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CSiBE Benchmark: One Year Perspective and Plans
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Tibor Gyimóthy, Gábor Lóki, and László Vidács

Department of Software Engineering
University of Szeged, Hungary

{beszedes,ferenc,gertom,gyimi,loki,lac}@inf.u-szeged.hu

Abstract

In this paper we summarize our experiences in
designing and running CSiBE, the new code
size benchmark for GCC. Since its introduc-
tion in 2003, it has been widely used by GCC
developers in their daily work to help them
keep the size of the generated code as small
as possible. We have been making continu-
ous observations on the latest results and in-
forming GCC developers of any problem when
necessary. We overview some concrete “suc-
cess stories” of where GCC benefited from
the benchmark. This paper overviews the
measurement methodology, providing some in-
formation about the test bed, the measuring
method, and the hardware/software infrastruc-
ture. The new version of CSiBE, launched in
May 2004, has been extended with new fea-
tures such as code performance measurements
and a test bed—four times larger—with even
more versatile programs.

1 Introduction

Maintaining a compact code size is important
from several aspects, such as reducing the net-
work traffic and the ability to produce software
for embedded systems that require little mem-
ory space and are energy-efficient. The size of
the program code in its executable binary for-
mat highly depends on the compiler’s ability

to produce compact code. Compilers are gen-
erally able to optimize for code speed or code
size. However, performance has been more ex-
tensively investigated and little effort has been
made on optimizing for code size. This is true
for GCC as well; the majority of the compiler’s
developers are interested in the performance of
the generated code, not its size. Therefore op-
timizations for space and the (side) effects of
modifications regarding code size are often ne-
glected.

At the first GCC summit in 2003, we presented
our work related to the measurement of the
code size generated by GCC [1]. We compared
the size of the generated code to two non-free
compilers for the ARM architecture and found
that GCC was not too much behind a high-
performance ARM compiler, which generated
code about 16% smaller than GCC 3.3. How-
ever, at the same time we were able to docu-
ment several problems related to code size as
well, and more importantly we have demon-
strated examples where incautious modifica-
tions to the code base produced code size
penalties. At that time we had the idea of cre-
ating an automatic benchmark for code size.

To maintain a continuous quality of GCC gen-
erated code, several benchmarks have been
used for a long time that measure the per-
formance of the generated code on a daily
basis [4]. However this new benchmark for
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code size (called CSiBE for GCCCode Size
BEnchmark) was launched only in 2003 [2].
This benchmark has been developed by and is
maintained at the Department of Software En-
gineering at the University of Szeged in Hun-
gary [3]. Since its original introduction CSiBE
has been used by GCC developers in their daily
work to help keep the size of the generated
code as small as possible. We have been mak-
ing continuous observations on the latest re-
sults and informing GCC developers of any
problems when necessary.

The new version of CSiBE, launched in May
2004, has been extended with new features
such as code performance measurements and
a test bed—four times larger—with even more
versatile programs. The benchmark consists of
a test bed of several typical C applications, a
database which stores daily results and an easy-
to-use web interface with sophisticated query
mechanisms. GCC source code is automati-
cally checked out daily from the central source
code repository, the compiler is built and mea-
surements are performed on the test bed. The
results are stored in the database (the data goes
back to May 2003), which is accessible via the
CSiBE website using several kinds of queries.
Code size, compilation time, and performance
data are available via raw data tables or using
appropriate diagrams generated on demand.

Thanks to the existence of this benchmark, the
compiler has been improved a number of times
to generate smaller code, either by reverting
some fixes with side effects or by using it to
fine tune some algorithms. In the period be-
tween May 2003 and 2004 an overall improve-
ment of 3.3% in code size of actual GCC main-
line snapshots was measured (ARM target with
-Os ) which, we believe, CSiBE also has con-
tributed to.

In this paper we summarize our experiences
in designing and running CSiBE. Section 2

overviews the system architecture while in
Section 3 we give some examples of our ob-
servations and other people’s benefits using
CSiBE. Finally, we give some ideas for future
development in Section 4.

2 The CSiBE system

In this section we overview the measurement
methodology. We provide some details about
the test bed, the measuring method, and the
hardware/software infrastructure. Although
the CSiBE benchmark is primarily for measur-
ing code size, it provides two additional mea-
surements: compilation speed, and code speed
(for a limited part of the test bed). GCC source
code is checked out daily from the CVS, the
compilers are built for the supported targets
(arm/thumb, x86, m68k, mips, and ppc) and
measurements are performed on the CSiBE test
bed. The results are stored in a database, which
is accessible via the CSiBE website using sev-
eral kinds of queries. The test bed and the basic
measurement scripts are available for down-
load as well.

2.1 System architecture

In Figure 1 the overall architecture of the
CSiBE system is shown.

CSiBE is composed of two subsystems. The
Front end serversare used to download daily
GCC snapshots and use them for producing the
raw measurement data. TheBack end server
acts as a data server by filling a relational
database with the measurement data, and it is
also responsible for presenting the data to the
user through its web interface. The back end
server together with the web client represents a
typical three-tier client/server system. It serves
as a data server (Postgres), implements various
query logics and supplies the HTML presenta-
tion. All the servers run Linux.
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Figure 1: The CSiBE architecture

2.2 Front end servers

The core of CSiBE is theoffline CSiBE bench-
mark, which consists of the test bed and re-
quired measurement scripts. This package is
downloadable from the website, so it can also
be used independently of the online system.
The front end servers utilize this offline pack-
age as well.

The online system is controlled by a so-called
master phaseon the front end servers, which
is responsible for the timely CVS checkout,
compiler build, measurements using the offline
CSiBE, and uploading the data to the relational
database.

Hardware and software

The actual setup of the front end servers is flex-
ible. At present, it is composed of three Linux
machines, one used for CVS checkout that is
shared with other university projects, and two
dedicated PCs for the other front end phases.
These two PCs are really siblings, having the

same hardware and software parameters that
are summarized below:

• Asus A7N8x Deluxe

• AMD AthlonXP 2500+
333FSB @ 1.8GHz

• 2x 512MB DDR (200MHz)

• 2x Seagate 120GB 7200rpm HDD

• Linux kernel version 2.4.26,
Debian Linux (woody) 3.0

These two servers are capable of sharing the
measurement tasks (like separating them by
branches) and, in this way, we also have a
backup possibility in case of some unexpected
server failure. These two servers are also used
for measuring the performance of code gener-
ated for the x86 architecture. We are working
on adding performance measurements for the
ARM architecture as well, which will be made
on a Compaq iPAQ device with the following
main parameters:
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• iPAQ H 3630 with StrongARM-1110
rev 8 (v4l) core

• 16M FLASH, 32M RAM

• Familiar Linux,
kernel version 2.4.19-rmk6-pxa1-hh30

Compilers and binaries measured

We measure daily snapshots of the GCCmain-
line development branch (previously thetree-
ssatoo) along with several release versions that
serve as baselines for the diagrams. These are
the following GCC versions:2.95.2.1, 3.2.3,
3.3.1, and3.4.

The compilers are configured as cross-
compilers for the supported targets. We em-
ploy standalone targets for use with thenewlib
runtime library for code size and compilation
time measurements, and Linux targets with
glibc for execution time. At present,binu-
tils v2.14, newlib v1.12.0, andglibc v2.3.2are
used.

When we measure code size and compilation
time, we do not include linking time and code
size of the executable. Furthermore, only those
programs that meet certain requirements are
used for performance measurements. These
are the following:

• The project produces at least one exe-
cutable program

• The source files are not preprocessed

• The execution environment must not con-
tain any special elements

• The execution time is measurable (i. e. it
is not too short and not too long)

CVS checkout

Snapshots of GCC source code are retrieved
from the CVS daily at 12:00:00 (UTC). The
complete code base is retrieved once a week on
Mondays and on the other days only the differ-
ences are downloaded.

Configuration

The Binutils package is configured with no
extra flags, whilenewlib is configured with the
only extra flag that enables the optimization
for space:-enable-target-optspace .
We do not build glibc, rather we use the
stock binaries. Finally, GCC is configured
with the following. The common flags are
-enable-languages=c
-disable-nls -disable-libgcj
-disable-multilib
-disable-checking -with-gnu-as
-with-gnu-ld . Furthermore for compilers
using thenewlib library, the additional flags
are -with-newlib -disable-shared
-disable-threads and forglibc we also
use-enable-shared .

Compilation

A simplemake was used to buildbinutils and
the libraries once only, and the same is used for
each GCC snapshot as well.

Measurement

The code size is measured using the program
size . The final result is the sum of the first
two columns of the output of the command.
This means that only program code and con-
stant and initialized data sizes are incorporated
into the final values.
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Compilation time and code execution speed are
measured three times per object and per test
case, respectively. These times are measured
with the program/bin/time in user mode.
For both compilation and execution times all
queries through the web will provide a time
value that is the median of the three values.
While compilation and execution times are be-
ing measured only vital processes are running
on the machine.

The results of the measurements are stored in
simple files in CSV format (comma separated
values) for further processing. These files are
also the final outputs of the offline CSiBE.

2.3 The test bed

The test bed consists of 18 projects and its
source size is roughly 50 MB. When compiled,
it is about 3.5 MB binary code in total. The test
bed consists of programs of various types such
as media (gsm, mpeg), compiler, compressor,
editor programs, preprocessed units. Some of
the projects are suitable for measuring perfor-
mance and constitute about 40% of the test bed.

In the latest version of the test bed we added
some Linux kernel sources as well. With this
aim in mind, we started with the S390 platform
and turned it into a so-called “testplatform.”
On this platform we replaced all assembly code
with stubs and left only C code for the impor-
tant Linux modules (kernel, devices, file sys-
tems, etc.)

The test bed is composed of two parts, one for
the test programs and measurement scripts, and
the other consisting of the test inputs for the ex-
ecutable projects. This separation was carried
out so the user would be able to add many dif-
ferent test cases. The test cases were selected
to represent one typical execution of the pro-
gram as our goal was not to attain a good cov-
erage of the program. In some cases the same

input is given to a program several times, while
in other cases the same program is executed
with different inputs. The total size of the test
inputs is currently about 60 MB.

In the table in Figure 2 some statistics about
the test projects are given. We listed the num-
ber of source files, size of the source code in
bytes, number of objects, total size of objects
as measured using CSiBE for GCC 3.4, i686
and -O2 , and the number of executable pro-
grams for each project.

2.4 Back end server

User queries through the CSiBE website are
processed using PHP scripts, from which the
necessary SQL queries are composed. The data
retrieved from the database is then presented
on the HTML output in data tables, bar charts,
and timeline diagrams.

The central repository in which the measured
data are stored is a relational database (imple-
mented using Postgres). The database stores
the measurement results along with the time
stamp of the measurement and various entities
such as the compiler and library version, com-
piler flags and measurement type. The version
of the test bed is also associated with each re-
sult, which allows it to store the results of dif-
ferent test beds consistently. If a query is made
that spans different test bed versions this can
be easily displayed on the diagrams.

The last phase in the online CSiBE bench-
mark is the presentation on the website. The
CSiBE pages provide quick and easy access to
the most important measurements like the lat-
est results in a timeline diagram or more elabo-
rate query possibilities. Extensive help is pro-
vided for each function, making CSiBE simple
to use. In Figure 3 the opening page can be
seen.

There are several ways of retrieving the re-
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Project # Src. Src. bytes # Obj. Bin. bytes # Exec.

bzip2-1.0.2 11 242,034 9 80,112 2
cg_compiler_opensrc 42 813,343 22 148,838 —
compiler 9 202,938 6 27,928 1
flex-2.5.31 33 658,799 22 240,206 1
jikespg-1.3 29 978,833 17 267,712 1
jpeg-6b 81 1,119,991 66 156,078 3
libmspack 40 319,611 25 76,506 —
libpng-1.2.5 21 859,762 18 128,941 2
linux-2.4.23-pre3-testpl . . . 2,430 34,238,976 271 993,815 —
lwip-0.5.3.preproc 30 928,538 30 86,486 —
mpeg2dec-0.3.1 43 461,047 29 62,873 1
mpgcut-1.1 1 28,889 1 29,845 —
OpenTCP-1.0.4 40 545,358 22 38,221 —
replaypc-0.4.0.preproc 39 1,692,413 39 64,221 —
teem-1.6.0-src 370 2,786,644 293 1,210,365 2
ttt-0.10.1.preproc 6 311,311 6 19,049 —
unrarlib-0.4.0 4 93,894 3 16,339 —
zlib-1.1.4 27 305,136 14 42,422 1

Total 3,256 46,587,517 893 3,689,957 14

Figure 2: CSiBE test bed statistics

sults. One isSummarized queries, which pro-
vides instant access with a click of a button
to all kinds of results (code size, compilation
time, and code performance) for a selected tar-
get architecture. On theLatest resultspages
the last few days or weeks can be observed
in several ways: timeline, normalized timeline
(the various kinds of data are shown as nor-
malized to the last value), a comparison of dif-
ferent targets, and raw number data. TheAd-
vanced queriespages provide the possibility of
retrieving the data in any desired combination;
one can compare any branch and target with
any other combination and timeline diagrams
for arbitrary intervals. Baseline values of ma-
jor GCC releases are also available for most
queries, which can be optionally selected for
the diagrams.

All queries can be performed by a series of
selections from drop-down lists like the se-
lection of targets, branches, and optimization

switches. The results can be displayed in a di-
agram (Figure 4a), in a bar chart (Figure 4b),
or as raw data tables. The resulting latest time-
line diagrams are supplied with two automati-
cally generated links that can be copied for fur-
ther reference. TheStatic URLlink will always
give the same diagram since all query param-
eters are converted to absolute time stamp val-
ues, while theReference URLlink supplies the
actual query parameters at the time of usage,
which gives values relative to the actual time.

3 Experiences

CSiBE has been quickly accepted by the com-
munity. Patches with references to its usage
started to appear only after 2 months. At
present we have 47 hits per day on average
and a total of 193 downloads of the offline
benchmark. A good thing about its introduc-
tion is that more and more GCC developers
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Figure 3: CSiBE website

seem to be using CSiBE in their daily work to
check how their modifications affect the code
size. Some people are developing patches to
decrease code size, and the effect is measured
with CSiBE, while others verify whether other
modifications affect code size or not. Thanks to
CSiBE, in 4 cases a patch was reverted or im-
proved because of its negative effect on code
size. These statistics suggest that the develop-
ers are starting to focus not only on code ef-
ficiency, but its size as well. We have been
following the activity on thegcc-patches

mailing list and found that more and more
people are referring to CSiBE as a reference
benchmark for code size (54 e-mails).

Our group has also contributed to the overall
improvement of code optimization for size, be-
cause we are carrying out continuous obser-
vations of the results produced by CSiBE, of
which the important ones are documented on
the website. Where possible we also suggest
a possible cause of any anomalies seen in the
latest diagrams, and take steps to draw the at-
tention of the community to the problem. In
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(a) Timeline (b) All targets

Figure 4: Diagram examples

the following we offer some examples of our
observations and successful participations:

• On August 31 in 2003 a patch was ap-
plied to improve the condition for gener-
ating jump tables from switch statements
by including the case when optimizing for
size. This caused a code size reduction on
all targets. The threshold value was deter-
mined based on the CSiBE statistics.

• In September 2003 unit-at-a-time compi-
lation was enabled in mainline, which re-
sulted in major code size improvement for
most targets.

• A patch related to constant folding done
in October 2003 increased the code size
for all targets. Several days later another
patch was used to disable some features
when optimizing for size.

• A significant code size increase was mea-
sured on October 21, 2003 on ARM ar-
chitecture when optimizing for size due to
a patch that allows factorization of con-
stants into addressing instructions when
optimizing for space. One week later the
patch was reverted.

• In January 2004 a patch saved code size

on ARM with -Os but introduced a new
bootstrap failure.

• A patch on April 3, 2004 saved about 1%
of code size for most targets. The patch
inlines very small functions that usually
decrease the code size when optimizing
for size.

4 Conclusion and future plans

In this paper we overviewed GCC’s code size
benchmark, CSiBE. We presented the over-
all architecture, the test bed and the measur-
ing method. Although it primarily serves as a
benchmark for measuring code size, other pa-
rameters such as compilation time and code ex-
ecution performance are also part of the regu-
lar measurements. We offered some examples
of where GCC benefited from using the bench-
mark, and pointed out that, in recent years,
a general interest towards code size has in-
creased among GCC developers. As a result
of this, GCC mainline improved about 3.3%
in terms of generated code size between May
2003 and May 2004 (measured with CSiBE
test bed version 1.1.1 for the ARM target and
-Os ).

We plan to continue our work with CSiBE and
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hence we welcome users’ comments and sug-
gestions. Some of the targets were added af-
ter user requests, and the bigger test bed in the
latest CSiBE version is also composed of pro-
grams based on the demands of those who con-
tacted our team. In the future we will try to
follow the real needs of the GCC community,
those of the developers and users.

One of the straightforward enhancements of
CSiBE might be to introduce new targets and
development branches, should there be an in-
terest in it by the community. As long as
the available hardware capacity permits (the
measurement of one day’s data currently takes
about 5 hours), we may extend the test bed with
new programs, should it prove necessary.

Another idea of ours for enhancing the on-
line benchmark is to allow users to upload, via
the web interface, measurement data they pro-
duced offline into the central database. This
would be interesting in cases where a developer
makes use of the offline benchmark to measure
a custom target or examine code performance
with different inputs.

5 Availability

The online CSiBE benchmark can be accessed
at

http://www.inf.u-szeged.hu/CSiBE/

From here the offline version can also be down-
loaded.
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Abstract

The GNU Standard C++ Library v3 is a long
term project aimed at implementing a fully
conforming C++ runtime library, as mandated
by the ISO 14882 Standard. Whereas during
the first years the focus was mostly on fea-
tures, recently, after my appointment as one
of its official maintainers, much more atten-
tion is devoted to performance issues and con-
tributions in the area are particularly encour-
aged and appreciated. In this paper the main
approaches being followed are reviewed (e.g.,
hand-coding, exploitation of glibc extensions,
caching), together with the tools used, and a
number of satisfying results obtained so far,
particularly, in the iostreams and locales chap-
ters. Quantitative comparisons on x86-linux
with the Icc/Dinkumware offer will be also
presented, based on code snippets provided
by the new performance testsuite and distilled
from actual performance PRs. In the final
section, a better integration with the compiler
team is argued for and emphasized.

1 Introduction

Today,circa 2004, the libstdc++-v3 project de-
livers in a typical GCC distribution more than
420000 lines of code, including 1350 regres-
sion testcases and a growing performance test-
suite. Many different architectures, both 32-bit
and 64-bit, are fully supported, on many differ-
ent OSes, from x86 to s390x and from Linux

to Darwin.

The project was started in 1998 and release af-
ter release the “degree of conformance” to the
ISO C++ Standard is becoming very high, with
many features implemented satisfactorily and
quickly stabilizing.

Indeed, an analysis of the 3.4.0 Release Notes
reveals that major changes, that first blush may
seem conformance related (e.g., UTF-8 sup-
port, generic character traits) in fact should be
strictly speaking categorized as QoI improve-
ments.

On the other hand, the users are becoming
rather demanding as far as performance is con-
cerned. Among the possible causes: the good
speed in some areas (e.g., I/O) of the old,
pre-standard, C++ runtime library; new offers,
like Icc/Dinkumware, on the market and eas-
ily available on the widespread x86-linux plat-
form. More generally, does not seem obvious
anymore that library functions that have a C li-
brary counterpart must be necessarily slower:
people want a complete “object oriented” ap-
plication not renouncing to performance.

Also, some new facilities offered by the ISO
Standard are recently gaining larger popular-
ity (e.g., locale) and real world applications are
able to emphasize weaknesses that went un-
noticed to the implementors, naturally caring
more about conformance, in the first place.

The main focus of the work is therefore slowly
changing and the purpose of this paper is dis-
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cussing how, using which methods, and ex-
ploiting which instruments. Of course, one
of its main objectives is soliciting feedback
and opening a discussion on such topics. The
first part presents sort-of a chronology of the
most relevant recent achievements1, spanning
the last year or so: it represents also a nice oc-
casion to thank some of the most generous con-
tributors. Then, three items will be discussed
more throughly to convey a few specific, gen-
eral points. In the last part, moving from a re-
cent episode, a better integration with the com-
piler team will be wished.

2 A Chronology

Necessarily, there is a good amount of “fuzzi-
ness” in this type of historical reconstruction:
many important contributions went in only af-
ter a long discussion, or piecewise, during a
few months. Most of the changes presented be-
low are only in 3.4 (and mainline, of course),
but, also due to the above mentioned reasons,
not all the performance related improvements
in the current release branch will be exhaus-
tively listed.

Output of integers For GCC 3.3 Jerry Quinn
rewrote from scratch the code formatting
integer types for output, avoiding going
throughsprintf for performance sake:
probably for the first time, the imple-
mentation interpreted non-trivially one of
those typical “as if” specifications present
in the Standard.

Separate synchedfilebuf In this case, it
could be said that a speed gain has been
obtained as a (very welcome) by product:
Pétur Runólfsson separate synched filebuf

1If not otherwise indicated, all the timings are rel-
ative to a P4-2400 machine, linux2.4, glibc-cvs, -O2,
Icc8.0 Build 20040412Z.

improved remarkably the conformance of
the library in the interactions with C stdio
(e.g., cin/stdin). Anyway, as a matter of
fact, cout.rdbuf()->sputc(’a’)
became for instance about three times
faster.

Numpunct cache After some initial attempts
during GCC 3.3 lifetime, finally GCC 3.4
exploits caching for formatted I/O: this
important issue will be discussed in detail
below. In any case, formatted output of
integer types is now three time faster than
in GCC 3.2.3 (Table 1).

GCC 3.2.3 14.590u 0.010s 0:14.67 99.5%
GCC 3.3.3 4.780u 0.010s 0:04.80 99.7%
GCC 3.4.0 4.160u 0.010s 0:04.19 99.5%
Icc8.0 10.430u 0.020s 0:10.48 99.7%

Table 1: Output of ints from 0 to 9999999 to
/dev/null

Empty string speedup At the beginning of
2003, Nathan Myers, the original author
of v3 basic_string class, noticed that
the multi-processor bus contention can be
reduced by comparing addresses first, and
never touching the reference count of the
empty object. The final patch has been
committed in time for 3.4 and improves
remarkably the performance on single-
processor systems too: Table 2 presents
satisfying timings for a simple snippet
shown in Figure 1.

for (int i = 0; i < 2000; ++i)
std::string a[100000];

Figure 1: Creating and immediately destroying
lots ofstring objects

Non-unified filebuf According to the C++
Standard, aseek is needed in order to
switch from read mode to write mode (and
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GCC 3.3.3 20.890u 0.020s 0:21.01 99.5%
GCC 3.4.0 0.790u 0.000s 0:00.79 100.0%
Icc8.0 17.200u 0.030s 0:17.33 99.4%

Table 2: Execution times for the code dis-
played in Figure 1

vice versa) during I/O. This is a very rea-
sonable requirement, by the way inher-
ited from the C Standard. However, the
old implementation, as a (very puzzling)
QoI feature, had relaxed it: unfortunately,
the upshot was that the get area and put
area pointers had always to be updated
in a lockstep way. Figure 2 compares
GCC 3.3 and GCC 3.4 code forsputc :
the former called_M_out_cur_move
instead of simply bumping the put area
pointer by way ofpbump. Additionally,
the_M_out_buf_size helper was also
needed: as a result the function was not
amenable to inlining anymore. The same
happened of course forsbumpc and else-
where. The performance suffered conse-
quently as Table 3 demonstrates.

GCC 3.3.3 42.440u 0.290s 0:42.91 99.5%
GCC 3.4.0 4.080u 0.300s 0:04.39 99.7%
Icc8.0 11.080u 0.360s 0:11.45 99.9%
‘C’ (unlocked) 6.590u 0.280s 0:06.90 99.5%

Table 3: Char-by-char copy of 1 GB from
/dev/zero to /dev/null

Fixing this required consistent, in-
vasive changes tostreambuf , and
stringbuf but eventually enabled a
much simpler maintenance and paved the
way to the UTF-8 support.

Input of integers The code parsing integers
could be improved rather easily, thanks
to thenumpunct caching mechanism al-
ready in place and functioning well. In-
terestingly, though, in this area the library

sports some design choices not shared by
other implementations (whereas consis-
tent with the letter of the standard!), to be
discussed below.

Table-basedctype In order to obtain fast
time_get and time_put facets (not
suited for caching, due to their special
requirements), and also for free standing
use,ctype functions, such asnarrow ,
widen , and is , are now table-based.
Thanks to a sophisticated solution devised
by Jerry and refined on the discussion list,
for char type it is even avoided the vir-
tual function call cost. The improvement
is more visible forwchar_t , however:
once more, close to an order of magnitude
with respect to the previous generation.

Codecvt rewrite During GCC 3.4 Stage 1
Pétur rewrote thecodecvt facet, obtain-
ing a very good support of encoding-zero
(e.g., UTF-8) locales too. In the process,
he provided a rather complete set of test-
cases. Finally, as will be discussed in the
second part, performance has been also
improved, thus delivering for the first time
both correct and efficient support for a
wide set of locales.

Other string improvements In Item 29 of
his latest book,Effective STL, Scott Mey-
ers proposes an elegant idiom for copy-
ing a text file into astring object (Fig-
ure 3).

string Data(istreambuf_iterator <char >(File),

istreambuf_iterator <char >());

Figure 3: Istreambuf_iterators usage

In order for this proposal to be effective,
the constructor from a pair ofinput_
iterator s must be efficient: a satis-
factorily fix involved redesigning the lat-
ter to exploit a centralized growth fa-
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cility, previously not available at con-
struction time. Only in 3.4.1-pre is
present another unrelated improvement,
very simple but appreciable in almost ev-
ery use of thestring class2. It consists
in special-casing single char changes to
avoid the generaltraits::copy and
traits::assign , which end up call-
ing C library functions (Table 4).

GCC 3.3.3 1.150u 0.040s 0:01.19 100.0%
GCC 3.4.0 0.670u 0.070s 0:00.74 100.0%
GCC 3.4.1 pre 0.220u 0.060s 0:00.28 100.0%
V2 0.710u 0.030s 0:00.74 100.0%

Table 4: Ten millions ofstr.append(1,

’x’)

Monetary facets Extending thenumpunct
caching work tomoneypunct turned
out to be easy. However, in the pro-
cess, a few bugs and other opportuni-
ties for performance surfaced. Some are
certainly straightforward (e.g., reordering
operations onstring objects to avoid
reallocations), but, nevertheless, the over-
all effect is quite noticeable. For in-
stance, Table 5 shows the time it takes to
read one million of times a big monetary
amount, i.e., 100,000,000,000.00, from an
istringstream into a long double.

GCC 3.3.3 10.610u 0.020s 0:10.69 99.4%
GCC 3.4.0 4.110u 0.000s 0:04.12 99.7%
GCC 3.4.1 pre 2.910u 0.010s 0:02.93 99.6%
Icc8.0 3.280u 0.000s 0:03.29 99.6%

Table 5: A simplemoney_get benchmark

The difference between GCC 3.4.0 and
3.4.1-pre is entirely due to the just-
mentioned simple tweak to thestring

2Internally to the library too, as will be quantified in
the next item.

class: a similar effect can be measured in
the formatted input of floating point types,
much more used today.

Locale functions Probably, a large number
of applications doesn’t have these func-
tions as a performance bottleneck. On
the other hand, the way names were pro-
cessed used to be rather dumb, due to
the encoding adopted for “simple” named
locales—that is, roughly, having all the
categories named the same, sayde_DE.
As pointed out by library-friend Martin
Sebor, most probably the sections of the
standard having to do with combining
named locales (22.1.1.2, 22.1.1.3) will be
amended: therefore the real challenge was
designing a new encoding ready for the
most likely future changes. Table 6 shows
the time needed to compare ten millions
of times viaoperator== two “simple”
locales.

GCC 3.3.3 13.410u 0.000s 0:13.45 99.7%
GCC 3.4.0 11.640u 0.000s 0:11.67 99.7%
GCC 3.5.0 exp 0.220u 0.000s 0:00.22 99.9%
Icc8.0 0.850u 0.000s 0:00.85 99.9%

Table 6: A simple locale::operator==

benchmark

Getline speedupsA wide ranging debate
ensued to the submission of PR 15002,
with the participation of Matt Austern,
among others. Both thegetline s had
to be improved: the member taking a
char_type* and astreamsize and
the function taking anistream and
a string . An elegant solution, de-
vised by Pétur, could be adopted only
for the former, since it exploitsprotected
streambuf members. It became clear
that, ideally, we should have two different
versions of those functions: the fast ver-
sion, which takes advantage of friendship
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and only works forchar andwchar_t ,
and a slow version that goes through the
public interface. For the moment, pro-
filing revealed that a large speedup could
be achieved by appending to thestring
object a chunk of each line at a time (say,
128 chars), instead of one char at a time.
Table 7 shows timings for reading 600000
lines, each 200 characters, from file, via
getline .

char_type*
GCC 3.3.3 1.700u 0.090s 0:01.80 99.6%
GCC 3.4.0 1.230u 0.070s 0:01.30 100.0%
GCC 3.4.1 pre 0.180u 0.130s 0:00.30 103.3%
Icc8.0 1.410u 0.090s 0:01.50 100.0%
string
GCC 3.3.3 15.560u 0.070s 0:15.69 99.6%
GCC 3.4.0 9.030u 0.160s 0:09.22 99.6%
GCC 3.4.1 pre 1.090u 0.110s 0:01.21 99.1%
Icc8.0 1.910u 0.120s 0:02.04 99.5%

Table 7:Getline benchmarks

3 Telling Stories

3.1 Parsing of integer types and caching

Back in February, in the occasion of some
changes to the monetary facets that were sup-
posed to be completely uncontroversial, a long
exchange started on the discussion list about
the correct way to parse monetary (and nu-
meric) quantities.

In particular, it became evident to everyone that
libstdc++-v3 is probablyalone in closely fol-
lowing the letter of 22.2.2.1.2. Most, if not
all, the other implementations are not using
widen and are not matching characters as pre-
scribed in p8: instead, in order to compute the
value of each specific digitd something equiv-
alent toc = narrow(*beg, ’*’) is first
computed, thend is given byc - ’0’ .

Indeed, this approach has its own virtues:
there is no need for caching (and the re-
lated complexities3) and an efficient table-
basednarrow is sufficient alone to obtain
good performance; moreover, this approach
solves elegantly an issue in the Standard with
the “mysterious”find function mentioned in
p8.

In fact, if the function is interpreted (rather nat-
urally) astraits::find , the serious prob-
lem ensues that anycharT , other than plain
char and wchar_t , needs an appropriate
traits<charT>::find to be available:
the Standard nowhere requires this, still clearly
mandates in Table 52 to make it possible to in-
stantiatenum_get onanycharT type4.

Interestingly, those issues are of course well
known to the LWG members, but often donot
correspond to detailed and well debated DRs.5

Anyway, GCC 3.4 provides for the first time
a generictraits class, which includes in-
deed a generictraits<charT>::find :
this leads to a complete solution characterized
by an excellent performance/conformance bal-
ance. Table 8 below compares the timings for
reading from file ten millions of integers, from
0 to 9999999.

GCC 3.3.3 41.180u 0.020s 0:41.37 99.5%
GCC 3.4.0 5.740u 0.030s 0:05.79 99.6%
Icc8.0 14.220u 0.120s 0:14.41 99.5%
V2 5.930u 0.060s 0:06.00 99.8%
Hammer 18.660u 0.040s 0:18.78 99.5%

Table 8: A simplenum_get benchmark

For 3.4, integer types parsing has been rewrit-

3Only 3.4 finally managed to have it reliably work-
ing, fast, and. . . not leaking memory!

4A POD type.
5Only DR 303 [WP] and DR 427 [Open] are relevant

and both the resolution of the former and the comment
added in Kona to the latter are clearlyagainstpreferring
narrow to widen .



22 • GCC Developers’ Summit

ten, avoidingstrtol , strtoll , and the
other C library functions previously used, in-
stead directly accumulating the result during
the parsing. Therefore, nostring objects
are involved. The hammer-branch entry is also
present in the Table in order to quantify what
could be otherwise achieved within the con-
straints of the 3.3 ABI, basically, by improving
the use of thestring s.

On the current code base,gprof reports that
about 58% of the total time is spent in the pars-
ing loop itself: not much can be done about
this, except, perhaps, avoiding an integer di-
vision, in principle not necessary.Memchr,
called by traits<char>::find , is the
second topmost entry, with about 26%: in the
future, a small ABI change could make possi-
ble detecting in advance the occurrence of triv-
ial widen s, very common indeed, then simply
using d = *beg - widen(’0’) in such
cases:traits::find would not be neces-
sary at all and the QoI would be further im-
proved. All the other entries are below 5%
and __use_cache::operator() is be-
low 1%, a reassuring check.

In any case, barring unexpected strong requests
from the users, much more effort is planned
in the area of parsing and formatting offloat-
ing pointtypes, which probably could be made
about two times faster, but this is another
story. . .

3.2 Codecvt rewrite

As already mentioned, a few months ago be-
came evident that the performance of the most
important codecvt functions, such asin ,
out , and length , was not satisfying: that
represented a major roadblock in the way of
efficient encoded I/O, otherwise made finally
possible by the redesignedfilebuf virtuals.

By the way, this problem was unfortunately no-

ticed onlymonthsafter thecodecvt rewrite,
a sad episode less likely to happen nowa-
days thanks to the new performance testsuite6,
which currently includes 30 testcases and is
quickly growing: most of the tests are distilled
from performance PRs.

Luckily, after some preliminary attempts, only
partially successful, the real fix became obvi-
ous: it involved exploitingmbsnrtowcs and
wcsnrtombs , two glibc extensions that take
an extra parameter with respect to the standard
mbsrtowcs and wcsrtombs . Indeed, ad-
mittedly, in GCC 3.3codecvt was almost
broken but already fast, thanks to the use of
the latter functions. Table 9 is relative to the
conversion of 400000 buffers, 1024 characters
each, in the C locale.

GCC 3.3.3 1.520u 0.000s 0:01.52 100.0%
GCC 3.4.0 1.650u 0.000s 0:01.65 100.0%
Icc8.0 41.670u 0.010s 0:41.85 99.5%

Table 9:Codecvt::in benchmark

The small difference between GCC 3.3.3 and
GCC 3.4.0 is entirely due to the additional call
of memchr (or wmemchr), which is used for
splitting the input (the output, respectively) in
chunks, ending in ’\0’ (or L’\0’, respectively):
each one is then processed bymbsnrtowcs
(wcsnrtombs , respectively).

The numbers obtained with Icc8.0 are typi-
cal of an implementation using for correctness
the singlechar C library functionswcrtomb
and mbrtowc : this is still happening for
libstdc++-v3 too in the so-called “generic” lo-
cale model, which doesn’t have the GNU ex-
tensions available. Discussingcodecvt is
therefore also an opportunity to clarify that the
QoI provided by the library in that model is
sometimes lower than in the GNU model. Im-
proving this situation is feasible but requires

6Established June, 2003.
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more help from people on platforms not based
on glibc, hereby strongly solicited!

4 The Weird Loop, Outlook

An interesting feature of the C++cmath and
complex facilities is the presence of addi-
tional pow overloads forintegerexponent, not
present in the C Standard, that, in principle at
least, enable a wide range of additional op-
portunities for optimization. The library im-
plements those overloads using a function that
computes the power via the well known “Rus-
sian peasant algorithm” (Figure 4) which re-
quires onlyO(log n) multiplications.

template <typename _Tp >

inline _Tp

__cmath_power(_Tp __x, unsigned int __n)

{

_Tp __y = __n % 2 ? __x : 1;

while (__n �= 1)

{

__x = __x ∗ __x;

if (__n % 2)

__y = __y ∗ __x;

}

return __y;

}

Figure 4: Helper function used bypow

As evident from the actual code, the loop is
very simple but nonetheless characterized by a
non-linear induction variable, not handled un-
til a few months ago neither by the old unroller
nor by the new one, present in the lno-branch
and actively developed by Zdenek Dvorak and
others.

“Officially” Zdenek considered non-linear IVs
rare and low priority7, but actually he was just

7See the audit trail of PR 11710.

looking for an interesting example of applica-
tion, nothing more! In a matter offewweeks a
complete framework for canonical IVs creation
was ready and beautifully effective: in it, loops
such as the above can be fully unrolled in case
of a constant__n thus leading to justperfect
assembly.

Besides the technical details of the episode—
who knows, perhaps by the time the lno-branch
is merged the library will not use the very same
algorithm—its lesson seems definitely an invi-
tation to more frequent and strict exchanges be-
tween the library and compiler people.
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_M_out_buf_size()

{

off_type __ret = 0;

if (_M_out_cur)

if (_M_out_beg == _M_buf)

__ret = (_M_out_beg + _M_buf_size

− _M_out_cur)

else

__ret = _M_out_end − _M_out_cur;

return __ret;

}

_M_out_cur_move(off_type __n)

{

bool __testin = _M_in_cur;

_M_out_cur += __n;

if (__testin && _M_buf_unified)

_M_in_cur += __n;

if (_M_out_cur > _M_out_end)

{

_M_out_end = _M_out_cur;

if (__testin)

_M_in_end += __n;

}

}

sputc(char_type __c)

{

int_type __ret;

if (_M_out_buf_size())

{

∗_M_out_cur = __c;

_M_out_cur_move(1);

__ret = traits_type::to_int_type(__c);

}

else

__ret = this →overflow(

traits_type::to_int_type(__c));

return __ret;

}

(a) GCC 3.3

sputc(char_type __c)

{

int_type __ret;

if (this →pptr() < this →epptr())

{

∗this →pptr() = __c;

this →pbump(1);

__ret = traits_type::to_int_type(__c);

}

else

__ret = this →overflow(

traits_type::to_int_type(__c));

return __ret;

}

(b) GCC 3.4

Figure 2: GCC 3.3 (a) vs GCC 3.4 (b) code forsputc (slightly simplified)
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Abstract

The techniques for compilation and optimiza-
tion of the declarative (logic and functional)
programming languages are quite different
from those used for procedural (imperative)
languages, especially on the low level. There
are however several reasons why they are still
relevant even for the typically procedural lan-
guage compilers like GCC: On higher level we
can observe similarities, and due to more sys-
tematic design of the declarative languages the
development in these areas is usually more ad-
vanced. In some contexts it is also consid-
ered a good style to use declarative program-
ming techniques (recursion, generic program-
ming, callbacks) even in imperative languages;
currently the performance penalties for these
constructs are usually quite large.

The paper quickly summarizes the similari-
ties and differences between compilation of
declarative and imperative languages. We then
investigate the techniques used for declara-
tive languages—tail recursion and general re-
cursion optimizations, advanced inlining tech-
niques (partial inlining, function specialisa-
tion, partial evaluation), program analysis, in-
termodular optimizations, etc., their usability
and implementability in GCC.

Introduction

The contemporary programming languages
can be divided into procedural and declara-

tive. Programs in procedural languages de-
scribe precisely the control flow and they map
more or less directly to the machine code of the
target platform. On the other hand declarative
languages focus on describing the semantics of
the program. They do not describe that much
how things should be done, but rather specify
what result we would like to obtain, leaving the
exact way how to do it up to the compiler. Of
course this division is not all that clear—many
procedural languages include some construc-
tions derived from especially functional lan-
guages, and declarative languages usually con-
tain procedural bits in order to handle things
like input and output.

It is well-known fact that the compilation of
declarative languages is in some sense both
easier and harder than the compilation of pro-
cedural languages. Easier since the semantic
description gives more freedom to the compiler
and makes the analyzes simpler. Harder since
the lack of explicit control flow makes it neces-
sary to for a compiler to select a good order of
execution by itself. This in general cannot be
done in compile-time, so this makes it neces-
sary to handle partially evaluated data in run-
time. Also the more high-level nature of the
declarative languages invites the programmers
to use the constructions whose straightforward
translation would be quite ineffective.

Of course on the low-level the techniques for
compilation of procedural and declarative lan-
guages are quite different (it is also true that
they also differ significantly between the vari-
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ous types of declarative languages). On higher-
levels however the goals of the optimizations
are more similar, and it is just here where
the declarative languages may use the bene-
fits of their cleaner semantics. Often it hap-
pens that even those high-level optimizations
that could theoretically be used for procedu-
ral languages as well are only developed for
the declarative ones, due to the problems with
the level of analysis necessary to enable the al-
terations of the control flow prescribed by the
procedural program. Also due to this diversity
the research groups for declarative and proce-
dural language compilation techniques do not
communicate with each other frequently, so it
may happen that the optimizations developed
by one of them are either unknown or devel-
oped independently by the other one.

This paper tries to give an overview of (mostly
high-level) optimizations used in declarative
language compilers and to put them in context
of the procedural language compiler GCC. We
try to investigate their implementability and
usefulness and also to derive some optimiza-
tions based on them that might be more useful
for optimization of procedural languages.

First we provide a short introduction to the
declarative language compiler construction and
define the terms used in the area. Then we con-
tinue with the short descriptions of available
optimizations, with more detailed descriptions
for those that we consider relevant in the con-
text of procedural languages. We also provide
some thoughts and pointers on the eventual im-
plementation in the current infrastructure of the
GCC compiler (tree-ssa branch, since all the
optimizations are only suitable for implemen-
tation on the tree level).

1 Compilation of Declarative Lan-
guages

In this section we provide a short introduction
to the techniques used for compilation of the
declarative languages. References to papers
containing more detailed descriptions are pro-
vided. Of course the approaches different from
the ones described below used as well, and the
basic schemes can be altered to obtain varia-
tions useful for specific purposes.

We must distinguish between the different
kinds of declarative languages, especially be-
tween logic (based on the predicate logic) and
functional (based on the lambda calculus) ones.
There are also other special purpose declar-
ative languages (for constraint programming,
database querying, scene description, etc.), but
these are out of the scope of this paper.

Initial stages of compilation of all the lan-
guages, like lexical and syntactic analysis, are
of course very similar and not interesting from
our point of view. The optimizations (both
generic and specific for the given style of
the language) are then performed (some of
them will be mentioned in the following sec-
tions). Usually the level of the representa-
tion is lowered during the process, finally leav-
ing us with just the basic elements of the lan-
guage. Type (and for logic languages mode—
determining which arguments of predicates are
input/output) checking and eventually special-
ization of operations happens during this pro-
cess

For logic languages the basic elements are uni-
fication (that includes both construction and
decomposition of data structures) and defini-
tion of predicates (that usually are recursive
and use some built-in predicates for perform-
ing things like arithmetics). The language
specification also defines the rule for order of
evaluation of the predicates, which may be
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fixed (Prolog), flexible subject to some mini-
mal constraints (Mercury) or even alterable by
the program (Goedel). The possible substitu-
tions to the variables are processed according
to this rule, backtracking whenever such a sub-
stitution fails.

This rule (or its particular variant chosen by
the compiler) is then translated into a code of
a low-level abstract machine (which is later
mapped to the target language). One of those
used is the Warren Abstract Machine ([W83]).
It consists of the low-level instructions to con-
trol unification, predicate lookup and back-
tracking. Indeed the main challenge at the low
level is to make these operations efficient.

For unification it is necessary to handle the spe-
cial cases of unification with terms with known
structure, and to employ efficient algorithm
for matching the terms with unknown structure
when this fails. This is complicated by the fact
that unification is two-way process (i.e. both
unified sides may get modified). Also we need
to be careful about the possibility to create the
cyclic structures when compiling unifications
like X = f(X).

Predicate lookup is usually made faster by fil-
tering out predicates that cannot match due to
the known structures of parameters; this index-
ing may be either shallow (only looking at the
topmost level) or deep. The things get more
complicated in languages like Prolog where the
program may be changed dynamically.

