppet into brownfield

�  Maintain SOX and PCI standards on all servers, regardless of status

�  Began with build-out of new Puppet 4 capability, followed by
environment-wide sudoers and access.conf rollout

�  Migrate existing Puppet 3.x clients to new environment

OPTION: MONOLITHIC SUDOERS

�  Single environment-wide file

�  Previous experience with monolithic sudoers at other firms indicated
that it was unworkable over time
�  Easy to manage, but quickly grows to 10000+ lines, no way to extract info for

auditors without additional scripting

SUDOERS STUBS

�  Stripped-down /etc/sudoers with #include /etc/sudoers.d/
�  Stubs for individual netgroups and service accounts, as configured by hiera

�  Increased auditability – each server has only the sudoers rules that are needed on
that box

�  Centrally located in git, where internal auditors can be given read-only access to view
all the stubs

�  /etc/security/access.conf managed similarly

LEVERAGING HIERA AND PUPPET 4

�  Custom facter fact to break down hostname into usable components

�  Use hiera_array to pull in stubs as configured at different layers of hiera,
all the way to common stubs

�  Coded to take advantage of Puppet 4 functionality re: loops

HIERA.YAML

�  From most to least specific:
�  Per-node

�  Type of server (e.g., prod financial webserver, dev order mgmt app server)

�  Data center

�  OS version

�  Common

�  Allows us to manage one-to-many as much as possible but allow for
exceptions

SCM AND CI

�  Danger of managing sudoers with Puppet: pushing bad code to entire
environment
�  Even administrators will be unable to run sudo if there are syntax issues

�  Solution: Automated syntax linting
�  Changes to sudoers and hieradata are linted on commit

�  On success, promoted and automatically r10ked using GitLab CI API

�  Not smart enough to monitor the wisdom of the sudo rules, but prevents
catastrophe

OPERATIONALIZATION

�  Puppet and GitLab CI have allowed us to safely hand over sudo
administration to L1 and L2 staff

�  Lead L2 staff can review code and have rights to merge sudo and
puppet_control (hieradata) into production branch

�  Commit logs contain Service Now ticket information for auditability

ROLLOUT

�  Moved stepwise through the environment, Puppetizing small groups of
legacy boxes, and expanding list of managed resources

�  Used Ansible to roll out Puppet
�  Install agent

�  Set up conf file

�  Sign certs

�  NTP, resolv.conf, PAM configurations, rsyslog, etc.

�  Within six months we had covered our entire Linux footprint
�  All were now meeting audit requirements

�  Misconfigurations automatically reverted

THE NEXT PROBLEM: REPORTING

�  How do we prove that our boxes are meeting audit requirements?

�  Legacy method was to have Operations staff log into each server
individually, or at best write a one-off script, to gather relevant files and
perform checks

�  Too much effort, variable/incomplete results

REPORTING

�  Puppet is great at
enforcement, not so great
at reporting

�  Has no built-in notification
mechanism

�  Runs every 30 minutes –
do not want 48 reports
per day per server

�  Possible to hack, but poor
fit for role

SOLUTION: ANSIBLE

�  Created playbook and role, with tags for SOX and PCI, RHEL and HP-
UX

�  Other than copying over certain scripts and zipping up copies of files,
Ansible make no changes on the systems

�  Performs regex matching to ensure that configs are as expected

�  Runs scripts to validate settings that would be cumbersome or
impossible to run directly via Ansible

�  Configured to not stop on failure, so that all systems and values are
checked

SOLUTION: ANSIBLE

�  Goal with each run is to have all green -- no changes needed

�  Copies of all relevant files are zipped up and transferred back to the
Ansible workstation

�  All output, including the playbooks and roles themselves, is then
uploaded to our site for auditor review

RESULTS

�  Before: monthslong, error-prone effort requiring multiple Operations
staff
�  Usually required remediation with associated CRs, delays, etc.

�  After: with Puppet-based enforcement, no remediation needed
�  Data gathering can be performed across hundreds of servers by one individual in a

couple of hours

�  The big one: Audits passed, findings remediated and closed

QUESTIONS?

