O,

TARGET

Monitoring an Openstack
Deployment with Datadog

openstack
ceph DATADOG PR

@ Who are we?

TARGET

Target Enterprise Private Cloud Engineering Team

Enterprise
Cloud
Engineering

Matt Ahles Openstack Product Owner
Aaron Chism Engineer

Will Boege Architect

@ What is Datadog?

TARGET

Datadog is a SaaS Product used by the Target Openstack Team to
provide insight into our systems and services

Performs monitoring and alerting of systems and services

OpenStack TTB Sandbox Glance Service(s) Down

since R 1o 1.c¥ (7s] (9 Nov, 12:59:00)

avg(last_5m):avg:glance_image_ list.down{env:openstack ttb_sand} <= 0

@pagerduty-OST-sandbox-dd @hipchat-OST-Alerts-Sandbox

@ What is Datadog?

TARGET

Datadog is a SaaS Product used by the Target Openstack Team to
provide insight into our systems and services

Analysis and correlation of system performance metrics

TTCE Zone-1 => TTC Zone-3 s &
40

30

Thu 05 Sat 07 Mon 09

tte mgmt cpu XB s B

4;’\ w«/»f\w AEBIAA M

PRt PPN P, A D e .o

4= pme
)

T T T
Thu 05 Sat 07 Mon 09

@ What is Datadog?

TARGET

Datadog is a SaaS Product used by the Target Openstack Team to

provide insight into our systems and services

Dashboarding

DEV User API

DEV HAProxy Host Down

DEV Ceph Health

Dev Response

nova 5m | keystone 5m neutron 5m cinder

1.0 1.0 1.0 10

nova 5m keystor 5m neutror 5m cmder 5m

O 0 0 O

A ‘—A
Ceph Status 10m Ceph lops

0 5.99¢

+
Cinder List Respons¢ 5m Heat Stack List Resp: 5m

1 0406 sec 1 01 55ec

@ How Can Datadog Be Consumed?

TARGET

The information held within data Datadog can be accessed via:
« WEB Ul for direct consumption
« Restful API for querying data for use in other applications
« Integration modules that push data from Datadog into other tools to consume
« Hipchat and Pagerduty is a good example of this.

Datadog [Triggered] Openstack TTC Prod Nova Service(s) Down Via Datadog

@pagerduty-ost-datadog-prod @hipchat-OST-Alerts-Prod

nova_service_list.down over env:openstack_ttc was > 0.0 at least once during the
last 5m.

Metric value: 4.0

Data can be pushed into Datadog by several methods

« Traditional agent-based approach where a small application is installed on
system

« Restful APl to POST metrics
« Ruby/Python libraries that instantiate the API within a script or application

Integration modules that interface with common infrastructure applications
« Chefis a good example of this.

O,

TARGET

What We Like About Datadog

L.

e

Very easy to get time series data from many disparate sources into Datadog to
use for monitors/dashboards/charts.

— | like to ‘screen scrape’ simple shell commands to push via the Ruby Gem
Creating very functional dashboard layouts is simple

Most of the integrations provided do an excellent job of extending the usefulness
of the information contained within Datadog

— That being said — the native Openstack Integrations need a lot of work.

Monitoring and Alerting functions are fairly robust and integrate well into other
applications.

Robust ‘tagging’ system to group and aggregate metrics of like type.

Metrics Explorer Show | 1w The Past Week

Graph: system.net.tcp.in_segs
system.net.tcp.in_segs 2K

1.5K

Over:
1K
ost-ttb-dev x

0.5K

One graph per: 0K

T T T
ire | ‘ ‘ Wed 04 Thu 05 Fri 06
€ Infrastructure

@ What We Dislike About Datadog

TARGET

Dislike
* Documentation is average at best

Inability to use wildcards when selecting metrics to use in charting/alerting
— Although, if you do your tagging right this isn’t an issue

« Datadog only knows numbers, no ability to transform a number to a string in
dashboarding. I.E. — cannot do something like (if val = 1 then (print “OK!”)
— This can sometimes make dashboards fairly ambiguous to ‘outsiders’

« Simple host up/down monitors difficult to use due to false alarms from network
disruptions/blips

* APl key authorization model is somewhat ‘all or nothing’

@ Datadog Demo

TARGET

DEMO TIME!

@ Ceph Monitors 101

TARGET

Ceph has many options for administrators to obtain metrics
from the cluster. With a few lines of Ruby, this output can be
tracked and monitored within Datadog.

Here are a few simple examples that | have set up that have
worked extremely well.

@ Ceph Monitors 101

TARGET

Choose a metric Text Editor vV

avg ceph.status over | | env:dev

require 'rubygems’
require 'dogapi’

api_key = "XXXXXXXXOOOOXXKKXXXXXXXXX "

health = "~ ceph health”
host = “hostname”

if host.include?("ttb")
envname = "dev"
elsif host.include?("ttc")
envname = "prod-ttc"
else
envname = "prod-tte"
end
If health.include?("HEALTH_OK") then
status = "o"
elsif health.include? ("WARN")
status = "1"
else
status = "2"
end

dog = Dogapi::Client.new(api_key)
dog.emit_point("ceph.status", status[@], :tags => ["env:#{envname}","app:ceph"])

@ Ceph Monitors 101

Choose a metric Text Editor Vist

avg ceph.iops over | | env:dev

require 'rubygems’
require 'dogapi'’

api_key = XXXXXXXXXXXXXXXXXXXXX™

iops = “ceph -s | grep client | awk '{print $9}'"
host = "hostname”

if host.include?("ttb")
envname = "dev"
elsif host.include?("ttc")
envname = "prod-ttc"
else
envname "prod-tte"
end

dog = Dogapi::Client.new(api_key)
dog.emit_point("ceph.iops", iops, :tags => ["env:#{envname}","app:ceph"])

@ Ceph Monitors 101

TARGET

Choose a metric Text Editor \

avg ceph.vm_write_iops over | | env:dev

#!/bin/bash

Generate Write Results
write_raw=$(fio --randrepeat=1 --ioengine=1libaio --direct=1 --name=./test.write --filename=test \
--bs=4k --iodepth=4 --size=1G --readwrite=randwrite --minimal)

Generate Read Results
read_raw=$(fio --randrepeat=1 --ioengine=libaio --direct=1 --name=./test.read --filename=test \
--bs=4k --iodepth=4 -size=1G --readwrite=randread --minimal)

writeresult_lat=$(echo $write_raw | awk -F\; '{print $81}')
writeresult_iops=$(echo $write_raw | awk -F\; '{print $49}')
readresult_lat=$(echo $read_raw | awk -F\; '{print $40}')
readresult_iops=$(echo $read_raw | awk -F\; '{print $8}')

ruby ./submit_lat_metrics.rb $writeresult_iops $readresult_iops $writeresult_lat $readresult_lat)

@ Ceph Monitors 101

Choose a metric Text Edit

avg ceph.osd_down over | | env:dev

require 'rubygems’
require 'dogapi'’

api_key = “XXXXXOOXXXXXXXXXXXXX "

dosd = ~ceph osd tree | grep down | wc -1°
host = "hostname”

if host.include?("ttb")
envname = "dev"
elsif host.include?("ttc")
envname = "prod-ttc"
else
envname = "prod-tte”
end

dog = Dogapi::Client.new(api_key)
dog.emit_point("ceph.osd _down", dosd, :tags => ["env:#{envname}","app:ceph"])