For backtracking we need to implement the
rollback mechanism, either using timestamps
or a clever layout of allocated data structures
(or both).

For more details on construction of logic
language compilers see for example [R94],
[DC01] or [HS02].

For functional languages the basic elements

are pattern matching (data structure decompo-
sition), data structure construction and func-
tion application. Local function definitions
are usually replaced by the global ones, in
process called lambda-lifting. The functional
languages often allow polymorphic functions
(whose arguments may be of different types,
similar to mechanism of virtual methods in ob-
ject oriented programming); these are usually
lowered to explicitly passing the dictionaries of
the functions.

There are two commonly used semantics for
functional languages regarding the passing of
the arguments to the functions. The eager eval-
uation (Scheme, Erlang) means that the argu-
ments are evaluated before they are passed to
the function. The lazy evaluation (Haskell)
means that they are only evaluated on de-
mand, when the called function needs to know
their values. The later approach is theoret-
ically more clean (making the identities like
(λ x.f)g = f [x := g] valid even in cases when
evaluation ofg does not have to terminate), but
significantly less efficient to implement (it is
necessary to create thunks for unevaluated ex-
pressions whenever we pass an argument to a
function) and the actual control flow is hard to
predict, making the programs difficult to op-
timize. Nevertheless the methods of compila-
tion of these languages are similar—even eager
languages must be able to suspend evaluation
of expressions when partially applied functions
are passed as arguments, although their advan-
tage is that from the type information they can
often derive whether this occurs.

The examples of low-level abstract machines
used for compilation of the functional lan-
guages are for example G-machine ([A84],
[J84]) or the Three Instruction Machine
([FW87]). Despite the significant differences,
the basic operations include manipulation and
querying of the data structures (to enable their
construction and pattern-matching), the param-
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eter passing and the function calls.

There are two basic models used to call func-
tions. The “eval-apply” model works by evalu-
ating the function, in case of eager languages
evaluating the arguments and applying the
functions to the arguments. The “push-enter”
model is used for lazy languages; it pushes
the arguments of the function to the parame-
ter stack, then enters evaluation of the function.
There is no return after the end of the function
in this case.

For lazy languages, it is necessary to ensure
sharing. For example in(λ x.x + x) f we want
f to be evaluated just once. This means that
when we finish evaluation of a thunk, we need
to arrange its value to be rewritten by the result.

For the reasonable performance, there are sev-
eral problems to be solved. We need to arrange
for a sane argument/return value passing con-
ventions using registers, and to make this work
together with the argument stack. The partially
applied functions present in the form of the
thunks must have a mechanism how to apply
additional arguments to them (by copying the
thunk, creating the linked lists of arguments, or
combination of both depending on the size of
the thunk). We need to distinguish between al-
ready evaluated values and thunks, which may
be done either by tagging or by keeping even
evaluated values as trivial thunks that just re-
turn their value. Similarly either tagging or
selector function needs to be used for distin-
guishing the variants of values during pattern
matching.

For more involved description of these deci-
sions as well as other issues with compilation
of (especially lazy) functional languages see
e.g. [J92] or [JL92].

Usually either some low-level procedural lan-
guage (C) or assembler is used as the target
language. The former is more portable and

usually produces a better code due to the low-
level target specific optimizations done by the
C compiler, assuming that there is a possibil-
ity to ensure that the important values (for ex-
ample stack and heap boundaries) are kept in
registers all the time. The later is more compli-
cated, but it gives a better compilation speed.

Of course these are just the basic approaches,
which need to be enhanced by various low-
level optimizations both on the source and the
resulting code. In result, the performance of
the more practical languages (functional with
eager evaluation, logic without implicit back-
tracking) is in general the same as of the
higher-level procedural languages. The per-
formance of the languages that more precisely
match the clean theoretical ideas (functional
languages with lazy evaluation) tends to be
worse by a factor of 2–5.

2 Declarative Language Optimiza-
tions

Many of the optimizations in the declarative
languages try to eliminate the inefficiencies of
the models described above. We omit the de-
scription of the low-level optimizations com-
pletely, since they clearly are not relevant, and
also require a detailed knowledge of the par-
ticular model. The more high-level examples
include

• Deforestation ([W90], [G96]) attempts to
eliminate the need for creating temporary
structures in clean declarative languages,
where by clean we mean that the functions
cannot have side effects, and consequently
it is impossible to rewrite the data in-place
(i.e. when you need to modify some-
thing, you must create its copy). This is
remotely similar to loop fusion, although
the main effect we want to obtain by it
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is quite different. For example program-
mer would usually writemap f (map g l)
to apply two functionsf andg to the listl.
This however requires creation of the tem-
porary list for the result ofmap g l. De-
forestation rewrites this tomap (f . g) l,
which produces the result directly.

• In lazy languages, strictness analysis de-
termines whether the arguments of the
function will always be evaluated. If this
is true, we may evaluate them directly and
we do not have to create thunks for them.

• In logic languages, analysis of whether
the predicate is deterministic (i.e. always
giving just a single solution) can be used
to omit the code necessary to handle back-
tracking.

Note that despite of the fact that the mentioned
optimizations are quite high-level and they re-
quire nontrivial analyzes, they are obviously
specific for the particular family of models and
they do not seem to be directly applicable to
the procedural programming languages (possi-
bly with the exception of the limited version of
deforestation in languages including map-like
commands, but usually this can be handled by
loop fusion as well).

Still there are some optimizations that seem
relevant. The following sections are dedicated
to them.

3 Recursion Elimination

Since the declarative languages do not in gen-
eral include loop-like statements, all such con-
structions are achieved using recursion. There-
fore it is important to handle recursion ef-
ficiently, and replace it by standard iterative
loops as possible.

The simplest case is the tail call elimination
(replacing the calls after that the function ex-
its immediately by ordinary jumps). This op-
timization is standard in procedural languages
as well, so we will not describe it in detail here.
Instead we focus on some useful improvements
to this basic scheme (most of them based on
[LS99]):

• Provided that we have sufficient knowl-
edge about the operations done after the
call, we may be able to reorganize the
computations and remove the recursion.
Consider for example

f(x): if x == 0 then
return 1;

else if x % 2 then
return 5 * f (x - 1);

else
return 3 + f (x - 2);

This can be transformed into

f(x): m = 1;
a = 0;

start:
if x == 0 then

return m + a;
else if x % 2 then

{
x--;
m *= 5;
goto start;

}
else

{
x -= 2;
a += 3 * m;
goto start;

}

This is what we currently do in GCC.
Note that to get this result we needed a



30 • GCC Developers’ Summit

plenty of knowledge about nature of the
operations+ and∗—distributive law, as-
sociativity, commutativity, and existence
of neutral elements. In the special case
when just a single such operation is used
and all non-recursive exits return the same
value, associativity (and in some cases
commutativity) would be sufficient, but
even these are quite hard to check and
this restricts this approach to just a limited
class of programs.

• Provided that we have a sufficient knowl-
edge about the operations done before the
call, we may turn the recursion into itera-
tion without changing the order of opera-
tions executed, in this way:

f(x): if x <= 0 then
return 1;

else
return g (x, f(x-1));

into

f(x): if x <= 0 then
return 1;

r = 1;
for (ax = 0; ax != x; )

{
ax++;
r = g (ax, r);

}
return r;

We need the function to be in somewhat
restricted shape to perform this transfor-
mation (see [LS99] for details, most im-
portantly no unhandled code can be exe-
cuted before the recursive call), the incre-
ment (x ← x − 1) needs to be invertible
(see [HK92] for some theory on the topic;
in practice probably just the simple in-
duction variable-like increments could be
handled), and we need to be able to deter-
mine the start value of the counter. On the

other hand effects ofg (or whatever code
might be there) are unrestricted, since we
do not change the order of execution of
the calls tog.

• The situation becomes more complicated
when one of the conditions above is not
satisfied, but still sometimes it can be han-
dled. For example if there are more exits
and some code executed before the recur-
sive call, we can still optimize the func-
tion by creating two loops—one executing
the stuff done before the call and coming
all the way down to the appropriate exit
case, the second one identical to the one
described in the previous case. This re-
quires that those two pieces of code do
not communicate with each other except
for the value of the counter.

• Finally if there are also multiple recursive
calls or we are unable to derive the inverse
of the increment, we may eliminate the
recursion by maintaining the stack our-
selves. This gives less benefits than the
previous cases, but still we only need to
save variables that are live across the call,
we save on the cost of the call itself (in-
cluding parameter passing) and we expose
the loops to the loop optimization (but see
also the following section regarding the
subject).

4 Loop Optimizations

As mentioned in the previous sections, loops in
the declarative programming languages are al-
most exclusively expressed through recursion.
Although we have demonstrated several pow-
erful techniques for eliminating the recursion,
in fact in many cases these approaches fail. It
is therefore useful to be able to optimize such
loops.
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The interprocedural loops can be detected us-
ing the standard algorithms applied to the
graph obtained by taking union of a callgraph
and the control flow graphs of the functions.
Since the strongly connected components of
mutually recursive functions are usually en-
tered at one point, the concept of the natural
loop seems to be sufficiently general to cover
the most important cases. On a side note, con-
sidering the ordinary intraprocedural loops in
context of this graph may be useful as well, for
example in order to be able to estimate instruc-
tion and data cache effects.

For the interprocedural loops the invariant mo-
tion and redundancy elimination seem to be
the easiest to apply and the most useful from
the standard optimizations (some other like
strength reduction could work as well, but only
under assumptions that are quite unlikely to
happen). The implementation is straightfor-
ward:

• Determine the parameters and global vari-
ables that are just passed through un-
changed, and propagate the information to
determine those that are invariant.

• Run the function local invariant analysis.

• Move the computation of the invariants
out of the loop. It may be necessary to cre-
ate a wrapper around the header function
of the loop (which is analogical to creat-
ing the preheaders) unless it is called from
only one place outside of the loop.

If the moved invariants are expensive, we can
create a global variable for them, since the
loads from the memory will still pay up. Oth-
erwise we must be able to reserve a register
for them across the functions (which should
be possible in GCC with just minor modifi-
cations). Obviously we must be very careful
about the register pressure in this case.

On intraprocedural level, there are other in-
teresting high-level loop optimizations. For
example incrementalization (usage of the val-
ues computed in the previous iterations—see
[LSLR02]) can be used to transform code like

for (i = 0; i < 100; i++)
{

sum[i] = 0;
for (j = 0; j < i; j++)

sum[i] += a[j];
}

into

sum[0] = 0;
for (i = 1; i < 100; i++)

sum[i] = sum[i - 1] + a[i - 1];

thus achieving an asymptotic speedup.

5 Inlining and Specialization

The declarative programs tend to be composed
of small functions. To make the intraproce-
dural optimizations useful, it is necessary to
perform function inlining intensively. See for
example [JM02] for discussion of applicability
and problems connected with inlining in lazy
functional languages.

Also generic functions and usage of callback-
type functions is a norm in these languages.
They obviously carry a significant penalties
for their usage with them—such functions are
harder to optimize and often require passing of
a partially applied function arguments or func-
tion dictionaries, which is not cheap. To over-
come this, function specialization (also called
cloning) is necessary. This optimization con-
sists of creating duplicates of functions de-
pending on the call site and optimizing them
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for the particular values or types of arguments.
See for example [FPP00] and [P97] for more
details.

Both of these optimizations are studied in the
context of procedural languages as well, and at
least some of the implementation issues should
be covered by Hubicka ([H04]), so we make
just a few minor points here.

• It is necessary to interleave inlining and
specialization with other optimizations.
The approach that tries to get the best
performance would have to at least op-
timize the functions locally (to get rid
of unreachable calls, decrease the func-
tion sizes and propagate the informa-
tion about values of arguments), then
inline/specialize the optimized function
bodies, rerun the optimizations, then
run inlining and specialization again (to
exploit the interprocedural information
taken into account due to the first inlining
pass), then again rerun the optimizations.
Of course this may get compile-time ex-
pensive, so other variations of the scheme
may be useful at the lower optimization
levels.

• The code growth is the major problem
with both of these optimizations, since it
has bad effects on the instruction caches.
To overcome the problems, having a call-
graph with profiling information is very
useful—we then may optimize just the in-
tensively used functions and function call
sites.

An implementability note: in fact we have
basically everything needed in GCC with
the current profiling scheme—it would be
sufficient to tag the call sites in a unique
way and to emit the call7→ basic block
map before profiling (similar to the cur-
rent .gcno files). The other possibil-
ity would be the early instrumentation of

the call sites. The main problem cur-
rently is that both of these possibilities in-
terfere with the ordinary profiling. The
former possibility needs the function in-
lining not to be run in the training pass.
The later needs to be done before inlin-
ing and changes the code, so it cannot be
done simultaneously with the ordinary in-
strumentation that is done after inlining.
One of the solutions is to do the both at
the same time, which again needs the in-
lining to be done later in the compilation
process.

• Other possibility is to inline just the rel-
evant parts of the function (so-called par-
tial inlining). If we identify that there is a
short hot part in the inlined function, we
may copy just this part and put the rest
into a separate shared function. This is
useful especially for functions that cache
their results, or handle common special
cases in advance.

• There are several approaches to limit the
code growth with specialization. One of
them is to first specialize all possible oc-
currences, optimize the bodies and then
reshare those for that we were not able to
improve the code sufficiently. The other
one is to identify applicability of opti-
mizations in advance and just specialize
those for that we believe it will be useful.

None of these approaches seems to be
suitable for GCC. The former obviously
wastes a lot of compile time, and detecting
the non-improved instances also would
not be straightforward. The later is dif-
ficult to implement (it would need to have
a separate analysis for each optimization)
and unreliable. The realistic approach
seems to identify the obvious possibili-
ties (functions with callback arguments,
boolean flags passed to them and guard-
ing parts of the code in their bodies, con-
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stant integer parameters used as bounds of
the loops, for example) and specialize just
these. Additionally attribute mechanism
could be used to give the programmer a
possibility to tell that he wants the func-
tion to be specialized for the specified ar-
guments.

• Interprocedural loop optimizations men-
tioned in the previous section as well
as other optimizations may need to cre-
ate simple wrappers around the functions.
This may be useful in other cases as well.
For example we do changing of calling
conventions for static functions. If we
detect that an exported function is often
called locally (from the callgraph profil-
ing, or just by determining that it is called
recursively), creating an exported wrapper
just calling its local instance may pay up.
The other possibility would be to clone
a local copy of it, but this would usually
grow the code much more.

• Specialization on the constant arguments
and specialization on types of arguments
is the most commonly used option. Other
possibility is to specialize according to the
information from value range propagation
or other analyzes, but currently there is
not the infrastructure necessary to exploit
this possibility in GCC.

6 Data Structure Analysis and Op-
timizations

This section describes some optimizations re-
lated to data structures used by the programs.
They are mostly relevant for higher-level lan-
guages. Applying them for low-level procedu-
ral languages like C is complicated by the fol-
lowing issues:

• The layout of data structures is precisely

given in C (by ABI for the particular ar-
chitecture). This makes it only possible
to alter it in cases when we are able to
prove that there are no external references
to the structure, and that the program does
not rely on a particular layout of the data
structure.

• The exposed pointer arithmetics makes all
analyzes close to impossible. It is not easy
to handle even the basic prerequisite for
all the optimizations—alias analysis—in a
satisfactory way.

Despite of these problems, some of the opti-
mizations have also been studied in the con-
text of procedural languages, since the mem-
ory access times are a bottleneck in many ap-
plications. For these reasons we provide only a
short descriptions of several chosen optimiza-
tions, with references to relevant papers:

• Array reshaping changes the layout of ar-
rays (order of indices and their dimen-
sions) to improve the effectiveness of
caches. See for example [G00] that imple-
ments the array padding (changing dimen-
sions of an array by adding unused ele-
ments). Memory layout optimizations can
be with advantage used together with loop
nest optimizations ([CL95]).

• Linked lists are the basic structures used
in the declarative languages. Therefore
much of effort is directed to their opti-
mizations. Although the procedural pro-
grams often also work with linked lists,
usability of the techniques mentioned be-
low is quite limited due to problems with
identifying this pattern (see [CAZ99] for
overview of such an analysis).

If we are able to detect usage of linked
lists, we may use the knowledge in sev-
eral ways. We may arrange the mem-
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ory to be allocated sequentially, thus im-
proving cache behavior ([LA02] does a
similar optimization, but without trying to
identify precisely the access pattern). In
cases when the list is accessed in a queue-
like fashion only, we may also change
the representation of the list, for example
by putting several consecutive elements of
the list to an array. This decreases the
amount of memory needed by eliminating
the successor (and possibly predecessor)
pointers, allows more effective traversal
of the lists (in loops controlled by a nor-
mal induction variable) and consequently
increases efficiency of loop optimizations.

• Declarative languages often support use
of temporary data structures (especially
linked lists) in an almost transparent fash-
ion, leading to initially quite ineffective
code. This makes optimizations like
dead store elimination for partially dead
data structures necessary; see for example
([L98]).

• For some of these optimizations a mem-
ory access profiling might be useful. In
the most expensive variant, the full list of
all memory accesses tagged with the cor-
responding references to the source pro-
gram and perhaps also exact values of in-
dices for array accesses is recorded in the
training pass. This data together with a
memory cache model provides a quite ex-
act base for determining the parameters
for all cache directed optimizations. The
optimizations that require exact analysis
of the access pattern of course cannot be
based just on this empiric data, but they
may at least use it to locate the opportuni-
ties and to evaluate their usefulness.

Obviously recording all memory accesses
may turn quite expensive, so recording
just the relevant information may be nec-
essary. For implementation details in

GCC see for example the recent works of
the author and Caroline Tice on profiling
driven array prefetching.

Conclusions

Several of the techniques we have presented
appear to be implementable GCC (note that at
least for some of them this would not be a sim-
ple task at all, however) and useful enough so
that they might bring measurable speedups, es-
pecially

• improvements of the recursion elimina-
tion

• data access profiling and data structure re-
organization

• call graph profiling

• function cloning and specialization

There are other optimizations that seem to be
“cool” and implementable in the GCC frame-
work, although they are only applicable in very
special cases. They probably would not im-
prove the performance much by themselves,
but implementing them might be interesting
from theoretical reasons. In some cases there
also seem to be a chance to generalize them
and thus improve their applicability. They in-
clude

• interprocedural loop optimizations

• loop incrementalization

• linear structures analysis and related opti-
mizations

Of course there also are many optimizations
that probably are only useful in context of
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declarative languages (deforestation, strictness
analysis and unboxing, etc.)

The list of the optimizations can by no means
considered complete. I have filtered out the
low-level optimizations that seem too specific
for the particular compilation model. I also am
not deeply involved in the declarative language
compilation research, so I probably missed
quite a few relevant techniques; I would be
grateful to anyone pointing my attention to
them.
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Abstract

This paper will present a design for loop op-
timizations using high-level loop transforma-
tions. We will describe a loop optimization in-
frastructure based on improved induction vari-
able, scalar evolution, and data dependence
analysis. We also will describe loop trans-
formation opportunities that utilize the infor-
mation discovered. These transformations in-
crease data locality and eliminate data depen-
dencies that prevent optimization. The trans-
formations also can be used to enable auto-
matic vectorization and automatic paralleliza-
tion functionality.

The TreeSSA infrastructure in GCC provides
an opportunity for high level loop transforms
to be implemented. Prior to the Loop Nest Op-
timization effort described in this paper, GCC
has performed no cache reuse, data locality,
parallelization, or loop vectorization optimiza-
tions. It also had no infrastructure to perform
data dependence analysis for array accesses
that are necessary to apply these transforma-
tions safely. We have implemented data de-
pendence analysis and linear loop transforms
on top of TreeSSA, which provides the follow-
ing features:

1. A data dependence framework for deter-

mining whether two data references have
a dependence. The core of the dependence
analysis is a new, low-complexity algo-
rithm for the recognition of scalar evolu-
tions that tracks induction variables across
a def-use graph. It is used to determine
the legality of various transformations, in-
cluding the vectorization transforms being
implemented, and the matrix based trans-
formations.

2. A matrix-based transformation method
for rearranging loop nests to optimize lo-
cality, cache reuse, and remove inner loop
dependencies (to help vectorization and
parallelization). This method can per-
form any legal combination of loop inter-
change, scaling, skewing, and reversal to a
loop nest, and provides a simple interface
to doing it.

1 Introduction

As GNU/Linux tackles high-performance sci-
entific and enterprise computing challenges,
GCC (the GNU Compiler Collection)—the
GNU/Linux system compiler—is challenged
as well. Modern computer processors and
systems are implemented with advanced fea-
tures that require greater compiler assistance
to achieve high performance. Many techniques
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developed for vector and parallel architectures
have found new application to superscalar and
VLIW computer architectures, and to systems
with large memory latencies, more compli-
cated function unit pipelines, and multiple lev-
els of memory caches.

The TreeSSA optimization infrastructure[11]
in GCC provides an enhanced framework for
program analysis. Improved data dependence
information allows the compiler to transform
an algorithm to achieve greater locality and im-
proved resource utilization leading to improved
throughput and performance.

The GCC Loop Nest Optimizer joins a pow-
erful loop nest analyzer with a matrix trans-
formation engine to provide an extensible loop
transformation optimizer that addresses uni-
modular and scaling operations. The data de-
pendence analyzer is based on a new algorithm
to track induction variables without being lim-
ited to specific patterns. The matrix transfor-
mation functionality uses a building block de-
sign that allows many of the standard toolbox
of optimizations to be implemented. A simi-
lar matrix toolkit is used by proprietary com-
mercial compilers. The pieces form a clean
and maintainable design, avoiding an ad hoc
set of optimizers with similar technical require-
ments.

2 Scalar Evolutions

After thegenericizationandgimplification, the
loop structures of the compiled language are
transformed into lower level constructs that are
common to the imperative languages: three ad-
dress assignments, gotos and labels. In order
to retrieve the classic representation of loops
from the GIMPLE representation[9], the natu-
ral loop structures are detected, as described in
the Dragon Book [1], then based on the anal-
ysis of the instructions contained in the loops

bodies, the indexes and the bounds of loops are
detected.

We describe in this section the algorithm used
for analyzing the properties of the scalar vari-
ables updated in a loop. The main extracted
properties are the number of iterations of a
loop, and a form that allows a fast evaluation
of the values of a variable for a given iteration.
Based on these two properties, it is possible to
extend the copy constant propagation pass after
the crossing of a loop, and the elimination of
redundant checks. A further analysis extracts
a representation of the relations between the
reads and the writes to the memory locations
referenced by arrays, and the classic data de-
pendence tests.

2.1 Representation of the Program

The analyzed program is inStatic Single As-
signmentform [10, 5], that ensures the unique-
ness of a variable definition, and a fast retrieval
of the definition from a use. These properties
have lead to the design of an efficient algorithm
that extracts the scalar evolutions in a bidi-
rectional, non-iterative traversal of the control-
flow graph.

2.2 Chains of Recurrences

The information extracted by the analyzer
is encoded using the chains of recurrences
(chrecs) representation proposed in [3, 6, 17,
14, 13]. This representation permits fast eval-
uations of a function for a given integer point,
using the Newton’s interpolation formula. In
the following, we present an intuitive descrip-
tion of the chrecs based on their interpretation,
then the link between the notation of the chrecs
and the semantics of the polynomial functions.
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r1 = 0
r2 = 1
r3 = 2
loop (
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1)

r1 += r2
r2 *= r3

end1:

Figure 1: Univariate evolution
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Figure 2: Data-flow interpretation

r4 = 9
r5 = 8
r6 = 7
loop (

�
2)

loop (
�

3)
r6 += r5

end3:
r5 += r4

end2:

Figure 3: Multivariate

2.2.1 Interpretation of Chrecs

The main property modeled by the chrecs is the
effect of the iterative execution of a program
on storage points. Each storage point contains
an initial value on the entry of a loop. The
stored value evolves during the execution of the
loop following the operations of the updating
statements. The description of the updating ex-
pressions is embedded in the chrecs represen-
tation, such that it is possible to retrieve a part
of the original program from the chrec repre-
sentation. In other words, only the interest-
ing scalar properties are selected, and the unde-
cidable scalar properties are abstracted into the
unknown element. In the following, the chrecs
representation is illustrated by intuitive exam-
ples based on two interpretation models: using
a register based machine, and a data-flow ma-
chine.

In the register based machine, the coefficients
of a chrec are stored in registers. Then, the
value of a register is updated at each iteration
of a loop, using the operation specified in the
chrec on its own value and the value of the reg-
ister on its right. The first example illustrates
the interpretation of a chrec that vary in a sin-
gle loop.

Example 1 (Univariate chrec on register machine)

Figure 2.2.1 illustrates the interpretation of
the chrec{0, +, {1, ∗, 2}1}1. The registersr1,
r2, andr3 are initialized with the coefficients
of the chrec. Then, the registers are updated
in the loop specified in index of the chrec:

loop 1. The registerr2 is updated in the loop,
and its evolution is described by the chrec
{1, ∗, 2}1. r1 is accumulating the successive
values ofr2 starting from its initial value0,
and consequently it is described by the chrec
{0, +, {1, ∗, 2}1}1.

Another intuitive description of the chrecs is
given by the data-flow model: the nodes of an
oriented graph contain the initial conditions of
the chrec, while the oriented edges transfer in-
formation from a node to another and perform
an operation on the operands. Figure 2 illus-
trates the data-flow machine that interprets the
chrec from Example 1.

Finally, the last example illustrates the inter-
pretation of a chrec that vary in two loops.

Example 2 (Multivariate chrec on register machine)

In Figure 2, the registerr6 can be de-
scribed by the multivariate scalar evolution
{7, +, {8, +, 9}2}3. The value ofr6 is incre-
mented at each iteration of loop3 by the value
contained inr5 that vary in loop2.

In the register based machine, the value of
a chrec at a given integer point is computed
by successively evaluating all the intermedi-
ate values. The initial values of the chrec are
stored in registers that are subsequently up-
dated at each iteration step. One of the goals
of the analyzer is to detect these iterative pat-
terns, and then to recognize, when possible,
the computed function. The link between the
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chrecs and the classic polynomial functions is
described in the next subsection.

2.2.2 Semantics of Chrecs

As described in the previous works [3] New-
ton’s interpolation formula is used for fast eval-
uation of the chrec at a given integer point. The
evaluation of the chrec{c0, +, . . . , +, ck}, at an
integer pointx is given by the formula

{c0, +, . . . , +, ck}(x) =
k∑

i=0

ci

(
x

i

)

with c0, . . . , ck integer coefficients. In the pe-
culiar case of linear chrecs, this formula gives

{base, +, step}(x) = base + step · x

wherebase andstep are two integer constants.
As we will see, it is possible to handle sym-
bolic coefficients, but the above formula for
evaluating the chrecs is not always true.

2.2.3 Symbolic Chrecs

We have extended the classic representation of
the scalar evolution functions by the use of pa-
rameters, that correspond to unanalyzed vari-
ables. The main purpose of this extension is to
free the analyzer from the ordering constraints
that were proposed in the previous versions of
the analyzer. The parameters allow the ana-
lyzer to postpone the analysis of some scalar
variables, such that the analyzer establishes the
order in which the information is discovered in
a natural way.

However, this extension leads to a more ex-
pressive representation, on which the Newton
interpolation formula cannot be systematically

used for fast evaluation of the chrec, because
some of the parameters can stand for a func-
tion. In order to guarantee that all the coef-
ficients of the chrec have scalar (non varying)
values, the last step of the analysis fully instan-
tiate all the parameters. When the instantiation
fails, the remaining parameters are all trans-
lated into the unknown element,>.

2.2.4 Peeled Chrecs

We have proposed another extension of the
classic chrecs representation in order to model
the variables that have an initial value that is
overwritten during the first iteration. For rep-
resenting the peeled chrecs, we have chosen a
syntax close to the syntax of the SSA phi nodes
because the symbolic version of the peeled
chrec is the loop phi node itself. The seman-
tics of the peeled chrecs is as follows:

(a, b)k =

{
a, during the first iteration of loop k,
b otherwise.

wherea and b are two chrecs that can be in
a symbolic form. The peeled chrecs are built
whenever the loop phi node does not define a
strongly connected component over the SSA
graph. The next section describes in more de-
tails the extraction algorithm.

2.3 Extraction Algorithm

Figure 4 presents the algorithm that computes
the scalar evolutions for all the loop-φ nodes
of the loops. The scalar evolution analyzer
is composed of two parts: ANALYZE EVOLU-
TION returns a symbolic representation of the
scalar evolution, and the second part INSTAN-
TIATEEVOLUTION completes the analysis by
instantiating the symbolic parameters. The



GCC Developers’ Summit 2004 • 41

Algorithm: COMPUTEEVOLUTIONS

Input: SSA representation of the procedure
Output: a chrec for every variable defined by loop-φ nodes

For each loopl
For each loop-φ noden in loop l

INSTANTIATEEVOLUTION(ANALYZE EVOLUTION(l, n), l)

Algorithm: ANALYZE EVOLUTION(l, n)
Input: l the current loop,n the definition of an SSA name
Output: chrec for the variable defined byn within l

v ← variable defined byn
ln← loop ofn
If n was analyzed before Then

res← evolution ofn
Else Ifn matches "v = constant " Then

res← constant
Else Ifn matches "v = a " Then

res← ANALYZE EVOLUTION(l, a)
Else Ifn matches "v = a � b" (with � ∈ {+,−, ∗}) Then

res← ANALYZE EVOLUTION(l, a) � ANALYZE EVOLUTION(l, b)
Else Ifn matches "v = loop- φ(a, b) " Then

(noticea is defined outside loopln andb is defined inln)
Search in depth-first order a path fromb to v :
(exist, update)← DEPTHFIRSTSEARCH(n, definition ofb)
If (not exist) (i.e., if such a path does not exist) Then

res← (a, b)l

Else Ifupdate is> Then
res←>

Else
res← {a, +, update}l

Else Ifn matches "v = condition- φ(a, b) " Then
eva← INSTANTIATEEVOLUTION(ANALYZE EVOLUTION(l, a), ln)
evb← INSTANTIATEEVOLUTION(ANALYZE EVOLUTION(l, b), ln)
If eva = evb Then

res← eva
Else

res←>
Else

res←>
Save the evolution functionres for n
Return the evaluation ofres in loop l

Algorithm: DEPTHFIRSTSEARCH(h, n)
Input: h the halting loop-φ, n the definition of an SSA name
Output: (exist, update), existis true ifh has been reached

If (n is h) Then
Return (true,0)

Else Ifn is a statement in an outer loop Then
Return (false,⊥),

Else Ifn matches "v = a " Then
Return DEPTHFIRSTSEARCH(h, definition ofa)

Else Ifn matches "v = a + b " Then
(exist, update)← DEPTHFIRSTSEARCH(h, a)
If existThen Return (true,update+ b),
(exist, update)← DEPTHFIRSTSEARCH(h, b)
If existThen Return (true,update+ a)

Else Ifn matches "v = loop- φ(a, b) " Then
ln← loop ofn
(noticea is defined outsideln andb is defined inln)
If a is defined outside the loop ofh Then

Return (false,⊥)
s← APPLY(ln, ANALYZE EVOLUTION(ln, n),

NUMBEROFITERATIONS(ln))
If s matches "a + t " Then

(exist, update)← DEPTHFIRSTSEARCH(h, a)
If existThen

Return (exist, update+ t)
Else Ifn matches "v = condition- φ(a, b) " Then

(exist, update)← DEPTHFIRSTSEARCH(h, a)
If existThen Return (true,>)
(exist, update)← DEPTHFIRSTSEARCH(h, b)
If existThen Return (true,>)

Return (false,⊥)

Algorithm: INSTANTIATEEVOLUTION(chrec, l)
Input: chreca symbolic chrec,l the instantiation loop
Output: an instantiation ofchrec

If chrecis a constantc Then Returnc
Else Ifchrecis a variablev Then

Return ANALYZE EVOLUTION(l, v )
Else Ifchrecis of the form{e1, +, e2}l′ Then

i1← INSTANTIATEEVOLUTION(e1, l)
i2← INSTANTIATEEVOLUTION(e2, l)
Return{i1, +, i2}l′

Else Ifchrecis of the form(e1, e2)l′ Then
i1← INSTANTIATEEVOLUTION(e1, l)
i2← INSTANTIATEEVOLUTION(e2, l)
Return(i1, i2)l′

Else Return>

Figure 4: Algorithm to compute scalar evolutions

main analyzer is allowed to discover only a
part of the evolution information. The missing
information is stored under a symbolic form,
waiting for a full instantiation. The role of
the instantiation is to determine an order for
assembling the discovered information. Af-
ter full instantiation, the extracted informa-
tion corresponds to the classic chains of recur-
rences. In the rest of the section we analyze in

more details the components of this algorithm,
and give two illustration examples.

2.3.1 Description of the Algorithm

The cornerstone of the algorithm is the search
and reconstruction of the symbolic update ex-
pression on a path of the SSA graph. Let us
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start with the description of the DEPTHFIRST-
SEARCH algorithm. Each step is composed of
a look-up of an SSA definition, and then fol-
lowed by a recursive call of the search algo-
rithm on the symbolic operands. The search
halts when the starting loop-φ node is reached.
When analyzing an assignment whose right-
hand side is a sum, the search algorithm exam-
ines the first operand, and if the starting loop-φ
node is not reachable through this path, it ex-
amines the second operand. When one of the
operands contains a path to the starting loop-φ
node, the other operand of the sum is added to
the update expression, and the result is propa-
gated to the lower search steps together with
the reconstructed update expression. If the
starting loop-φ node cannot be found by depth-
first search, i.e., when DEPTHFIRSTSEARCH

returns (false,⊥), we know that the definition
does not belong to a cycle of the SSA graph: a
peeled chrec is returned.

INSTANTIATEEVOLUTION substitutes sym-
bolic parameters in a chrec. It computes their
statically known value, i.e., a constant, a pe-
riodic function, or an approximation with in-
tervals, possibly triggering other computations
of chrecs in the process. The call to IN-
STANTIATEEVOLUTION is postponed until the
end of the depth-first search, ensuring termi-
nation of the recursive nesting of depth-first
searches, and avoiding early approximations in
the computation of update expressions. Com-
bined with the introduction of symbolic param-
eters in the chrec, postponing the instantiation
alleviates the need for a specific ordering of
the computation steps. This is a strong ad-
vantage with respect to the method by Engelen
[14] based on a topological sort of all defini-
tions. Furthermore, it becomes possible to rec-
ognize evolutions in every possible SSA graph,
although some of them may not yield a closed
form.

The overall effect of an inner loop may only be

computed when the exit value of the variable is
a function of the entry value. In such a case, the
whole loop is behaving as a macro-increment
operation. When the exit condition depends
on affine chrec only, function NUMBEROFIT-
ERATIONS deduces the number of iterations of
the loop. Then we call APPLY to evaluate the
overall effect of the inner loop. APPLY imple-
ments the efficient evaluation scheme for chrec
based on Newton interpolation series (see Sec-
tion 2.2.2). As a side-effect, the algorithm does
indeed compute the loop-trip count for many
natural loops in the control-flow graph. Our
method recovers information that was lost dur-
ing the lowering process or syntactically hid-
den in the source program.

2.3.2 Illustration Examples

Let us now illustrate the algorithm on two ex-
amples in Figures 5 and 6. In addition to
clarifying the depth-first search and instantia-
tion phases of the algorithm, this will exercise
the recognition of polynomial and multivariate
evolutions.

First example. The depth-first search is best
understood with the analysis ofc = φ(a,
f) in the first example. The SSA edge of the
initial value exits the loop, as represented in
Figure 5.(1). Here, the initial value is left in
a symbolic form, but GCC would replace it by
3 through constant propagation.

To compute the parametric evolution function
of c , the analyzer starts a depth-first search
algorithm, as illustrated in Figure 5.(2). We
follow the update edgec→f to the defini-
tion of f in the loop body: assignmentf =
e + c . The depth-first algorithm follows the
first operand,f →e, reaching the assignmente
= d + 7 , and finally follows the edgee→d
that leads to a loop-φ node of the same loop.
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a = 3;
b = 1;
loop (

�
4)

c = φ(a, f);
d = φ(b, g);
if (d>=123) goto end;
e = d + 7;
f = e + c;
g = d + 5;

end:

(1) Initial condition
edge

a = 3;
b = 1;
loop (

�
4)

c = φ(a, f);
d = φ(b, g);
if (d>=123) goto end;
e = d + 7;
f = e + c;
g = d + 5;

end:

(2) Search “c”

a = 3;
b = 1;
loop (

�
4)

c = φ(a, f);
d = φ(b, g);
if (d>=123) goto end;
e = d + 7;
f = e + c;
g = d + 5;

end:

(3) Found the halting
phi

a = 3;
b = 1;
loop (

�
4)

c = φ(a, f);
d = φ(b, g);
if (d>=123) goto end;
e = d + 7;
f = e + c;
g = d + 5;

end:

(4) the “returning
path”

Figure 5: The first example

Since this is not the loop-φ node from which
the analyzer has started the depth-first search,
the search continues on the other operands that
were not yet analyzed: back one = d + 7 ,
operand7 is a scalar and there is nothing more
to do, then back onf = e + c , the edge
f →c is followed to the starting loop-φ node,
as illustrated in Figure 5.(3).

At this point, the analyzer has found the
strongly connected component that corre-
sponds to the path of iterative updates. Follow-
ing this path in execution order, as illustrated in
Figure 5.(4), the analyzer builds the update ex-
pression as an aggregation of the operands that
are not on the updating path: in this example,
the update expression is juste. As a result, the
analyzer assigns to the definition ofc the para-
metric evolution function{a, +, e}1.

The instantiation of the parametric expression
{a, +, e}1 starts with the substitution of the
first operand of the chrec:a = 3, then the anal-
ysis of e is triggered. First the assignmente
= d + 7 is analyzed, and since the evolution
of d is not yet known, the edgee→d is taken
to the definitiond = φ(b, g) . Since this
is a loop-φ node, the depth-first search algo-
rithm is used as before and yields the evolution
function of d, {b, +, 5}1, and after instantia-
tion, {1, +, 5}1. Finally the evolution ofe =
d + 7 is computed:{8, +, 5}1. The final re-

sult of the instantiation yields the polynomial
chrec ofc : {3, +, 8, +, 5}1.

h = 3;
loop (

�
5)

i = φ(h, x);
loop (

�
6)

j = φ(i, k);
k = j + 1;
t = j - i;
if (t>=9) goto end6;

end6:
x = k + 3;
if (x>=123) goto end5;

end5:

Figure 6: Second example

Second example. We will now compute the
evolution of x in the nested loop example of
Figure 6, to illustrate the recognition of mul-
tivariate induction variables and the computa-
tion of the trip count of a loop. The first step
consists in following the SSA edge to the defi-
nition of x . Consider the right-hand side of the
definition: since the evolution ofk along loop
5 is not yet analyzed, we follow the edgex→k
to its definition in loop 6, thenk→j ending on
the definition of a loop-φ node.

At this point we know thatj is updated in
loop 6. The initial conditioni is kept under
a symbolic form, and the iteration edgej →k
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is followed in the body of loop 6. The depth-
first search algorithm starts from right-hand
side of the assignmentk = j + 1 : follow-
ing the edgek→j we end on the loop-φ node
from which we have started the search, mean-
ing that the search succeeded. Back on the
pathj →k→j , the analyzer gathers the evolu-
tion of j along the whole loop, an increment of
1, and ends on the following symbolic chrec:
{i , +, 1}6.

From the evolution ofj in the inner loop, the
analyzer determines the overall effect of loop 6
on j , that is the evaluation of functionf(n) =
n + i for the number of iterations of loop 6.
Fortunately, the exit condition is the simple ex-
pressiont>=9 , and the chrec fort (or j - i )
is {0, +, 1}6, an affine (non-symbolic) expres-
sion. It comes that 10 iterations of loop 6 will
be executed for each iterations of loop 5. Call-
ing APPLY(6, {i , +, 1}6, 10) yields the overall
effect j = i + 10 .

The analyzer does not yet know the evolution
function of i , and consequently it follows the
SSA edge to its definition:i = φ(h, x) .
Since this is a loop-φ node, the analyzer must
determine its evolution in loop 5. We ignore
the edge to the initial condition, and walk back
the update edge, searching for a path fromi to
itself.

First, edgei →x leads to the statementx = k
+ 3, then following the SSA edgex→k , we
end on a statement of the loop 6. Again, edge
k→j is followed, ending on the definition ofj
that we have already analyzed:{i , +, 1}6. The
depth-first search selects the edgej →i , as-
sociated with the overall effect statementj =
i + 10 that summarizes the evolution of the
variable in the inner loop. We finally reached
the starting loop-φ nodei . From this point, the
path is walked back gathering the stride of the
loop: 10 from the assignmentj = i + 10 ,
then1 from the assignmentk = j + 1 , and

3 from the last assignment on the return path.
We have computed the symbolic chrec ofi :
{h, +, 14}5.

The last step consists in the propagation of this
evolution function from the loop-φ node ofi
to the original node of the computation: the
definition of x . Back from i to j , we can
partially instantiate its evolution: a symbolic
chrec forj is {{h, +, 14}5, +, 1}6. Then back
to k = j + 1 we get a symbolic chrec for
k : {{h + 1, +, 14}5, +, 1}6; and finally back
to x = k + 3 , we get a symbolic chrec for
x : {h + 14, +, 14}5. A final instantiation ofh
yields the closed form ofx and all other vari-
ables.

As we have seen, the analyzer computes the
evolution functions on demand, and caches the
discovered informations for later queries oc-
curring in different analyzes or optimizations
that make use of the scalar evolution informa-
tion. In the next section, we describe the appli-
cations that use the informations extracted by
the analyzer.

2.4 Applications

Scalar optimizations have been proposed in the
early days of the optimizing compilers, and
have evolved in speed and in accuracy with
the design of new intermediate representations,
such as the SSA. In this section we describe
the extensions to the classic scalar optimization
algorithms that are now enabled by the extra
information on scalar evolutions. Finally, we
give a short description of the classic data de-
pendence tests.

2.4.1 Condition Elimination

In order to determine the number of iterations
in a loop, the algorithm computes the first it-
eration that does not satisfy the condition that
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keeps the execution inside the loop. This same
algorithm can be used on other condition ex-
pressions that don’t keep the loop exit, such
that the algorithm determines the number of
iterations that fall in the then or in the else
clauses. Based on the total number of itera-
tions in the loop it is then possible to determine
whether a branch is always taken during the
execution of the loop, in which case the con-
dition can be eliminated together with the dead
branch.

Another approach for the condition elimination
consists in using symbolic techniques for prov-
ing that two evolutions satisfy some compari-
son test for all the iterations of the loop. In the
case of an equality condition, the algorithm is
close to the value numbering technique, and is
described in the next subsection.

2.4.2 Value Numbering

The value numbering is a technique based on a
compile-time classification of the values taken
at runtime by an expressions. The compiler de-
termines the inclusion property of an expres-
sion into a class based on the results of an anal-
ysis: in the classic algorithms, the analysis is a
propagation of symbolic AST trees [10, 12].

Using the information extracted by the scalar
evolution, the classification can be performed
not only on constants and symbols, but also on
evolution functions, or on the scalar values de-
termined after crossing the loop.

2.4.3 Extension of the Constant Propaga-
tion

The field of action of the classic conditional
constant propagation (CCP) is limited to code
that does not contain loop structures. When
the scalar evolution analyzer is asked for the

evolution function of a variable after crossing
a loop with a static count, it computes a scalar
value, that can be further propagated in the rest
of the program. This removes the restriction of
the classic CCP, where constants are only prop-
agated from their definition to the dominance
frontier.

2.4.4 Data Dependence Analysis

Several approaches have been proposed for
computing the relations between the reads and
the writes to the memory locations referenced
by arrays. The compiler literature [4, 15, 10]
describes loop normalizations, then the extrac-
tion of access functions by pattern matching
techniques, while more recent works [16], rely
on the discovery of monotonicity properties of
the accessed data. An important part of the effi-
ciency of these approaches resides in the algo-
rithm used for determining the memory access
patterns, while the subscript intersection tech-
niques remain in the same range of complexity.

Our data dependence analyzer is based on the
classic methods described in [4, 2]. These tech-
niques are well understood and quite efficient
with respect to the accuracy and the complexity
of the analysis. However, our data dependence
analyzer can be extended to support the newer
developments on monotonicity properties pro-
posed by Peng Wuet al. [16], since the scalar
evolution analyzer is able to extract not only
chrecs with integer coefficients, but also evo-
lution envelopes, that occur whenever a loop
contains updating expressions in a condition
clause. In the following we shortly describe
the classic data dependence analyzer, and show
how to extend it for handling the monotonicity
informations exposed by the scalar analyzer.

A preliminary test, that avoids unnecessary fur-
ther computations, classifies the relation be-
tween two array accesses asnon dependent
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when their base name differ. Thus, the remain-
ing dependence tests consider only tuples of
accesses to the same base name array.

The first test separately analyzes each tuple of
access functions in each dimension of the an-
alyzed array. This tuple is in general called a
subscript. A basic test classifies a subscript fol-
lowing the number of loops in which it is vary-
ing. The three classes of subscripts, constants,
univariate, or multivariate, have different spe-
cific dependence tests that avoids the use of the
multivariate generic solver.

The iterations for which a subscript access
the same element, or conflicting iterations, are
computed using a classic Diophantine1 equa-
tion solver. The resulting description is a tu-
ple of functions that is encoded yet again using
the chrecs representation. Banerjee presents a
formal description [4] of the classic data de-
pendence tests that we just sketch in this pa-
per. The basic idea is to find a first solution (or
the first conflicting iteration) to the Diophan-
tine equation, then to deduce all the subsequent
solutions from this initial one: this is repre-
sented as a linear function under the form of
a chrec as base plus step. The gcd test provides
an easy way to prove that the initial solution
does not exist, and consequently it proves the
non dependenceproperty and stops the algo-
rithm before the resolution of the Diophantine
equation. The most costly part of this depen-
dence test is effectively the resolution of the
Diophantine equation, and more precisely the
determination of the initial solution.

Once the conflicting iterations are known, the
analyzer is able to abstract this information into
a less precise representation: the distance per
subscript information. When the conflicting it-
erations have a same evolution step, the differ-
ence of their base gives the distance at which

1A Diophantine equation is an equation with integer
coefficients.

the conflicts occur. When the steps of the con-
flicting iterations are not equal, the dependence
relation is not captured by the distance descrip-
tion.

In a second step, the analyzer refines the depen-
dence relations using the information on sev-
eral subscripts. The subscript coupling tech-
nique allows the disambiguation of more non
dependent relations in the case of multidimen-
sional arrays. The classic per loop distances
are computed based on the per subscript dis-
tance information. When a loop carries two
different distances for two different subscripts,
the relation is classified to benon dependent.

As we have seen, the current implementation of
the dependence analyzer is based on the clas-
sic dependence tests. For this purpose, only
the well formed linear access functions were
selected for performing the dependence analy-
sis. Among the rejected access functions are all
those whose evolution is dependent on an ele-
ment that was left under a symbolic form, or
contain intervals. For all these cases, the con-
servative result of the analyzer is theunknown
dependencerelation. In the case of evolution
envelopes, it is possible to detect independent
data accesses based on the monotonicity prop-
erties, as proposed by Peng Wuet al. [16].

3 Matrix Transformations

3.1 Purpose

The reason for using matrix based transforma-
tions as opposed to separate loop transforma-
tions in conjunction are many. First, one can
composite transformations in a much simpler
way, which makes it very powerful. While
any of the transformations described could be
written as a sequence of simple loop trans-
forms, determining the order in which to apply
them to achieve the desired transformation is
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non-trivial. However, with a matrix transform,
one can generate the desired transformation di-
rectly. In addition, determining the legality of a
given transformation is a simple matter of mul-
tiplication. The algorithm used also allows for
completion of partial transforms.

3.2 Algorithm

The code generation algorithm implemented
for GCC is based on Wei Li’s Lambda Loop
Transformation Toolkit [8]. It uses integer lat-
tices as the model of loop nests and uses non-
singular matrices as the model of the trans-
forms. The implemented algorithm supports
any loop whose bounds can be expressed as a
system of linear expressions, where each lin-
ear expression can include loop invariants in
the expression. This algorithm is in use by sev-
eral commercial compilers (Intel, HP), includ-
ing those known to perform these transforma-
tions quite well. This was a consideration in
choosing it. Using this algorithm, we can per-
form any combination of the following trans-
formations, simply by specifying the applica-
ble transformation matrix.

(
1 0
0 1

) DO I=1,3
DO J=1,3

A(I, 2*J) = J
END DO

END DO

Figure 7: Original loop

(
1 0
0 2

) DO U=1,3
DO V=2,6,2

A(U, V) = V/2
END DO

END DO

Figure 8: Loop scaling

The loops produced by applying these trans-
forms to the loop in 7 can be seen in Figures 8,

(
0 1
1 0

) DO U=1,3
DO V=1,3

A(V, 2*U) = U
END DO

END DO

Figure 9: Interchanged loop

(
1 0
1 1

) DO U=1,3
DO V=U + 1,U + 3

A(U, 2*(V-U)) = 2*(V-U)
END DO

END DO

Figure 10: Skewed loop

(
1 0
0 −1

) DO U=1,3
DO V=-3,-1

A(U, -2*V) = -V
END DO

END DO

Figure 11: Reversed loop

9, 10, and 11 respectively.

This set of operations includes every unimodu-
lar operation (interchange, reversal, and skew-
ing) plus scaling. The addition of scaling to
the applicable transforms means that any non-
singular transformation matrix can be applied
to a loop, because they can all be reduced to
some combination of the above. Scaling is use-
ful in the context of loop tiling, and distributed
memory code generation.

Legality testing is performed simply by multi-
plying the dependence vectors of the loop by
the transformation matrix, and verifying that
the resulting dependence vectors are lexico-
graphically positive. This will guarantee that
the data dependencies are respected in the loop
nest generated.

The completion procedures allows completion
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of transformation matrices that contain the de-
sired transformation for some portion of the
loop, in a way that respects loop dependencies
for the entire loop.

Consider the following loop:

DO I=4,8
DO J=3,8

A(I, J) = A(I-3, J-2) + 1
END DO

END DO

The dependence matrix for this loop is

D =
(

3
2

)
The outer loop can be made parallel if and only
if it does not carry any dependences, i.e., the
first entry of every dependence vector is 0. In
its current form, this is obviously not true. We
can make it parallel if we can find a transfor-
mationT such that every entry in the first row
of TD is 0. We can easily satisfy that with the
partial transform

(
2 −3

)
. However, this is

not a complete transformation matrix because
it does not specify what to do with the inner
loop. The completion algorithm will complete
this partial transform in a way that maintains
the legality of the transform, i.e., respects de-
pendences.

The full completion procedure is specified in
[8]. It works by generating vectors that are
independent of the existing row vectors in the
partial transformation and within 90 degrees of
each dependence vector.

3.3 Implementation

The GCC implementation of linear loop trans-
forms is decomposed into several pieces: a ma-
trix math engine, a transformation engine, and
converters.

The matrix math engine implements various

vector and matrix math routines necessary to
perform the transformations (inversion, com-
putation of Hermite form, multiplication, etc).

The transformation engine implements legality
testing, rewriting of loop bounds, rewriting of
loop bodies, and completion of partial trans-
forms.

To transform a loop using GCC, we first need
to convert it to a form usable by the code gen-
eration algorithm. There is a simple function
which takes a GCC loop structure and produces
a loopnest structure usable by the transforma-
tion engine. This loopnest structure consists of
a system of linear equations representing the
bounds of each loop.

Next, we perform legality testing. We have
provided a function that takes the loopnest
structure and a transformation matrix, and re-
turns true if it is legal. This mainly is useful
for transformations that were not produced by
the completion algorithm, because that compo-
nent only produces legal transforms.

Third, The loop bounds of the loopnest struc-
ture are rewritten using the aforementioned
code generation algorithm.

Finally, we transform the loopnest structure
back into real GIMPLE/Tree-SSA code. The
subroutine accepts a loopnest structure and
rewrites the actual loop nest code to match it.
This involves two steps: first the new iteration
variables, bounds, and exit condition are gen-
erated. Next, the body of the loop is trans-
formed to eliminate uses of the old iteration
variables. This procedure is straightforward:
given a vector of source iteration variablesSi

and a vector of the target iteration variables
Sj, and the transformation matrixT , the func-
tion computes the source iteration variables in
terms of the target iteration variables using the
equationSi = T−1Sj. This calculation is per-
formed for each statement in the loop, and the
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old uses are replaced with the new equations.

As a side note, all of these functions work in-
dependently of one another. In other words, as
long as one supplies the function that rewrites
loopnest structures into GCC code, one can
reuse the components for other transforma-
tions.

3.4 Applications

Matrix based loop transforms can be used to
improve effectiveness of parallelization and
vectorization by removing inner loop depen-
dencies that inhibit their substitution. They can
also be used to perform spatial and temporal lo-
cality optimizations that optimize cache reuse
[7].

These types of optimizations have the potential
to significantly improve both application and
benchmark scores. Memory locality optimiza-
tions are observed to produce speedup factors
from 2 to 50 relative to the unmodified algo-
rithm, depending on the application.

As an example of such a speedup, we’ll take
a well known SPEC® CPU2000 benchmark,
SWIM2.

SWIM spends most of its time in a single loop.
By simply interchanging this loop, the perfor-
mance can be improved sevenfold, as shown in
Figure 12.

3.5 Future plans

Determination of a good transformation matrix
for optimizing temporal and spatial locality is
work in progress. There are many potential al-
gorithms from which to choose. The authors
are investigating research literature and other
compiler implementations in order to choose a
good algorithm to implement in GCC. An opti-

2http://www.spec.org/
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Figure 12: Effect of interchanging loop on
SWIM

mal transform matrix can be calculated in poly-
nomial time for most loops encountered. The
matrix transform method can be extended to
perform loop alignment transforms, statement-
based iteration space transforms, and other
useful operations.

4 Optimizations

4.1 Loop Optimizations

The new data dependence and matrix transfor-
mation functionality allows GCC to implement
loop nest optimizations that can significantly
improve application performance. These opti-
mizations include loop interchange, unroll and
jam, loop fusion, loop fission, loop reversal,
and loop skewing.

Loop interchange exchanges the order of loops
to better match use of loop operands to system
characteristics, e.g., improved memory hierar-
chy access patterns or exposing loop iterations
without dependencies to allow vectorization.
When the transformation is safe to perform, the
optimal ordering of loops depends on the tar-
get system. Depending on the intended effect,
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interchange can swap the loop with the great-
est dependencies to an inner position within the
loop nest or to an outer position within the nest.
The effectiveness of the optimization is limited
by alias and data dependence information.

The Unroll and jam transformation unrolls it-
erations of an outer loop and then fuses copies
of the inner loop to achieve greater value reuse
and to hide function unit latency. The optimal
unrolling factor is a balance between schedul-
ing and register pressure. The optimization is
related to loop interchange and unrolling, so it
similarly requires accurate alias and data de-
pendence information.

Loop fusion combines loops to increase com-
putation granularity and create asynchronous
parallelism by merging independent computa-
tions with the same bounds into a single loop.
This allows dependent computations with inde-
pendent iterations to execute in parallel. Loop
fusion requires appropriate alias and data de-
pendence information, and also requirescount-
able loops.

DO I=1,N
A(I) = F(B(I))

END DO
Q = . . .
DO J=2,N

C(I) = A(I-1) + Q*B(I)
END DO

⇓

Q = . . .
A(1)=F(B(1))
DO I=2,N

A(I) = F(B(I))
C(I) = A(I-1) + Q*B(I)

END DO

Figure 13: Example of Loop Fusion

Loop fission or distribution is the opposite of
loop fusion: breaking multiple computations
into independent loops. It can enable other
optimizations, such as loop interchange and
blocking. Another benefit is reduction of reg-
ister pressure and isolation of vectorizable op-
erations, e.g., exposing the opportunity to in-
voke a specialized implementation of an opera-
tor for vectors or using a vector/SIMD instruc-
tion. Vectorization is a balance between vec-
tor speedup and memory locality. Again, alias
information, data dependence, andcountable
loopsare prerequisites.

DO I=1,N
S = B(I) / SQRT(C(I))
A(I) = LOG(S)*C(I)

END DO

⇓

CALL VRSQRT(A,C,N)
DO I=1,N

A(I) = B(I)*A(I)
END DO
CALL VLOG(A,A,N)
DO I=1,N

A(I) = A(I)*C(I)
END DO

Figure 14: Example of Loop Fission

Loop reversal inverts the direction of iteration
and loop skewing rearranges the iteration space
to create new dependence patterns. Both opti-
mizations can expose existing parallelism and
aid other transformations.

4.1.1 Future Plans

After addressing the optimizations that can
be implemented with initial loop transforma-
tion infrastructure, the functionality will be
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expanded to other well-known loop optimiza-
tions, such as loop tiling, interleaving, outer
unrolling, and support for triangular and trape-
zoidal access patterns.

The goal function for high-level loop trans-
formations is dependent on the target system.
Communicating the system characteristics to
the GCC loop optimizer is an ongoing area of
investigation.

GCC’s high-level loop optimization frame-
work will not implement all, or even most,
loop transformations in the first release—it is
a work in progress, but an effective starting
point from which to grow. Future enhance-
ments to the framework will expand the func-
tionality in two directions: implementing ad-
ditional optimizations and reducing the restric-
tions on existing optimizations. The transfor-
mations first must be safe to enable for any ap-
plication with well-defined numerical behav-
ior. The optimizations will be enhanced to rec-
ognize more and different types of loops that
can benefit from these techniques and improve
application performance.

4.1.2 Helping the Compiler

The programmer can assist the compiler in
its optimization effort while ensuring that the
source code is easy to understand and main-
tain. This primarily involves simplifying mem-
ory analysis, loop structure, and program struc-
ture to aid the compiler.

Limiting the use of global variables and point-
ers allow the compiler to compute more thor-
ough alias information, allowing the safety of
transformations to be determined. Replacing
pointers by arrays and array indexing is one
such example.

Simplified loop structure permits more exten-
sive analysis of the loops and allows easier

modification of loops. Some loop transforma-
tion optimizations requireperfect loop nesting,
meaning no other code is executed in the con-
taining loop, and most loop optimizations are
limited to countable loops. A countable loop
has a single entry point, a single exit point, and
an iteration count that can be determined be-
fore the loop begins. A loop index should be
a local variable whose address is not taken and
avoids any aliasing ambiguity.

Programmers are encouraged to nest loops
where possible and restructure loops to avoid
branches within, into, or out of loops. Ad-
ditionally, the programmer manually can per-
form loop fission to generate separate loops
with simple bounds instead of a single loop
with complicated bounds and conditionally-
executed code within the loop.

4.2 Interacting with the Compiler: towards an
OpenMP implementation

The OpenMP3 standard can be seen as an ex-
tension to the C, C++, and Fortran program-
ming languages, that provides a syntax to ex-
press parallel constructs. Because the OpenMP
does not specify the compiler implementation,
implementations range from the simple source
to source preprocessors such asOdinMP4 and
Omni5 to the optimizing compilers likeORC6,
that exploit the extra information provided
by the programmer for better optimizing loop
nests. Based on these implementations of the
OpenMP norm, we give some reflections on a
possible implementation of OpenMP in GCC.

3http://www.openmp.org/
4http://odinmp.imit.kth.se/
5http://phase.hpcc.jp/Omni/
6http://ipf-orc.sourceforge.net/



52 • GCC Developers’ Summit

4.2.1 Source to Source Implementations

The source to source implementations of
OpenMP include a parser that constructs an ab-
stract syntax tree (AST) of the program, then a
pretty printer that generates a source code from
the AST. The AST is rewritten using the in-
formation contained in the OpenMP directives.
The transformations involved in the rewriting
of the AST are principally insertions of calls
to a thread library, the creation of new func-
tions, and restructuring of loop bounds and
steps. The main benefit of this approach is that
it requires a reduced compiler infrastructure for
translating the OpenMP directives.

For implementing this source to source ap-
proach in GCC, two main components have to
be designed:

• a directive parser, that is an extension of
the parser for generating AST nodes for
each directive, and

• a directive rewriter, that transforms the
code in function of the directives.

In order to keep the code generation part
generic for all the front-ends, a specific
OMP_EXPRnode could contain the informa-
tion about the directives, until reaching the
GENERIC, or the GIMPLE levels, the GIM-
PLE level having the benefit of being simpler,
and more flexible for restructuring the code.

In the source to source model, the rewrite of the
directives directly generates calls to a thread-
ing library, and the rest of the compiler does
not have to handle theOMP_EXPRnodes. This
kind of transformation tends to obfuscate the
code by inserting calls to functions in place of
the loop bodies, rendering the loop optimiza-
tions ineffective. In order to avoid this draw-
back we have to make the optimizers aware

about the parallel constructs used by the pro-
grammer.

4.2.2 An Optimizing Compiler Approach

In the C, C++, and Fortran programming lan-
guages, the parallelism is expressed mainly us-
ing calls to libraries that implement threading
or message passing interfaces. The compiler is
not involved in the process of optimizing par-
allel constructs because the parallel structures
are masked by the calls to the parallel library.
In other programming languages, such as Ada
and Java, parallel constructs are part of the lan-
guage specification, and allow the compiler to
manage the parallel behavior of the program.
OpenMP directives fill a missing part of the
C, C++, and Fortran programming languages
with respect to the interaction of the program-
mer with the compiler for concurrent program-
ming. It is in this extent that the OpenMP norm
is interesting from the point of view of an opti-
mizing compiler.

In order to allow the optimizers to deal with
the parallel constructs in a generic way, the
compiler has to provide a set of primitives
for the parallel constructs. For the moment,
the GENERIC level does not contain parallel
primitives, and consequently the front-end lan-
guages have to lower their parallel constructs
before generating GENERIC trees. In this re-
spect, the OpenMP directives should not be dif-
ferent than other languages parallel constructs,
and should not have a specificOMP_EXPRthat
allow these constructs to be propagated to the
GIMPLE level for their expansion as described
in section 4.2.1. The support of OpenMP in
this context is togenericizethe directives to
their equivalent constructs in GENERIC and
let the optimizers work on this representation.
Using this approach would allow the compiler
to choose the right degree of parallelism based
on a description of the underlying architecture.
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In the previous discussions on the GCC mail-
ing lists, there were some good questions on
whether we want to support the OpenMP stan-
dard in GCC, but rather than asking again this
question, the authors would like to ask another
question: do we want the generic optimizer
to deal with concurrency aspects, and the pro-
grammer to be able to interact with the opti-
mizer on parallel constructs?

5 Conclusions

The Loop Nest Optimizer provides an effec-
tive and modular framework for implementing
high-level loop optimizations in GCC. Initial
loop optimizations are built on a new loop data
dependence analysis and matrix transformation
engine infrastructure.

This work allows GCC to expand into a num-
ber of areas of optimization for high perfor-
mance computing. The loop optimizations im-
prove performance directly and provide a base
on which to develop auto-vectorization and
auto-parallelization facilities.
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Abstract

Software pipelining is a technique that im-
proves the scheduling of instructions in loops
by overlapping instructions from different it-
erations. Modulo scheduling is an approach
for constructing software pipelines that focuses
on minimizing the cycle count of the loops
and thereby optimize performance. In this pa-
per we describe our implementation of Swing
Modulo Scheduling in GCC, which is a Mod-
ulo Scheduling technique that also focuses on
reducing register pressure. Several key issues
are discussed, including the use and adaptation
of GCC’s machine-model infrastructure for
scheduling (DFA) and data-dependence graph
construction. We also present directions for fu-
ture enhancements.

1 Introduction

Software pipelining is an instruction schedul-
ing technique that exploits instruction level
parallelism found in loops by overlapping suc-
cessive iterations of the loop and executing
them in parallel. The key idea is to find a
pattern of operations (named the kernel code)
that when iterated repeatedly, produces the ef-
fect that an iteration is initiated before previ-
ous ones have completed [3]. Modulo schedul-
ing is a technique for implementing software
pipelining. It does so by first estimating a
lower bound on the number of cycles it takes to
execute the loop. This number is called theIni-

Figure 1: Example software pipelined loop of 4
instructions and the resulting kernel, prologue
and epilogue.

tiation Interval— II, and the bound is called a
Minimum II — MII (see example in Figure 1).
Then it tries to place the instructions of the
loop in II cycles, while taking into account the
machine resource constraints and the instruc-
tion dependencies. In case the loop couldn’t be
scheduled in II cycles it tries with larger II until
it succeeds.

Swing Modulo Scheduling (SMS) is a heuris-
tic approach that aims to reduce register pres-
sure [2]. It does so by first ordering the in-
structions in an alternating up-and-down order
according to the data dependencies, hence its
name (see section 2.2). Then the scheduling
algorithm (section 2.3) traverses the nodes in
the given order, trying to schedule dependent
instructions as close as possible and thus to
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shorten live ranges of registers.

2 Implementation in GCC

Swing Modulo Scheduling (SMS) [2, 3] was
implemented as a new pass in GCC that im-
mediately precedes the first scheduling pass.
An alternative is to perform SMS after reg-
ister allocation, but that would require regis-
ter renaming and spilling in order to remove
anti-dependencies and free additional registers
for the loop. The new pass traverses the cur-
rent function and performs SMS on loops. It
generates a new schedule for the instructions
of the loop according to the SMS algorithm,
which is “near optimal” in utilizing hardware
resources and register pressure. It also han-
dles long live ranges and generates prologue
and epilogue code as we describe in this sec-
tion.

The loops handled by SMS obey the following
constraints: (1) The number of iterations of the
loop is known before entering the loop (i.e. is
loop-invariant). This is required because when
we exit the kernel, the last few iterations are in-
flight and need to be completed in the epilogue.
Therefore we must exit the kernel a few itera-
tions before the last (or support speculative par-
tial execution of a few iterations past the last).
(2) A single basic block loop. For architectures
that support predicated instructions, multiple
basic block loops could be supported.

For each candidate loop the modulo scheduler
builds a data-dependence graph (DDG), whose
nodes represent the instructions and edges rep-
resent intra- and inter-loop dependences. The
modulo scheduler then performs the following
steps when handling a loop:

1. Calculate a MII.

2. Determine a node ordering.

3. Schedule the kernel.

4. Perform modulo variable expansion.

5. Generate prolog and epilog code.

6. Generate a loop precondition if required.

After a loop is successfully modulo-sceduled it
is marked to prevent subsequent rescheduling
by the standard instruction scheduling passes.
Only the kernel is marked; the prolog and epi-
log are subject to subsequent scheduling.

Subsection 3.1 describes the DDG. In the re-
mainder of this section we elaborate each of
the above steps.

2.1 Calculating a MII

The minimum initiation interval (“MII”) is a
lower-bound on the number of cycles required
by any feasible schedule of the kernel of a loop.
A schedule is feasible if it meets all depen-
dence constraints with their associated laten-
cies, and avoids all potential resource conflicts.
Two separate bounds are usually computed—
one based on recurrence dependence cycles
(“recMII”) and the other based on the resources
available in the machine and the resources re-
quired by each instruction (“resMII”) [6]:

MII = max{recMII, resMII}.

In general, if the computed MII is not an in-
teger, loop unrolling can be applied to possi-
bly improve the scheduling of the loop. The
purpose of computing MII is to avoid trying
II’s that are too small, thereby speeding-up the
modulo scheduling process. It is not a correct-
ness issue, and being a lower bound does not
affect the resulting schedule.

The “recMII” lower bound is defined as the
maximum, taken over all cyclesC in the de-
pendence graph, of the sum of latencies along
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C divided by the sum of distances alongC:

recMII = max
C∈DDG

∑
e∈C latency(e)∑
e∈C distance(e)

.

Computing the maximum above can be done
in Θ(N3) (worst and best) time, whereN is
the number of nodes in the dependence graph
[6]. We chose to implement a less accurate
yet generally more efficient computation of a
dependence-recurrence based lower bound, fo-
cusing on simple cyclesS that contain a sin-
gle back-arcb(S) (more complicated cycles are
ignored, resulting in a possibly smaller lower
bound):

recMII’ = max
S∈DDG

∑
e∈S latency(e)

distance(b(S))
.

(Note that for such simple cyclesS,
distance(e) = 0 for all edgese ∈ S ex-
cept b(S).) This maximum is computed by
finding for each back-arcb(S) = (h, t) the
longest path (in terms of total latency) from
t to h, excluding back-arcs (i.e. in a DAG).
This scheme should be more efficient because
the number of back-arcs is anticipated to be
relatively small, and is expected to suffice
because we anticipate most recurrence cycles
to be simple.

The “resMII” is currently computed by consid-
ering issue constraints only: the total number
of instructions is divided by theISSUE_RATE

parameter. This bound should be improved by
considering additional resources utilized by the
instructions.

In addition to the MII lower-bound, we also
compute an upper-bound on the II, called
MaxII. This upper-bound is used to limit the
search for an II to effective values only, and
also to reduce compile-time. We set MaxII=∑

e∈DDG latency(e) (the standard instruction
scheduler should achieve such an II), and pro-
vide a factor for tuning it (see Section 5).

2.2 Determining a Node Ordering

The goal of the “swinging” order is to schedule
an instruction after scheduling its predecessor
or successor instructions and as close to them
as possible in order to shorten live ranges and
thereby reduce register pressure. Alternative
ordering heuristics could be supported in the
future. (See figure 7 [1] for the swing ordering
algorithm).

The node ordering algorithm takes as input a
data dependence graph, and produces as out-
put a sorted list of the nodes of the graph,
specifying the order in which to list-schedule
the instructions. The algorithm works in two
steps. First, we construct a partial order of
the nodes by partitioning the DDG into subsets
S1, S2, . . . (each subset will later be ordered in-
ternally) as follows:

1. Find the SCC (Strongly Connected
Component)/Recurrence of the data-
dependence graph having the largest
recMII—this is the first set of nodesS1.

2. Find the SCC with the next largest recMII,
put its nodes into the next setS2.

3. Find all nodes that are on directed paths
from any previous set to the next setS2

and add them to the next setS2.

4. If there are additional SCCs in the depen-
dence graph goto step 2. If there are no
additional SCCs, create a new (last) set of
all the remaining nodes.

The second step orders the nodes within each
Si set using a directed-acyclic subgraph of the
DDG obtained by disregarding back-arcs ofSi:

1. Calculate several timing bounds and prop-
erties for each node in the dependence
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graph (earliest/latest times for scheduling
according to predecessors/successors—
see subsection 4.1 [1]).

2. Calculate the order in which the instruc-
tions will be processed by the scheduling
algorithm using the above bounds.

2.3 Scheduling the Kernel

The nodes are scheduled for the kernel of the
loop according to the precomputed order. Fig-
ure 2 shows the pseudo code of the scheduling
algorithm, and works as follows. For each node
we calculate a scheduling window—a range
of cycles in which we can schedule the node
according to already scheduled nodes. Previ-
ously scheduled predecessors (PSP) increase
the lower bound of the scheduling window,
while previously scheduled successors (PSS)
decrease the upper bound of the scheduling
window. The cycles within the scheduling win-
dow are not bounded a-priori, and can be pos-
itive or negative. The scheduling window it-
self contains a range of at-most II cycles. Af-
ter computing the scheduling window, we try
to schedule the node at some cycle within the
window, while avoiding resource conflicts. If
we succeed we mark the node and its (abso-
lute) schedule time. If we could not schedule
the given node within the scheduling window
we increment II, and start over again. If II
reaches an upper bound we quit, and leave the
loop without transforming it.

If we succeed in scheduling all nodes in II cy-
cles, the register pressure should be checked
to determine if registers will be spilled (due to
overly aggressive overlap of instructions), and
if so increment II and start over again. This
step has not been implemented yet.

During the process of scheduling the kernel
we maintain apartial schedule, that holds the
scheduled instructions in IIrows, as follows:

when scheduling an instruction in cycleT (in-
side its scheduling window), it is inserted into
row (T mod II) of the partial schedule. Once
all instructions are scheduled successfully, the
partial schedule supplies the order of instruc-
tions in the kernel.

A modulo scheduler (targeting e.g. a super-
scalar machine) has to consider the order of
instructions within a row, when dealing with
the start and end cycles of the scheduling win-
dow. When calculating the start cycle for in-
struction i, one or more predecessor instruc-
tionsp will have a tight boundSchedT imep +
Latencyp,i − distancep,i × ii = start (see Fig-
ure 2). Ifp was itself scheduled in the start row,
i has to appear afteri in order to comply with
the direction of the dependence. An analogous
argument holds for successor instructions that
have a tight bound on the end cycle. Notice
that there are no restrictions on rows strictly
between start and end. In most cases (e.g. tar-
gets with hardware interlocks) the scheduler is
allowed to relax such tight bounds that involve
positive latencies, and the above restriction can
be limited to zero latency dependences only.

2.4 Modulo Variable Expansion

After all instructions have been scheduled in
the kernel, some values defined in one iter-
ation and used in some future iteration must
be stored in order not to be overwritten. This
happens when a life range exceeds II cycles—
the defining instruction will execute more than
once before the using instruction accesses the
value. This problem can be solved using mod-
ulo variable expansion, which can be imple-
mented by generating register copy instruc-
tions as follows (certain platforms provide such
support in hardware, using rotating-register ca-
pabilities):

1. Calculate the number of copies needed for
a given register defined at cycleT_def and
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ii = MII; bump_ii = true;
ps = create_ps (ii, G, DFA_HISTORY);
while (bump_ii && ii < maxii){

bump_ii = false; sched_nodes = φ;
step = 1;

for (i=0, u=order[i];
i<|G|; u=order[++i]) do {

/*Compute sched window for u.*/
PSP = u_preds ∩ sched_nodes;
PSS = u_succs ∩ sched_nodes;
if ( PSP 6= φ ∧ PSS = φ){

start= max(SchedT imev + Latencyv,u

−distancev,u × ii)∀v ∈ PSP
end = start + ii;

}
else if ( PSP = φ ∧ PSS 6= φ){

start= min(SchedT imev − Latencyu,v

+distanceu,v × ii)∀v ∈ PSS
end = start - ii; step = -1;

}
else if ( PSP 6= φ ∧ PSS 6= φ){

estart= max(SchedT imev + Latencyv,u

−distancev,u × ii)∀v ∈ PSP
lstart= min(SchedT imev − Latencyu,v

+distanceu,v × ii)∀v ∈ PSS
start = max(start, estart);
end = min(estart+ii, lstart+1);

}
else /* PSP = φ ∧ PSS = φ */

start = ASAPu; end = start + ii;

/* Try scheduling u in window. */
for (c = start; c != end; c += step)

if (ps_add_node (ps, u, c)){
SchedT imeu = c;
sched_nodes = sched_nodes ∪ {u};
success = 1;

}
if (!success){

ii++; bump_ii = true;
reset_partial_schedule (ps, ii);

}
}/* Continue with next node. */
if (!bump_ii

&&check_register_pressure(ps)){
ii++; bump_ii = true;
reset_partial_schedule (ps, ii);

}
}/* While bump_ii. */
where: ASAPu is the earliest time u

could be scheduled in[2]

Figure 2: Algorithm for Scheduling the Kernel

used at cycleT_use, according to the fol-
lowing equation:

⌊
Tuse− Tdef

II

⌋
+ adjustment (1)

where “adjustment” = -1 if the use appears
before the def on the same row in the par-
tial schedule, and zero otherwise. The to-
tal number of copies needed for a given
register def is given by the last use.

2. Generate the register copy instructions
needed, in reverse order preceeding the
def:

rn ← rn−1; rn−1 ← rn−2; . . . r1 ← rdef

and attach each use to the appropriaterm

copy.

2.5 Generating Prolog and Epilog

The kernel of a modulo-scheduled loop con-
tains instances of instructions from different it-
erations. Thus a prolog and an epilog (unless
all moves are speculative) are needed to keep
the code correct.

When generating the prolog and epilog, spe-
cial care should be taken if the loop bound is
not known. One possibility is to add an exit
branch out of each iteration of the prolog, tar-
geting a different epilog. This is complicated
and increases the code size (see [1]. Another
approach is to keep an original copy of the loop
to be executed if the loop-count is too small
to reach the kernel, and otherwise execute a
branch-less prolog followed by the kernel and
a single epilog. We implemented the latter be-
cause it is simpler and has smaller impact on
code size.
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3 Infrastructure Requirements for
Implementing SMS in GCC

The modulo scheduler, being a scheduling op-
timization, needs to work with a low level rep-
resentation close to the final machine code. In
GCC that is RTL. The SMS algorithm requires
several building blocks from the RTL represen-
tation:

1. Identifying and representing RTL level
loops—we use the CFG representation.

2. Building data dependence graph (for
loops) with loop carried dependencies—
we implemented a Data Dependence
Graph (DDG).

3. An ordered linked list of instructions (ex-
ists in the RTL). Union, intersection,
and subtraction operations on sets of
instructions—we use thesbitmap rep-
resentation.

4. Machine resource model support, mainly
for checking if a given instruction will
cause resource conflicts if scheduled at a
given cycle/slot of a partial schedule.

5. Instruction latency model—we use the
insn_cost function.

We now describe the DDG and Machine model
support.

3.1 Data Dependence Graph (DDG) Genera-
tion

The current representation of data dependen-
cies in GCC does not meet the requirements
for implementing modulo scheduling; it lacks
inter-loop dependencies and it is not easy to
use. We decided to implement a DDG, which
provides additional capabilities (i.e. loop car-
ried dependencies) and modulo-scheduling ori-
ented API.

The data dependence graph is built in
several steps. First, we construct the
intra-loop dependencies using the stan-
dard LOG_LINKS /INSN_DEPEND structures
by calling the sched_analyze function of
haifa-sched.c module; a dependence arc with
distance zero is then added to the DDG for
each INSN_DEPEND link. We then calculate
inter-loop register dependencies of distance 1
using the df.c module as follows:

1. The latency between two nodes is calcu-
lated using theinsn_cost function of
the scheduler.

2. For each downwards reaching definition,
if there is an upwards reaching use of the
same register (this information is supplied
by the df analysis) aTRUE dependence arc
is added between the def and the use.

3. For each downwards reaching definition
find its first definition and connect them
by an OUTPUT dependence, if they are
distinct. Avoid creating selfOUTPUT de-
pendence arcs.

4. For each downwards reaching use find
its first def, if this is not the def feed-
ing it (intra-loop) add anANTI inter-loop
dependence. Avoid creating inter-loop
ANTI register dependences—modulo vari-
able expansion will handle such cases
(see 2.4).FLOW dependence exists in the
opposite direction;

Finally, we calculate the inter-loop memory de-
pendencies. Currently, we are over conserva-
tive due to limitation of alias analysis. This
issue is expected to be addressed in the future.
The current implementation adds the following
dependence arcs, all with distance 1 (unless the
nodes are already connected with a dependence
arc of distance 0):
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1. For every two memory writes add an inter-
loop OUTPUT dependence.

2. For every memory write followed by a
memory read (across the back-arc) add a
TRUE memory dependence.

3. For every memory read followed by a
memory write across the back-arc add an
ANTI memory dependence.

The following general functionality is provided
by the DDG to support the node-ordering algo-
rithm of SMS:

• Identify cycles (strongly connected com-
ponents) in the data dependence graph,
and sort them according to their recMII.

• Find the set of all predecessor/successor
nodes for a given set of nodes in the data
dependence graph.

• Find all nodes that lie on some directed
path between two strongly connected sub-
graphs.

3.2 Machine Resource Model Support

During the process of modulo scheduling, we
need to check if a given instruction will cause
resource conflicts if scheduled at a given cy-
cle/slot of a partial schedule. The DFA-based
resource model in GCC [4] works by check-
ing a sequence of instructions, in order. This
approach is suitable for cycle scheduling al-
gorithms, in which instructions are always ap-
pended at end of the current schedule. In or-
der for SMS to use this linear approach, we
generate a trace of instructions cycle by cycle,
centered at the candidate instruction, and feed-
ing it to the DFA [5]. Figure 3 describes the
algorithm that checks if there are conflicts in
a given partial schedule around a given cycle.

Several functions are made available to manip-
ulate the partial schedule, the most important
one isps_add_node_check_conflictsdescribed
in Figure 4; it updates the partial schedule (ten-
tatively) with a new instruction at a given cycle,
and feeds the new partial schedule to the DFA.
If it succeeds it updates the partial schedule and
returns success, if not it resets the partial sched-
ule and returns failure. The major drawback of
the above mechanism is the increase in compile
time; there are plans to address this concern in
the future.

/* Checks if PS has resource
conflicts according to DFA,
from FROM cycle to TO cycle. */

ps_has_conflicts (ps, from, to){
state_reset (state);
for (c = from; c <= to; c++) {

/* Holds the remaining issue
slots in the current row. */

issue_more = issue_rate;
/* Walk DFA through CYCLE C. */
for (I = ps->rows[c % ps->ii)];

I; I = I->next) {
/* Check if there is room for the

current insn I.*/
if (! issue_more

|| state_dead_lock_p (state))
return true;

/* Check conflicts in DFA.*/
if (state_transition (state, I))

return true;
if (DFA.variable_issue)

issue_more=DFAissue(state, I);
else issue_more--;

}
advance_one_cycle ();

}
return false;

}

Figure 3: Feeding a partial schedule to DFA.

4 Current status and future en-
hancements

An example of a loop and its generated code,
when compiled with gcc and SMS enabled
(-fmodulo-sched ) is shown in Figure 5.
The kernel combines the fmadds of the cur-
rent iteration with the two lfsx’s of the next it-
eration. As a result, the two lfsx’s appear in
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/* Checks if a given node causes
resource conflicts when added to
PS at cycle C. If not add it. */

ps_add_node_check_conflicts (ps, n, c)
{

ps_n = add_node_to_ps (ps, n, c);
from = c - ps->history;
to = c + ps->history
has_conflicts

= ps_has_conflicts(ps, from, to);

/* Try different slots in row. */
while (has_conflicts)

if (!ps_insn_advance_column(ps,
ps_n))

break;
else has_conflicts

= ps_has_conflicts(ps,
from, to);

if (! has_conflicts)
return ps_n;

remove_node_from_ps(ps, ps_n);
return NULL;

}

Figure 4: Add new node to partial schedule

the prolog and the fmadds appears in the epi-
log. This could help hide the latencies of the
loads. The count of the loop is decreased to
99, and no register-copies are needed because
every life range is smaller than II,

Following are milestones for implementing
SMS in GCC.

First stage (Approved for mainline)

1. Implement the required infrastruc-
ture: DDG (section 3.1), special in-
terface with DFA (section 3.2).

2. Implement the SMS scheduling al-
gorithm as described in [3, 2].

3. Support only distance 1 and register
carried dependences (including ac-
cumulation).

float dot_product (float *a,
float *b){

int i; float c=0;
for (i=0; i < 100; i++)

c += a[i]*b[i];
return c;

}
(a)

L5:
slwi r0,r2,2
addi r2,r2,1
lfsx f13,r4,r0
lfsx f0,r3,r0
fmadds f1,f0,f13,f1
bdnz L5
blr

(b)

Prolog: addi r2,r2,1
lfsx f0,r3,r0
lfsx f13,r4,r0
li r0,99
mtctr r0

L5:
slwi r0,r2,2
addi r2,r2,1
fmadds f1,f0,f13,f1
lfsx f13,r4,r0
lfsx f0,r3,r0
bdnz L5

Epilog: fmadds f1,f0,f13,f1
blr

(c)

Figure 5: (a) An example C loop, (b) As-
sembly code without SMS, (c) Assembly code
with SMS (-fmodulo-sched ), on a Pow-
erPC G5.

4. Support for live ranges that exceed II
cycles by register copies.

5. Support unknown loop bound using
loop preconditioning.

6. Prolog and epilog code generation as
described in Section 2.5.

7. Preliminary register pressure
measurements—gathering statistics.

Second stage
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1. Support dependences with distances
greater than 1.

2. Improve the interface to DFA to de-
crease compile time.

3. Support for live ranges that exceed II
cycles by unroll & rename.

4. Improve register pressure heuris-
tics/measurements.

5. Improve computation of resMII and
possibly recMII lower bounds.

6. Unroll the loop if tight MII bound is
a fraction.

Future enhancements [tentative list]

1. Consider changes to DFA to make
SMS less time consuming when
checking resource conflicts.

2. Consider spilling during SMS if reg-
ister pressure rises too much.

3. Support speculative moves.

4. Support predicated instructions and
if-conversion.

5. Support for live ranges that exceed II
cycles by rotating registers (for ap-
propriate architectures).

5 Compilation Flags for Tuning

We added the following four options for tuning
SMS:

sms-max-ii-factor. This parameter is used to
tune theSMS_MAX _II threshold, which
affects the upper bound for II (maxII).
The default value for this parameter is
100. Decreasing this value will allow
modulo scheduling to transform only the
loops where a relatively small II can be
achieved.

sms-dfa-history. The number of cycles con-
sidered when checking conflicts using the
DFA interface. The default value is
0, which means that only potential con-
flicts between instructions scheduled in
the same cycle are considered. Increasing
this value may result in higher II (possi-
bly less loops will be modulo scheduled),
longer compile-time, but potentially less
hazards.

sms-loop-average-count-threshold. A thresh-
old on the average loop count considered
by the modulo scheduler; defaults to 0. In-
creasing this value will result in applying
modulo scheduling to additional loops,
that iterate on average fewer times.

max-sms-loop-number. Maximum number
of loops to perform modulo scheduling,
mainly for debugging (search for first
faulty loop). The default is -1 which
means to consider all relevant loops.

6 Conclusions

In this paper we described our implementa-
tion of Swing Modulo Scheduling in GCC. An
example of its effects is given in Section 4.
The major challanges involved using the DFA-
based machine model of GCC, and building
a data-dependence graph for loops including
inter-loop dependences. The current straight-
forward usage of the machine model is time-
consuming and should be improved, which in-
volves changes to the machine model. The
inter-loop dependencies of the DDG should be
built more accurately, in-order to allow more
aggressive movements by the modulo sched-
uler. The DDG is general and can be used by
other optimizations as well. Additional oppor-
tunities for improving and tuning the modulo
scheduler exist, including register pressure and
loop unrolling considerations.
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Abstract

The implementation of call graph based op-
timizations in GCC required several design
changes to the interfaces in between front-
ends and back-end parts of the compiler. We
describe in detail the new interfaces, opti-
mizations we implemented (in-lining and ba-
sic inter-procedural propagation) and the call
graph datastructure itself. We compare mem-
ory consumption, compilation time and code
quality of function at a time and unit at a time
compilation scheme. We also outline future
plans for the more advanced inter-procedural
optimizations and whole program optimiza-
tion.

1 Introduction and motivation

The implementation of function inlining in gcc
used to be a major source of dissatisfaction
among users of the compiler. Even though
inlining had been redesigned from scratch in
GCC 3.0, both inliners had serious problems.

The old inlining implementation (based on the
low-level RTL intermediate language) could
not remove several ugly artefacts in the code,
such as in-memory structures used to pass ar-
guments. It also consumed unnecessarily large
amount of memory to store function bodies in
RTL form. Memory consumption was further
increased by storing functions after inlining of

callees instead of before.

The new tree-based implementation of inlining
in GCC 3.x solved all of these problems but
unfortunately brought several new issues. For
very complex C++ programs, the new inlining
decision heuristics inlined too many functions
causing extreme memory consumption, large
compile times, and impractically bloated ap-
plications. On the other hand the default in-
line limits were way too low for C programs
such as the Linux kernel, causing many func-
tions to not be inlined at all despite the pro-
grammer having manually marked them inline.
As a result compiler became almost unusable
for some C++ programmers working on tem-
plate heavy code (such as POOMA library) and
Linux kernel developers adopted the paradigm
of using thealways_inline attribute to
override the default inlining heuristics every-
where.

In addition to these problems, GCC tradition-
ally was unable to perform “backward inlin-
ing” (inline functions used before defined),
causing noticeable loss in some benchmarks
such as SPEC2000 when compared to other
compilers.

It seemed impossible to tune the inlining
heuristics using the available set of parameters,
and thus we started to look for a more involved
solution. While looking at the problem from
a high level, it seems to be really easy to sim-
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ply inline all “small” functions as long as doing
so does not cause “extreme bloat.” Defining
which functions are “small” can be done easily
by limiting number of instructions in it’s body,
while defining code bloat can be done with two
parameters: first one limits growth of single
function body (since compiler algorithms are
generally not linear, and for really large func-
tions, produce both poor code and long compi-
lation times) and the second one limits growth
of overall binary size. Unfortunately without
whole program optimization (still mostly out
of reach of the current GCC framework), it is
impossible to realize the last argument, but one
still can limit the overall growth of single com-
pilation unit and get similar results.

Because implementation of such a global pa-
rameters for function inlining was very difficult
with the original organization of the compiler
we took a more difficult path and first devel-
oped an infrastructure to assist inter-procedural
optimization, to be used later when focusing on
the inlining issues.

In this paper we describe the infrastructure
and the new optimizations implemented while
working on this project. The rest of this pa-
per is organized as follows. In Section 2 we
briefly describe some problems we had to deal
with and solutions we chose for them; in Sec-
tion 3 we describe the basic data structures we
use; in Section 4 we describe the interface to
the front-end; in Section 5, the implementation
of inlining; and Section 6 contains some exper-
imental evaluation of the new algorithms.

2 Overall design and the imple-
mentation challenges

GCC compiled the majority of functions im-
mediately after parsing their bodies (only a few
functions, such as static inline functions, were
special-cased and deferred until it was obvious

that the out of line copy is needed) making im-
plementation of inter-procedural optimizations
impossible. It was necessary to reorganize the
compilation process in a way so all functions
are parsed first, then analyzed and compiled
last. We will refer to this scheme of compi-
lation asunit-at-a-timeas opposed to function-
at-a-time used by GCC originally.

The main problem that arised was that the
original GCC design made it very difficult to
change the compilation order. The back-end
has been organized as a library that allowed
the front-end to compile a specified function.
Each of the front-ends implemented its own
(in some cases remarkably complex) logic on
compiling and/or deferring a function and ex-
pected the compilation to happen immediately
after passing it to back-end (for instance, the
C++ front-end looked back into the symbols
actually output to the assembly file to figure
out which functions were referenced and had
be compiled).

Instead of implementing unit-at-a-time logic
into each individual front-end, it seemed eas-
ier to reorganize the interface in between the
front-ends and back-ends to allow implemen-
tation of the generic compilation driver taking
care of all the decisions. Since reorganizing all
the front-ends at once was a difficult task, the
new API has been made optional, and we first
implemented unit-at-a-time for the C front-end
only and later started work on reorganizing the
others.

At the moment, only the C, Objective C, C++,
Java, and F90 front-ends have been updated to
the new API, and with exception of C, each
conversion was a nontrivial task. C++ needed
to look back into assembly files to discover
what templates needs to be instantiated; Ob-
jective C gathered information about method
API during compiling the function body, and
later producing functions using that informa-
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tion; and F90 and Java use trees slightly dif-
ferent from the C++ family, and broke some
expectations in the new code.

Switching to unit-at-a-time by default just
seemed too radical. The main concerns that
were pointed out in the discussion about
the change were about peak memory usage
growth: in function-at-a-time mode, the func-
tion bodies can be released early once the pro-
cessing of given function finished, while unit-
at-a-time mode needs to store into memory all
functions at once. If the amount of memory oc-
cupied by the function bodies gets too large, it
may result in slow down of the compilation.

As a result of this discussion, we decided to al-
low coexistence of both schemes and added the
command line option-funit-at-a-time
to choose particular one. To date, optimization
levels -O0 and -O1 by default use function-
at-a-time compilation, while-O2 and-O3 use
unit-at-a-time. Once the front-end is converted
into the new API, both supported compila-
tion schemes (unit-at-a-time and function-at-a-
time) appear almost identical to the front-end,
and all the logic is hidden in the new compila-
tion driver implemented incgraphunit.c .

The compilation process is now organized as
follows:

1. Parsing phase: This step is fully con-
trolled by the front-end. It is up to the
front-end to decide when a given function
is “finalized” and pass it to the compila-
tion driver. After that point the front-end
is not allowed to make any modifications
on the function body or declaration, and
it is fully up to the compilation driver to
decide when (and if) the function will be
compiled.

It is probably important to note that there
is one exception the rule disallowing any
changes to the functions passed to the

back-end. The C front-end, GCC allows
the function to be first defined asextern
inline and later be re-defined with a
completely different body as an ordinary
function. In this special case, we allow
the finalization to be called twice; we sim-
ply remove all traces of the old body from
the data structures and mark the function
as uninlinable, then, when this situation is
detected.

At this stage, early analysis of finalized
functions is done as well. Certain warn-
ings (such as about unused function pa-
rameters) are output here, since it is the
last time we’ll see unneeded functions. It
is also decided whether the function is an
“entry point”—i.e., whether it is reachable
from unknown code by some way (such as
via external linkage).

The difference between function-at-a-
time and unit-at-a-time mode also lies in
the finalization code. In unit-at-a-time
mode, the function is just stored into
the data-structure and left for later anal-
ysis, while in function-at-a-time mode all
functions are fully analyzed immediately,
the control flow graph is incrementally
built, and most functions are compiled—
the only exceptions being static inline, ex-
tern inline, comdat,1 and nested functions.
These are just stored into the call-graph
and compiled only when they turn out to
be necessary (i.e., when symbol is output
into the assembly file).

A similar mechanism is implemented for
file-scope variables. In unit-at-a-time,
all variables are stored into variable pool
data-structure, while in function-at-a-time
mode, all variables are output to the as-
sembly file immediately.

In function-at-a-time mode compilation

1functions that may appear in multiple units and are
linked into a single function.
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terminates once parsing is finished, while
in unit-at-a-time it goes into following
stages:

2. Analysis phase: The call-graph is built
and local optimization information is
gathered at this stage. To reduce the
amount of work done, the call-graph is
built incrementally and only functions
reachable from the entry points are ana-
lyzed. Since we do not handle any depen-
dency edges on data-structures, the reach-
able data-structures are immediately out-
put into the assembly file and further func-
tions/data structures referenced by them
are added into the work lists via a call-
back from back-end function, outputting
a symbol reference into the assembly file.

The local analysis used to drive inter-
procedural optimizations is also supposed
to happen here. At the moment, the size
of function body is estimated for later use
in inlining.

3. Optimization phase: Several optimiza-
tions are performed on the call-graph it-
self in sequence. At the moment follow-
ing optimizations are done:

(a) Reclaiming of memory occupied by
the unused (i.e., unanalyzed) func-
tions and data-structures.

(b) Local function discovery: Alocal
function is a function that is not an
entry point and whose address has
never been taken. We mark these
functions by special flag, since it
is possible to perform optimizations
interfering with the target ABI on
such functions. For instance on i386
we now use register-passing con-
ventions, but there are considerably
more possibilities for target-specific
optimization here. (In PIC compi-
lation, one can, for instance, avoid

recomputing of global offset table
pointers in the prologues of local
functions, and propagate the compu-
tation into callers.)

(c) Construction of inlining plan: We
make all the inlining decisions in ad-
vance and store them in call graph as
a so-called “inlining plan.” See Sec-
tion 5 for details.

(d) Another pass of unreachable func-
tion removal: in some cases, a func-
tion might be reachable only via a
call in an extern inline function that
was never inlined. Since the body
of the extern inline function is never
output, it is possible to remove all
such functions, too. This scenario is
very common for C++ programs.

Note that it is very desirable not to touch
the function bodies at this stage. In real
whole program optimization, the func-
tions are parsed and stored into “object
files” containing intermediate representa-
tion of the program. The intra-procedural
optimization phase executed in linker then
should not need to load everything into
memory at once and instead use the data
files as a database reading the call-graph
information first and using the function
bodies just later in the compilation phase.

4. Expansion: We proceed in reverse DFS
order on functions that are still present in
the call-graph, applying inter-procedural
optimizations such as inlining to the func-
tions, and finally leaving them to the back-
end to do the actual optimization and
compilation.

Function reordering allows more reli-
able propagation of information from the
callee code generation into the caller. For
instance, it is possible to generate a bet-
ter call sequence when the callee’s pre-
ferred stack frame boundary is known.
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Such function ordering would permit im-
plementation of more interesting opti-
mizations too (for instance simple inter-
procedural register allocation). On the
other hand, it makes it almost impossi-
ble to avoid compilation of some function
when its call has been optimized out. At
the moment we make no attempts to solve
this issue; however, in the future we may
want to do early optimization during the
analysis stage to catch most of these cases.

It also would be also desirable to defer
output of global variables to this stage and
output only the variables that are still re-
ferred by functions after the optimization.
Implementing this feature is easy and we
hope to do so in the near future.

3 Data-structures

Most of the code in the compilation driver actu-
ally manipulates only two data structures, that
is, the call-graph and the variable pool.

3.1 The call-graph

Thecall-graphconsist of nodes and edges rep-
resented via linked lists. Each function (exter-
nal or not) corresponds to the unique node and
each direct call has corresponding edge from
caller to the callee.

The mapping from declarations to call-graph
nodes is done using an hash table based on the
declarations’DECL_UID, so it is essential that
the frontend use single declaration ID for each
function or variable. The call-graph nodes are
created lazily using thecgraph_node func-
tion, when an unknown declaration is called.

When the call-graph is built, there is one edge
for each direct call. The indirect calls are not
represented at a moment. We simply mark each

function with address taken as externally visi-
ble function. Optimizers then have to expect
conservatively that each indirect call and/or
call of unknown function might in turn call
some of the entry points. The entry points
are merged via flagneeded in the call-graph
node.

Finally there is a work list used to maintain
nodes that are reachable from the entry points
and thus needs to be analyzed or output into the
file.

3.2 Data-structures for inter-procedural infor-
mation

Call-graph is place to store data needed
for inter-procedural optimization. All data-
structures are divided into three components:
local_info that is produced while analyz-
ing the function,global_info that is result
of global walking of the call-graph on the end
of compilation andrtl_info used by RTL
back-end to propagate data from already com-
piled functions to their callers.

The division has been made to make it possible
to reduce memory usage in the future. Each of
the field has different lifetimes and thus they
don’t necessarily need to be allocated all the
time. At the moment the data-structures are
small and thus all allocated at once with the
call graph nodes, but thecgraph_global_
info , cgraph_local_info , cgraph_
rtl_info accessor functions shall be used to
access the data. These functions already con-
tain sanity checks that enforce the lifetimes of
the individual data structures.

In the contrast, there is structurefunction
allocated for each parsed function body tradi-
tionally used to store related information by
many other parts of the compiler. This struc-
ture has no such organization and it consumes
up to 25% of overall memory for some C++
programs. We hope to improve the situation
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by reorganizingstruct function simi-
lar way and moving to the call-graph nodes
some of the data currently held instruct
function , removing redundancies on where
the information shall be stored.

3.3 The varpool data structure

In order to allow elimination of unused static
data within the backend, we modified the in-
terface to the output data-structures too. The
varpool module is used to maintain variables in
similar manner as call-graph is used for func-
tions. At the moment it is implemented as
a simple hash table containing entries for all
global data-structures, and a worklist maintain-
ing a list of variables that need to be output into
assembly file. No dependencies or references
are represented explicitly.

4 Front-end API

An important part of the new compilation
driver design is the API to front-end. We tried
hard to make it as easy to use as possible, how-
ever practice has shown that it is not always
trivial to update existing front-ends to the new
philosophy. Hopefully the API will still be nat-
ural to use in the new code.

All functions the front-end programmer shall
be interested in are:

cgraph_finalize_function shall be called
once front-end has parsed whole body of
function and it is certain that the function
body nor the declaration will change.

(As mentioned above, there is one ex-
ception needed for implementing GCC’s
extern inline functions, but it
should not be used by new code.)

cgraph_varpool_finalize_variable has the

same behavior but is used for file scope
variables.

cgraph_finalize_compilation_unit shall be
called called once parsing of compilation
unit is finalized and trees representing
it will no longer be changed by the
front-end.

In unit-at-a-time mode, call-graph con-
struction and local function analysis takes
place here. Bodies of unreachable func-
tions are released to conserve memory us-
age.

The compilation unit in this point of view
should be compilation unit as defined by
the language—for instance the C front-
end allows multiple compilation units to
be parsed at once and it should call this
function each time parsing is done, in or-
der to save memory. This is not what
happens currently because the C front-end
does global static variable renaming pass
at the very end of compilation. As a result,
unnecessary and duplicate function bodies
are maintained in memory up to very end
of the parsing process.

Modifying the C front-end to use this
scheme is not an easy task. Merging of
C compilation units together involve a lot
of C language specific behavior and we
need to consider whether it is feasible to
implement that logic in the generic pass
or through a some simple set of front-end
hooks.

cgraph_optimize performs inter-procedural
analysis and compile functions in unit-
at-a-time mode (in function-at-a-time
this function does nothing except for
producing debug dumps). Front-end
shall call this function at the very end
of compilation, after releasing all those
internal data-structures that are not passed
to the back-end.



GCC Developers’ Summit 2004 • 71

cgraph_mark_needed_nodecan be used
when a function is referenced by some
hidden way (for instance if it is marked
by attributeused , which usually means
that it is called in inline assembly code).
The call-graph data structure is updated
in a way that function is marked as entry
point and thus it is never optimized as
local function and always compiled.

cgraph_varpool_mark_needed_node
has a similar meaning as function
cgraph_mark_needed_node , but is
used for variables.

To overcome problems in the front-end specific
representation of trees, we had to implement
two callbacks that allow a front-end to define
front-end specific expansion of trees into RTL.
We plan to eliminate these completely once the
work on tree-ssa branch is finished.

analyze_expr callback This function should
lower tree nodes not understood by
generic code into understandable ones or,
alternatively, should mark referenced call-
graph and varpool nodes.

expand_function callback is used to expand
the function into RTL form in front-end
specific way. The front-end should not
make any assumptions about when this
function can be called. Existence of this
hook is also used as a check on whether
front-end supports unit-at-a-time API.

5 Inlining Heuristics

Only non-trivial inter-procedural optimization
implemented at a moment is inlining we de-
scribe in this section. The inliner implementa-
tion can be used as an example how other inter-
procedural optimizers can be implemented on
the on the top of the new infrastructure, so we
will describe it in greater detail.

5.0.1 Inlining plans

The function inlining information is decided in
advance (in the optimization phase) and main-
tained in the call-graph in the so called inlin-
ing plan until the function is optimized. Once
a function body is physically inlined into an-
other, the callgraph data-structure is updated
to reflect new program structure. This orga-
nization is critical to make it possible to save
parsed function bodies into disk and make all
inter-procedural optimizations without actually
touhing the bodies and having them to resist in
memory all at once.

The inlining decisions are reflected in the call-
graph as follows: When the heuristics decide to
inline given call-graph edge, the calle’s node is
cloned to represent the new function copy that
will be later produced by inliner (so each in-
lined call of given function gets unique clone
node and all the clones are linked together
via linked list). Each edge has an "inline_
failed " field. When the field is set to NULL,
the call will be inlined. When it is non-NULL
it contains an reason why inlining wasn’t per-
formed, that might be eventually output by the
inliner when-Winline is specified.

We originally didn’t clone the nodes and sim-
ply had a flag in each edge specifying whether
the given call shall be inlined. This was found
soon to have many limitations. For example,
it is impossible to represent inline plans that
are nottransitive(i.e., once call of functionB
in offline copy of functionA is inlined, each
inline copy of functionA must have the func-
tion B inlined as well). Non-transitive inlining
plans are needed in order to let the programmer
claim that all direct and indirect callees shall be
inlined recursively; experience has shown that
this kind of control is useful in template-heavy
C++ numeric code.

Reorganizing the code to new scheme also
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turned out to simplify significantly the esti-
mates of overall code size growth caused by
inlining, and allowed to release function body
as soon as all of its inline copies are produced.

5.0.2 Profitability estimates

To make good inlining decisions, the profitabil-
ity of inlining a given call must be estimated.
Ideally, one might take into account the ex-
pected time spent in callee and compute how
large relative speedup will elimination of the
call overhead is. It is also desirable to take into
account the new optimization possibilities and
weight it with the expected code size growth.
See for instance [1] for more discussion on the
topic.

With current very high level and partly front-
end specific intermediate representation it is
difficult to do such a complex analysis and
the profitability analysis actually represent the
weakest spot of our implementation. At a mo-
ment we simply compute estimated function
body size in front-end specific way by walk-
ing the tree representation and summing cost
of the nodes. The majority of nodes has a
cost of 1 with exception of a few nodes that
are known to have zero cost (such as lexical
scope regions or__builtin_constant_p
calls) and a few others that are known to be ex-
pensive (such as division or function call) and
are assigned a cost of 10. This implementa-
tion is still a noticeable improvement compared
to previous implementations that were merely
counting number of statements in the source
and completely ignored the different complex-
ities of individual constructs.

The cost of inlining given call is estimated
as cost of increasing the callers body cost by
callees cost minus 10 (eliminating the call).
Our objective is to inline as many function calls
before reaching given growth limits.

Toggether with developers from Apple we are
working towards a better implementation of
this analysis based on tree-ssa representation.
This work is being done tree-profiling branch
and will take into account the runtime call fre-
quencies computed from the profile, allowing
the compiler to perform a realistic estimate the
costs of individual calls. We also plan to imple-
ment a partial specialization pass on functions
that will notice situations where function body
can be significantly simplified when some of its
arguments are known. This project is however
still far from being finished.

5.0.3 Limiting parameters

As discussed earlier, we provide set of param-
eters to avoid too extreme amount of inlining.
The final set of parameters are just slightly
more complicated than ones outlined in the in-
troduction section:

max-inline-insns-single sets the maximum
number of instructions (counted in GCC’s
internal representation) in a single func-
tion that the tree inliner will consider for
inlining. This only affects functions de-
clared inline and methods implemented in
a class declaration (C++). The default
value is 500.

max-inline-insns-auto sets limit on esti-
mated size of inline candidates when
-finline-functions (included in
-O3 ) is used. The default value is 120.

large-function-insns is a limit that
specifies which functions are con-
sidered to be “large”: for func-
tions greater than this limit, in-
lining is constrained by --param
large-function-growth . This
parameter is useful primarily to avoid
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extreme compilation time caused by non-
linear algorithms used by the back-end.
The default value is 3000.

large-function-growth specifies maximal
growth of large function caused by
inlining in percent. The default value is
200.

inline-unit-growth specifies maximal overall
growth of the compilation unit caused by
inlining. This parameter is ignored when
-funit-at-a-time is not used. The
default value is 150.

5.0.4 Global inlining heuristics

Given the rules established by these five pa-
rameters, inlining decisions are made in three
passes. In the first pass all function calls
marked with thealways_inline attribute
are inlined, so that other decisions cannot in-
terfere with it.

In the second pass inlining of small functions is
performed; all function candidates are put into
a priority heap ordered by the estimated costs
of inlining the function into all its callers and
then they are inlined in priority order, updating
the costs of other enqueued candidates until the
heap is empty or the overall unit growth param-
eters reached.

This algorithm (often described as knapsack
style, see [2]) seem to perform better than sim-
ple top-down and bottom-up heuristics result-
ing in more function calls to be inlined with-
out breaking the same inline limits discussed
above.

In the third pass all functions that are still
called just once are inlined unless the callee
body become too large.

Finally the fourth pass does so-called “recur-
sive inlining.” When the function contains re-

cursive calls and its body is called, the calls
are inlined up to recursion depth computed in
a way so function reach size specified by pa-
rameter. This optimization has similar effect
as loop unrolling.

5.0.5 Incremental inlining heuristics

The global inlining heuristics can not be used
in function-at-a-time mode and thus there is an
alternative implementation of simple bottom
up inlining heuristics. Most of the code (check-
ing of limits and updating call-graph) is shared
in between the implementations and thus the
implementation is pretty straight forward.

The major problem of this heuristics appears
to be in fact that the overall compilation unit
growth argument is ignored. In some ex-
treme C++ test cases (such as those based on
POOMA library) the compiler now compiles
faster at-O2 compilation level compared to
-O1 .

6 Experimental Results

Evaluating the effectiveness of new infrastruc-
ture is difficult task. The benefits (and losses)
vary greatly together with the coding style of
the tested application. Very good results can
be measured in the template heavy C++ code,
such as the DLV application or POOMA li-
brary that we use as a benchmark suite. The
table 1 summarizes the results of DLV bench-
mark suite evolving over various GCC releases
and it is easy to notice the degradation in per-
formance in GCC 3.0, as well as a reduction
of code size caused by decreasing inline limits
to avoid compile time problems as mentioned
earlier. This problem remained apparent un-
til GCC 3.3 despite quite serious attempts to
tune the heuristics. GCC 3.4 behaves quite
well in both function-at-a-time and unit-at-a-
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time heuristics, but the code size has increased
noticeably. For this particular benchmark it is
possible to reduce the inlining limits somewhat
and get code sizes smaller than GCC 2.95 with-
out considerable performance regressions; re-
ducing the limits, however, hurts performance
in other benchmarks signalizing that the prof-
itability analysis needs more work. Unfortu-
nately it is no longer possible to present GCC
3.4 numbers with the old heuristics, but the ini-
tial tests did already show benefits similar as
ones compared to GCC 3.3 so we believe that
majority of the improvements actually come
from inlining in this particular case.

The author evaluated number of template
heavy test cases while working on new imple-
mentation, and the benefits can be virtually in-
finite scaling with complexity of the code. For
test case based on POOMA library, compila-
tion times went down from 25 minutes to 1
minute with noticeable improvements in exe-
cution time too.

On the other hand, the C and Fortran bench-
marks shows a much more moderate improve-
ment. Table 3 shows benchmarks made on
AMD Opteron chip in 32bit and 64bit mode.
While majority of the tests improve, the bene-
fits are less noticeable. The good news, how-
ever, are that the unit-at-a-time reduce code
size almost consistently on the-O2 level of op-
timization. On the other hand the-O3 scores
demonstrate that backward inlining can cause
code size growth without major changes in the
performance.

By comparing the 64-bit and 32-bit scores, one
also can notice the benefits of register passing
conventions.

One area where author was hoping for consid-
erable improvement is performance of desktop
applications. It is difficult to present the bench-
marks of the GUI application but the simple
test of compiling x86-64 KDE and Mozilla

source gave savings of 7.4% and 6.6% respec-
tively in the overall size of stripped binaries,
and a partial i386 Open-Office build gave 22%
savings. These savings ought to bring a no-
ticeable improvement in execution time and re-
duction of memory usage too. In addition the
performance of code shall be improved simi-
lar way as in the DLV application benchmark
presented here.

It remains to discuss the memory usage of the
compiler. Again it is not difficult to present
extreme improvements (for example, compil-
ing the POOMA library only requires 2% of
the memory) as well as extreme regressions: a
huge compilation unit consisting of small but
uninlinable functions will result in arbitrarily
high unit-at-a-time peak memory usage, with-
out increasing peak usage in function-at-a-time
mode.

Real world application however show that
compilation units usually require less memory,
both because they are not very large and also
because the lifetime data structures used by the
front-end in unit-at-a-time mode does not over-
lap with the lifetime of data structures used by
backend; in addition, unneeded functions and
data-structures are released early.

Table 2 shows peak GGC memory usage while
compiling some of relatively large source files.
The numbers were obtained by compiling
with --param ggc-min-expand=0
--param ggc-min-heapsize=2048
-Q and examining the GGC debug output
for largest memory usage after the collection.
The generate.ii is a large test case of
template heavy code, whilecombine.c is
one of largest source files of GCC. The graph
of memory usage in unit-at-a-time of the
C++ testcase is almost flat demonstrating that
the pass releasing unneeded function bodies
release enough memory so the back-end no
longer increase the peak. For the C test case
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there are small regression at-O1 and-O2 but
author would hope that these won’t prevent
unit-at-a-time from being enabled by default
in the future.

7 Contributors

The project would be impossible without fol-
lowing contributions: Steven Bosscher reorga-
nized f90 front-end, reviewed early implemen-
tations of the inlining code and made a number
of cleanups. Richard Günther provided a lot
of feedback about POOMA library issues. He
also implemented patch for “leafify ” func-
tion attribute that brought major motivation for
reorganization of the inlining plans representa-
tion. Richard Henderson reviewed most of the
call-graph code. Gerald Pfeifer provided the
DLV benchmark that has turned out to be ex-
tremely useful to tune the heuristics and gave a
lot of useful feedback. Jeff Sturm revamped the
Java front-end to cgraph code. Mark Mitchell
helped to choose feasible way on how to re-
organize C++ compiler, reviewed the changes
and helped to solve some of issues. Zack Wein-
berg reorganized the code to not use hash tables
based on assembler names.

A number of SUSE developers (mainly An-
dreas Jaeger, Andi Kleen and Michael Matz)
helped to test GCC on SUSE distribution build
and analyzed/fixed many of compatibility is-
sues and implementation defects so the imple-
mentation was ready for production use before
the offical GCC 3.4 release.

Author would also like to thank to Paolo
Bonzini and John W. Lockhart who helped to
proofread the paper.
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Table 1: Speedup in the DLV Benchmark relative GCC 2.95
Execution times in second and relative comparisons to GCC 2.95, smaller is better.

benchmark GCC 2.95 3.0.4 3.3.2 3.4 -fno-unit. . . 3.4 -funit-at. . .
STRATCOMP1-ALL 2.45s24.92s 1017.00% 4.68s 191.00% 8.31s 339.00% 2.58s 105.00%
STRATCOMP-770.2-Q 0.49s 0.57s 116.00% 1.22s 248.00% 0.47s 95.00% 0.45s 91.00%
2QBF1 10.92s13.96s 127.00%28.68s 262.00%11.06s 101.00% 9.33s 85.00%
PRIMEIMPL2 7.52s 8.75s 116.00%43.60s 579.00% 6.27s 83.00% 6.00s 79.00%
3COL-SIMPLEX1 4.68s 4.97s 106.00%11.13s 237.00% 4.56s 97.00% 4.34s 92.00%
3COL-RANDOM1 6.66s 8.15s 122.00%38.14s 572.00% 5.95s 89.00% 5.86s 87.00%
HP-RANDOM1 4.93s 5.72s 116.00%18.44s 374.00% 5.23s 106.00% 4.44s 90.00%
HAMCYCLE-FREE 0.80s 1.12s 140.00% 4.96s 620.00% 1.03s 128.00% 0.72s 90.00%
DECOMP2 8.44s 9.59s 113.00%33.91s 401.00% 8.53s 101.00% 7.87s 93.00%
BW-P5-nopush 4.45s 4.85s 108.00%12.90s 289.00% 4.25s 95.00% 4.19s 94.00%
BW-P5-pushbin 3.79s 4.05s 106.00%12.61s 332.00% 3.44s 90.00% 3.40s 89.00%
BW-P5-nopushbin 1.21s 1.31s 108.00% 4.07s 336.00% 1.13s 93.00% 1.09s 90.00%
HANOI-Towers 2.05s 2.19s 106.00% 6.21s 302.00% 1.94s 94.00% 1.82s 88.00%
RAMSEY 5.34s 5.69s 106.00%16.69s 312.00% 4.83s 90.00% 4.58s 85.00%
CRISTAL 5.30s 5.91s 111.00%12.67s 239.00% 5.14s 96.00% 4.75s 89.00%
21-QUEENS 6.35s 7.31s 115.00%40.15s 632.00% 5.09s 80.00% 4.86s 76.00%
MSTDir[V=13,A=40] 12.58s14.46s 114.00%41.77s 332.00% 9.14s 72.00% 8.60s 68.00%
MSTDir[V=15,A=40] 12.62s14.49s 114.00%41.44s 328.00% 9.15s 72.00% 8.53s 67.00%
STUndir[V=13,A=40] 6.47s 7.57s 117.00%25.48s 393.00% 4.96s 76.00% 4.61s 71.00%
TIMETABLING 7.08s 7.37s 104.00%18.21s 257.00% 6.30s 88.00% 5.90s 83.00%
compilation time 2m42s2m53s 106.7%2m47s 103% 2m9s 79.6%2m28s 91.3%
Code size 1251k 622k 49.7% 1562k 124.8%1808k 144.5%1628k 130.1%

test optimization level function-at-a-time unit-at-a-time savings
generate.ii -O0 33563K 32606K 2.9%
generate.ii -O1 33462K 32606K 2.9%
generate.ii -O2 43296K 33239K 30%
generate.ii -O3 >55077K 33411K >64%
combine.c -O0 3655K 3625K 1.1%
combine.c -O1 3199K 3531K -11%
combine.c -O2 3450K 3609K -4.0%
combine.c -O3 6245K 4086K 52%

Table 2: Peak GGC memory usage
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Table 3: 64-bit SPECint 2000 -fnon-unit-at-a-time compared to -funit-at-a-time
Performance (relative speedup in percent, bigger is better):

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolfavg
-O2 -0.89 1.22 0.72 0.00 0.42 0.35 3.51 4.84 -1.19 3.27 0.12 -4.360.24
-O2 -m32 -0.71 4.02 0.21 -0.19 -1.60 0.15 10.39 1.64 -1.82 -0.19 0.14 -0.610.86
-O3 -0.52 4.08 0.93 0.00 0.36 0.34 5.27 0.00 0.50 -0.50 -0.38 -4.270.11
-O3 -m32 -0.50 7.77 -1.93 0.00 -1.89 -0.71 6.36 0.96 0.26 1.52 -0.28 -1.530.61
-O3 + profile -1.78 3.91 0.19 0.00 -0.37 -0.35 3.84 3.91 -6.37 -1.61 0.49 -0.740.00
-O3 -m32 + profile -0.96 10.04 0.52 0.18 0.10 0.42 10.16 2.78 -0.89 -0.63 0.95 2.122.04

File size (relative increase of the size of stripped binaries in percent):

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal
-O2 -20.42 -5.62 -2.08 0.00 -0.02 0.00 -8.58 -1.08 -0.10 -1.41 0.00 0.46-2.63
-O2 -m32 -19.93 -2.66 -2.47 0.00 0.10 -0.03 -7.98 -0.89 -0.09 -0.87 0.00 -0.05-2.44
-O3 -13.79 -1.47 5.14 0.00 3.68 4.17 -3.89 4.45 2.22 1.13 12.36 5.232.60
-O3 -m32 -12.72 3.62 5.48 0.00 4.33 5.28 -3.66 4.87 2.81 1.01 18.79 7.483.24
-O3 + profile -14.41 -1.33 5.18 0.00 2.35 4.12 -3.60 4.95 2.58 0.72 13.23 4.832.62
-O4 -m32 + profile -12.30 3.66 5.66 0.00 4.34 5.43 -3.68 5.21 2.99 1.02 18.29 5.793.29

Performance (relative speedup in percent, bigger is better):

options wupwise swim mgrid applu mesa art equake ammp apsitotal
-O2 0.00 0.14 0.00 0.00 -0.70 0.32 -0.13 0.00 0.000.00
-O2 -m32 -0.13 0.00 0.00 0.00 -1.36 1.48 0.72 0.00 0.000.17
-O3 0.00 0.00 0.00 0.17 -3.51 0.63 4.87 0.00 0.000.14
-O3 -m32 1.36 0.29 -0.18 0.00 4.67 1.89 3.75 0.00 0.001.02
-O3 + profile feedback 0.11 0.43 0.00 0.00 3.35 1.92 1.74 0.00 0.000.86
-O3 -m32 + profile feedback 0.00 0.00 0.18 0.00 7.36 2.80 3.01 0.00 0.001.19

File size (relative increase of the size of stripped binaries in percent):

options wupwise swim mgrid applu mesa art equake ammp apsitotal
-O2 0.00 0.00 0.00 0.00 -1.73 0.00 0.00 0.00 0.00-0.47
-O2 -m32 0.00 0.00 0.00 0.00 -1.32 0.00 0.24 0.00 0.00-0.35
-O3 0.00 0.00 0.00 0.00 -0.23 0.00 0.85 0.00 0.00-0.06
-O3 -m32 0.00 0.00 0.00 0.00 -0.24 1.35 5.57 0.00 0.000.02
-O3 + profile feedback 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 0.00 0.00-0.07
-O3 -m32 + profile feedback 0.00 0.00 0.00 0.00 -0.21 1.43 5.16 0.00 0.000.03
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Abstract

Though compilers usually focus on optimizing
for performance, the size of the generated code
has only received attention recently. On gen-
eral desktop systems the code size is not the
biggest concern, but on devices with a limited
storage capacity compilers should strive for as
small a code as possible. GCC already con-
tains some very useful algorithms for optimiz-
ing code size, but code factoring – a very pow-
erful approach to reducing code size – has not
been implemented yet in GCC. In this paper we
will provide an overview of the possibilities of
using code factoring in GCC. Two code fac-
toring algorithms have been implemented so
far. These algorithms, using CSiBE as a bench-
mark, produced a maximum of 27% in code
size reduction and an average of 3%.

1 Introduction

In the recent years handheld devices such as
PDAs, telephones and smartphones are becom-
ing more important. With these systems the
amount of runtime memory and storage capac-
ity is often very limited but at the same time
the need for more sophisticated software is in-
creasing. Hence powerful size reducing meth-
ods are required to cram new features into the
applications.

Although GCC already contains size reducing
algorithms, further optimization techniques are
needed since GCC is already used for compil-
ing for handheld devices. The official com-
piler for the increasingly popular Symbian OS-
based mobile phones is GCC [8], some PDAs
like the iPAQs already have Linux ports [9]
(where, needless to say, the default compiler is
GCC) and Linux-based mobile phones are also
available.

In this paper we will provide an overview on
code factoring, a class of powerful optimiza-
tion techniques for code size reduction, and
present a new, enhanced algorithm for proce-
dural abstraction. These algorithms have been
implemented in GCC and have resulted in 3%
code size reductions on average, while achiev-
ing a 27% reduction in the best cases, based on
the CSiBE benchmark [5].

The rest of the paper is organized as follows.
In Section 2 we introduce code factoring and
present a new enhancement for procedural ab-
straction. In Section 3 we discuss some de-
tails of the implementation of the algorithms
in GCC, while in Section 4 we give our experi-
mental results. Finally, in Section 5 we present
our conclusions and future plans.
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2 Code Factoring

Code factoring is the name of a class of use-
ful optimization techniques developed explic-
itly for code size reduction [1, 2, 3, 4]. These
approaches aim to reduce size by restructur-
ing the code. The following subsections will
discuss two code factoring algorithms, one
of which works with individual instructions,
while the other handles longer instructions se-
quences.

2.1 Local Factoring

The optimization strategy of local factoring
(also known as local code motion, code hoist-
ing and code sinking) is to move identical in-
structions from basic blocks to their common
predecessor or successor, if they have any. The
semantics of the program have to be preserved
of course, thus only those instructions which
neither invalidate any existing dependences nor
introduce new ones may be moved. Figure 1a
shows a control-flow graph (CFG) with basic
blocks containing identical instructions. To ob-
tain the best size reduction some of the instruc-
tions are moved upwards to the common pre-
decessor, while some are moved downwards to
the common successor. Figure 1b shows the
result of the transformation.

Let us now consider some more complicated
cases. While not frequent, it may occur that
multiple basic blocks have more than one pre-
decessors, all of which are common. In this
case, if the basic blocks in question have iden-
tical instructions and the number of predeces-
sors is less than the number of the examined
blocks, then the instructions shall be moved to
all the predecessors. Figure 2 depicts this case.
A similar situation is when basic blocks have
more than one common successors (see Fig-
ure 3.) Furthermore, in the case of sinking even
those instructions that are not present in all of
the blocks may be moved by creating a new
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Figure 1: Local code factoring. CFG (a) be-
fore and (b) after the transformation. Identical
letters denote identical instructions.

successor block for them. Figure 4 shows an
example CFG for this case.

Except for this last case, which involves the
creation of a new basic block, local factoring
has an additional benefit of being good for per-
formance also.

2.2 Procedural Abstraction

Procedural abstraction is a size optimization
method which, unlike local factoring, works
with whole single-entry single-exit code frag-
ments (instruction sequences smaller than a ba-
sic block, whole blocks or even larger units)
instead of single instructions. The main idea
of this technique is to find identical regions of
code, which can be turned into procedures, and
then replace all occurrences with calls to the
newly created subroutine.

The existing solutions [2, 4] can only deal with
such code fragments that are either identical
or equivalent in some sense or can be trans-
formed somehow (e.g. by means of register re-
naming) to an equivalent form. However, these
approaches fail to find an optimal solution for
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Figure 2: Basic blocks with multiple common
predecessors (a) before and (b) after local fac-
toring.
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Figure 3: Basic blocks with multiple common
successors (a) before and (b) after local factor-
ing.

those cases where an instruction sequence is
equivalent to another one, while a third one is
only identical with its suffix (as shown in Fig-
ure 5a). The current solutions either choose
to abstract the longest possible sequence into a
function and leave the shorter one unabstracted
(Figure 5b) or turn the instructions common in
all sequences into a function and create another
new function from the remaining common part
of the longer sequences, thus introducing the
overhead of the inserted extra call/return code
(Figure 5c).

In this paper we propose to create multiple-
entry functions in the cases described above to
allow the abstraction of instruction sequences
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Figure 4: Basic blocks with multiple common
successors but only partially common instruc-
tions (a) before and (b) after local factoring.

of differing lengths without the overhead of su-
perfluous call/return code. The longest possi-
ble sequence shall be chosen as the body of
the new function and entry points need to be
defined according to the length of the match-
ing sequences. Each matching sequence has to
be replaced with a call to the appropriate en-
try point of the new function. Figure 5d shows
the optimal solution for the problem depicted
in Figure 5a.

Needless to say, procedural abstraction intro-
duces some performance overhead with the ex-
ecution of the inserted call and return code.
Moreover, the size overhead of the inserted
code must also be taken into account. The ab-
straction shall only be carried out if the gain
resulting from the elimination of duplicates ex-
ceeds the loss arising from the insertion of ex-
tra instructions.

3 Implementation details

GCC already contains some algorithms similar
to those discussed in Section 2, but they usu-
ally reduce code size only if the transformation
does not introduce a (significant) performance
overhead. Furthermore, they are usually of less
potential than the previously described ones.
The cross-jumpingalgorithm merges identical
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Figure 5: Abstraction of (a) instruction se-
quences of differing lengths to procedures us-
ing different strategies (b,c,d). Identical letters
denote identical sequences.

tails of basic blocks, but this approach can only
deal with a very limited subset of the generic
problems of procedural abstraction. Another
algorithm, calledif conversion, has a similar
effect on the code as local factoring when fol-
lowed by acombinephase. As contrast to local
factoring,if conversionis bound to conditional
jumps.

Both of the new algorithms have been imple-
mented as new RTL optimization phases in
GCC (a snapshot taken from mainline on 2004-
03-10 12:00:00 UTC). Using the RTL rep-

resentation algorithms can optimize only one
function at a time. Although procedural ab-
straction is inherently an interprocedural op-
timization technique, it can be adapted to in-
traprocedural operation. Instead of creating
a new function from the identical code frag-
ments, one representative instance of them has
to be retained in the body of the processed
function and all the other occurrences will be
replaced by code transferring control to the
retained instance. To preserve the semantics
of the original program, however, the point
where control has to be returned after the exe-
cution of the retained instance must be remem-
bered somehow, thus the subroutine call/return
mechanism has to be mimed. In the current im-
plementation we use labels to mark the return
addresses, registers to store references to them
and jumps on registers to transfer control back
to the “callers.”

Unfortunately, the current implementation of
the enhanced procedural abstraction algorithm
suffers from the problem of increasing the
compilation time by a factor of 2–4 on aver-
age. This stems from the complex problem of
finding the optimal candidates for abstraction.
However, we hope that by applying more effi-
cient algorithms we will be able to bring down
the compilation time factor to a manageable
level.

For the sake of simplicity, local factoring has
been split into two parts and implemented in
GCC as two individual algorithms. One of the
algorithms implements the hoisting of instruc-
tions, i.e. moving them upwards to their prede-
cessor blocks, while the other one is responsi-
ble for the sinking of the instructions, that is
move them downwards to their successor ba-
sic blocks. A central problem for both algo-
rithms is to decide whether an instruction may
be moved freely out from its block. An in-
struction cannot be moved across instructions,
which use parameters defined by the instruc-
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tion or define parameters used or defined by the
instruction. GCC provides methods for gather-
ing the required definition/use information for
the whole processed function. However, from
a local factoring point of view, these methods
are too expensive since only a small portion of
the computed information is used. Therefore
the implementation contains a “slim” version
of the definition/use calculation code. Being
sensitive to the compilation time in the imple-
mentation, we also made it possible to parame-
terize the maximum number of instructions the
algorithms should analyze starting from the top
or bottom of the basic blocks when looking for
candidates of motion.

The implementation of the two algorithms are
publicly available. They have been sent in form
of patches to the appropriate mailing list [6, 7].

4 Results

On examining code size we found the code fac-
toring algorithms had impressive effects. We
evaluated the discussed algorithms with the
help of CSiBE, the GCC Code Size Bench-
mark Environment, version 1.1.1, and found
that a 3% code-size reduction can be achieved
on average, but in some cases they are able to
produce reduction ratios as high as 27%. Ta-
ble 1 details the average code size reduction
achieved by each algorithms on some relevant
targets. The table also shows the combined ef-
fect of the techniques. The figures are relative
to the unmodified GCC optimizing for size, i.e.
optimizing with -Os . Table 2 shows the best
figures for each algorithm.

5 Conclusion and future plans

In this paper we gave an overview of two code
factoring algorithms and provided an enhance-
ment to procedural abstraction, which provides

Target Local Procedural Combined
Factoring Abstraction

arm-elf 0.148% 2.785% 3.120%
i386-elf 0.701% 1.356% 2.052%
i686-linux 0.696% 1.448% 2.143%
m68k-elf 0.092% 2.312% 2.401%

Table 1: Average code size reduction achieved
by code factoring algorithms.

Target Local Procedural Combined
Factoring Abstraction

arm-elf 3.794% 27.230% 27.342%
i386-elf 14.621% 13.210% 16.795%
i686-linux 11.592% 13.261% 17.389%
m68k-elf 1.468% 23.174% 23.174%

Table 2: Maximum code size reduction
achieved by code factoring algorithms.

superior results compared to the existing so-
lutions. We implemented the discussed al-
gorithms in GCC and achieved a 3% code-
size reduction on average, based on the CSiBE
benchmark. In the best cases the optimizations
yielded reduction ratios as high as 27%.

From the nature of procedural abstraction it
follows that it can optimize larger inputs bet-
ter than small ones. To be able to utilize the
full potential of the algorithm the current im-
plementation has to be modified so that it can
work interprocedurally, which means a unit-at-
a-time in GCC terminology instead of working
intraprocedurally, i.e. transforming only one
function at a time. This may necessitate rewrit-
ing the implementation so it can work on the
GIMPLE representation, as some feedback al-
ready suggested. We are also aware of the algo-
rithm complexity problem and have been striv-
ing to improve the implementation in order to
reduce the compilation time by applying more
efficient algorithms.

We are already investigating the possibility
of making the local factoring implementation
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work on GIMPLE also, even if the algorithm
cannot be extended to work interprocedurally,
since GIMPLE is now preferred over RTL. Our
preliminary results are very promising.

When we have finished with our ongoing re-
search, we also plan to consider the adapta-
tion and implementation of other algorithms
in GCC such as the procedural abstraction of
single-entry single-exit regions larger than a
basic block or the compaction of matching
single-entry multiple-exit regions.
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Abstract

The necessity of decreasing register pressure
in compilers is discussed. Various approaches
to decreasing register pressure in compilers are
given, including different algorithms of regis-
ter live range splitting, register rematerializa-
tion, and register pressure sensitive instruction
scheduling before register allocation.

Some of the mentioned algorithms were tried
and rejected. Implementation of the rest, in-
cluding region based register live range split-
ting and rematerialization driven by the regis-
ter allocator, is in progress and probably will
be part of GCC. The effects of discussed op-
timizations will be reported. The possible di-
rections of improving the register allocation in
GCC will be given.

Introduction

Modern computers have several levels of stor-
age. The faster the storage, the smaller its size.
This is the consequence of a trade-off between
the computer speed and its price. The fastest
storage units are registers (orhard registers).
They are not enough to store the values of op-
erations and directly referred variables for any
serious program.

It is very hard to force any optimization in a
compiler (especially in a portable one) to use
the hard registers effectively. Therefore most
of compiler optimizations is written as if there

is infinite number of virtual registers called
pseudo-registers. The optimizations use them
to store intermediate values and values of small
variables. Although there is an untraditional
approach to use only memory to store the val-
ues. For both approaches we need a special
pass (or optimization) to map pseudo-registers
onto hard registers and memory; for the second
approach we need to map memory into hard-
registers instead of memory because most in-
structions work with hard-registers. This pass
is called register allocation.

A good register allocator becomes a very
significant component of an optimized com-
piler nowadays because the gap between ac-
cess times to registers and to first level mem-
ory (cache) widens for the high-end proces-
sors. Many optimizations (especially inter-
procedural and SSA-based ones) tend to cre-
ate lots of pseudo-registers. The number of
hard-registers is the same because it is a part of
architecture. Even processors with new archi-
tectures containing more hard-registers need a
good register allocator (although in less de-
gree) because the programs run on these com-
puters tend to be more complicated too.

The register allocator is one or more compiler
components that could be considered as ones
solving two major tasks (mostly in an inte-
grated way). The first and most interesting one
is to decrease register pressure to the level de-
fined by the number of hard registers by differ-
ent transformations. And the second one is to
assign hard registers to pseudo-registers effec-
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tively.

So what is register pressure? There are two
commonly used definitions. The wide one is
the number of hard registers needed to store
values of the pseudo-registers at given program
point. Another one is the number of living
pseudo-registers.

There are a lot of known transformations that
decrease register pressure. Some of these
transformations generate code which could and
should be corrected later. Some transforma-
tions are easily and naturally integrated with
other transformations, such as the ones de-
creasing register pressure, assigning hard reg-
isters, and fixing the pitfalls of the previous
transformations (such as register coalescing in
a colouring based register allocator). Some of
them are hard to integrate in one pass.

Currently GCC has two register allocators. The
new one was written about two years ago
and is described in details in [Matz03]. It
is based on the Chaitin, Briggs, and Appel
approaches to register allocation [Chaitin81,
Briggs94, Appel96].

The old register allocator (I will call itthe orig-
inal register allocator) has been existing since
the very first version of GCC. It was written by
Richard Stallman. Some of its important com-
ponents stayed practically unchanged since the
first version. Richard Stallman took the regis-
ter allocator design from a portable Pastel (an
extension of the programming language Pas-
cal) compiler written in Livermore Laborato-
ries [Stallman04]. The design of the Pastel
register allocator (which actually was a second
version for the Pastel compiler) is very similar
to the GCC one [Killian04]—they both have
the same separation on a pass assigning hard
registers to pseudo-registers and a pass which
actually changes the code following the assign-
ment and, if it is not possible, generates addi-
tional instructions to reload the registers.

Despite its lack of many modern optimizations
present in the new register allocator, the orig-
inal register allocator can easily compete with
the new one in terms of compiler speed, qual-
ity of the generated code and size of code. This
was a major reason for me to start work on im-
proving the original register allocator. After
thorough investigation, I found that the method
of assigning hard registers is very similar to
the priority based colouringregister allocator
[Chow84, Chow90], although it is more similar
to the modifications described in [Sorkin96]. It
was confirmed later.

Chow’s approach is a real competitor to the
Chaitin/Briggs approach. Some advantages
of Chow’s approach are acknowledged even
by Preston Briggs [Briggs89]. Chow’s algo-
rithm is used in SGI Pro64 [Pro64] compiler
and derived compilers like Open64 [Open64]
and ORC [ORC]. For example, as Briggs’
optimistic colouring, Chow’s algorithm easily
finds hard-registers for the diamond conflict
graph (see Figure 1).

a

b c

d

Figure 1: Diamond graph

All that was mentioned above was a major mo-
tivation to start work on improvement of the
original register allocator. This article is fo-
cused on improving the original GCC register
allocator. The first section describes the orig-
inal GCC register allocator. The second sec-
tion describes the method for decreasing the
register pressure for the original register al-
locator based on register live range splitting.
The third section describes decreasing regis-
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ter pressure based on the live range shrinking
approach. The fourth section describes other
possible improvements to the original register
allocator. The fifth section gives conclusions
from my work.

1 The original register allocator in
GCC

The original register allocator contains a lot of
passes. Figure 2 describes the major passes and
their order.

regclass
(regclass.c)

regmove
(regmove.c)

insn
scheduler

local
allocator

(local-alloc.c)

global
allocator
(global.c)

reload
(reload1.c,
reload.c)

post-reload
(postreload.c)

retry_global

Figure 2: The original register allocator

The regmove pass is usually not considered
to be a part of the original register al-
locator. I included it because the pass
solves one task (register coalescing) pe-
culiar to register allocators. The pass re-
moves some register moves if the registers
have the same value and it can be found in
a basic block scope. Although the major
task of regmove is to generate move in-
structions to satisfy two operand instruc-
tion constraints when the destination and
source registers should be the same. The

reload pass can solve this task too but in a
less effective manner.

If register coalescing and global value
numbering (mentioned in Section 4) are a
part of GCC, we could try to remove reg-
ister coalescing from this pass.

The instruction scheduler is not a part of the
original register allocator. It is present
just to show GCC’s major passes starting
with the regmove pass. Although the in-
struction scheduler could solve the task
of decreasing register pressure (see sec-
tion “register pressure sensitive instruc-
tion scheduling”).

Regclass.GCC has a very powerful model for
describing the target processor’s register
file. In this model there is the notion of
register class. The register class is a set of
hard registers. You can describe as many
register classes as possible. Of course,
they should reflect the target processor’s
register file. For example, some instruc-
tions can accept only a subset of all reg-
isters. In this case you should define a
register class for the subset. Any rela-
tions are possible between different regis-
ter classes: they can intersect or one regis-
ter class can be a subset of another register
class (there are reserved register classes
like NO_REGSwhich does not contain
any register orALL_REGSwhich con-
tains all registers).

The pass regclass (fileregclass.c )
mainly finds thepreferredandalternative
register classes for each pseudo-register.
The preferred class is the smallest class
containing the union of all register classes
which result in the minimal cost of their
usage for the given pseudo-register. The
alternative class is the smallest class con-
taining the union of all register classes,
the usage of which is still more profitable
than memory (the classNO_REGSis used
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for the alternative if there are no such reg-
isters besides the ones in the preferred
class).

It is interesting to note that the pass also
implicitly does code selection. Regclass
works in two passes. On the first pass,
it defines the preferred and alternative
classes without taking the possible classes
of other operands into account. For ex-
ample, an instruction with two operand
pseudo-registers exists in two variants;
one accepting classesA andB, and other
one acceptingC andD. On the first pass,
the algorithm does not see that the variant
with classesA andD will be more costly
because it will require the generation of
additional move instructions. On the sec-
ond pass, the algorithm will take it into
account. As a result the preferred or al-
ternative class of a pseudo-register could
change. This means two passes are not
enough to find the preferred and alterna-
tive classes accurately; but it is a good ap-
proximation.

The file regclass.c also contains func-
tions to scan the pseudo-registers to find
general information about them (like the
number of references and sets of pseudo-
registers, the first and last instructions ref-
erencing the pseudo-registers etc.).

The local allocator assigns hard-registers
only to pseudo-registers living in-
side one basic block. The result of
the work is stored in the global array
reg_renumber whose element values
indexed by pseudo-register numbers are
hard-registers assigned to the correspond-
ing pseudo-registers.

Besides assigning hard-registers, the local
allocator does some register coalescing
too: if two or more pseudo-registers shuf-
fled by move instructions do not conflict,
they always get the same hard-registers.

The global allocator also tries to do this
in a less general way. The local alloca-
tor also performs a simple copy and con-
stant propagation. It is implemented in the
functionupdate_reg_equiv .

Actually all hard-registers could be as-
signed in the global allocator. Such di-
vision between the local and global allo-
cator has historical roots. In my opinion
it is reasonable to remove the local al-
locator in the future because faster allo-
cation of local pseudo-registers does not
compensate the cost of an additional pass.
If all assigning hard-registers is done in
the global register allocator (but we still
call update_equiv_regs ), GCC is in
average 0.5% faster on SPEC2000 bench-
marks on Pentium 4.

The global allocator assigns hard-registers to
pseudo-registers living in more one ba-
sic block. It could change an assign-
ment made by the local allocator if it
finds that usage of the hard-register for a
global pseudo-register is more profitable
than one for the local pseudo-register.

The global allocator forms a bit-vector
for each pseudo-register containing hard
registers conflicting with the pseudo-
registers, builds a conflict graph for
pseudo-registers and sorts all pseudo-
registers according to the following prior-
ity:

log2 Nrefs · Freq

Live_Length
· Size

Here Nrefs is number of the pseudo-
register occurrences,Freq is the fre-
quency of its usage,Live_Length is the
length of the pseudo-register’s live range
in instructions, andSize is its size in hard-
registers.

Afterwards the global allocator tries to as-
sign hard-registers to the pseudo-registers
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with higher priority first. If the current
pseudo-register got a hard-register, the
hard-register is added to the hard-register
conflict bit-vectors of all pseudo-registers
conflicting with the given pseudo-register.
This algorithm is very similar to assigning
hard-registers in Chow’s priority-based
colouring [Chow84, Chow90].

The global allocator tries to coalesce
pseudo-registers with hard-registers met
in a move instruction by assigning the
hard-register to the pseudo-register. It
is made through a preference technique:
the hard-register will be preferred by the
pseudo-register if there is a copy instruc-
tion with them. In brief, the global allo-
cator is looking for a hard-register to as-
sign to a pseudo-register in the following
order:

1. a callee saved hard-register which
is in the pseudo-register’s preferred
class and which is preferred by
the pseudo-register while not be-
ing preferred by another conflicting
pseudo-register.

2. a callee saved hard-register which
is in the pseudo-register’s preferred
class and which is preferred by the
pseudo-register.

3. a callee saved hard-register which
is in the pseudo-register’s preferred
class.

4. as in 1-3 but a caller saved hard-
register (if it is profitable) instead of
callee-saved one.

5. as in 1-4 but the hard-register is
in the pseudo-register’s alternative
class.

The reload is a very complicated pass. Its
major goal is to transform RTL into a
form where all instruction constraints for

its operands are satisfied. The pseudo-
registers are transformed here into either
hard-registers, memory, or constants. The
reload pass follows the assignment made
by the global and local register alloca-
tors. But it can change the assignment if
needed.

For example, if the pseudo-register got
hard-registerA in the global allocator but
an instruction referring to the pseudo-
register requires a hard-register of another
class, the reload will generate a move of
A into the hard-registerB of the needed
classes. Sometimes, a direct move is
not possible; we need to use an inter-
mediate hard-registerC of the third class
or even memory. If the hard-registers
B and C are occupied by other pseudo-
registers, we expel the pseudo-registers
from the hard-registers. The reload will
ask the global allocator through function
retry_global to assign another hard-
register to the expelled pseudo-register. If
it fails, the expelled pseudo-register will
finally be placed on the program stack.

To choose the best register shuffling and
load/store memory, the reload uses the
costs of moving register of one class into
register of another class, loading or stor-
ing a register of the given class. To choose
the best pseudo-register for expelling, the
reload uses the frequency of the pseudo-
register’s usage.

Besides this major task, the reload also
does elimination of virtual hard-registers
(like the argument pointer) and real hard-
registers (like the frame pointer), assign-
ing stack slots for spilled hard-registers
and pseudo-registers which finally have
not gotten hard-registers, copy propaga-
tion etc.

The complexity of the reload is a conse-
quence of the very powerful model of tar-
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get processor’s register file, permitting to
describe practically any weird processor.

Postreload. The reload pass does most of its
work in a local scope; it generates redun-
dant moves, loads, stores etc. The post-
reload pass removes such redundant in-
structions in basic block context.

2 Live Range splitting

Live range splitting is based on idea that if
we split the live range of a pseudo-register
in several parts, the pseudo-register in each
live range part will conflict with fewer other
pseudo-registers; less hard-registers will be
needed for all the pseudo-registers. Figure 3 il-
lustrates this. Pseudo-registerA conflicts with
two pseudo-registersB andC, but in part 1 and
2 of its live range the pseudo-register conflicts
only with one other pseudo-register.

A C

B

1

2

Figure 3: Live range splitting for pseudo-
register A.

Live range splitting might require the gener-
ation of additional instructions; e.g. instruc-
tions storing/loading pseudo-register value
into/from memory, moving the pseudo-register
into/from a new pseudo-register, or just recal-
culation of the pseudo-register value. Cost of
such additional instructions can outweigh the
benefits of reducing the register pressure. So
any live range splitting algorithm should take
this problem into account.

2.1 Register renaming

Register renaming could be considered as no
cost live range splitting because no additional
instructions need to be generated. We can
change a pseudo-register into several ones if
there are multiple independent parts of the
pseudo-register’s usage. The following is a
high level example when register renaming
could be used.

for (i = 0; i < n; i++) { ... }
for (i = 0; i < k; i++) { ... }

After register renaming (the pseudo-register re-
named is the variablei ), the corresponding
code could look like

for (i = 0; i < n; i++) { ... }
for (i_1 = 0; i_1 < k; i_1++) { ... }

This optimization was written independently
by Jan Hubicka from SUSE and me. Jan’s vari-
ant is in GCC mainline now. Earlier it was
activated by using-fweb (independent part
of a pseudo-register is traditionally called web
in colouring based register allocator). After
solving the problem of generating correct de-
bugging information it is default for-O2 now.
Tables 1 and 2 contain SPEC2000 results for
Pentium 4 with and without register renam-
ing. Although the results are not impressive
for SPECInt2000 (mainly because of perlbmk),
this optimization is a “must be” for any opti-
mizing compiler. In most benchmarks it could
considerably increase the performance. The re-
sults look much better for SPECfp2000. The
reduced register pressure means less instruc-
tions for spilling and restoring registers and
shorter instructions because hard registers in-
stead of memory are used in more instructions.
As the result code size for Pentium 4 is 0.3%
and 0.6% less in average for SPECint2000 and
SPECfp2000 correspondingly.
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Benchmarks Base ratio Peak ratio Change
164.gzip 747 750 +0.40%
175.vpr 531 530 -0.19%
176.gcc 891 897 +0.90%
181.mcf 539 539 +0.00%
186.crafty 800 798 -0.25%
197.parser 649 648 -0.15%
252.eon 663 682 +2.87%
253.perlbmk 1019 939 -7.85%
254.gap 831 838 +0.84%
255.vortex 973 961 -1.23%
256.bzip2 621 628 +1.11%
300.twolf 665 671 +0.90%
SPECint2000 728 726 -0.27%

Table 1: SPECint2000 for Pentium 4 GCC
with -O2 -mtune=pentium4 without and
with register renaming.

Benchmarks Base ratio Peak ratio Change
168.wupwise 895 898 +0.33%
171.swim 617 621 +0.64%
172.mgrid 598 597 -0.17%
173.applu 636 637 +0.16%
177.mesa 654 656 +0.31%
179.art 245 250 +2.04%
183.equake 984 988 +0.40%
200.sixtrack 352 406 +15.34%
301.apsi 406 405 -0.25%
SPECfp2000 552 563 +1.99%

Table 2: SPECfp2000 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
register renaming.

Register renaming also improves instruc-
tion scheduling by removing some anti-
dependencies. So it could be useful even for
architectures with many hard registers like IA-
64. Table 3 contains SPECfp2000 results for
Itanium 2 with and without register renaming.
The code size for SPECfp2000 was also 0.24%
less.

Andrew Macleod from RedHat also imple-
mented this optimization in the transformation
of SSA into normal form (this is made very
easy on this pass because the independent parts

Benchmarks Base ratio Peak ratio Change
168.wupwise 383 385 +0.52%
171.swim 388 395 +1.80%
172.mgrid 229 230 +0.44%
173.applu 293 297 +1.37%
177.mesa 660 658 -0.30%
179.art 1605 1583 -1.37%
183.equake 315 315 0.00%
200.sixtrack 157 161 +2.55%
301.apsi 266 267 +0.38%
SPECfp2000 373 375 +0.53%

Table 3: SPECfp2000 for Itanium2 GCC with
-O2 without and with register renaming.

of a variable usage are present naturally in
SSA). He reported about 2% improvement for
SPECint2000 for Pentium 4. When tree-SSA
branch becomes GCC mainline, Jan’s imple-
mentation probably should probably go away
because register renaming is made easier and
faster during the translation of SSA into nor-
mal form.

2.2 Live range splitting

The idea of this approach is to store a pseudo-
register living through a region but not used in
the region right before entering the region and
reload its value right after leaving the region.
It decreases register pressure in the region by
one.

I have implemented practically the same algo-
rithm described in [Morgan98]. Morgan’s al-
gorithm works as a separate compiler pass. It
starts work on the topmost loops with the reg-
ister pressure higher than the number of avail-
able hard-registers. It searches for pseudo-
registers living through the loop but not being
used there. It chooses a pseudo-register living
through a maximal number of loops (and basic
blocks) which are neighbors of the loop being
processed. Then it spills the pseudo-register
before the loop(s) and restore the pseudo-
register after the loop(s). After processing the
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loops the algorithm recursively processes sub-
loops. When all sub-loops are processed, the
algorithm tries to decrease register pressure in-
side basic blocks. Figure 4 illustrates how the
algorithm works.

loop 3:
P2 is used,

P1 is not used

Loop 1:
P1 and P2 are not used

Loop2:
P3 is not used

Reload P1

Spill P1

Spill P3

Reload P3

P3 is used here

P1 is used here

Figure 4: Illustration of Morgan’s algorithm of
live range splitting.

The current implementation is different from
Morgan’s in the following:

• Although our implementation also works
on loops, it could be easily modified to
work on any nested regions instead.

• Instead of spilling the pseudo-register into
memory before the loop(s) and reloading
it we create a new pseudo-register living
only in the loop(s) and inserting instruc-
tions shuffling the two pseudo-registers.
If both pseudo-registers get memory or
hard-registers (it really can happen in the
reload pass), the move instructions are
coalesced (see the section on coalescing
later in this article). If one pseudo-register
gets a hard-register and another one gets
memory, the move instructions will be
transformed into memory store and load
instructions.

• GCC has a complicated description model
for registers. A hard-register can belong
to more one register class. A pseudo-
register can get a hard-register from two
different classes (see the description of
the original register allocator above). To
calculate register pressure we consider a
pseudo-register belonging to the smallest
register class containing the two pseudo-
register classes (preferred and alternative
ones).

• We do not decrease register pressure in-
side the basic blocks. We found that on
most benchmarks this is not profitable.

The current SPECInt95 results for the opti-
mization usage for Pentium 4 are given in Ta-
ble 4. The improvement can be even more for
some benchmarks. For example, Fast Fourier
Transform became 6% faster for Pentium 4
with this optimization, a linear-space Local
similarity algorithm [Huang91] became 14%
faster, and fftbench [Ladd03] became more
30% faster.

Benchmarks Base ratio Peak ratio Change
099.go 68.6 67.8 -1.17%
124.m88ksim 72.3 71.8 -0.69%
126.gcc 75.2 74.8 -0.53%
129.compress 55.5 56.4 +1.62%
130.li 78.3 78.0 -0.38%
132.ijpeg 72.5 72.6 +0.14%
134.perl 68.5 79.8 +16.50%
147.vortex 68.1 68.6 +0.73%
SPECint95 69.6 70.9 +1.87%

Table 4: SPECInt95 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
live range splitting.

I see the following possible improvements to
the implementation:

• Better utilization of profile information to
choose loops with many iterations.
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• Forming regions based on the profile in-
formation different from the loops for the
algorithm of live range splitting.

• Choosing pseudo-registers whose live
range splitting does not result in critical
edge splitting. As a consequence, no ad-
ditional branch instructions will be gener-
ated. It could be important for live range
splitting around loops with few iterations.

• More accurate evaluation of register pres-
sure for register classes to which a living
pseudo-register belongs.

2.3 Rematerialization

Instead of reloading a pseudo-register’s value
we could just recalculate it again if it is more
profitable. Such approach is called register re-
materialization. Preston Briggs believed that it
is a more promising approach than live range
splitting. It requires that all the pseudo regis-
ters used as operands are live and got hard reg-
isters because otherwise we will need to reload
the operand value too. Reloading the operand’s
value usually costs the same as reloading the
pseudo-register in question.

My current implementation of the register re-
materialization works between global register
allocation and reload passes. To rematerialize
a pseudo-register we insert an existing instruc-
tion setting up the pseudo-register’s value. To
know what instructions could be inserted we
define the partial availability of instruction pat-
terns according to the following equations.

P_PavIni =
⋃

j∈Pred(i)

P_PavOutj

P_PavOuti = (P_PavIni − P_Killi)
⋃

P_Geni

Here P_Killi is a set of patterns whose de-
fined and used locations (registers or memory)
are redefined or clobbered in basic blocki or

whose clobbered registers are live at the end of
basic block.P_Geni is a set of patterns in ba-
sic block whose defined or used locations are
not killed in the basic block after the pattern’s
occurrence and whose clobbered registers are
not live at the end of the basic block.

After we calculated partial availability of pat-
terns, we use it as an initial value to calculate
availability of patterns according to the follow-
ing equation.

P_AvIni =
⋂

j∈Pred(i)

P_AvOutj

P_AvOuti = (P_AvIni − P_Killi)
⋃

P_Geni

The algorithm itself looks like

foreach insn I defining the
only pseudo-register D do

if D got a hard-register then
foreach pseudo-register operand Op

of I do
if Op got memory then

Pat := a pattern with a minimal
cost available right before
I and whose the only
destination pseudo-register
is Op and whose all other
operand pseudo-registers
got hard-registers;

if there is Pat and its cost is less
than cost of loading Op then

insert insn before I with pattern
Pat changing Op on D;

change Op in I on D;
break ;

fi
fi

done
fi

done

e.g. if pseudo-registerA got memory and
pseudo-registersB, C andD got hard-registers,
the algorithm will work as follows

A <- op1 (B, C) ...
... -> ...
D <- op2 (A, E) D <- op1 (B, C)

D <- op2 (D, E)

If the second instruction in the example is
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move, the algorithm together with the dead
code elimination will work as

A <- op1 (B, C) ...
... -> ...
D <- A D <- op1 (B, C)

Table 5 contains results of the optimization for
SPECint2000 for Pentium 4.

Benchmark Base Peak Change
164.gzip 838 839 +0.12%
175.vpr 602 598 -0.66%
176.gcc 1137 1146 +0.79%
181.mcf 715 715 0.00%
186.crafty 874 875 +0.11%
197.parser 734 734 0.00%
252.eon 764 763 -0.13%
253.perlbmk 1145 1164 +1.66%
254.gap 954 951 -0.31%
255.vortex 1079 1080 +0.09%
256.bzip2 743 745 +0.27%
300.twolf 757 767 +1.32%
Est. SPECint2000 845 848 +0.36%

Table 5: SPECint2000 for Pentium 4 with-O2
-mtune=pentium4 without and with regis-
ter rematerialization.

Register rematerialization could be done in
a separate pass before the register allocation
[Simpson96]. In brief, Simpson’s algorithm
looks like

foreach basic block BB do
while the register pressure is too high

in BB do
P := a pattern available and live at

the end of BB with a result
pseudo-register is not used in BB
and its operands are live
at the end of BB;

if there is no such P then
break ;

fi
put insns with pattern P on edges

exiting from BB where P are live;
move the insns to the bottom of CFG as

far as possible along the paths
where P is still available, and P
and its operands are live;

update the register pressure in BB and
basic blocks we moved the insns
through;

done
done

The liveness of a pattern in a CFG point means
that a result register of the pattern is used in an-
other point achieved from the given point. Fig-
ure 5 illustrates how the algorithm works.

P: p3 <- op (p1, p2)

register pressure
is too high,
p3 is not used

... <-p3

... <- p3

P is available and live,
p1, p2 are live:
rematerial. of

p3 <- op (p1, p2)

p3 is dead

p3 is not used

Figure 5: Illustration of Simpson’s algorithm
of rematerialization.

I have implemented Simpson’s approach in
GCC. It gave about 1.3% improvement for
SPECint2000 for Pentium 4 on the tree-ssa
branch. And after deciding to implement Mor-
gan’s live range splitting, I rejected Simpson’s
implementation because I believe that Mor-
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gan’s live range splitting together with regis-
ter rematerialization after global register allo-
cation will work better. I see the following rea-
sons for this:

• It is difficult to know which operand
pseudo-registers will get hard-registers in
the end. Adding instruction rematerializ-
ing pseudo-register’s value might result in
generation of additional load instructions
in the reload pass if the operand pseudo-
registers do not get hard-registers.

• Morgan’s approach to live range split-
ting works in more cases than Simp-
son’s. The instructions shuffling pseudo-
registers generated in Morgan’s algorithm
are removed by coalescing and, if it is not
possible, rematerialized.

• Rematerialization could be done in more
cases. The single criterion is a profitabil-
ity not just high register pressure as in
Simpson’s approach.

3 Live range shrinking

The live range shrinking approach is to move
the definitions of pseudo-register as close as
possible to their usages. It decreases the num-
ber of conflicts for the pseudo-register and
consequently may decrease register pressure.
There are few articles devoted this approach
(one of them is [Balakrishnan01]). The rea-
son for this is in its constraints for modern
pipelined processors. Solving this problem
without taking instruction scheduling into ac-
count could worsen code in many cases. So
live range shrinking mainly became a part of
register pressure sensitive instruction sched-
ulers.

3.1 Register Pressure Sensitive Instruction
Scheduling

GCC uses a classical two pass instruction
scheduling approach: instruction scheduling
both before and after the register allocator. It
works well for RISC processors with a large
enough number of registers.

For processors with few registers, however, in-
struction scheduling before register allocation
creates such high pressure that it actually wors-
ens the code. Therefore it is switched off for
x86 and sh4.

One year ago Dale Johannesen from Apple
added a new heuristic right after the critical
path length heuristic. This heuristic prefers in-
structions with smaller contribution to register
pressure. He reported about 2% improvement
for SPECint2000 for PowerPC.

Sanjiv Gupta implemented machine-dependent
register pressure-sensitive instruction schedul-
ing for SH4. He reported a big improvement
for some benchmarks (Table 6) when the first
instruction scheduler with the register-pressure
heuristic was switched on. Unfortunately, he
did not compare instruction scheduling with
and without the heuristic (probably the re-
sults would be even better because earlier the
first instruction scheduling pass without any
register-pressure heuristic was switched off).

Sanjiv’s implementation is very similar to the
Hsu and Goodman approach [GooHsu88] to
register pressure sensitive instruction schedul-
ing: when the pressure becomes high, it uses
register pressure heuristic as major one in-
stead of the critical path length heuristic. I
have implemented Hsu’s approach in a ma-
chine independent way. My goal was to im-
prove x86 code by switching on the first in-
struction scheduling pass. Although GCC with
the register pressure sensitive approach in the
first pass generated a more 1% better code for
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Benchmark Base Peak Change
Gsm compression 31.83 26.16 +17%
Gsm decompression 17.72 16.94 +4.4%
cjpeg -dct int 2.30 2.34 -1.7%
cjpeg -dct float 2.12 2.19 -3%
djpeg -dct int 1.53 1.45 +5%
djpeg -dct float 1.69 1.42 +15%
gzip 225 222 +1%
gunzip 17.30 16.69 +3.5%
Mpg123 1.29 1.26 +2%

Table 6: Benchmarks for SH4 GCC with-O2
without the 1st instruction scheduling and with
the 1st register pressure sensitive instruction
scheduling.

SPECfp95 than with the standard first pass, the
results are disappointing in comparison with
GCC without any first instruction scheduling.
Table 7 contains SPEC95 results for the pro-
grams compiled without the first instruction
scheduling pass (default in GCC for x86) and
with Hsu’s approach in the first instruction
scheduler. I used Athlon MP because GCC still
has no pipeline description for Pentium 4.

The most interesting result is forfpppp:
the code became practically 3 times slower
(SPECfp95 results would be very close with-
out fpppp). The hot point offppppis the func-
tion with one huge basic block. The register
pressure reaches several hundred there for x86
GCC. It looks to me like the basic block was
optimized manually to minimize the register
pressure. Any rearrangement of the instruc-
tions results in a higher register pressure, es-
pecially for x87 floating point top stack regis-
ter. So in my opinion, to make a successful
register pressure sensitive instruction sched-
uler for x86, we need a more sophisticated ap-
proach than Hsu’s on-the-fly approach. These
approaches should be based on the evaluation
of all data flow graphs like a parallel interfer-
ence graph [Norris93] or a register reuse graph
[Berson98].

Benchmarks Base Peak Change
099.go 68.9 68.2 -0.73%
124.m88ksim 52.8 51.8 -1.89%
126.gcc 57.5 57.1 -0.70%
129.compress 28.0 27.9 -0.36%
130.li 58.9 59.0 +0.17%
132.ijpeg 53.1 50.6 -2.82%
134.perl 79.2 76.3 -3.66%
147.vortex 50.3 50.5 +0.40%
SPECint95 54.0 53.3 -1.30%
101.tomcatv 74.1 75.7 +2.16%
102.swim 139 139 0.00%
103.su2cor 22.4 21.8 -2.68%
104.hydro2d 24.5 24.3 -0.82%
107.mgrid 47.7 50.6 +6.08%
110.applu 28.2 27.4 -2.84%
125.turb3d 53.2 51.4 -3.38%
141.apsi 32.5 33.3 +2.46%
145.fpppp 148 54.0 -63.51%
146.wave5 77.3 73.7 -4.66%
SPECfp95 52.2 47.0 -9.96%

Table 7: SPEC95 results for Athlon MP with
-O2 -mtune=athlon without the first in-
struction scheduler and with Hsu’s register
pressure sensitive first instruction scheduling.

4 Other improvements of the GCC
original register allocator

4.1 Coalescing

Live range splitting tends to create unneces-
sary move instructions. As I mentioned above,
we generate additional pseudo-registers and in-
structions shuffling them instead of the tradi-
tional approach generating instructions spilling
registers to memory and restoring them. Even
if the live range splitting optimization is not
run, there are still unnecessary move instruc-
tion generated by the previous optimizations.
To remove them, pseudo-register coalescing
is run after the global register allocator. If
the pseudo-registers in a move instruction do
not conflict we could use one pseudo-register
and remove the move instructions. It is done
if both pseudo-registers got hard registers or
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both pseudo-registers were placed in memory
(it means that the move would have been trans-
formed into instructions moving the memory).
The following example describes the two situa-
tions (the number in the parentheses is the hard
register number given to the pseudo-register):

p256 (1) <- p128 (2)
or

p256 (Memory) <- p128 (Memory)

Sometimes, removing a pseudo-register move
instruction when one pseudo-register gets a
hard-register in the global register allocator
and another one gets memory could be prof-
itable too. The resulting pseudo-register will
be placed in memory after coalescing the two
pseudo-registers. Profitability is defined by
the execution frequency of the move instruc-
tion and the reference frequency of the pseudo-
register which got a hard-register. A typical sit-
uation when it is profitable is given on figure 6.
The pseudo-registerp128got the hard register
number 2 andp256was placed in memory.

Loop:
no reference for p128

p128 (2) <- ...

p256 (Memory) <- p128
 (p128 dies here)

Figure 6: Coalescing memory and register.

Even if there is no move instruction between
two pseudo-registers which are placed in mem-
ory (usually on the program stack), we can co-
alesce them. What is the sense of such an opti-
mization? Although the optimization does not
remove instructions, it decreases the size of the
used stack (it is very important for the Linux

kernel which usually has strict constraints for
the size of the program stack). For example,
the average decrease of function stack frames
is about 4% with this optimization for Linpack
x86 code. The optimization also improves data
locality and code locality for some architec-
tures like x86 because in many cases smaller
displacements in instruction are used (we are
using the first found stack slot approach). Ta-
ble 8 shows the text segment’s size decrease
for the SPECfp2000 benchmarks for Pentium
4. The improved code and data locality con-
siderably improves the code. Table 9 shows
the SPECfp2000 performance results for code
without and with the optimization for Pentium
4.

Benchmarks Base Peak Change
168.wupwise 25128 24648 -1.910%
171.swim 7078 7014 -0.904%
173.applu 58741 58453 -0.490%
177.mesa 443993 439369 -1.041%
179.art 12011 12011 0.000%
183.equake 17026 17026 0.000%
200.sixtrack 844452 815060 -3.481%
301.apsi 106317 103341 -2.799%
Average -1.33%

Table 8: SPECfp2000 benchmark code
sizes for Pentium 4 GCC with -O2
-mtune=pentium4 without and with
coalescing the program stack slots.

The patch improves code and data local-
ity, therefore GCC becomes a bit faster.
User time for x86 bootstrapping decreased
from 14m0.150s to 13m58.890s. The better
code and data locality improves SPECFP2000
benchmark results too (about 2.4%).

4.2 Register migration

When the reload pass needs a hard register for
a reload, it expels a living pseudo-register from
the hard register assigned to it by the local or
global register allocator. Then it tries to reas-
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Benchmarks Base ratio Peak ratio Change
168.wupwise 890 887 -0.34%
171.swim 604 609 +0.83%
173.applu 624 627 +0.48%
177.mesa 629 639 +1.59%
179.art 244 248 +1.64%
183.equake 964 963 -0.01%
200.sixtrack 337 385 +14.24%
301.apsi 401 407 +1.97%
SPECint2000 388 399 +2.83%

Table 9: SPECfp2000 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
coalescing the program stack slots.

sign a free hard register to the pseudo-register
(functionretry_global_alloc ). Usually
it fails especially when the processor has few
registers or there is a high register pressure in
the function. So finally the pseudo-register is
placed in memory. Figure 7 shows an example
of such a situation (the pseudo-registerp128
is expelled from hard registerA because it is
needed for an instruction which is in the live
range ofp128).

p128

p512

p256

B

BA

Loop: p128
lives here

Figure 7: Case for the register migration.

Sometimes it is more profitable to use an-
other hard register (B in the example) instead
of memory for the pseudo-register. It might
be possible by expelling another rarely used
pseudo-register (p256 and p512 in the exam-
ple) from their hard registers. In their own turn
the expelled pseudo-registers can also migrate.

The optimization works well with processors
with irregular register files (which means gen-
eration of more reloads because of strict in-
struction constraints for input/output registers).

Tables 10 and 11 contain SPEC2000 results
for Pentium 4 for benchmarks whose codes are
different when the optimization is used. We
see that the code is smaller and the results are
better. Practically the single important degra-
dation is perlbmk (but it can be fixed by the
register rematerialization and live range split-
ting mentioned above). Significant improve-
ment for GCC is more important than perlbmk
degradation because it is more difficult to im-
prove GCC than perlbmk; 50% of all time of
perlbmk is spent in one very specific function.
It is regular expression matching. The SPEC95
perlbmk was a more fare benchmark because it
tested the interpreter itself, not regular expres-
sion matching.

Benchmarks Base ratio Peak ratio Change
175.vpr 594 596 +0.34%
176.gcc 1123 1133 +0.89%
186.crafty 869 877 +0.92%
197.parser 730 729 -0.14%
252.eon 765 764 -0.13%
253.perlbmk 1159 1133 -2.24%
254.gap 943 944 +0.11%
255.vortex 1052 1056 +0.38%
256.bzip2 737 735 -0.27%
300.twolf 753 763 +1.33%
173.applu 771 772 +0.13%
177.mesa 720 726 +0.83%
200.sixtrack 394 392 -0.51%
301.apsi 486 489 +0.62%

Table 10: SPEC2000 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
the register migration.

This optimization makes GCC a bit faster too
(the compiler bootstrap test on Pentium 4 is
0.13% faster with the optimization). As for
architectures with more regular register files,
I found that three SPECfp95 test codes for
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Benchmarks Base Peak Change
175.vpr 128917 128949 0.025%
176.gcc 1241720 1241440 -0.022%
186.crafty 204846 204878 0.016%
197.parser 85436 85420 -0.019%
252.eon 480338 480354 0.003%
253.perlbmk 473971 473667 -0.064%
254.gap 421816 421592 -0.053%
255.vortex 568904 569128 0.039%
256.bzip2 28133 28117 -0.057%
300.twolf 181055 181055 0.000%
Average -0.013%

173.applu 58741 58741 0.000%
177.mesa 443993 443049 -0.213%
200.sixtrack 844452 843892 -0.066%
301.apsi 106317 106317 0.000%
Average -0.070%

Table 11: SPEC2000 benchmark code
sizes for Pentium 4 GCC with -O2
-mtune=pentium4 without and with
the register migration.

PowerPC were different (applu, turb3d, and
wave5). Test applu was sped up about 1% (two
others had the same result).

4.3 More accurate information about register
conflicts

The original register allocator used standard
live information to build a conflict graph.
This live information is based on the most
widely used definition of pseudo-register live-
ness: RegisterR lives at pointp if there is a
path fromp to some use ofR along whichR
is not redefined. The live information is de-
scribed by the following data flow equations:

LiveIni = (LiveOuti −Defi)
⋃

Usei

LiveOuti =
⋃

j∈Succ(i)

LiveInj

LiveIni andLiveOuti are sets of registers cor-
respondingly living at the start and at the end of
basic blocki. Usei is the set of registers used in
basic blocki and not redefined after the usage
in the basic block.Defi is the set of registers

defined or clobbered in basic blocki.

Loop:

p128 <- ...

... <- p128

no definition of p128

Figure 8: A typical case when accurate life in-
formation is different from the standard one.

This information is actually inaccurate because
according to it a pseudo-register may live be-
fore the first assignment to it. Figure 8 demon-
strates such situation. The first assignment to
pseudo-registerp128happens in the loop. Ac-
cording to GCC life analysis,p128will live in
any basic block where there is a path from the
basic block to the loop. Such inaccurate live
information results in bigger evaluated register
pressure and worse register allocation because
p128conflicts with all pseudo-registers in the
basic blocks preceding the loop.

To make the live information more accurate
(RealLive sets) in building conflict graphs we
could use the partial availability according to
the following equations:

PavIni =
⋃

j∈Pred(i)

PavOutj

PavOuti = (PavIni −Killi)
⋃

Geni

RealLiveIni = LiveIni

⋂
PavIni

RealLiveOuti = LiveOuti
⋂

PavOuti

PavIni andPavOuti are sets of registers cor-
respondingly partially available at the start and
at the end of basic blocki. Killi is the set
of registers killed (clobbered) in basic block
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i. Geni is the set of registers defined in ba-
sic blocki and not killed after their definition
in the basic block.

It seems that there are few cases where Real-
Live and Live sets are different. In reality there
are a lot of benchmarks whose code is differ-
ent when the accurate live information is used.
Tables 12 and 13 contains SPEC95 results for
tests which have a different code when more
accurate information is used.

Benchmarks Base ratio Peak ratio Change
126.gcc 80.8 81.4 +0.74%
130.li 86.4 86.6 +0.23%
132.ijpeg 79.5 80.0 +0.63%
134.perl 86.8 87.9 +1.27%
141.apsi 57.6 58.0 +0.69%
146.wave5 95.6 95.8 +0.21%

Table 12: SPEC95 for Pentium 4 GCC with
-O2 -mtune=pentium4 without and with
the accurate life information.

Benchmarks Base Peak Change
126.gcc 1102160 1101830 -0.030%
130.li 44047 44031 -0.036%
132.ijpeg 120904 120808 -0.079%
134.perl 233331 233315 -0.007%
141.apsi 103221 103205 -0.016%
146.wave5 96668 96668 0.000%
Average -0.028%

Table 13: SPEC95 benchmark code
sizes for Pentium 4 GCC with -O2
-mtune=pentium4 without and with
the accurate life information.

Another way to decrease the number of con-
flicts and as a consequence improve the reg-
ister allocation is to consider the values of
pseudo-registers. Pseudo-registers may get the
same hard-registers if they hold the same value
in every point where they live simultaneously.
Global value numbering [Simpson96] could be
used for this. I have tried a simplified ver-
sion of GVN where all operators except copies

are different. I believed that most cases be-
long to this category. GVN even in such
form is still an expensive optimization and a
bit complicated because reaching definitions
[Muchnick97] have to be used for this (usually
GVN is fulfilled in SSA). There are few tests
where GVN results in different code (e.g.eon
andperlbmkSPECint2000 tests for x86. Eon
had the same performance, perlbmk was about
0.2% faster). So I think the usage of such opti-
mization in GCC is not reasonable.

4.4 Better utilization of profiling information

The original register allocator mainly utilizes
profiling information in its work. But there are
some instances where it is not true. One such
place is the calculation of profitability of us-
age of caller-saved hard registers for pseudo-
registers crossing function calls. Currently it is
based on number of the crossed calls and num-
ber of the pseudo-register usages. Usage of the
frequencies of the crossed calls and the pseudo-
register usages instead of the numbers can im-
prove the generated code especially when the
execution profile is used. Tables 14 and 15 con-
tain SPECfp2000 results for Pentium 4 when
the profile is used.

Benchmarks Base ratio Peak ratio Change
168.wupwise 996 1006 +1.00%
171.swim 921 928 +0.75%
172.mgrid 702 703 +0.14%
173.applu 766 771 +0.65%
177.mesa 734 739 +0.68%
179.art 381 384 +0.78%
183.equake 1217 1226 +0.74%
200.sixtrack 454 456 +0.44%
301.apsi 450 479 +6.44%
SPECfp2000 688 696 +1.16%

Table 14: SPECfp2000 for Pentium 4 GCC
with -O2 without and with caller-saved regis-
ter profitability based on frequency. The profile
information is used.
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Benchmarks Base Peak Change
168.wupwise 25384 25320 -0.252%
171.swim 7174 7174 0.000%
172.mgrid 10015 10111 0.959%
173.applu 59405 59509 0.175%
177.mesa 433609 434105 0.114%
183.equake 16386 16418 0.195%
179.art 12123 12235 0.924%
200.sixtrack 835724 838972 0.389%
301.apsi 104573 104837 0.252%
Average 0.31%

Table 15: SPECfp2000 benchmark code sizes
for Pentium 4 GCC with-O2 without and with
caller-saved register profitability based on fre-
quency. The profile information is used.

The results could be better even without the
profile information. Tables 16 and 17 con-
tain analogous results without the profile for
Athlon.

Benchmarks Base ratio Peak ratio Change
168.wupwise 533 551 +3.38%
171.swim 428 441 +3.03%
172.mgrid 404 404 0.0%
173.applu 344 341 -0.87%
177.mesa 623 632 +1.44%
179.art 165 163 -1.21%
183.equake 404 403 -0.25%
200.sixtrack 369 368 -0.27%
301.apsi 282 287 +1.77%
SPECint2000 372 375 +0.81%

Table 16: SPECfp2000 for Athlon GCC with
-O2 -mtune=athlon without and with
caller-saved register profitability based on fre-
quency. Profile information is not used.

4.5 Global common subexpression elimination

As I wrote, the post-reload pass of the original
register allocator removes redundant instruc-
tions (mostly loads and stores) generated by
the reload pass. It uses the CSE (common sub-
expression elimination) library for this. This

Benchmarks Base Peak Change
168.wupwise 24872 24792 -0.322%
171.swim 7142 7142 0.000%
172.mgrid 9791 9807 0.163%
173.applu 58197 58317 0.206%
177.mesa 456005 458773 0.607%
179.art 13254 13494 1.811%
183.equake 16724 16788 0.383%
200.sixtrack 830268 831468 0.145%
301.apsi 103981 103773 -0.200%
Average 0.31%

Table 17: SPECfp2000 benchmark
code sizes for Athlon GCC with-O2
-mtune=athlon without and with caller-
saved register profitability based on frequency.
Profile information is not used.

permits to remove redundancy only in basic
blocks.

I was going to implement global redundancy
elimination as the next logical step. Fortu-
nately, it was already done independently by
Mostafa Hagog from IBM. For PowerPC G5 he
reported 1.4% improvement for SPECint2000
(with stunning 15% improvement for perlbmk)
and 0.5% degradation for SPECfp2000 (see ta-
ble 18).

5 Conclusions

As I wrote, the priority-based colouring
register allocator can compete with the
Chaitin/Briggs register allocators. Therefore I
believe we should work on the original register
allocator as much as on the new register allo-
cator. It is good to have two register allocators
to choose the better one, depending on archi-
tecture used.

There are a lot of ways to improve the origi-
nal register allocator’s code. The most inter-
esting one is live range splitting integrated with
the register allocator. This is the single impor-
tant part which is missed in the original GCC
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Benchmarks Base Peak The improvement
164.gzip 775 803 3.6%
175.vpr 513 504 -1.8%
181.mcf 500 500 0.0%
186.crafty 868 872 0.5%
197.parser 679 681 0.3%
252.eon 828 819 -1.1%
253.perlbmk 730 844 15.6%
254.gap 811 790 -2.6%
255.vortex 952 964 1.3%
256.bzip2 619 622 0.5%
300.twolf 605 606 0.2%
Est. SPECint 702.2 712.0 1.4%

168.wupwise 895 895 0.0%
171.swim 249 249 0.0%
172.mgrid 643 643 0.0%
173.applu 647 660 2.0%
177.mesa 904 905 0.1%
178.galgel 696 697 0.1%
179.art 624 590 -5.4%
183.equake 996 994 -0.2%
187.facerec 1142 1143 0.1%
188.ammp 398 398 0.0%
189.lucas 530 530 0.0%
191.fma3d 970 969 -0.1%
200.sixtrack 578 562 -2.8%
301.apsi 554 554 0.0%
Est. SPECfp 656 653 -0.5%

Table 18: SPEC2000 results for PowerPC G5
GCC with -O3 without and with postreload
global redundancy elimination.

register allocator from Chow’s algorithm. In
comparison with the Chaitin/Briggs approach,
the priority-based colouring register allocator
has an advantage, which is easier implementa-
tion of good live range splitting based on regis-
ter allocation information. It will probably re-
quire closer integration of the reload pass and
the global register allocator.
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Abstract

Vectorization is an optimization technique that
has traditionally targeted vector processors.
The importance of this optimization has in-
creased in recent years with the introduction of
SIMD (single instruction multiple data) exten-
sions to general purpose processors, and with
the growing significance of applications that
can benefit from this functionality. With the
adoption of the new Tree SSA optimization
framework, GCC is ready to take on the chal-
lenge of automatic vectorization. In this pa-
per we describe the design and implementation
of a loop-based vectorizer in GCC. We discuss
the new issues that arise when vectorizing for
SIMD extensions as opposed to traditional vec-
torization. We also present preliminary results
and future work.

1 Introduction

Vector machines were introduced in the 1970’s,
to increase processor utilization by accelerat-
ing the initiation of operations, and keeping the
instruction pipeline full. To take advantage of
vector hardware, programs are rewritten using
explicit vector operations on whole arrays (as
in Figure 1b) instead of operations on individ-
ual array elements one after the other (as in
Figure 1a). This rewrite of loops into vector
form is referred to asvectorization[3].

The vector notation in Figure 1b implies that
all the loads (from arrays a and b) take place

before all the stores (into array a); This means
that loops like the one in Figure 1d, where each
iteration uses a result from a previous iteration,
cannot be rewritten in vector form. This situa-
tion is an example of a data-dependence that is
carried across the iterations of the loop. When
no such dependences between loop iterations
exist, operations from different iterations can
be initiated in parallel, and vectorization may
be applied. Data dependence analysis is there-
fore a fundamental step in the process of vec-
torization.

Vectorization, when applied automatically by a
compiler, is referred to asautovectorization. In
this paper, we use the two terms interchange-
ably to refer to compiler vectorization.

In recent years, a different architectural ap-
proach to exploit a similar kind of data par-
allelism has become increasingly common. It
follows the Single Instruction Multiple Data
(SIMD) model, in which the same instruction
simultaneously executes on multiple data el-
ements that are packed in advance in vector
registers. The length of these vectors (vec-
tor length) is relatively small. The number of
data elements that they can accommodate de-
termines the degree of parallelism (vectoriza-
tion factor, VF) that can be exploited. This
value varies depending on the data-type of the
elements.

Vectorizing the loop in Figure 1a for SIMD
therefore implies transforming it to operate on
VF elements at a time, as illustrated in Fig-
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(a) original serial loop:

for(i=0; i<N; i++){
a[i] = a[i] + b[i];

}

(b) loop in vector notation:

a[0:N] = a[0:N] + b[0:N];

(c) vectorized loop:

for (i=0; i<(N-N%VF); i+=VF){
a[i:i+VF] = a[i:i+VF] + b[i:i+VF];

}
for ( ; i < N; i++) {

a[i] = a[i] + b[i];
}

(d) unvectorizable loop (dependence cycle):

for (i=1; i<N; i++){
a[i] = a[i-1] + b[i];

}

Figure 1: The vectorization transformation

ure 1c. This is generally equivalent to strip-
mining the loops by a factorVF, while replac-
ing scalar operations with equivalent vector op-
erations. A serial loop that computes the re-
mainingN%VFiterations is also added for the
case thatNdoes not evenly divide byVF.

Applications in many domains have an abun-
dant amount of natural parallelism present
in the computations they perform. If this
parallelism can be leveraged to exploit the
SIMD/vector capabilities of architectures, the
performance of these applications can be con-
siderably increased.

The GCC vectorizer implements a loop-based
vectorization approach, which means that it fo-
cuses on exploiting the data parallelism present
across loop iterations. Data parallelism present
in straight-line code is not leveraged by the
loop-based vectorizer. Vectorization tech-
niques that exploit this type of parallelism,
such as [12], could be used as a complemen-
tary approach to loop-based vectorization. We
briefly discuss this in Section 8.

As we show in the following sections, practical
vectorization for vector processors, and in par-
ticular the more recent SIMD processors, in-
volves much more than loop dependence anal-
ysis and introduces some nontrivial issues and
choices especially for a multi-platform com-
piler like GCC.

2 Classic Vectorization vs. SIMD
Vectorization

Autovectorization is a mature research area;
automatic detection of vector loops in serial
code has been discussed in literature for more
than a decade [1, 20]. The main focus of classic
vectorization is the theory of data dependences.
It deals with loop analyses to (1) detect state-
ments that could be executed in parallel with-
out violating the semantics of the program, and
(2) increase such occurrences by means of loop
transformations.

The classic (data-dependence based) vector-
ization approach has traditionally targeted the
vector machines of the 1970’s. Two main de-
velopments in recent years have shifted the fo-
cus to vectorizing for the modern SIMD archi-
tectures. One is the proliferation of SIMD ca-
pabilities in modern computing platforms, in-
cluding gaming machines [18], Digital Signal
Processors (DSPs) [7, 10], and even in general
purpose processors [15, 8]. The second factor
is the growing significance of applications that
can benefit from SIMD functionality, particu-
larly those in the multimedia domain.

The classic vectorization theory does not ap-
ply very successfully to SIMD machines [16],
for several reasons. Traditional vectorization
has focused on array-based Fortran programs
from the scientific computing domain. Many
of the important modern workloads, such as
multimedia applications, are written in C and
make extensive use of pointers. The presence
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of pointers, and other programming language
differences [2] give rise to a new domain of
problems critical for the success of vectoriza-
tion.

The primary difficulties in applying classic
vectorization to SIMD lie in the architectural
differences between SIMD extensions and tra-
ditional vector architectures. First, SIMD
memory architectures are typically weaker
than those of traditional vector machines. The
former generally only support accesses to con-
tiguous memory items, and only on vector-
length aligned boundaries. Computations,
however, may access data elements in an or-
der which is neither contiguous nor adequately
aligned. SIMD architectures usually provide
mechanisms to reorganize data elements in
vector registers in order to deal with such sit-
uations. These mechanisms (packing and un-
packing data elements in and out of vector reg-
isters and special permute instructions) are not
easy to use, and incur considerable penalties.
For a vectorizer, this implies that generating
vector memory accesses becomes much more
involved.

In addition, the instruction sets of SIMD archi-
tectures tend to be much less general purpose
and less uniform. Many specialized domain-
specific operations are included, many oper-
ations are available only for some data types
but not for others, and often a high-level un-
derstanding of the computation is required in
order to take advantage of some of the func-
tionality. Furthermore, these particular charac-
teristics differ from one architecture to another.

These attributes demand that low-level
architecture-specific factors will be consid-
ered throughout the process of vectorization.
Classic dependence analysis is therefore only
a partial solution to vectorizing for SIMD
extensions. Code transformation issues require
much more attention, as discussed later in the

paper.

3 Data-Dependence Analysis

The classic approach for vectorization is based
on the theory of data-dependence analysis.
Some parts of the classic data-dependence-
based analyses and transformations are already
present in GCC (currently in the loop-nest-
optimizations (lno) branch of GCC).

The first step in dependence analysis is the con-
struction of a data dependence graph (ddg).
The nodes of the graph are the loop state-
ments, and edges between statements repre-
sent a data dependence between them. There
are two types of such edges. Edges between
scalar variables represent a def-use link be-
tween statements. These links can be trivially
computed from a SSA representation, such as
the one used in the tree-ssa representation level
of GCC.

The second kind of edges are those be-
tween memory references. The classic data-
dependence theory focused on array-based
Fortran programs, and therefore only array ref-
erences have traditionally been considered. In
other (e.g., C) programs, memory references
can take other forms (e.g., indirect references
through pointers), and these are considered by
the GCC vectorizer. Memory dependences are
determined by applying a set of dependence
tests [9, 3] that compare array subscripts. Sim-
pler and faster tests (GCD, Banerjee) are ap-
plied to simple subscript forms. More complex
and accurate tests (Gamma, Delta, Omega) are
applied to more complicated subscripts.

If a dependence is carried by the relevant nest-
ing level then an edge is added to the ddg.
For example, in Figure 1, loops (a) and (d)
both have a dependence between the two ref-
erences to arraya, but only the dependence
in loop (d) is carried across the loop itera-
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tions and prevents vectorization. In GCC,
tests that compute dependences between ar-
ray references are implemented in the module
tree-data-refs.c . They are used by the
vectorizer to detect dependences between data
references in inner-most loops.

The classic data dependence analysis pro-
ceeds to detect Strongly Connected Compo-
nents (SCCs) in the ddg. SCCs that consist of
a single node represent a statement that can be
executed in parallel at the loop level that is be-
ing considered. SCCs that consist of multiple
nodes represent statements that are involved in
a dependence cycle, and prevent the vectoriza-
tion of the loop unless the cycle can be “bro-
ken.”

In order to increase the potential for vector-
ization, the vectorizable parts can be separated
from the groups of statements that are involved
in dependence cycles (loop distribution). This
is done by creating a separate loop for each
SCC, after having topologically sorted the re-
duced graph in which each SCC is represented
by a single node. There is a preliminary imple-
mentation of ddg construction in GCC (as part
of the scalar-evolutions module) but it is not
yet used. Loop distribution to increase vector-
ization opportunities is not yet supported, how-
ever other loop transformations that increase
parallelism (loop interchange, scaling, skew-
ing, and reversal) are supported in GCC as part
of the tree-loop-linear module.

Lastly, special kinds of dependence cycles can
be dealt with if recognized as certain idioms,
such as reduction. The GCC vectorizer will be
enhanced to recognize and handle such situa-
tions in the near future.

4 Vectorizer Overview

The vectorization optimization pass is
developed in the loop-nest-optimizations

(lno) branch (http://gcc.gnu.org/

projects/tree-ssa/lno.html ), at the
IR level of SSA-ed GIMPLE trees. The
current development status can be found
on http://gcc.gnu.org/projects/

tree-ssa/vectorization.html .
The vectorizer is enabled by the
-ftree-vectorize flag which also
invokes the scalar-evolutions analyzer, upon
which the vectorizer relies for induction vari-
able recognition and loop bound calculation.
The bulk of the vectorizer functionality can be
found in two files (tree-vectorizer.c
andtree-vectorizer.h ). The vectorizer
also uses loop-related utilities that reside else-
where, many of which are new contributions
developed in the lno branch.

The vectorization pass is in early stages of
development; the basic infrastructure is in
place, supporting initial vectorization capabil-
ities. These capabilities are demonstrated by
the vectorization test-cases, which are updated
to reflect new capabilities as they are added.
Work is underway to extend these capabilities
and to introduce more advanced vectorization
features.

4.1 vectorizer layout

An outline of the vectorization pass is given in
Figure 2. The main entry to the vectorizer is
vectorize_loops(loops) . The vector-
izer applies a set of analyses on each loop, fol-
lowed by the actual vector transformation for
the loops that had successfully passed the anal-
ysis phase.

4.2 vectorizer analysis

The first analysis phase,analyze_loop_
form() , examines the loop exit condition and
number of iterations, as well as some control-
flow attributes such as number of basic blocks
and nesting level. One major restriction im-
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vect_analyze_loop (struct loop *loop) {
loop_vec_info loopinfo;
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)

FAIL;
if (!analyze_data_refs (loopinfo))

FAIL;
if (!analyze_scalar_cycles (loopinfo))

FAIL;
if (!analyze_data_ref_dependences (loopinfo))

FAIL;
if (!analyze_data_ref_accesses (loopinfo))

FAIL;
if (!analyze_data_refs_alignment (loopinfo))

FAIL;
if (!analyze_operations (loopinfo))

FAIL;
LOOP_VINFO_VECTORIZABLE_P (loopinfo) = 1;
return loopinfo;

}

vect_transform_loop (struct loop *loop) {
FOR_ALL_STMTS_IN_LOOP(loop, stmt)

vect_transform_stmt (stmt);
vect_transform_loop_bound (loop);

}

Figure 2: Vectorizer outline

posed on a loop for vectorization to be ap-
plicable, is that the loop is countable—i.e, an
expression that calculates the loop bound can
be constructed and evaluated either at compile
time or at run-time. For example, the loop in
Figure 3a is not a countable loop. The loop
bound analysis is carried out by the scalar evo-
lution analyzer. To simplify the initial im-
plementation, the vectorizer also verifies that
the loop is an inner-most loop, and consists of
a single basic block. Multi-basic-block con-
structs such as if-then-else are collapsed into
conditional operations if possible, by an if-
conversion pass prior to vectorization.

Next,analyze_data_refs() finds all the
memory references in the loop, and checks if
they are “analyzable”—i.e., an access func-
tion that describes their modification in the
loop (evolution) can be constructed. This is
required for the memory-dependence, access-
pattern and alignment analyses (described in
Section 5). Other restrictions enforced at this
point are there for simplicity of implementa-

(a) uncountable loop:

while (*p != NULL){
*p++ = X;

}

(b) reduction - summation:

for (i=0; i<n; i++){
sum += a[i];

}

(c) induction:

for (i=0,j=0; i<n; j++,i++){
a[i] = j;

}

(d) non consecutive access pattern:

for (i=0; i<n; i++){
a[2*i] = X;

}

Figure 3: Loop examples

tion, and will be relaxed in the near future.

Dependences which do not involve mem-
ory operations are analyzed directly from the
SSA representation. The functionanalyze_
scalar_cycles() examines such “scalar-
cycles” (dependence cycles which involve only
scalar variables), and verifies that any scalar
cycle, if exists, can be handled in a way that
breaks the cross-iteration dependence.

One kind of such “breakable” scalar cycles are
those that represent reductions. A reduction
operation computes a scalar result from a set
of data-elements. The loop in Figure 3b for
example, computes the sum of a set of array
elements into a scalar resultsum. Some re-
duction operations can be vectorized, generally
by computing several partial results in parallel,
and combining them at the end (reducing them)
to single result. Scalar cycles can also be cre-
ated by induction variables (IVs). Certain IVs
that are used for loop control and for address
computation, are handled as an inherent part of
vectorization. An example of an IV of this type
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is i from Figure 3c. Other IVs such asj from
the same example require special vectorization
support. Support for vectorization of reduction
and induction will be introduced to GCC in the
near future.

The final analysis phase analyze_
operations() scans all the operations
in the loop and determines a vectorization
factor. The vectorization factor (VF) repre-
sents the number of data elements that will
be packed together in a vector, and is also the
strip-mining factor of the loop. It is determined
according to the data-types operated on in the
loop, and the length of the vectors supported
by the target platform. Currently we use a sim-
ple approach that allows a single vector length
per platform and a single data-type per loop,
but these restrictions will be relaxed in the near
future. analyze_operations() also
checks that all the operations can be supported
in vector form. The cost of expanding them to
scalar code in case they are not supported, is
expected to offset the benefits of vectorizing
the loop. In the future, a cost model should be
devised to support the vectorizers decisions on
which loops to vectorize.

4.3 vectorizer transformation scheme

During the analysis phase the vector-
izer records information at three lev-
els of granularity—at the loop level
(loop_vect_info ), at the statement
level (stmt_vec_info ), and per memory
reference (data_reference ). These
data-structures are later used during the loop
transformation phase.

The vectorization transformation can be gener-
ally described as “strip-mine byVF and sub-
stitute one-to-one,” which implies that each
scalar operation in the loop is replaced by its
vector counterpart. The loop transformation
phase scans all the statements of the loop top-

(a) before vectorization:

S1: x = b[i];
S2: z = x + y;
S3: a[i] = z;

(b) after vectorization of S1:

VS1: vx = vpb[indx];
S1: x = b[i]; ---> VS1
S2: z = x + y;
S3: a[i] = z;

(c) after vectorization of S2:

VS1: vx = vpb[indx];
S1: x = b[i]; ---> VS1
VS2: vz = vx + vy;
S2: z = x + y; ---> VS2
S3: a[i] = z;

(d) after vectorization of S3:

VS1: vx = vpb[indx];
S1: x = b[i]; ---> VS1
VS2: vz = vx + vy;
S2: z = x + y; ---> VS2
VS3: vpa[indx] = vz;

Figure 4: The transformation process

down (defs are vectorized before their uses),
inserting a vector statementVS in the loop for
each scalar statementS that needs to be vector-
ized, and recording in thestmt_vec_info
attached toS a pointer toVS; This pointer is
used to locate the vectorized version of state-
mentS during the vectorization of subsequent
statements that depend onS.

After all statements have been vectorized, the
original scalar statements may be removed.
Stores to memory are explicitly removed by the
vectorizer; the remaining scalar statements are
expected to be removed by dead code elimina-
tion pass after vectorization.

Figure 4 illustrates the transformation process;
First, stmtS1 is vectorized into stmtVS1; In
order to vectorize stmtS2, the vectorizer needs
to find the relevant vector def-stmt for each
operand ofS2. The figure only shows how
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this is done for the operandx : first, the scalar
def-stmt ofx , S1, is found (using SSA), and
the relevant vector defvx is retrieved from the
vectorized statement ofS1, VS1. Similarly for
S3, except thatS3 is also removed.

In practice, many cases require additional han-
dling beyond the “one-to-one substitution.”
Constants and loop invariants require that vec-
tors be initialized at the loop pre-header. Other
computations require special epilog code af-
ter the loop (e.g., reductions, and inductions
that are used after the loop). Some access-
patterns require special data manipulations be-
tween vectors within the loop (e.g., data inter-
leaving and permutations). Some scalar op-
erations cannot be replaced by a single vec-
tor operation (e.g., when mixed data-types are
present). Sometimes a sequence of scalar oper-
ations can be replaced by a single vector opera-
tion (e.g., saturation, and other special idioms).
It might be possible to hide some of these com-
plications from the vectorizer, and handle them
at lower levels of code generation. We discuss
these issues in Section 6.

Finally, the loop bound is transformed to re-
flect the new number of iterations, and if neces-
sary, an epilog scalar loop is created to handle
cases of loop bounds which do not divide by
the vectorization factor. This epilog also must
be generated in cases where the loop bound is
not known at compile time.

5 Handling Memory References

Memory references require special attention
when vectorizing. This is true in the clas-
sic vectorization framework, and even more
so when vectorizing for SIMD. The vector-
izer currently considers two forms of data-
refs—one-dimensional arrays (represented as
ARRAY_REFs that are VAR_DECLs), and
pointer accesses (INDIRECT_REFs). Once

an access function has been computed (for the
array index or the pointer) the vectorizer pro-
ceeds to apply a set of data-ref analyses, which
we describe here.

5.1 Dependences and aliasing

As mentioned above, one of the basic restric-
tions that has to be enforced in order to safely
apply vectorization is that no dependence cy-
cles exist. A simplified form of the stan-
dard memory dependence analysis, which we
briefly described in Section 3, is applied, using
simple dependence tests from the tree-data-ref
module of the lno-branch.

This analysis can be enhanced in several direc-
tions, including: (1) using more complex de-
pendence tests, (2) pruning dependences with
distance greater than the vectorization factor,
and (3) not failing when a dependence is found,
but instead attempting to resolve the depen-
dence by reordering nodes in the dependence
graph (consequently distributing the loop).

Pointer accesses require in addition alias anal-
ysis to conclude whether any two pointer-
accesses in the loop may alias. If we cannot
rule out the possibility that two pointers may
alias, loop versioning can be used, with a run-
time-overlap test to guard the vectorized ver-
sion of the loop.

5.2 Access pattern

When the data is laid out in memory exactly in
the order in which it is needed for the computa-
tion, it can be vectorized using the simple one-
to-one vectorization scheme. However, com-
putations may access data elements in an or-
der different from the way they are organized
in memory. For example, the computation in
Figure 3d uses a strided access pattern (with
stride 2). Non-consecutive access patterns usu-
ally require special data manipulations to re-
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order the data elements and pack them into
vectors. This is because the memory architec-
ture restricts vector data accesses to consecu-
tive vector-size elements.

Some architectures provide relatively flexible
mechanisms to perform such data manipula-
tions (gather/scatter operations in traditional
vector machines, indirect access through vec-
tor pointers [14]). SIMD extensions usu-
ally provide mechanisms to pack data from
two vectors into one (and vice versa), while
possibly applying a permutation on the data
elements. Some SIMD extensions provide
specialized support for certain access-patterns
(most commonly for accessing odd/even ele-
ments for computations on complex numbers),
but these are usually limited only to a few op-
erations and a few data types.

The underlying data reorganization support de-
termines whether vectorization can be applied,
and at what cost. These data manipulations
need to be applied in each iteration of the
loop and therefore incur considerable over-
head. In fact, some access patterns, such as in-
direct access, cannot be vectorized efficiently
on most SIMD/vector architectures. The func-
tion analyze_access_pattern() veri-
fies that the access pattern of all the data ref-
erences in the loop is supported by the vector-
izer, which is currently limited to consecutive
accesses only.

5.3 alignment

Accessing a block of memory from a loca-
tion which is not aligned on a natural vector-
size boundary is often prohibited or bears a
heavy performance penalty. These memory
alignment constraints raise problems that can
be handled using data reordering mechanisms.
Such mechanisms are costly, and usually in-
volve generating extra memory accesses and
special code for combining data elements from

different vectors in each iteration of the loop.

In order to avoid these penalties, techniques
like loop peeling and static and dynamic align-
ment detection [11, 13, 4] can be used. Align-
ment handling therefore consists of three lev-
els: (1) static alignment analysis, (2) transfor-
mations to force alignment, including runtime
checks, and (3) efficient vectorization of the re-
maining misaligned accesses.

The functions compute_data_refs_

alignment() and enhance_data_refs_

alignment() (called fromanalyze_data_

refs_alignment() ) are responsible for
items (1) and (2) above.compute_data_

refs_alignment() computes misalignment
information for all data-references; currently
only a trivial conservative implementation is
provided.

Following the alignment computation,
the function enhance_data_refs_

alignment() uses loop versioning and
loop peeling in order to force the alignment of
data references in the loop. Loop peeling can
only force the alignment of a single data refer-
ence, so the vectorizer needs to choose which
data reference DR to peel for. In the peeled
loop, only the access DR is guaranteed to be
aligned. Loop versioning could be applied on
top of peeling, to create one loop in which
all accesses are aligned, and another loop in
which only the access DR is guaranteed to be
aligned. A cost model should be devised to
guide the vectorizer as to which access to peel
for, and whether to apply peeling or versioning
or a combination of the two, considering the
code size and runtime penalties. Figure 5
illustrates these different alternatives.

If data-references which are not known to be
aligned still remain afterenhance_data_
refs_alignment() , the vectorizer will
proceed to vectorize the loop only if the tar-
get platform provides mechanisms to support
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(a) original loop, before alignment analysis:

for (i = 0; i < N; i++) {
x = q[i]; //misalign(q) = unknown
p[i] = y; //misalign(p) = unknown

}

(b) after compute_data_refs_alignment():

for (i = 0; i < N; i++) {
x = q[i]; //misalign(q) = 3
p[i] = y; //misalign(p) = unknown

}

(c) option 1—loop versioning:

if (p is aligned) {
for (i = 0; i < N; i++) {

x = q[i]; //misalign(q) = 3
p[i] = y; //misalign(p) = 0

}
} else {

for (i = 0; i < N; i++) {
x = q[i]; //misalign(q) = 3
p[i] = y; //misalign(p) = unknown

}
}

(d) option 2—peeling for access q[i]:

for (i = 0; i < 3; i++) {
x = q[i];
p[i] = y;

}
for (i = 3; i < N; i++) {

x = q[i]; //misalign(q) = 0
p[i] = y; //misalign(p) = unknown

}

(e) option 3—peeling and versioning:

for (i = 0; i < 3; i++) {
x = q[i];
p[i] = y;

}
if (p is aligned) {

for (i = 3; i < N; i++) {
x = q[i]; //misalign(q) = 0
p[i] = y; //misalign(p) = 0

}
} else {

for (i = 3; i < N; i++) {
x = q[i]; //misalign(q) = 0
p[i] = y; //misalign(p) = unknown

}
}

Figure 5: Alternatives for forcing alignment

misaligned accesses. Figure 6c presents a pos-
sible scheme for handling misalignment [6]. It
relies on a pair of target hooks: one that cal-
culates the misalignment amount, and repre-
sents it in a form that the second hook can
use (a shift amount or a permutation mask).
The second hook combines data from two vec-
tors, permuted according to the misalignment
shift amount. In some cases the code could be
further optimized by exploiting the data reuse
across loop iterations, as shown in Figure 6d.

Targets that support misaligned accesses di-
rectly, do not need to implement these hooks;
in this case, misaligned vector accesses will
look just like regular aligned vector accesses,
as in Figure 6b. Section 6 discusses the trade-
offs involved in this implementation scheme.

6 Vectorization issues

An issue that repeatedly comes up during the
development of the GCC vectorization is the
tension between two conflicting needs. One
is the requirement to maintain a high-level,
platform-independent program representation.
The other is the need to consider platform-
specific issues and express low-level constructs
during the process of vectorization.

In many ways, the tree-level is the suitable
place for the implementation of a loop-based
vectorizer in GCC. Arrays and other language
constructs are represented in a relatively high-
level form, a fact that simplifies analyses such
as alignment, aliasing and loop-level data-
dependences. Analyses are further simplified
due to the SSA representation. Implementing
the vectorizer at the tree-ssa level allows it to
benefit from the vast suite of SSA optimiza-
tions, and in particular, the loop related utilities
developed in the lno-branch.

On the other hand, at this IR level it is not
so trivial to handle situations in which target-
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(a) scalar data-ref:

i = init;
LOOP:

x = a[i];
i++

(b) vectorized data-ref:

vector *vpx = &a[init];
indx = 0;

LOOP:
vector vx = (*vpx)[indx];
indx++

(c) vectorized data-ref with misalignment support:

vector *vpx1 = &a[init];
vector *vpx2 = &a[init+VF-1];
shft = target_hook_get_shft

(&a[init])
indx = 0;

LOOP:
vx1 = (*vpx1)[indx];
vx2 = (*vpx2)[indx];
vx = target_hook_combine_by_shft

(vx1, vx2, shft)
indx++;

(d) optimized misalignment support:

vector *vpx1 = &a[init];
vector *vpx2 = &a[init+VF-1];
shft = target_hook_get_shft

(&a[init]);
indx = 0;
vx1 = (*vpx1)[indx];

LOOP:
vx2 = (*vpx2)[indx];
vx = target_hook_combine

(vx1, vx2, shft);
indx++;
vx1 = vx2;

Figure 6: Handling data-refs (load example)

specific information needs to be consulted, and
even less trivial to handle situations in which
target-specific constructs need to be expressed.

Misalignment is an excellent example of such a
situation. The low-level functionality that sup-
ports misaligned accesses must somehow be
expressed in the tree IR. The implementation
should maintain the following properties: (1) It
should hide low-level details as much as pos-
sible. (2) It should be general enough to be
applicable to any platform. SIMD extensions
vary greatly from platform to platform. (3) De-
spite these restrictions, it should be as efficient
as possible on each platform.

In terms of the above criteria, the misalignment
scheme that was presented in the previous sec-
tion: (1) exposes the vectorizer to low-level
details of misalignment support, (2) might not
be general enough (it assumes that low-order
address bits are ignored by load operations),
and (3) is potentially inefficient for targets that
would be better supported by alternative meth-
ods.

To tackle these problems, two alternatives can
be considered. Alternative 1: Annotate mis-
aligned accesses and let the subsequent RTL
expansion pass handle the details. This is the
most natural way to address architecture spe-
cific details. However, this solution can po-
tentially be very inefficient, because it neglects
to take advantage of data reuse between itera-
tions. To do that, the lower-level RTL passes
would have to rediscover the kind of loop-level
information the vectorizer already had. Alter-
native 2: Hide all these implementation details
in a "black box" target hook, that would gener-
ate the most efficient code for its platform. A
disadvantage would be that functionality that
is common to many targets would have to be
duplicated. Also, the vectorizer would be un-
aware of what’s going on, and would have dif-
ficulty estimating the overall cost of applying
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vectorization, for example.

Low-level architectural details are not only
problematic with respect to representing them
at a high-level platform-independent abstrac-
tion. Specific architectural vector support can
directly affect the vectorization transformation,
and even determine whether it should be ap-
plied at all. These details must be considered
during vectorization because the choices made
at the vectorization stage are not easily altered
at later low-level stages of compilation. This
is especially true in cases of architectural fea-
tures that require recognition of an entire com-
putational idiom, a task best supported by high-
level analysis (reductions for example may be
difficult to identify without the entire context
of the loop).

These are some of tradeoffs and decisions in-
volved in the implementation of the GCC vec-
torizer. These kinds of problems often come up
in optimizing compilers, but are especially evi-
dent in the context of SIMD vectorization, and
even more so when implemented in a multi-
platform compiler like GCC.

7 Status

The first implementation of a basic vector-
izer in GCC was contributed to the lno-branch
on January 1st, 2004. It has since been en-
hanced with additional capabilities, including
support for vectorization of constants, loop
invariants, and unary and bitwise operations.
The vector test-suite (gcc/gcc/testsuite/

gdd.dg/tree-ssa-vect/ ) reflects the cur-
rent vectorization functionality. The domain of
vectorizable loops can be summarized in terms
of the supportable (1) loop forms, (2) data
references, and (3) operations. Currently
support includes (1) inner-most, single-basic-
block loop forms, with a known loop bound
divisible by the vectorization factor; (2) con-

secutive array data references for which align-
ment can be forced, and (3) operations that do
not create a scalar-cycle (no reduction or in-
duction), that all operate on the same data-type,
and that have a vector form that can be ex-
pressed using existing tree-codes.

Recent development has focused on broaden-
ing the range of loop-forms and data refer-
ences that the vectorizer can support. This in-
cludes the vectorization of loops with unknown
loop bounds, an if-conversion pass that allows
the vectorizer to handle some forms of multi-
basic-block loops, vectorization of unaligned
loads, and vectorization of pointer accesses.
These features are likely to be added by the
time this paper is presented, and will soon be
followed by support for peeling and versioning
for alignment. Other future directions include
support for multiple data-types, and for reduc-
tion and induction operations. In the next sec-
tion we discuss additional directions for further
development of the vectorizer.

8 Future Work

Following is a list of potential enhancements to
the vectorizer, organized into four categories:

Support additional loop forms. Support for
unknown loop bounds and if-then-else con-
structs is nearly complete. The major remain-
ing restriction on loop form is the nesting level.
Vectorization of nested loops will be consid-
ered in the future.

Support additional forms of data references.
Potential extensions in this category include
enhancements to the dependence tests (as dis-
cussed in Section 5) and support for additional
access patterns (reverse access, and accesses
that require data manipulations like strided or
permuted accesses). Exploiting data reuse as
in [17] is an optimization related to data refer-
ences that we plan to consider in the future.
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Support additional operations. Vectorization
of loops with multiple data-types and type cast-
ing is the first extension expected in this cate-
gory. This capability requires support for data
packing and unpacking, which breaks out of
the one-to-one substitution scheme, and can-
not be directly expressed using existing tree-
codes. The next capabilities to be introduced
will be support for vectorization of induction,
reduction, and special idioms (such as satura-
tion, min/max, dot product, etc.), using target
hooks or adding new tree-code as necessary.

Other enhancements and optimizations.
Two general capabilities that we are planning
to introduce are support for multiple vector
lengths for a single target, and the ability to
evaluate the cost of applying vectorization.
This will require some form of cost modelling
for the vector operations. Interaction with
other optimization passes should also be ex-
amined, and in particular, potential interaction
with other (new) passes that might also exploit
data parallelism. One example could be loop
parallelization (using threads). Another exam-
ple could be straight-line code vectorization (as
opposed to loop based), such as SLP [12].

SLP is in many ways suitable for lower rep-
resentation levels, as it analyzes addresses, and
operates like a peep-hole optimization on a sin-
gle basic block at a time. This is what gives
SLP it’s main strength—scalar operations are
grouped together into a vector operation with-
out a need to prove general attributes about an
enclosing loop as a whole. (In fact, it is not
even aware of any enclosing loops). This prop-
erty allows it to vectorize code sequences that
the loop based vectorizer does not target. How-
ever, this is also its main limiting factor, and it
can benefit from loop-level information which
is already available to the tree-level loop-based
vectorizer. We are therefore considering imple-
menting SLP at the tree-level, as a complemen-
tary solution to the loop-based vectorizer.

With the introduction of support for unknown
loop bounds, pointers, misalignment, and con-
ditional code, the GCC vectorizer will be in
relatively good shape compared to other vec-
torizing compilers. The major remaining re-
strictions (inner-most loops, consecutive ac-
cesses and a single data-type per loop) tend to
be common to vectorizing compilers in gen-
eral [5, 19]. However, as the (long) list above
implies, most of the exciting features still lie
ahead.
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Abstract

Tree SSA is a new optimization framework for
GCC that allows the implementation of ma-
chine and language independent transforma-
tions. This paper describes the major com-
ponents of Tree SSA, how they interact with
the rest of the compiler and, more importantly,
how to use the framework to implement new
optimization passes.

1 Introduction

The main goal of the Tree SSA project is to
evolve GCC’s optimization infrastructure to al-
low more powerful analyses and transforma-
tions that had traditionally proven difficult or
impossible to implement in RTL. Though orig-
inally started as a one person hobby project,
other developers in the community expressed
interest in it and a development branch off the
main GCC repository was started. Soon there-
after, Red Hat began sponsoring the project
and, over time, other organizations and devel-
opers in the community also started contribut-
ing. Presently, about 30 developers are actively
involved in it1, and work is underway to im-
plement vectorization and loop optimizations
based on the Tree SSA framework. We expect
Tree SSA to be included in the next major re-
lease of GCC.

1This is a rough estimate based only on ChangeLog
entries.

Although Tree SSA represents a significant
change in the internal structure of GCC, its
main design principle has been one of evolu-
tion, not revolution. As much as possible, we
tried to make Tree SSA a “drop-in” module. In
particular, we decided to keep thetree and
rtl data structures so that neither front ends
nor back ends needed to be re-implemented
from scratch. This was an important engineer-
ing decision that (a) allowed us to reach to a
working system in a relatively short period of
time, but (b) it exposed a few weak spots in the
existing data structures that we will need to ad-
dress in the future (Section 8).

This paper describes Tree SSA from a pro-
grammer’s point of view. Emphasis is placed
on how the different modules work together
and what is necessary to implement a Tree SSA
pass in GCC. Section 2 provides an overview
of the new files and compiler switches added to
GCC. Section 3 describes the GENERIC and
GIMPLE intermediate representations. Sec-
tion 4 describes the control flow graph (CFG),
block and statement manipulation functions.
Section 5 describes how optimization passes
are scheduled and declared to the pass man-
ager. Section 6 describes the basic data flow
infrastructure: statement operands and the SSA
form as implemented on GIMPLE. Section 7
describes alias analysis. Conclusions and fu-
ture work are in Section 8.
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2 Overview

2.1 Command line switches

Most of the new command line options added
by Tree SSA are only useful to GCC develop-
ers. They fall into two broad categories: de-
bugging dumps and individual pass manipula-
tion.

All the debugging dumps are requested with
-fdump-tree- pass- modifier. By default,
the tree representation is emitted in a syntax
resembling C. Passes can be individually se-
lected, but the most common usage is to en-
able all of them using-fdump-tree-all .
When enabled, each pass dumps all the func-
tions in the input program to a separate file.
Dump files are numbered in the same order in
which passes are applied. Therefore, to see the
effects of a single pass, one can just rundiff
between theN andN + 1 dumps.

Modifiers affect the format of the dump files
and/or the information included in them2. Cur-
rently, the following modifiers can be used:

• raw : Do not pretty-print expressions.
Use the traditional tree dumps instead.

• details : Request detailed debugging
output from each pass.

• stats : Request statistics from each
pass.

• blocks : Show basic block boundaries.

• vops : Show virtual operands (see Sec-
tion 6 for details).

• lineno : Show line numbers from the in-
put program.

2Note that not all passes are affected by these mod-
ifiers. A pass that does not support a specific modifier
will silently ignore it.

• uid : Show the unique ID (i.e.,DECL_
UID) for every variable.

We currently support enabling and disabling
most individual SSA passes. Although, it is not
clear whether that will be always supported,
it is sometimes useful to disable passes when
debugging GCC. Note, however, that even if
the bug goes away when disabling an individ-
ual pass, it does not mean that the pass itself is
faulty. The bug may exist somewhere else and
is exposed at this point.

All the new command line switches are de-
scribed in detail in the GCC documentation.

2.2 New files

All the necessary API and data structure def-
initions are in tree-flow.h and tree-passes.h.
The remaining files can be loosely categorized
as basic infrastructure, transformation passes,
analysis passes and various utilities.

2.2.1 Basic infrastructure

tree-optimize.cis the main driver for the
tree optimization passes. In particular, it
contains init_tree_optimization_

passes , which controls the scheduling
of all the tree passes, andtree_rest_
of_compilation which performs all
the gimplification, optimization and ex-
pansion into RTL of a single function.

tree-ssa.c, tree-into-ssa.candtree-outof-ssa.c
implement SSA renaming, verification
and various functions needed to interact
with the SSA form.

tree-ssanames.cand tree-phinodes.cimple-
ment memory management mechanisms
for re-usingSSA_NAMEandPHI_NODE
tree nodes after they are removed.
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tree-cfg.ccontains routines to build and ma-
nipulate the CFG.

tree-dfa.c implements general purpose rou-
tines for dealing with program variables
and data flow queries like immediate use
information.

tree-ssa-operands.c contains routines
for scanning statement operands
(get_stmt_operands ).

tree-iterator.c contains routines for insert-
ing, removing and iterating over GIMPLE
statements. Two types of iterators are pro-
vided, those that do not stop at basic block
boundaries (known astree statement iter-
ators) and those that do (known asblock
statement iterators). Most optimization
passes use the latter.

c-gimplify.c, gimplify.candtree-gimple.ccon-
tain the routines used to rewrite the code
into GIMPLE form. They also provide
functions to verify GIMPLE expressions.

2.2.2 Transformation passes

gimple-low.c removes binding scopes and
converts the clauses of conditional expres-
sions into explicit gotos. This is done
early before any other optimization pass
as it greatly simplifies the job of the opti-
mizers.

tree-ssa-pre.c, tree-ssa-dse.c, tree-ssa-
forwprop.c, tree-ssa-dce.c, tree-ssa-ccp.c,
tree-sra.cand tree-ssa-dom.cimplement
some commonly known scalar transfor-
mations: partial redundancy elimination,
dead store elimination, forward propaga-
tion, dead code elimination, conditional
constant propagation, scalar replace-
ment of aggregates and dominator-based
optimizations.

tree-ssa-loop.cis currently a place holder for
all the optimizations being implemented
in the LNO (Loop Nest Optimizer) branch
[1]. Presently, it only implements loop
header copying, which moves the condi-
tional at the bottom of a loop to its header
(benefiting code motion optimizations).

tree-tailcall.c marks tail calls. The RTL op-
timizers will make the final decision of
whether to expand calls as tail calls based
on ABI and other conditions.

tree-ssa-phiopt.ctries to replace PHI nodes
with an assignment when the PHI node is
at the end of a conditional expression.

tree-nrv.cimplements the named return value
optimization. For functions that return
aggregates, this optimization may save a
structure copy by building the return value
directly where the target ABI needs it.

tree-ssa-copyrename.ctries to reduce the
number of distinct SSA variables when
they are related by copy operations. This
increases the chances of user variables
surviving the out of SSA transformation.

tree-mudflap.cimplements pointer and array
bound checking. This pass re-writes ar-
ray and pointer dereferences with bound
checks and calls to its runtime library.
Mudflap is enabled with-fmudflap .

tree-complex.c, tree-eh.c and tree-nested.c
rewrite a function in GIMPLE form to ex-
pand operations with complex numbers,
exception handling and nested functions.

2.2.3 Analysis passes

tree-ssa-alias.cimplements type-based and
flow-sensitive points-to alias analysis.
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tree-alias-type.c, tree-alias-ander.c and
tree-alias-common.c implement flow-
insensitive points-to alias analysis
(Andersen analysis).

2.2.4 Various utilities

tree-ssa-copy.ccontains support routines for
performing copy and constant propaga-
tion.

domwalk.cimplements a generic dominator
tree walker.

tree-ssa-live.ccontains support routines for
computing live ranges of SSA names.

tree-pretty-print.c implements print_
generic_stmt and print_
generic_expr for printing GENERIC
andGIMPLE tree nodes.

tree-browser.cimplements an interactive tree
browsing utility, useful when debugging
GCC. It must be explicitly enabled with
--enable-tree-browser when
configuring the compiler.

3 Intermediate Representation

Although Tree SSA uses thetree data struc-
ture, the parse trees coming out of the vari-
ous front ends cannot be used for optimiza-
tion because they contain language dependen-
cies, side effects and can be nested in arbitrary
ways. To address these problems, we have
implemented two intermediate representations:
GENERIC and GIMPLE [4].

GENERIC provides a way for a language front
end to represent entire functions in a language-
independent way. All the language semantics
must be explicitly represented, but there are no
restrictions in how expressions are combined

and/or nested. If necessary, a front end can
use language-dependent trees in its GENERIC
representation, so long as it provides a hook
for converting them to GIMPLE. In particu-
lar, a front end need not emit GENERIC at
all. For instance, in the current implementa-
tion, the C and C++ parsers do not actually
emit GENERIC during parsing.

GIMPLE is a subset of GENERIC used for op-
timization. Both its name and the basic gram-
mar are based on the SIMPLE IR used by the
McCAT compiler at McGill University [3]. Es-
sentially, GIMPLE is a 3 address language with
no high-level control flow structures.

1. Each GIMPLE statement contains no
more than 3 operands (except function
calls) and has no implicit side effects.
Temporaries are used to hold intermediate
values as necessary.

2. Lexical scopes are represented as contain-
ers.

3. Control structures are lowered to condi-
tional gotos.

4. Variables that need to live in memory are
never used in expressions. They are first
loaded into a temporary and the temporary
is used in the expression.

The process of lowering GENERIC into GIM-
PLE, known asgimplification, works recur-
sively, replacing complex statements with se-
quences of statements in GIMPLE form. A
front end which wants to use the tree optimiz-
ers needs to

1. have a whole-function tree representation,

2. provide a definition ofLANG_HOOKS_

GIMPLIFY_EXPR,
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3. call gimplify_function_tree to
lower to GIMPLE, and,

4. hand off to tree_rest_of_
compilation to compile and out-
put the function.

The GCC internal documentation includes a
detailed description of GENERIC and GIM-
PLE that an implementor of new language
front ends will find useful.

4 Control Flow Graph and IR ma-
nipulation

Data structures for representing basic blocks
and edges are shared between GIMPLE and
RTL. This allows the GIMPLE CFG to use all
the functions that operate on the flow graph in-
dependently of the underlying IR (e.g., domi-
nance information, edge placement, reachabil-
ity analysis). For the cases where IR informa-
tion is necessary, we either replicate function-
ality or have introduced hooks.

The flow graph is built once the function is put
into GIMPLE form and is only removed once
the tree optimizers are done3.

Traversing the flow graph can be done using
FOR_EACH_BB, which will traverse all the ba-
sic blocks sequentially in program order. This
is the quickest way of going through all ba-
sic blocks. It is also possible to traverse the
flow graph in dominator order usingwalk_
dominator_tree .

Each basic block has a list of all the statements
that it contains. To traverse this list, one should
use a special iterator calledblock statement
iterator (BSI). For instance, the code frag-
ment in Figure 1 will display all the statements

3It may be advantageous to keep the CFG all the way
to RTL, so this may change in the future.

in the function being compiled (current_
function_decl ).

It is also possible to do a variety of common
operations on the flow graph and statements:
edge insertion, removal of statements and in-
sertion of statements inside a block. Detailed
information about the flow graph can be found
in GCC’s internal documentation.

5 Pass manager

Every SSA pass must be registered with the
pass manager and scheduled ininit_tree_
optimization_passes . Passes are de-
clared as instances ofstruct tree_opt_
pass , which declares everything needed to
run the pass, including its name, function to
execute, properties required and modified and
what to do after the pass is done.

In this context, properties refer to things like
dominance information, the flow graph, SSA
form and which subset of GIMPLE is required.
In theory, the pass manager would arrange for
these properties to be computed if they are
not present, but not all properties are presently
handled. Each pass will also declare which
properties it destroys so that it is recomputed
after the pass is done.

To add a new Tree SSA pass, one should

1. create a global variable of typestruct
tree_opt_pass ,

2. create anextern declaration for the new
pass intree-pass.h , and,

3. sequence the new pass in
tree-optimize.c:init_tree_
optimization_passes by calling
NEXT_PASS. If the pass needs to be
applied more than once, useDUP_PASS
to duplicate it first.
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{
basic block bb;
block stmt iterator si;

FOR EACH BB (bb)
for (si = bsi start (bb); !bsi end p (si); bsi next (&si))

{
tree stmt = bsi stmt (si);
print generic stmt (stderr, stmt, 0);

}
}

Figure 1: Traversing all the statements in the current function.

6 SSA form

Most of the tree optimizers rely on the data
flow information provided by the Static Single
Assignment (SSA) form [2]. The SSA form
is based on the premise that program variables
are assigned in exactly one location in the pro-
gram. Multiple assignments to the same vari-
able create new versions of that variable.

Naturally, actual programs are seldom in SSA
form initially because variables tend to be as-
signed multiple times. The compiler modifies
the program representation so that every time
a variable is assigned in the code, a new ver-
sion of the variable is created. Different ver-
sions of the same variable are distinguished by
subscripting the variable name with its version
number. Variables used in the right-hand side
of expressions are renamed so that their version
number matches that of the most recent assign-
ment.

This section describes how the compiler rec-
ognizes and classifies statement operands rec-
ognized, the process of renaming the program
into SSA form and how is aliasing information
incorporated into the SSA web.

6.1 Statement operands

Tree SSA implements two types of operands:
real andvirtual. Real operands are those that

represent a single, non-aliased, memory loca-
tion which is atomically read or modified by
the statement (i.e., variables of non-aggregate
types whose address is not taken). Virtual
operands represent either partial or aliased ref-
erences (i.e., structures, unions, pointer deref-
erences and aliased variables).

Since the SSA form uses a versioning scheme
on variable names, in principle it would not be
possible to assign version numbers to virtual
operands. So, the compiler associates a sym-
bol name to the operand and provides SSA ver-
sioning for that symbol. Symbols for virtual
operands are either created or derived from the
original operand:

• For pointer dereferences, a new symbol
called a memory tag(MT) is created.
Memory tags represent the memory lo-
cation pointed-to by the pointer. For in-
stance, given a pointerint *p , the state-
ment*p = 3 will contain a virtual defi-
nition to p’s memory tag (more details in
Section 7).

• For references to variables of non-
aggregate types, the base symbol of the
reference is used. For instance, the state-
ment a.b.c = 3 , is considered a vir-
tual definition fora. Other terms to refer
to virtual definitions include “may-defs,”
when they refer to aliased stores, and
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“non-killing defs” when they refer to par-
tial stores to an object of a non-aggregate
type. Similarly, virtual uses are known as
“may-uses.”

Using this scheme, the compiler can now re-
name both real and virtual operands into SSA
form. Every symbol that complies withSSA_
VAR_Pwill be renamed. This includesVAR_
DECL, PARM_DECLand RESULT_DECL
nodes. To determine whether anSSA_VAR_P
will be renamed as a real or virtual operand,
the predicateis_gimple_reg is used. If it
returnstrue the variable is added as a real
operand, otherwise it is considered virtual.

Every statement has 4 associated arrays repre-
senting its operands:DEF_OPSandUSE_OPS
hold definitions and uses for real operands,
while VDEF_OPSand VUSE_OPShold po-
tential or partial definitions and uses for vir-
tual operands. These arrays are filled in by
get_stmt_operands . The code fragment
in Figure 2 shows how to print all the operands
of a given statement. Operands are stored in-
side an auxiliary data structure known asstate-
ment annotation(stmt_ann_t ). That’s a
generic annotation mechanism used through-
out Tree SSA to store optimization-related in-
formation for statements, variables and SSA
names.

6.2 SSA Renaming Process

We represent variable versions usingSSA_
NAMEnodes. The renaming process intree-
into-ssa.cwraps every real and virtual operand
with an SSA_NAMEnode which contains the
version number and the statement that created
the SSA_NAME. Only definitions and virtual
definitions may create newSSA_NAMEnodes.

Sometimes, flow of control makes it impossi-
ble to determine what is the most recent ver-
sion of a variable. In these cases, the compiler

void
print ops (tree stmt)
{

vuse optype vuses;
vdef optype vdefs;
def optype defs;
use optype uses;
stmt ann t ann;
size t i;

get stmt operands (stmt);
ann = stmt ann (stmt);

defs = DEF OPS (ann);
for (i = 0; i � NUM DEFS (defs); i++)

print generic expr (stderr,
DEF OP (defs, i), 0);

uses = USE OPS (ann);
for (i = 0; i � NUM USES (uses); i++)

print generic expr (stderr,
USE OP (uses, i), 0);

vdefs = VDEF OPS (ann);
for (i = 0; i � NUM VDEFS (vdefs); i++)

print generic expr (stderr,
VDEF OP (vdefs, i), 0);

vuses = VUSE OPS (ann);
for (i = 0; i � NUM VUSES (vuses); i++)

print generic expr (stderr,
VUSE OP (vuses, i), 0);

}

Figure 2: Accessing the operands of a state-
ment.
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inserts an artificial definition for that variable
called PHI function or PHI node. This new
definition merges all the incoming versions of
the variable to create a new name for it. For
instance,

if (. . .)
a1 = 5;

else if (. . .)
a2 = 2;

else
a3 = 13;

# a4 = PHI � a1, a2, a3
�

return a4;

Since it is not possible to statically determine
which of the three branches will be taken at
runtime, we don’t know which ofa1, a2 or a3

to use at the return statement. So, the SSA re-
namer creates a new version,a4, which is as-
signed the result of “merging” all three other
versions. Hence, PHI nodes mean “one of
these operands. I don’t know which.”

Previously we had described virtual definitions
as non-killing definitions, this means that given
a sequence of virtual definitions for the same
variable, they should all be related somehow.
To this end, virtual definitions are considered
read-write operations. So, the following code
fragment

. . .
# a = VDEF � a �
a[i] = f ();
. . .
# a = VDEF � a �
a[j] = g ();
. . .
# a = VDEF � a �
a[k] = h ();
. . .

is transformed into SSA form as

. . .
# a2 = VDEF � a1

�

a[i] = f ();
. . .
# a3 = VDEF � a2

�

a[j] = g ();
. . .
# a4 = VDEF � a3

�

a[k] = h ();
. . .

Notice how everyVDEF has a data depen-
dency on the previous one. This is used mostly
to prevent errors in scalar optimizations like
code motion and dead code elimination. Passes
that want to manipulate statements with virtual
operands should obtain additional information
(e.g., by building an array SSA form, or value
numbering as is currently done in the domi-
nator optimizers). The SSA form for virtual
operands is actually a factored use-def (FUD)
representation [5]. When taking the program
out of SSA form, the compiler will not in-
sert the copies needed to resolve the overlap.
Virtual operands are simply removed from the
code.

Such considerations are not necessary when
dealing with real operands.SSA_NAMEs for
real operands are considered distinct variables
and can be moved around at will. When the
program is taken out of SSA form (tree-outof-
ssa.c), overlapping live ranges are handled by
creating new variables and inserting the neces-
sary copies between different versions of the
same variable. For instance, given the GIM-
PLE program in SSA form in Figure 3a, op-
timizations will create overlapping live ranges
for two different versions of variableb, namely
b3 and b7 (Figure 3b). When the program is
taken out of SSA form, prior to RTL expansion,
the two different versions ofb will be assigned
different variables (Figure 3c).
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foo (a, b, c)
{

a4 = b3;
if (c5

� a4)
goto � L0 � ;

else
goto � L1 � ;

� L0 � :
b7 = b3 + a4;
c8 = c5 + a4;

# c2 = PHI � c5, c8 � ;
# b1 = PHI � b3, b7 � ;

� L1 � :
return b1 + c2;

}

foo (a, b, c)
{

if (c5
� b3)

goto � L0 � ;
else

goto � L1 � ;

� L0 � :
b7 = b3 + b3;
c8 = c5 + b3;

# c2 = PHI � c5, c8 � ;
# b1 = PHI � b3, b7 � ;

� L1 � :
return b1 + c2;

}

foo (a, b, c)
{

if (c � b)
goto � L0 � ;

else
goto � L1 � ;

� L0 � :
b.0 = b + b;
c = c + b;
b = b.0;

� L1 � :
return b + c;

}

(a) Original SSA form. (b) SSA form after optimization. (c) Resulting normal form.

Figure 3: Overlapping live ranges for different versions of the same variable.

foo (int *p)
{
# TMT.15 = VDEF � TMT.14

� ;
*p1 = 5;

# VUSE � TMT.15
� ;

T.02 = *p1;

return T.02 + 1;
}

Figure 4: Representing pointer dereferences
with memory tags.

7 Alias analysis

Aliasing information is incorporated into the
SSA web using artificial symbols calledmem-
ory tags. A memory tag represents a pointer
dereference. Since there are no multi-level
pointers in GIMPLE, it is not necessary for the
compiler to handle more than one level of indi-
rection. So, given a pointerp, every time the
compiler finds a dereference ofp (*p ), it is
considered a virtual reference top’s memory
tag (Figure 4).

Given this mechanism, whenever the compiler
determines that a pointerp may point to vari-
ablesa andb (andp is dereferenced), a mem-
ory tag forp is created and variablesa and b
are added top’s memory tag.

The code fragment in Figure 5 illustrates this
scenario. The compiler determines thatp2 may
point to a or b, and so wheneverp2 is deref-
erenced, it adds virtual references toa andb.
Also notice that since botha andb have their
addresses taken, they are always considered
virtual operands.

The compiler computes three kinds of aliasing
information: type-based, flow-sensitive points-
to and flow-insensitive points-to4.

Going back to the code fragment in Figure 5,
notice how the two different versions of pointer
p have different alias sets. This is becausep1 is
found to point to eitherc or d, while p2 points
to eithera or b. In this case, the compiler is us-
ing flow-sensitive aliasing information and will
create two memory tags, one forp1 and another

4This one is currently not computed by default. It is
enabled with-ftree-points-to=andersen
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foo (int i)
{

. . .
� L0 � :
# p1 = PHI � &d, &c � ;

# c5 = VDEF � c7 � ;
# d18 = VDEF � d17 � ;
*p1 = 5;

. . .
� L3 � :
# p2 = PHI � &b, &a � ;

# a19 = VDEF � a4 � ;
a = 3;

# b20 = VDEF � b6 � ;
b = 2;

# VUSE � a19 � ;
# VUSE � b20 � ;
T.08 = *p2;
. . .

# a21 = VDEF � a19 � ;
# b22 = VDEF � b20 � ;
*p2 = T.19;
. . .

}

Figure 5: Using flow-sensitive alias informa-
tion.

for p2. Since these memory tags are associ-
ated withSSA_NAMEobjects, they are known
asname memory tags(NMT).

In contrast, when the compiler cannot com-
pute flow-sensitive information for eachSSA_
NAME, it falls back to flow-insensitive infor-
mation which is computed using type-based or
points-to analysis. In these cases, the com-
piler creates a single memory tag that is asso-
ciated toall the different versions of a pointer
(i.e., it is associated with the actualVAR_DECL
or PARM_DECLnode). Such memory tag is
calledtype memory tag(TMT).

Figure 6 is similar to the previous example, but
in this case the addresses ofa, b, c andd es-
cape the current function, something which the
current implementation does not handle. This
forces the compiler to assume that all versions
of p may point to either of the four variablesa,
b, c andd. And so it creates a type memory tag
for p and puts all four variables in its alias set.

The concept of ‘escaping’ is the same one
used in the Java world. When a pointer or
an ADDR_EXPRescapes, it means that it has
been exposed outside of the current function.
So, assignment to global variables, function ar-
guments and returning a pointer are all escape
sites.

We also use escape analysis to determine
whether a variable is call-clobbered. If an
ADDR_EXPRescapes, then the associated vari-
able is call-clobbered. If a pointerPi escapes,
then all the variables pointed-to byPi (and its
memory tag) also escape.

In certain cases, the list of may aliases for a
pointer may grow too large. This may cause
an explosion in the number of virtual operands
inserted in the code. Resulting in increased
memory consumption and compilation time.

When the number of virtual operands needed
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foo (int i)
{
# a6 = VDEF � a3

� ;
# b4 = VDEF � b5

� ;
# c13 = VDEF � c12

� ;
# d15 = VDEF � d14

� ;
p2 = baz (&a, &b, &c, &d);

# a16 = VDEF � a6
� ;

# b17 = VDEF � b4
� ;

# c18 = VDEF � c13
� ;

# d19 = VDEF � d15
� ;

*p2 = 5;

# a20 = VDEF � a16
� ;

a = 3;

# b21 = VDEF � b17
� ;

b = 2;

# VUSE � a20
� ;

# VUSE � b21
� ;

# VUSE � c18
� ;

# VUSE � d19
� ;

T.17 = *p2;
. . .

}

Figure 6: Using flow-insensitive alias informa-
tion.

foo ()
{
# TMT.513 = VDEF � TMT.512

� ;
p2 = baz (&a, &b, &c, &d);

# TMT.514 = VDEF � TMT.513
� ;

*p2 = 5;

# TMT.515 = VDEF � TMT.514
� ;

a = 3;

# TMT.516 = VDEF � TMT.515
� ;

b = 2;

# VUSE � TMT.516
� ;

T.17 = *p2;
. . .

}

Figure 7: Effects of alias grouping.

to represent aliased loads and stores grows
too large (configurable with-param max-

aliased-vops ), alias sets are grouped to
avoid severe compile-time slow downs and
memory consumption. The alias grouping
heuristic essentially reduces the sizes of se-
lected alias sets so that they are represented by
a single symbol. This way, aliased references
to any of those variables will be represented by
a single virtual reference. Resulting in an im-
provement of compilation time at the expense
of precision in the alias information.

Figure 7 shows the same exam-
ple from Figure 6 compiled with
--param max-aliased-vops=1 .
Notice how all four variables are represented
by p’s type memory tag, namelyTMT.5. Even
references to individual variables, like the
assignmenta = 3 are considered references to
TMT.5.

8 Conclusions and future work

Tree SSA represents a useful foundation to
incorporate more powerful optimizations and
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analyses to GCC. Although the basic infras-
tructure is already functional and produces
encouraging results there is still much work
ahead of us. Over the next few months we will
concentrate on the following areas:

Compile time performance. Currently, Tree
SSA is in some cases slower than other
versions of GCC. In particular, C++ pro-
grams seem to be the most affected. Pre-
liminary findings point to memory man-
agement inside GCC and various data
structures that are being stressed.

Another source of compile time slowness
are the presence of RTL optimizations that
have been superseded by Tree SSA. While
some passes have already been disabled
or simplified, there still remain some RTL
passes which could be removed.

Run time performance. In general, Tree SSA
produces similar or better code than other
versions of GCC. However, there are still
some missing optimizations. Most no-
tably, loop optimizations, which we ex-
pect will be incorporated soon.

In the immediate future, most efforts will be fo-
cused on stabilizing the infrastructure in prepa-
ration for the next major release of GCC. Al-
though the framework is tested daily on sev-
eral different architectures, there are still some
known bugs open against it and there are some
architectures that have not been tested or have
had limited exposure.

We expect the infrastructure to keep evolv-
ing, particularly as new optimizations are
added, we will probably find design and/or
implementation limitations that will need to
be addressed. We have tried to make the
basic design sufficiently flexible to permit
such changes without overhauling the whole
middle-end.
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Abstract

In most modern processor architectures, dif-
ference in data access time for values kept
in registers as compared to those in memory
is quite high. Thus, compilers should imple-
ment efficient register allocation strategies to
improve the runtime performance of the code.
Register rematerialization is a technique to im-
prove register allocation effectively by improv-
ing spill code generation. It is often desirable
to compute expressions at a “use” rather than
use an earlier spilled value. Normally, “re-
materializable” values are derived from reg-
isters that are live throughout the function.
On register-starved architectures with with ad-
dressing modes supporting limited displace-
ment, spilling values, which can be remateri-
alized, incurs an additional loss in performance
due to instructions generated to fetch data from
the frame. Hence, rematerialization aids in
good usage of registers to give a good gain in
execution performance of the code generated.
Experimental results indicate a gain of 1-6% in
code size and 1-4% improvement in execution
performance.

1 Introduction

Let us see the register rematerialization (remat)
concept in GCC in more detail. We discuss
the proposed improved remat implementation
in GCC as it occurs as a part of graph coloring
register allocator (in the new regalloc branch).

This optimization is supported by target archi-
tecture hooks and is currently implemented and
tested for SH4 architecture.

1.1 What is remat?

Certain values in a function can be recomputed
at any point, as the required source operands
will always be available for the computation.
Such values are called never killed values.
During global register allocation pass, if such
never killed values cannot be kept in registers
and need to be spilled, the register allocator
should recognize when it is cheaper to recom-
pute the value i.e. to rematerialize it [REMAT],
rather than to store and reload it from stack.
This often happens with frame pointer (FP) rel-
ative address computations as well as address
computations of large struct or arrays in local
scope, where unnecessary spills are seen. A
prime example of this can be cited:

1. GCC calculates FP + offset and stores into
r3 (say).

2. GCC spills and restores r3 to (from) stack
even though it would be cheaper to clob-
ber the register and recompute the value
of FP + offset.

Register remat occurs as part of a larger prob-
lem of improved spill code generation during
global register allocation. The description be-
low co-relates the two facets—Register Allo-
cation Problem and remat as a method of im-
proved spill code generation.
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1.2 Register Allocation as Graph coloring
Problem

The new register allocator in GCC models reg-
ister allocation as a graph-coloring problem. It
first constructs an interference graph G where
nodes in G represent live ranges and edges rep-
resentinterferences. So there is an edge from
nodei to nodej if and only if live rangeli in-
terferes with live rangelj i.e. they are simul-
taneously live at some point and hence cannot
occupy the same register. Live ranges that in-
terfere withli are its neighbors in the graph, the
degree ofli is the number of neighbors it has in
the graph.

To find an allocation from G, the compiler
looks for a k-coloring of G, i.e. an assignment
such that neighboring nodes always have dis-
tinct colors. If we choose k to match the num-
ber of machine registers, then we can map a
k-coloring for G into a feasible register assign-
ment for the underlying code. Because find-
ing a k-coloring of an arbitrary graph is NP-
complete, the compiler uses a heuristic method
to search for a coloring, it is not guaranteed to
find a k-coloring for all k-colorable graphs. If a
k-coloring is not discovered, some live ranges
are spilled, i.e. the values are kept in memory
rather than in registers [GCRA].

Spilling one or more live ranges changes both
the intermediate code and the interference
graphs; hence register allocation. The compiler
proceeds by iteratively spilling live ranges and
attempting to color the resulting new graph.
This process is guaranteed to terminate.

The new register allocator framework takes
two approaches while spilling a live range

• A simple Spill Everywhereapproach in-
volves spilling the entire live range in case
it needs. This would involve spilling all
the defs of value live range is represent-

ing on stack and inserting corresponding
reloads before all uses these defs flow
into. This spilling technique is fast but not
optimal as it would generate lot of spill
code.

• An improved but slowerInterference Re-
gion Spilling approach, which involves
spilling a live range partly. An interfer-
ence region for two live ranges can be
defined as the portion of the data flow
where they are live simultaneously. By
spilling interference region for one of the
live ranges, they will no longer be live si-
multaneously, thus will no longer inter-
fere. This effectively removes an edge be-
tween the two nodes in the interference
graph, making the graph more easily col-
ored. Any spill code addition due to inter-
ference region spilling would insert spill
code say after a particular use point (only
those uses which lie in the interference re-
gion). This use point may or may not be
the first one in the live range.

1.3 Improving the quality of spill code—Remat
Opportunities

In the existing implementation of new regis-
ter allocator, remat is performed only for those
values whose definition consists of moving a
immediate value to a pseudo. The proposed
approach can enhance the scope of remat by
taking into account more potential remat can-
didates and hence improvement in spill code
generation.

The opportunities identified for remat can be

• Immediate loads of integer/float constants

• Loads from literal pools

• Computing a constant offset from the
stack pointer
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• Computing a constant offset from the
static data area pointer

• Any Branch Related target Labels

• Address computations for access to non-
local names in case of nested functions

• Address computations from pointer to
global offset table in case of position in-
dependent code

• Address computations resulting from pa-
rameter registers (e.g. r4...r7 in case
of SH4) or parameter register copied to
callee save registers which dont have defs
elsewhere in the function

• Address computations resulting from re-
turn register (e.g. r0 in case of SH4) or
return register copied to other callee save
registers which don’t have defs elsewhere
in the function

2 Remat Strategy

The new register allocator is based on the anal-
ysis of definitions and uses of all the pseudos
in the instructions stream to form webs (nodes
of the interference graph), which are the basic
entity for allocation to a register. Hence, each
web corresponds to the live range of a variable,
which can be allocated a distinct symbolic reg-
ister number. The interference graph for webs
consists of a number of such intersecting webs,
the intersection between any two webs occurs
when they have a use in common. If a web
can’t be assigned a register then a decision is
made to spill it.

The proposed improved remat optimization
consists of identifying remat defs during data-
flow analysis and propagating this information
to the web spilling phase. The spilling phase
can choose between spilling or rematerializa-
tion of a web based on relative cost analysis.

Hence the remat strategy can be segregated into
the following sub-problems

• Gather and propagate remat/live-range in-
formation

• Criterion for spilling/remat decision

• Performing remat

2.1 Remat Information

To identify rematerializable candidates, remat
information needs to be built during the data-
flow analysis. All the defs can be analyzed
to see whether they come from any of the re-
mat sources. Such defs can be tagged with
their corresponding remat efinitions. Any re-
mat definition resulting from an operation on
two or more rematerializable definitions (say a
def consisting of adding a constant value to the
label) can be tagged likewise.

2.2 Remat Criterion

The obvious criterion for remat/spilling deci-
sion would be to compare the relative cost of
both the decisions in terms of aggregate cost of
instructions each would generate, and choose
the one with lower cost. This criterion is de-
scribed in Section 2.3. But due to some issues
mentioned further, it might not be possible to
calculate the exact spill costs. Another method
to choose remat in the absence of spill cost cri-
terion has been described in Section 2.4.

2.3 Spill v/s Remat Cost

Whenever a decision is taken to mark a web
for spilling, check if the definition in the web is
rematerializable. Calculation of the remat and
spill cost will be implemented in a target de-
pendent hook. Remat cost will be calculated in
terms of the aggregate of all the insns’ costs,
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which would be required to recompute a remat
definition before every use of such definition.
Similarly spill cost can be computed as instruc-
tion cost aggregate of all the insn’s cost gener-
ated to spill (and restore) the value. Choose
the one with lower cost. However in the exist-
ing new register allocator, it may be difficult to
calculate the exact accurate remat (spill) costs
of any value because

• During web spilling, actual stack offsets
of spill locations are not defined, instead
only stack pseudos are assigned

• The reload_cse pass may use address
inheritance information and may merge
some instructions for loading the offset,
by reusing any value close to or equal to
the offset loaded in some other pseudo.
Hence cost decisions may get invalidated
later

e.g. In case of SH4, the number of instruc-
tions to spill (restore) can be a minimum of
1, if spilling takes place at an offset less than
64 bytes relative to a base register. In case
the spill offset is more than 64 bytes, spilling
(restoring) may take two or more instructions,
one instruction for loading the stack offset to
spill (restore) and another consisting of stor-
ing (restoring) the value. In order to calcu-
late spill (restore) offset (and the number of
instructions required for spill ), stack slot in-
formation to which the pseudo is likely to be
spilled to, needs to be built and tracked for all
such pseudos, depending on which the number
of instructions needed to spill (restore) can be
calculated.

Thereload_cse pass may further merge in-
structions for loading the offset, by reusing any
value close to or equal to the offset loaded in
some other pseudo. In this case, even if the
spill location is at an offset greater than 64
bytes, it may require 1 instruction.

The first problem related to spill cost compu-
tation can be partially resolved by tracking the
size of frame data and number of pseudos be-
ing spilled so as to have an estimate of spill
offsets. This can predict the number of in-
structions that would actually be required to
spill (restore). However in the existing frame-
work of new register allocator, spill cost can-
not be computed correctly in some cases due
to reload_cse issue mentioned.

2.4 Remat Without Spill Cost Calculation

In the absence of a definite cost available for
spilling, spill cases can be segregated accord-
ing to the reason for their occurrence and also
cases, which will definitely be cheaper to re-
materialize than to spill

Definitive Remat Some defs can be identified
as remat cases based on the fact that they re-
quire 1/2 insns to compute and re-computing
them will always be less than or equal to mini-
mum cost of spilling a def for the given target.
Examples for such definitive remat would in-
clude

• Constant loads

• Label Loads

Defs having up to 1 insn in their remat insn
chain (spill (restore) together would require a
minimum of two insns).

For defs having two or more insns in their re-
computation sequence, insn merging can be at-
tempted on that sequence based on a target de-
pendent hook. If such sequence merging gen-
erates a valid single insn for the target, then it
fits as a candidate for definitive remat.

For remat in such cases, all the insns lead-
ing to definition of rematerializable value be-
ing spilled can be moved immediately before
its use.
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Moving Defs Near UsesThis approach may
be used for remat cases not covered in previ-
ous section. Spilling generally happens as a
result of spacing between the actual def and
use of values in case of high register pressure.
This can happen in case of complex compu-
tations involved in some program statements,
where LHS computations and some other inter-
mediate computations have to be spilled. Such
cases of spilling require generation of 2–4 spill
and restore instructions (e.g. 64-byte stack off-
set criterion in SH4). In case the computation
being spilled is rematerializable, spilling be-
comes unnecessary. The remat cost criterion
need not be taken into account here because
spilling is definitely not required.

In both the approaches for spilling described
above, unnecessary spill cases can be identified
as those having their spill point just after def
(before 1st use).

The following assembly illustrates this case:

chanserv.i/load_cs_dbase (in
stress 1.17) compiled with -O2
-ml -m4 -fnew -ra
-fno-argument-alias
-fno-schedule -insns
-fno-schedule-insns2 -g -S
-fpic generates

.L1404:
.loc 1 2844 0
mov.l .L1036,r0 <-- 1
mov.l @(r0,r12),r0<-- 2
mov.w @r0,r1 <-- 3 (remat

insn chain 1,2)
mov.w r1,@r14 <-- Spill

before 1st use
.L612:

.loc 1 2845 0
mov.w .L1037,r0
mov.w @r14,r1 <-- Reload
mov.w r1,@(r0,r11)
.loc 1 2848 0
mov r14,r4

mov.l .L1038,r1
bsrf r1

For remat in such cases, the all the insns lead-
ing to definition of rematerializable value be-
ing spilled can be moved immediately before
its use.

There are certain issues regarding the move-
ment of insns in this case. The placement of a
def before use requires addition of insns before
the use point which leads to increased register
usage there. Hence, a good heuristic needs to
be devised to make sure that such insn inser-
tion keeps the register pressure in check and
does not actually end up increasing it.

Interference Region SpillsAs discussed ear-
lier, in case of interference region spilling, spill
point may or may not be before the first use
point. Hence in such a case for spilling, we
have to choose between spill/rematerialize (in
the absence of cost of spilling). This case of
spilling generally occurs in spilling calculated
offsets for arrays/structs, and may not require a
lesser remat cost in most of the cases. Here re-
materialization decision is not taken, as spilling
might actually be cheaper. Nevertheless, the
decision may not be correct for all the cases.

2.5 Performing Remat

Remat of a value involves inserting re-
computation sequence for a definition before
use points by moving the insns forming the
definition before use points.

3 Implementation in GCC

The patch at the link

http://gcc.gnu.org/ml/gcc-patches/

2003-12/msg01985.html
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is the implementation of the ideas presented in
the paper in GCC. This implementation scope
and its constraints are discussed as follows.

3.1 Current Implementation Approach

Data Flow PhaseThe improved remat handler
detemines the defs, which have been generated
from never-killed sources and creates a remat
pattern sequence to recompute those defs. This
code is implemented along with the data flow
routines in df.c

Eg. r159 <- const1 (1)
r160 <- r14 + r159 (2)
r161 <- mem (r160) (3)

Here defs for r159, r160, r161 are all re-
mat, as all have been derived from never-killed
sources. The data flow routines determine all
such defs and store the respective patterns that
would be required for recomputing each poten-
tial remat definition.

So in the above example,
def(r159)->remat_sequence = (1)
def(r160)->remat_sequence = (1), (2)
and def(r161)->remat_sequence = (1), (2), (3)

Web Construction PhaseThe cost of webs
in ra_build.c is modified to accommodate
the cost of those webs which have rematerial-
izable defs. The cost for all the defs is added
up whether for remat defs or non-remat ones.

Web Colorize PhaseThe webs, which have
potentially, remat defs and the cost conse-
quently is lower than other defs are promoted
for spilling. This advocates their spilling, in
turn relieving the conflict edges. Remat han-
dler later picks up such webs and appropri-
ate processing is done there. This happens in
ra_colorize.c

Web Spilling Phase In this file i.e. ra_
rewrite.c , the allocator is let to spill as it
was doing earlier. After the first level spilling
is done, the spilled webs whose defs can be re-
mat are picked up and the remat patterns for
those defs can replace the restore insns for the
defs spilled. At the point of inserting compu-
tations, it needs to be ensured that the regs that
form the remat sequence

• Do not increase the register pressure at
that point.

• Live range of those regs is not exceeded.

The remat handler only concentrates on the
first pass of the allocator and spills generated
for the first time are handled only. Later rounds
do not call the remat sequence building rou-
tines.

Problems Encountered With Full Scope

• In the absence of a good register pres-
sure estimation heuristic, insertion of defs
with multiple insns in the remat sequence
poses problems. Also, the register alloca-
tor has strong asssumpions about the web
structure. Hence after inserting recompu-
tation patterns of length> 1 in place of
the restore insn, the allocator got stuck
up in a lot of in tight consistency checks
of ra_build.c especially inparts_
to_webs_1 .

• Due to the same problem, function pointer
and return register are not being consid-
ered for remat.

Current Implementation Scope Due to the
problems cited above, the current implementa-
tion implements the following remat handling:

• The data flow phase constructs remat se-
quences in full and then tries to collapse
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them (if allowed by the target) indf_
remat_validate . Rest of the chains
are discarded at this point.

• The build phase involving modifying
costs for remat webs functions as before.

• The colorize phase functions as before.

• The rewrite pass replaces the source of re-
store insns before the spilled uses of the
webs and replaces it with the remat source
(a single pattern).

The restricted implementation is scalable
enough to support the original concept of re-
mat envisaged and should stand any changes in
the register allocator passes.

4 Performance Data

The performance improvement due to register
rematerialization depends on the following fac-
tors.

1. Register Pressure and consequently num-
ber of values spilled.

2. The values spilled from rematerializable
sources and found to be obeying the con-
straints for performing remat

During performance analyis, se-
lect benchmarks were compiled us-
ing GCC-2.3 20021119 (new-regalloc
branch) for SH4 target using options
-O2 -ml -m4 -static . A new option
namely-fimproved-remat is introduced
to enable improved remat. The benchmarks
were executed on SH4 evaluation boards with
QNX 6.1. It is observed that best performance
improvement for execution performance is 4%
and that for code size is 6.46%. Table 1 gives
code size comparisons of stress1.17 files with

File size size with decrease
Name with new-ra improved-remat (%)
L3bitstream.o 7424 6944 6.46
aiunit.o 18880 17760 5.93
scanline.o 2400 2272 5.30
advdomestic.o 8280 7960 3.86
tif_fax3.o 10208 10176 3.13
tif_packbits.o 1316 1284 2.43
layer3.o 20752 20272 2.31
melee2.o 27516 26940 2.09
navion_aero.o 1600 1568 2.00
chanserv.o 63296 62112 1.87
s_serv.o 29740 29196 1.82
im_decode.o 290000 285936 1.40
quantize.o 10012 9948 0.64
wizard1.o 24064 23964 0.41
blowfish.o 8808 8776 0.36
map_fog.o 26272 28880 -9.6

Table 1: Code Size Comparisons

Input Data Gain
Benchmark Size (%)
GZIP Compression 80.5 MB 4
Mpg 123 - 4
GZIP Decompression 16.2 MB 2.6
GSM Compression 1.71 MB 0.05
GSM Decompression 361 KB 0

Table 2: Execution Timings

and without improved remat. The execution
results for some benchmarks are shown in
Table 2.

5 Further Improvements In New
RA

5.1 Loop Variable Spilling

Ideally, register allocation should take into ac-
count, the variables present inside the loops
and in case of high register pressure, try to as-
sign registers to frequently accessed variables
in a loop (for example loop indexes) on a pri-
ority basis. But such an allocation scheme is
not being observed in some cases. The follow-
ing example illustrates this fact

chanserv.i/check_modes compiled
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with -O2 -ml -m4 -fnew-ra -fno-
argument-alias -fno-schedule-insns
-fno-schedule-insns2 -g -S:

.loc 1 4743 0
mov.l .L2970,r7
mov.b @r7,r1
cmp/pl r1
bf/s .L2942
and r0,r3
mov #0,r1 <-- (1)
mov #64,r0 <-- (2)
mov.l r1,@(r0,r14)<-- (3)
mov #0,r2
.loc 1 4745 0
mov #64,r0

.L3043:
mov.l @(r0,r14),r6 <-- (4)
add r7,r6 <-- (5)
mov.l r6,@(r0,r14) <-- (6)
mov r6,r0
mov.l @(4,r6),r6
tst r6,r3
bt .L2922
mov.b @r0,r1
.loc 1 4747 0
mov.b r1,@r12
add #1,r12
.loc 1 4748 0
not r6,r6
mov.l @(56,r10),r1
and r6,r1
mov.l r1,@(56,r10)
.loc 1 4743 0

.L2922:
add #8,r2 <-- (7)
mov #64,r0 <-- (8)
mov.l r2,@(r0,r14) <-- (9)
mov r2,r0
mov.b @(r0,r7),r1
cmp/pl r1
bt/s .L3043
mov #64,r0

In the above example, the calculation corre-
sponding to register r1 in (1) is being spilled
within a loop instructions (4) through (9). Such

an example clearly illustrates inefficient regis-
ter allocation.

5.2 Loop Invariant Code Spilling

In case of any loop, invariant part of the code
is moved outside the loop. In some cases
such address computations might be spilled
onto a stack locations outside the loop. Inside
the loop these values are reloaded from stack.
Such cases are NOT direct candidates of remat
(as generally remat cost will be higher than the
spill cost). However in case the computation
requires single instruction within the loop (e.g.
loads within 64 byte window to a base regis-
ter i.e. r14, r12, r11 etc.) then it should well
be computed inside the loop instead of being
moved out as invariant code. This would result
in saving one instruction per loop iteration.

However, changes required in this case would
involve GCC passes, which move loop invari-
ant code.
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Abstract

GCC has no formal addressing mode selection
mechanism. It uses target hooks to generate
valid addressing modes for a target. However,
a significant amount of high level information
is destroyed while doing this, especially for tar-
gets lacking a rich set of addressing modes.
This leads to poor aliasing, and subsequently
poorerCSE, GCSE, and scheduling. Hence, an
unoptimal object code. This paper proposes
an abstraction over RTL to generate machine
independent addressing modes to achieve bet-
ter aliasing. The actual addressing modes of
the target are exposed after the first scheduling
pass, where they are selected based on current
execution scenario. Inter block address inheri-
tance is also done at this point. The idea can be
extended to specify a general “mid-level” RTL
for GCC.

1 Introduction

1.1 Addressing Modes

In simple terms, addressing modes specify the
way instruction operands are chosen at run
time. In most general purpose machines, an ad-
dressing mode can specify a location in mem-
ory, a register or a constant/literal. This paper
talks about addressing modes mainly in con-
text of memory loads and stores i.e. operations
which move data between registers and mem-
ory. In both operations, the destination gets af-

fected; the source is not changed. When dis-
cussing about memory, the effect of Memory
Management Unit can be ignored, since we are
concerned with the addresses generated by the
compiler.

Architectures have wide variance of features
while considering addressing modes of a ma-
chine. Every processor, based on its appli-
cation domain, has its unique set of address-
ing mode features. This choice is usually
a function of various parameters like regis-
ter set, instruction size and alignment restric-
tions. The most common addressing modes for
loads/stores on a typical RISC architecture are:

• Displacement addressing mode: It is used
when data is at known offset from some
base address in a register.

mov.l @(4, r1),r2 1

• Register Indirect addressing mode: It is
used when memory address of the re-
quired data is taken from register.

mov.l @r1,r2

• Register Index addressing mode is used
when the exact offset from a base address
is not known.

mov.l @(r0,r1),r2

1The assembly snippets correspond to SH4 proces-
sor.
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• Auto Increment/Decrement modes: They
combine memory access and address
arithmetic.

mov.l @r1+,r2 !post-inc
mov.l r1,@-r2 !pre-dec

Some processors also allow pc-relative loads,
where effective address is relative to the cur-
rent point of execution. The above mentioned
modes can also occur with some restrictions
e.g. the SH4 processor allows only 4-bit dis-
placement in displacement addressing mode.

1.2 Addressing Mode Selection

The compiler owns the responsibility of pro-
ducing optimized code that exploits the fea-
tures of target processor. The optimal choice
of addressing modes aims at reduced code size
and increased performance. GCC traditionally
usesRTL as its intermediate language. Al-
thoughRTL representation is machine indepen-
dent, theRTL actually generated for a target
is machine dependent. This is becauseRTL is
generated directly from information in the ma-
chine description file. The machine descrip-
tion contains the description of exact instruc-
tion set of the target. TheRTL can therefore
be described as low-level intermediate form(or
targetRTL). This form is not very suitable for
several high level/mid-level optimizations. The
tree-ssa work overcomes the difficulty to a
large extent by defining a new high level in-
termediate form. But some sort of mid-level
RTL would is desirable for effective optimiza-
tions by GCC’sRTL optimizer. In one sense,
the notion of infinite pseudo registers can be
considered a mid-levelRTL abstraction.

We propose that addressing modes can also be
abstracted as part of mid-levelRTL. The advan-
tages would be:

• Several initial RTL optimization passes
would be able to perform better.

• Addressing Mode Selection based on ex-
ecution scenario is likely to be better as
address arithmetic is reduced.

1.3 Address Inheritance Problem

Every addressing mode has its associated cost.
This cost could be evaluated in terms of
pipeline characteristics of the processor, the in-
structions involved in address arithmetic, or the
cost imposed by the target design. The concept
of address inheritance encourages the reuse
of address calculations. It states that wher-
ever possible, the side effects of address arith-
metic instructions should be carried forward,
so that there are no recalculations at the point
of next load/store operation. It looks similar
to CSE/GCSEbut there is a subtle difference.
CSE/GCSElook at exact expressions.They do
not know the relationship between two ex-
pressions of the formreg+k1 and reg+k2 ,
wherek1, k2 are constants. The fact that
these can possibly be derived from each other
in target specific way is out of scope for their
functionality.

Address inheritance can be viewed as function
with two parameters—time and space. Spa-
tially related addresses are those which do not
alias and which can be accessed from the same
base without address arithmetic. The tem-
poral local addresses are those which do not
alias and which are separated by minimum
number of instructions. Both can assume two
attributes—near and far . Spatially related
addresses represents a range of addresses al-
lowed in reg+displacement addressing mode.
Temporal relation is determined by number of
available registers and control flow graph.
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Time Space Inherit(Yes/No)
near near Yes
near far Sometimes Possible
far near Register Pressure Issues
far far No

Architectures with relatively more number of
registers are potential candidates for “far
& near ” combination, whereas architectures
having more number of bits reserved for offset
in displacement addressing mode are potential
candidates for “near & far ” combination.

2 Problem Description

The machine description files are used to gen-
erate target-IL at the time ofRTL generation.
As already emphasized, thoughRTL represen-
tation is machine independent, but its gener-
ation is machine dependent. GCC imposes
the restriction that every pass should generate
valid target-RTL. This strategy hampers the ad-
dressing mode optimization, since subsequent
passes are more restricted.

2.1 The Current Scheme

In the current situation, GCC relies on several
target macros. It usesGO_IF_LEGITIMATE_

ADDRESSto verify all memory address related
changes. DuringRTL generation, the macro
LEGITIMIZE_ADDRESS, is used to break large
offsets to valid target-RTL form. When using
one addressing mode, GCC queries whether
the chosen mode is too expensive for the target.
It uses the target hookTARGET_ADDRESS_

COST to compute the cost of an address-
ing mode. Targets defineTARGET_ADDRESS_

COSTas simple heuristic values. The hook ex-
hibits a limited form of cost model for address-
ing mode choice, but it is not a complete frame-
work and certainly misses optimal choice in
most cases.

{
i = 234;
a[i] = 12123;
...
i = 290;
a[i] = 12123;
...
i = 236;
a[i] = 12123;
...
i = 228;
a[i] = 12123;
...

}

Figure 1: Random Accesses in an Array

mov.w .L3,r1
mov.w .L4,r0
mov.l r1,@(r0,r14)
mov.w .L5,r0
mov.l r1,@(r0,r14)
mov.w .L6,r0
mov.l r1,@(r0,r14)
add #-32,r0
mov.l r1,@(r0,r14)

.L3:
.short 12123

.L4:
.short 936

.L5:
.short 1160

.L6:
.short 944

Figure 2: Output without AMS for Figure 1

Figure 1 illustrates some aspects of addressing
mode selection problem.

Figure 2 shows the code generated by current
implementation of GCC. There are few points
noteworthy here:

• The value ofi is known at compile time,
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1 mov.w .L3,r1
2 mov.w .L4,r2
3 add r14,r2
4 mov.l r1,@(24,r2)
5 mov.w .L5,r0
6 mov.l r1,@(r0,r14)
7 mov.w .L6,r0
8 mov.l r1,@(32,r2)
9 mov.l r1,@r2
10 .L3:
11 .short 12123
12 .L4:
13 .short 912
14 .L5:
15 .short 1160

Figure 3: Output with AMS for Figure 1

but copy propagation could not take ad-
vantage of it due to target restrictions.

• Since GCC assumesi is not known at
compile time, it has chosen register index
addressing mode. It could have done bet-
ter as Figure 3 shows.

• There are three related addresses2 in
the snippet, viz. a[228], a[234],
a[238] ; but GCC is unable to recognize
the fact.

• Extra pc-relative loads are generated.

The optimal assembly for the above snippet is
shown in Figure 3. The line numbers are not
part of assembly; these are kept for further ref-
erence.

With this improvement, even in this trivial ex-
ample, we get 4 bytes of code size reduction,
lesser stress onr0 , the only index register
available on SH4, and one fewer PC-rel load.

2The notion of related addresses is explained in the
next subsection.

The selection of the optimal addressing modes
with minimal code size and minimal execution
time depends on many parameters and is NP
complete in general[Eckstein]. One important
criteria for choosing appropriate mode is the
execution scenario. The choice which seems
to be best in one scenario may prove to be un-
optimal in another execution sequence. For ex-
ample in Figure 3, dual register indirect ad-
dressing mode is used in line 6. Note thatr0

suffices many needs on SH4, and it is generally
advisable to avoid the use ofr0 wherever pos-
sible. Still, this mode is the best choice in this
execution sequence. The other choice left is
register-indirect which would generate the se-
quence

mov.w .L5,r3
add r14,r3
mov.l r1,@r3

The former choice is better since it is saving
one address arithmetic instruction. The above
example shows the choice of addressing mode
should be determined by the execution sce-
nario. Hence, it should be decided flexibly, and
not rigidly as done in GCC currently.

2.2 Address Inheritance in GCC

GCC implements address inheritance in lim-
ited form through two passes—regmove and
reload_cse . regmove intents register to
register copy elimination. As a side effect, it
does the following transformation:

pX<-pA+N | pX <- pA + N
... |-> ...
pX<-pA+M | pX <- pX + (M - N)

This transformation is an address inheritance
transformation as the the address computed in
pX is reused subsequently.regmove is inef-
fective in several cases because:



GCC Developers’ Summit 2004 • 145

• CSEandGCSEboth run beforeregmove ,
and they attempt to optimize address
arithmetic prior to regmove . They
pull address calculations near basic block
boundaries whereregmove cannot opti-
mize them.

• regmove pass cannot see beyond basic
blocks and is unable to propagate infor-
mation across basic blocks.

• regmove is able to do the required trans-
formation only forSImode accesses for
SH4.

reload_cse is simpleCSE pass over hard
registers after reload. The functions of
reload_cse include:

1. It eliminates no-op moves where two dif-
ferent registers are assigned to the same
hard register, and then copied one to the
other.

2. It detects cases where we load a value
from memory into two registers, and
changes it to simply copy the first regis-
ter into the second register if memory is
more expensive than registers.

3. It scans the operands of each instruction to
see whether the value is already available
in a hard register. If possible, it replaces
the operand with the hard register.

2.3 Alias Analysis

Several passes need alias information for doing
effective optimizations. Alias information is
most important for passes likeCSE, loop invari-
ant code motion, instruction scheduling, and
register allocator. GCC can successfully deter-
mine aliasing between two memory references
if they

void foo (float *a, float *b)
{

a[17] = a[0] + a[18];
b[17] = b[1] + a[18];

}

mov r4,r2
add #72,r2
fmov.s @r2,fr2 !Load a[18].
mov r4,r3
fmov.s @r4,fr1 !Load a[0].
add #68,r3
fadd fr2,fr1 !Add.
fmov.s fr1,@r3 !Store a[17].
fmov.s @r5,fr1 !Load b[0].
fmov.s @r2,fr2 !Load a[18] again.
fadd fr2,fr1
fmov.s fr1,@r1 !Store b[17].

Figure 4: The Alias problem

• use distinct constant offsets from the same
register

• one of them points to stack

For machines that do not have “reg + dis-
placement” addressing mode, pointer arith-
metic is necessary to compute a pointer to the
desired address. GCC lacks the mechanism
to determine aliasing between such computed
pointers[Sanjiv]. Consider the code in Fig-
ure 4. The Figure 4 also shows the correspond-
ing SH4 assembly with -O2 option.

Since SH4 doesn’t support “reg + displace-
ment” addressing mode for floats, GCC alias
analysis mechanism fails. HenceCSEis unable
to determine if a value can be retained in a reg-
ister across a write anda[18] is loaded twice.
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3 Solution Strategy

3.1 Designing an Abstraction over RTL

It is desirable to have some sort of abstrac-
tion to hide target addressing modes to elimi-
nate problems highlighted in the previous sec-
tions. We initially pretend some standard high
level addressing modes. The change to tar-
get’s addressing mode is done in a separate
pass after first scheduling pass. The sched-
uler can do better load/store scheduling with
abstract modes. There is a new macro called
TARGET_USE_ABSTRACT_MODES. If this is
nonzero, this will force the front end to gener-
ate memory references with following abstrac-
tions.

• Infinite displacement (natural register
size) for register+offset addressing mode.

• Dual register indexed mode with two gen-
eral purpose pseudos—i.e., @(rm, rn)—is
supported.

• Auto-ionic modes are disabled as they ef-
fect the scheduling adversely.

3.2 Addressing mode selection pass

The addressing mode selection pass (AMS)
lowers mid-levelRTL to a low-levelRTLby im-
posing target’s constraint on addressing modes.
At the same time, it would generate the re-
quired arithmetic. Address inheritance is part
of the functionality of the AMS pass.

Virtual Displacement Handling: The transfor-
mation of infinite virtual displacements to tar-
get specific displacements is done as follows.
The pointer pseudo is given the following at-
tributes:

1. The bias of a pointer is the value currently
added to the base pointer.

2. The mode of a pointer is the mode in
which the register is accessed or used.

3. The slack of a pointer is the maximum
negative value, which can currently be
added to the pointer and still properly ad-
dress the memory references which have
already been assigned to this pointer.

The algorithm also defines alocked_pool
of pointer pseudos which contains bias values
at a specific execution point. A locked regis-
ter is a register which is usable for an address
within the currently visible lookahead window
without any bias changes. The look ahead win-
dow is normally a basic block. We also define
unlocked_pool registers with each regis-
ter’s bias. An unlocked register is a register
which is currently not usable for an address
within the currently visible lookahead window
without any bias changes. E.g., consider the
reference sequence with addresses:

(plus:Pmode (fp,124))
(plus:Pmode (fp,120))
(plus:Pmode (fp,128))

where fp is the frame pointer. It can be
any base register in general. Initially, a new
pseudo (sayrn ) is created with a<bias,
slack> value pair as<124, 60> for SH4.
We can then access memory at (fp, 124) sim-
ply as (rn, 0) with displacement address-
ing mode. At second access, (fp, 120), we note
that we can reusern with a bias change of 4.
So we change the<bias, slack> value to
<120, 56> . When an offset is not reachable
with any pseudo in the locked pool, then a new
pseudo (sayrn+1 ) is created.

By applying the above reasoning the following
output is generated for SH4(which has 60 byte
valid displacement):

mov #120,r2



GCC Developers’ Summit 2004 • 147

add r14,r2 !r14 is fp
mov.l @(4,r2),r1 !fp+124
mov.l @r2,r3 !fp+120
..
mov.l r1,@(8,r2) !fp+128

With current framework GCC ends up generat-
ing code like this for SH4.

mov r14,r2
add #64,r2
mov.l @(60,r2),r1
mov.l @(56,r2),r2
...
mov r14,r2
add #124,r2
mov.l r1,@(4,r2)

The address arithmetic is reduced in former
case. To avoid creating too many pseudos
during the process, some heuristics have been
tried. Limiting pseudos to approximately half
of the register set usually turns out be good.
With a proper register rematerialization frame-
work new-ra , limiting pseudos might be-
come un-necessary.

General index register mode: We can tackle
this mode in two ways depending on archi-
tecture features and register pressure. There
can be weird limitations on use of index reg-
isters. While in common cases, the index reg-
isters form aREGISTER_CLASS, there may be
cases like SH4 wherer0 is the sole legal in-
dex register. Excessive pressure build up on
r0 as ABI specifies it as a return value register
too. So in many cases, it is simply desirable to
convert from index register mode to register in-
dex mode. The register pressure estimation is
still in experimental phases, and forms part of
several other problems in compiler technology.
We use very simple register pressure heuristics
based on machine modes of register. The re-
sults would be updated once a general infras-
tructure for register estimation can be imple-
mented.

Inter-Block Address Inheritance: The tech-
nique described needs to be extended to retain
<bias, slack> values across basic blocks.
Taking control flow graph into account is a
difficult problem. For simplicity, we propa-
gate thelocked_pool information only to
fallthru basic blocks. So some address cal-
culations are saved across basic blocks. The
overall strategy is still in investigative phase.

4 Conclusion

Implementation of the ideas presented here
have confirmed the expected aliasing gains.
The implementation has been tested for SH4
and IA-64. Preliminary benchmarking indicate
that execution gains can be as high as 5-7%.
However, some more work is required for the
idea to work on CISC machines.
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Abstract

The current abstract syntax tree of GCC uses
a dynamically typed über-union for nearly all
nodes. The desire for a statically typed tree de-
sign has been raised several times over recent
years, but there has been no concerted effort
to implement such a design. We describe the
impacts of the current design, both in imple-
mentation and performance degradation. We
present a design for statically typed trees, along
with case studies of part of the conversion. We
outline a plan for full conversion and discuss
further improvements that this would enable.

1 Current architecture

GCC uses a data structure called atree for
its high-level intermediate representation. The
parser and semantic analyzer for a given pro-
gramming language construct an initial tree
representation of the program to be compiled.
The high-level optimizers work directly on this
tree. After they are done, the “expander” con-
verts the optimized tree to a lower-level repre-
sentation calledRTL for further optimization
and assembly output. We will not be discussing
RTL in this paper, but it is worth mentioning
that many of the same issues also apply.

A tree structure is a directed graph ofnodes.
Each node is a block of memory (a Cstruct )
on the heap; the graph edges are pointers be-
tween these blocks. Tree nodes are dynami-
cally typed. All variables and structure fields

pointing to tree nodes have the typetree ,
which can address any node no matter what
its internal structure is. To access the data car-
ried in a node, one must use the macros defined
in tree.h . These hide the exact representa-
tion and can be configured to carry out consis-
tency checks at runtime (of GCC). We discuss
the in-memory representation and the accessor
macros in more detail below.

Thecodeof a tree node determines its dynamic
type. The generic (language independent) por-
tion of the compiler defines approximately 150
codes. Front ends can define additional codes
if necessary. There are tenclasses(conceptual
categories) of tree codes; each has a tag charac-
ter to identify it. Front ends cannot define new
classes. Presently, the classes are

' c ' , constants
' 1' , unary arithmetic operators
' 2' , binary arithmetic operators
' <' , comparison operators
' r ' , references (e.g. array indexing)
' e' , other expressions (e.g.?: )
' s ' , statements
' d' , declarations
' t ' , types
' x ' , miscellaneous

Here are some example tree nodes, with the in-
formation they carry:

STRING_CST (class “constant”)
A string constant. The node holds a
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pointer to a separately-allocated byte ar-
ray, and the length of this array.

PLUS_EXPR(“binary expression”)
An addition operation. The node holds
pointers to tree nodes representing the two
addends.

IF_STMT (“statement”)
An if statement. The node holds point-
ers to tree nodes representing the control-
ling expression, the “then” clause, and the
“else” clause.

VAR_DECL(“declaration”)
A declaration of a variable. The node
is the root of a directed graph of nodes
which collectively describe the properties
of the variable.

INTEGER_TYPE(“type”)
A description of an integer data type,
either intrinsic to the programming lan-
guage or defined on the fly by the pro-
gram being compiled. Again, the node is
the root of a directed graph describing the
properties of the type.

TREE_LIST (“miscellaneous”)
A linked list of other trees. Each node
of the list can point to up to three differ-
ent trees (known as thetype, purpose, and
value); however, usually only one of these
slots is used.

ERROR_MARK(“miscellaneous”)
A placeholder used when an error is en-
countered during compilation. This node
carries no information. The compiler al-
locates only oneERROR_MARKnode per
invocation.

Trees exhibit three levels of polymorphism,
which we will refer to assubstructure, mul-
tipurposing, andoverloading.

1.1 Substructure

The tree type is a pointer to aunion of
struct s. We will call these structs “substruc-
tures.”

union tree_node
{

struct tree_common common;
struct tree_type type;
struct tree_decl decl;
struct tree_list list;
...

};
typedef union tree_node *tree;

All tree nodes include the fields ofstruct
tree_common .1 Most nodes also carry ad-
ditional information stored in one of the other
substructures. The tree code, which is a field
of the common substructure, determines which
substructure is active.

We can therefore categorize tree structures ac-
cording to which substructure is valid. This
categorization is similar, but not identical, to
the categorization into classes. Front ends
can also define new substructures, if necessary.
Unfortunately the mechanism for this is some-
what awkward, since there is no way in C to
augment the contents of a union.

Naturally, accessing the wrong substructure of
a node can have grave consequences. To pre-
vent this, GCC can be configured so that the
accessor macros inspect the tree code and ver-
ify that they have been applied to the proper
kind of tree. These checks are partially ad-hoc
and partially machine-generated. The code is
only known when the compiler is running, so
the checks perforce must occur then. If one
fails, GCC halts translation with the infamous
“internal compiler error” (ICE) message.2

1because all the other substructures includestruct
tree_common as their first member.

2Jeff Law added the checking mechanism in 1998.
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Accessor Used with Content
TYPE_VALUES ENUMERAL_TYPE A list of CONST_DECLs, one for each

enumeration constant.
TYPE_DOMAIN SET_TYPE,

ARRAY_TYPE
An integer type whose range determines
the set of all valid indexes of this type.

TYPE_FIELDS RECORD_TYPE,
UNION_TYPE

A list of FIELD_DECLs, one for each
data member of the type.

TYPE_ARG_TYPES FUNCTION_TYPE,
METHOD_TYPE

A list giving the type of each parameter,
in order, to the function or method.

TYPE_DEBUG_
REPRESENTATION_
TYPE

VECTOR_TYPE The type to use when describing this type
to the debugger. (Most debuggers do not
understand vectors.)

Table 1: Multipurposing of thevalues field of tree_type

1.2 Multipurposing

Some fields of a substructure have different
meanings for different tree codes. When there
is more than one possible meaning, we say that
that field is multipurposed. For instance, a
tree_type structure represents a data type
in the program being compiled. There are
twenty tree codes that use this substructure.
Eight of them assign one of five possible mean-
ings to thevalues field. Table 1 enumerates
the possibilities. The field goes unused in type
nodes with one of the other twelve codes.

A relatively common special case of multipur-
posing is when a field has only one possible
meaning, but only a subset of the tree codes
for that substructure need to use that field. The
others leave it asNULL.

1.3 Overloading

Many of the fields of a tree node are pointers
to other nodes. These, like all pointers to tree
nodes, have the typetree ; as far as the C type
system is concerned, they can point to any tree
node. The operands of anPLUS_EXPRneed
not be expressions; they can be declarations,
constants, types, or anything else.

Of course, not all possibilities can occur within
a valid tree structure. The accessor macros par-
tially validate the targets of pointer fields, and
hand-coded assertions finish the job. When a
field can legitimately point to more than one
kind of node, we say that the field is over-
loaded.

The distinction between overloading and mul-
tipurposing is whether the code of the node
containing the field determines what the field
points to. Thevalues field discussed above
is multipurposed. AnPLUS_EXPR’s operand
fields are overloaded—we do not know, upon
encountering anPLUS_EXPR, whether its op-
erands are expressions, declarations, or con-
stants. (Wedo know that they are in one of
those three categories.)

2 Issues of the status quo

The present architecture has a number of de-
sign issues, which manifest either as runtime
overhead (both space and time) or as increased
burden on the maintainers of the program.
For an obvious example of both, the runtime
checking done by the accessor macros slows
the compiler down 5–15% (depending on in-
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put). This is substantial enough that checking
is disabled in release builds, which can mean
that bugs go undetected. It is on by default in
development builds, which means GCC devel-
opers all put up with a slower compiler for the
sake of dynamic type safety. A slow compiler,
hence a slow edit-compile-link-debug cycle, is
a maintenance burden in itself; also, the check-
ing mechanism is complicated and easy to mis-
program (see section 2.2 for an example).

Each of the above varieties of polymorphism
has its own set of issues, which we will dis-
cuss in turn. We will also discuss a number of
related issues that we intend to address at the
same time.

2.1 Substructure overhead

The dynamic type system has a certain level of
intrinsic overhead. In many cases, GCC’s own
source code, not the content of the program be-
ing compiled, completely determines the code
of a tree node. However, we must still maintain
the node header, which is a full word (the code
plus 24 flags). For smaller nodes, this can be a
considerable amount of memory overhead.

In the larger substructures, many of the fields
are only applicable to a few of the tree codes
that use those substructures. This obviously
wastes memory. It is a particularly severe prob-
lem for type and declaration nodes; the content
of a CONST_DECLcould fit into 16 bytes or
so on a 32-bit host, but it occupies 116 bytes
anyway. The other side of this problem is that
adding a new field to a substructure consumes
memory proportional to the total number of
nodes using that substructure, not just the num-
ber of nodes it’s relevant to. People there-
fore avoid adding fields to substructures. In-
stead they add new purposes to existing fields,
which adds to maintenance burden instead. We
could solve this within the existing framework
by defining new substructures, at the cost of

additional complexity in the accessor macros.

While many nodes have fields that are never
used, some nodes do not have enough, which
leads to ancillary data being maintained out-
side the tree structure. This may consume more
memory than would have been required oth-
erwise, and it also makes the program harder
to maintain, since all the necessary informa-
tion is not in one place. Ironically, the decla-
ration structure is also an example of this, with
substantial ancillary data being carried in the
cgraph_node structures.

2.2 Multipurposing and generic accessors

In the past, the accessor macros and the de-
bugging pretty-printer (debug_tree ) did not
know anything about multipurposing. One
would use the same accessor macro (TYPE_
VALUES) for all five purposes listed in Ta-
ble 1. This led to confusion about which
tree codes might use a given field. While
considerable work has gone into introducing
more specific accessors, some generic acces-
sors still exist. Furthermore, the set of valid
codes for each accessor may be incorrect. As
we were writing this paper, we discovered that
two of the accessor macros for thevalues
field allowed aVECTOR_TYPE. Obviously the
same field cannot serve two purposes simulta-
neously. Tightening up the checks exposed a
harmless bug inexpr.c and a more serious
bug incp/decl.c .

Accessors for fields with only one use are still
likely to check only that the substructure is cor-
rect, not that the field is relevant to the spe-
cific code. They thus fail to document or en-
force which codes the fieldsare meaningful
for. Generic routines that inspect trees (such
as the debug-info generators) won’t bother to
check for an appropriate code; they’ll rely on
the fields beingNULLwhen they are irrelevant.
This situation can persist unnoticed until some-
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one decides to introduce a second purpose for
one of these fields. In the process that person
will tighten the checking macros, which will
probably cause the generic routines to fail.

2.3 Abusive overloading

Tree overloading sometimes happens naturally.
For instance, the tree the parser builds for a
complex arithmetic expression will consist of
EXPRnodes which may point to otherEXPRs,
to DECLs, or to constants. This is a straightfor-
ward way to represent an abstract syntax tree,
and it rarely causes trouble.

However, since all pointers to trees have the
generic typetree , overloading can poten-
tially happen anywhere. Since this flexibil-
ity is available, it has been used whenever it
was locally convenient, without thought for
global consequences. Indeed, usually there are
none—at the time. Once overloading has been
added to a tree, every routine that examines it
must be prepared for whatever it might find in
the overloaded field. The only way to prove
that a given tree field is not overloaded is to
do a global data flow analysis, which can be
very difficult. Thus, global consequences creep
into the compiler over time, as new routines
are added that inspect trees that might be over-
loaded.

An example of these creeping consequences
is the name field of struct tree_type .
This usually points to aTYPE_DECLnode,
but sometimes it points to anIDENTIFIER_
NODEinstead. When you get which, and what
that means, is not documented anywhere. Rou-
tines that just want to know the printable name
of a type have to use locutions like the follow-
ing:

name = TYPE_NAME (t);

if (TREE_CODE (name)

== TYPE_DECL)
name = DECL_NAME (name);

if (TREE_CODE (name)
!= IDENTIFIER_NODE)

abort ();

A less troublesome, but still unwise, case of
overloading is the C and C++ parsers’ reuse
of expression nodes while parsing declarations.
Normally aCALL_EXPRrepresents a call to a
function; its operands are the function to call,
and a list of actual arguments. But the C and
C++ front ends also use this expression to rep-
resent a function declaration; then its operands
are the function’s name, and a list of formal pa-
rameter declarations. This is convenient for the
parser, but necessitates a complicated conver-
sion routine (grokdeclarator ) to generate
the type and declaration structures expected by
the rest of the compiler. These peculiar expres-
sions are intended never to escape the C front
end, so they have not had creeping global con-
sequences. However, from time to time one
does escape and cause an ICE elsewhere in the
compiler.

We can generate a crude estimate of the num-
ber of places that have to take care when in-
specting overloaded trees by counting uses of
the TYPE_P and DECL_P macros. As of
March 15, there were 41 and 80 uses, respec-
tively, of these macros in the maingcc direc-
tory, or about one use every 4000 lines. The
C++ front end had more, 143 and 67 uses re-
spectively, or about one use every 500 lines.
This is due to heavy overloading in the trees
used to represent templates; see section 5.3 for
further discussion.

2.4 Lists of trees

Linked lists are very common within trees.
This data structure is convenient when the size
of the list is not known in advance. However,
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struct tree_list {
struct tree_common {

tree chain;
tree type;
enum tree_code code :8;
/* 24 flag bits */

};
tree purpose;
tree value;

};

Substructure ofTREE_LIST

linked lists have notably more overhead than
vectors on several different grounds.

Singly linked lists can be constructed using re-
served fields in the nodes carrying the data,
or using separate “cons cells.” Ignoring mal-
loc overhead, a linked list using reserved fields
in the data nodes consumes exactly the same
amount of memory as a vector of pointers to
those nodes. Either way, there is one extra
pointer for each node. Linked lists built out
of separate cons cells, on the other hand, use
twice as much memory as a vector; two extra
pointers per node. In exchange, a data node can
be on more than one list if separate cons cells
are used. Either way, traversing a linked list is
more likely to cause memory-cache thrashing
than traversing the vector.

All tree nodes have achain field, reserved
for chaining the node into a linked list. How-
ever, this field goes unused in approximately
two-thirds of all nodes (not countingTREE_
LIST ; see more detailed analysis below, in
Section 3.1). Instead, separate lists are built out
of TREE_LIST nodes. This is the “cons cell”
technique, but with far more overhead, because
each node in the list has the ability to point to
three data nodes instead of just one.

In practice, slightly more than half of all lists
use only one data pointer per node, and almost
all the rest use only two. Also, the node header

(as always) consumes a full word; it is fair to
consider that entirely wasted, since lists are al-
ways known from context and the flag bits go
unused. (See section 3.2 for details.) For a list
with only one data pointer per node, this struc-
ture is 60% wasted space; compared to a vector
or an internally chained list, 80%.

Because all the pointers are generic, aTREE_
LIST does not reveal any information about its
contents. Code that processes lists must know
from context what the list contains, or else be
prepared to encounter anything. Context deter-
mines the content in most cases; again, this will
be discussed in detail in section 3.2.

2.5 Language-specific trees

As we mentioned above, language front ends
have the ability to define new tree codes. Of-
ten these codes do not need their own sub-
structures. For instance, all of the language-
specific codes defined by the C front end are
for C-specific operators, which use the generic
“expression” substructure. However, some lan-
guages need their own substructures. The C++
front end defines five such. Since the defini-
tion of the basictree type is in a language-
independent header file, there is no way to
include these substructures in the tree union.
Thus, the accessor macros for those substruc-
tures must include casts to the appropriate type,
which is a minor hassle. Also, the garbage
collector must assume that language-specific
substructures can be encountered anywhere,
which adds both runtime overhead (determin-
ing which substructure is active costs two func-
tion calls per node visited) and source com-
plexity (special annotations to indicate that the
tree union is not exhaustive).

The type anddecl substructures include an
opaque pointer field that front ends can use to
attach their own special data to type and dec-
laration nodes. This mechanism provides a
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clear separation between generic and language-
specific data. It requires no casting, since the
opaque pointer refers to a forward-declared
struct type. Front ends simply provide a
complete declaration. However, it does require
a second memory allocation, which adds over-
head.

Also, the front end might need to multipur-
pose this field—storing different information
depending on what sort of type or declaration it
is—but this is inconvenient, since these struc-
tures arenot trees and cannot use the machin-
ery that exists for tree polymorphism. The C++
and Java front ends solve this problem by du-
plicating much of that machinery. The Ada
front end, instead, pretends that the field points
to a tree, which can then be multipurposed in
the normal fashion. Neither is an ideal solu-
tion.

The substructure for a bare identifier (code
IDENTIFIER_NODE) also provides for front
ends to attach their own data. Because iden-
tifiers are so frequent, this data is appended
to the generic substructure instead of being
separately allocated. This is efficient, but re-
quires front ends to define complex macros to
access their own data, just as they would for
entirely language-specific substructures. Also,
IDENTIFIER_NODEs are used in contexts
where the language-specific data will never
be used (notablyDECL_ASSEMBLER_NAME)
but space is allocated for it anyway.

The tree_common structure carries seven
flag bits specifically for use by front ends, and
several more that have generic names but are
only relevant to front ends. Thetype sub-
structure carries another seven, thedecl sub-
structure eight. These are not overhead as they
occupy space that would otherwise be padding.
However, they are a maintenance burden, be-
cause they are heavily multipurposed. It is of-
ten unclear which front ends use which bits

for what, anddebug_tree prints them with
generic names.

Languages sometimes invent their own multi-
purposings for fields that would otherwise go
unused. The C front end has recycled the
TYPE_VFIELDfield of incompleteRECORD_
TYPE nodes to carry a list ofVAR_DECLs
with the incomplete type, so that it can ad-
just them later if the type is completed. This
is much more efficient than the previous ap-
proach of carrying around a list of all vari-
ables with incomplete types in the transla-
tion unit. However, it directly violates the
language-independent compiler’s assumptions
about what can appear inTYPE_VFIELD.
Several bugs have been traced to this list es-
caping the C front end.

TYPE_VFIELD is available for use in the C
front end becauseRECORD_TYPEs in C never
have vtables. TheRECORD_TYPEcode is
used for object classes as well as “plain old
data” structs, so it has all the fields necessary to
handle both, even though classes never occur in
C. More generally, language-independent trees
carry fields needed to represent the constructs
of all the languages that GCC supports, even
if they are being used to represent a language
that doesn’t have those constructs. This is
memory overhead, no more. . . unless, as with
TYPE_VFIELD, someone gets clever.

2.6 Memory allocation, precompiled headers

GCC uses a garbage-collecting allocator for
all trees. This is convenient, because no one
ever has to worry about the lifetime of these
data structures.3 It also facilitates precompiled
headers (PCH). The current implementation, to
first order, simply serializes to disk all live data
in garbage-collected memory.

3Before the garbage collector was introduced, in
1999, use-after-free bugs appeared about once every two
weeks; now they are unheard of.
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When the garbage collector was first intro-
duced, the marking routine for each data struc-
ture had to be written by hand. Now instead
we use special “GTY” annotations in the source
code, and a program calledgengtype which
understands a subset of C’s type grammar. It
scans the source code and generates marking
routines, directed by the annotations. It also
generates slightly different walking routines
which are used for PCH save and restore.

Both these things are great achievements from
a software maintenance standpoint. In the nor-
mal course of affairs, programmers need never
worry about memory lifetime. PCH requires
slightly more attention as one must ensure that
everything that needs serialization is properly
annotated. Thegengtype program is a pow-
erful tool for doing introspection on GCC’s
data structures. We used it for this paper, to
gather statistics on how fields of tree nodes are
used. We discuss below some other ways it
could be helpful.

On the other hand, the garbage collector is not
at all efficient. It allocates memory out of
fixed-size buckets, with pages reserved for al-
locations of a given size, which causes consid-
erable memory fragmentation. The collector
uses a naïve mark-and-sweep algorithm, which
has to scan the entire active memory set on
each collection. This is so slow that GCC con-
tains throttling heuristics that effectively dis-
able all memory reuse for average-size trans-
lation units. The auto-generated marking rou-
tines require that type tags be in the same
block of memory as the unions they disam-
biguate; in some places (notably the C++ front
end’s struct lang_decl ) this forces the
creation of a redundant tag.

This paper does not directly address any of
the problems with the garbage collector. How-
ever, we expect our changes will cause trees to
use substantially less memory and have some-

what more predictable lifetimes. In conjunc-
tion with the “zone collector” project, which is
working towards a generational collection al-
gorithm, this should offer substantial perfor-
mance improvements.

3 Measurements

In order to make sensible plans to solve the
problems we have discussed, we need hard
data on how severe they are. Code inspection
can reveal potential problems, but does not tell
us what the actual allocation patterns are, and
there is no way to get a sense of the “big pic-
ture.” Overloading in particular is very hard to
discover by code inspection.

We therefore modified thegengtype pro-
gram to generate instrumentation which would
measure how much overloading appeared in
the trees produced by compilation of a test pro-
gram. We classified each node twice, once by
its tree code and once by its substructure.

For each field that pointed to another tree node,
we recorded what kinds of tree it could point
to, including nothing. When substructures con-
tained arrays, such asstruct tree_exp ,
we considered each element a separate field.
This reveals for instance that the first operand
of a CALL_EXPRis usually anADDR_EXPR,
and the second is always aTREE_LIST. We
instrumented lists specially, recording their av-
erage length and the value distribution of the
entire list, instead of treating each node as a
separate entity.

Using CVS HEAD as of 15 March 2004, we
measured allocations for the compilation of
GCC’s own C and C++ front ends (this exer-
cises only the C compiler) and for a small STL-
based C++ program. Each of these was com-
piled in a single pass, using GCC’s intermodule
mode. All inlining was disabled, and all func-
tion bodies retained, so that each function body
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would be counted exactly once. Measurements
were taken once at the end of compilation, so
transitory tree nodes were not inspected. Un-
fortunately this means we missed some of the
more bizarre things done with trees, such as
the declaration expressions discussed in Sec-
tion 2.3.

The C compiler generated a similar distribution
of tree nodes during compilation of both front
ends, so we present here only data for the C++
front end. Compiling this C program gener-
ated about 1 million instrumented nodes, occu-
pying 75MB of storage. The C++ program was
smaller. Compiling it generated about 150,000
nodes, occupying 9MB.4

3.1 Fields oftree_common

Thetree_common substructure contains two
tree-pointer fields,chain and type , which
are present in every node whether it needs them
or not. The utilization of these fields is laid out
in Tables 2 and 3. (The “proportion” column is
proportion of total GC memory allocation; not
all of this is trees.) It is immediately clear that
memory could be saved just by excluding these
fields from substructures that never use them.

For our C++ test case, removing thechain
pointer from nodes where it isn’t used saves
134KB, or 1.5% of the total memory alloca-
tion. Removing thetype pointer saves 58KB,
or 0.6% of total memory. The numbers are
more impressive for C: removingchain saves
2.3MB, or 3.1% of memory; removingtype
saves 780KB, or 1.0% of memory. If inter-
nal memory fragmentation is reduced by this
change, which is likely as many of the affected
nodes are one word bigger than a power of two,
memory savings could be even bigger.

With more code changes, all of the uses of

4All statistics are for a host architecture with 32-bit
pointers.

the chain field could be eliminated, saving
even more memory.DECLs andBLOCKs are
chained together to indicate the lexical scope of
declarations and these lists could easily be re-
placed with vectors. Furthermore, in the GIM-
PLE representation (which had not yet been
merged when these measurements were taken)
statements are held in sequence with an exter-
nal doubly-linked list, so they do not need in-
ternal chaining either.

3.2 List distribution

TREE_LIST nodes are used for all external
singly-linked lists. If we looked at these nodes
in isolation, all their fields would appear to be
heavily overloaded. However, our instrumenta-
tion captured the context of each list, revealing
that most lists have predictable dynamic types.

The C front end allocated roughly 300,000
list nodes while compiling the C++ front end.
There were seven major contexts, which are
enumerated in Table 4. Of these, only two
have nontrivial amounts of overloading, and
one of those is becauseCONSTRUCTORnodes
are used to initialize both arrays and structures.
It is also apparent that thetype field of these
lists is completely unused, and thepurpose
field is unused in half of the cases. We could
save roughly 5MB (7% of the total allocation)
by converting them all to specialized vectors.

The C++ front end uses a wider variety of lists.
Our C++ test case produced 70,000 tree nodes
in about 30 different uses, which are enumer-
ated in Table 5. Like the C front end, thetype
field is unused in nearly all contexts, and the
purpose field is unused in about half of the
cases. There is quite a bit of overloading, but
in most cases there is one primary usage and a
few outliers. The structures used to represent
templates, however, will require special atten-
tion and is discussed in Section 5.3. If all of
these uses were converted to specialized vec-
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tors, we might be able to save about2/3MB of
memory (8% of the total).

We did not instrumentTREE_VECas carefully
asTREE_LIST, but it shows similar proper-
ties. It does not carry three data pointers per
entry, but it does have the full overhead of
a tree_common header, whosechain and
type fields go unused. The entries are, as
usual, declared astree s rather than anything
more specific, but in most cases the entries are
homogeneous within a given class.

3.3 Overloaded fields

Tables 6 and 7 show the distribution of over-
loaded and/or multipurposed fields for the C
and C++ test programs respectively. Multipur-
posed fields are initalics. We only show cross-
class overloading, as we are not proposing to
get rid of within-class overloading. Most over-
loading occurs among one primary class and
a few outliers. Where there are “secondary”
uses, appearing in more than 5% of measured
nodes, that is usually a case of multipurposing.

The primary class is not always what one
expects—in C, both BLOCK.supercontext and
EXPR.operands are 99%DECLs, where one
might expect to find moreBLOCKs andEXPRs
respectively. This reflects the form of the typ-
ical C program. Inner scopes tend not to have
variable declarations, and therefore not to need
BLOCKnodes. Expressions tend to be simple,
hence mostEXPRnodes point directly to vari-
ableDECLs rather than to subexpressions. The
C++ front end does more overloading than C,
but we still observe the same pattern of primary
uses and outliers, except where there is mul-
tipurposing. Expressions appear to be more
complicated in C++ than in C, but still 94% of
EXPRs point directly toDECLs.

TYPE.context and DECL.context are anoma-
lous in having substantial secondary targets

without multipurposing being involved. These
fields point “upward” in the abstract syntax
tree, toward larger lexical structures. Since
TYPEs andDECLs can nest inside each other
(especially in C++), the context fields need to
be able to point to bothTYPEs andDECLs.

4 Redesign

Our primary goal in redesigning trees is to re-
duce runtime overhead and maintenance bur-
dens. As we have discussed, overhead comes
first from wasted memory. The primary causes
of wasted memory are unused fields in various
tree substructures, and overuse of linked lists.

We could address unused fields without intro-
ducing any new static types. We could simply
promote all instances of multipurposed fields
to substructures. Constants are already like
this. Each code in the “constant” class (integer,
real, complex, string, vector) has its own sub-
structure. Structure initializers are exceptional
in that they are not treated as constants, but as
expressions—this should probably be changed.
It would not be hard to extend this to other
structures. We would also want to break up
tree_common , moving its pointers into the
substructures where they are actually used.

Furthermore, we already have aTREE_VEC
node that could replaceTREE_LIST when-
ever the list length is known in advance and
only one pointer per element is needed. For
instance, it would be feasible to do this for
BLOCK_VARS. Where this will not work, we
could invent new lists with only one or two data
pointers per node.

These changes would reduce maintenance bur-
dens only because accessor macros would have
more specific names, and the documentation
would be improved. They would do nothing
at all for the overhead entailed by runtime type
checking. In fact, they might make it worse,
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since many checking macros would become
more specific. For instance,TREE_CHAIN
andTREE_TYPEcurrently do no checking at
all; in the above regime they would be replaced
by several new macros, which would check for
specific substructures.

In order to go any further, we need to make
the static types of trees more specific. That is,
we need to stop usingtree as the type dec-
laration of every pointer to a tree. If we are
to do this, we must decide how specific to be
in our static declarations. Where possible we
will use pointers to specific structures. How-
ever, some degree of overloading is necessary.
We propose to introduce four new types, each
of which covers a subset of the present tree
classes. A pointer with one of these types can
be overloaded freely within that subset, but not
outside. We discuss techniques for removing
cross-class overloading in section 4.3. The re-
placement types are:

TYPE Type nodes: the present't' class. For
instance,INTEGER_TYPE, POINTER_
TYPE, andRECORD_TYPE.

DECL Declaration nodes: the present'd'
class. For instance,FUNCTION_DECL,
VAR_DECL, andTYPE_DECL.

EXPR Expression nodes: the present'1' ,
'2' , 'r' , '<' , and 'e' classes. For
instance,PLUS_EXPR, LE_EXPR, and
ADDR_REF.

CONST Constant nodes: the present'c'
class. For instance,INTEGER_CSTand
STRING_CST.

The 's' class is not included in this mapping
because, with the introduction of GENERIC
and GIMPLE, the language-independent com-
piler no longer makes a strong distinction be-
tween statements and expressions. For in-

stance,COND_EXPRcan be either a?: opera-
tor or anif statement. This does not preclude
a front end from making a strong distinction in
its own data structures, if that is appropriate to
the language it recognizes.

Each of the miscellaneous trees (class'x' )
requires individual attention. Some of them
can be replaced with plain Cstruct s that
never participate in overloading. TheBLOCK
node for instance will get this treatment. Other
nodes will be be recategorized into one or more
of the above classes. For instance, we need
equivalents ofERROR_MARKfor each of the
above categories; these shouldnot be unique,
so that they can carry information (such as the
location of the error).

Obviously it will not be possible to continue
using one structure, carrying no static type in-
formation, for all linked lists. However, as
we detail in Section 3.2, most lists point to
data items whose dynamic types are both pre-
dictable and homogeneous. Therefore, with
a moderate amount of effort we can replace
TREE_LIST with specialized list nodes for
each of the classes.

4.1 Type safety

Under the old design, all pointers had the
same static type, so there was never any need
to convert them. Under the new design, we
would like to make the static types of point-
ers as specific as possible. The four classes
above are base types in the C++ sense, and
each substructure is a derived type. We will
need a type-safe and terse way to convert be-
tween base and derived type pointers. Unfortu-
nately the C language does not provide conve-
nient facilities for this sort of operation. Point-
ers to differentstruct s are not assignment-
compatible. There is only one cast operator,
( type ) , which does not validate the incom-
ing type at all.
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We can simulate the C++ derived-type compat-
ibility rule and dynamic_cast<> operator
in C, with a small amount of extra verbosity
and some GNU extensions. In Figure 1 we il-
lustrate one way to implement the conversion
operations, and the associated structure layout.
Code written to this convention should look al-
most the same as code written to the old con-
vention, but with specific variable types and
occasional explicit conversions. It might be
possible to usegengtype to generate all of
the accessor macros and checking logic from
the substructure definitions, thus eliminating
that source of bugs and tedium.

There would be a_commonstructure for each
of the four major static types. Any fields that
truly are common to all substructures of that
type can be placed there. In the example, we
included two boolean fields which are docu-
mented as relevant to all constants. We have
not yet decided what naming convention use
for the new types; the mixture of struct tags and
all-caps typedefs in figure 1 is only one possi-
bility.

The GNU extensions are only necessary for
type checking. When GCC is built with a com-
piler that does not support them, the macros
can expand to unchecked casts; the compiler
will still work. The compile-time error mes-
sage produced by these macros is suboptimal;
it could be improved with a__builtin_
error primitive. Also, in real life the run-
time checks would call a more specific ICE-
reporting routine thanabort . These details
were omitted from the example for brevity.

Some checking does still occur at runtime. We
expect that the overhead will be substantially
lower in this scheme, but we can still dis-
able runtime checking in release builds for ef-
ficiency.

4.2 Language augmentations

The coding convention shown in Figure 1 de-
liberately does not use unions, unlike the cur-
rent convention. This is because the union
cannot include any language-specific substruc-
tures, and we want to put them on an equal
footing with language-independent substruc-
tures. The checked-cast approach is similar to
what is done now for language-specific sub-
structures, but safer. If the macros are auto-
matically generated, it will also be much less
tedious. Front ends are also free to declare
new polymorphic classes; for instance, a lan-
guage that wants a strong distinction between
statements and expressions can invent aSTMT
class.

We also want to make it easier to add language-
specific data to generic substructures. It is
straightforward for a language to declare an
augmented substructure and accessors, as they
do now for IDENTIFIER_NODE. However,
the garbage collector must be advised to allo-
cate more memory for the augmented structure,
and to walk the complete structure for point-
ers when marking live data. This is done for
IDENTIFIER_NODE with specialGTYmark-
ers and language hooks, which do not scale.
We have not yet decided on a tactic for this
problem.

Finally, we intend to make tree codes more
specific so that languages do not have to incur
overhead for functionality they do not use. For
instance, theRECORD_TYPEcode will apply
only to “plain old data;” we will introduce a
newCLASS_TYPEnode for object classes.

4.3 Adaptor nodes

Section 3.3 outlined instances of cross-class
overloading, that is, cases wheretree point-
ers can refer to more than one of the four static
classes discussed in Section 4. We can elimi-
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nate many of these, but some are legitimate.

We do not want to combine theDECL, EXPR,
and CONSTclasses, but we could introduce
adaptor nodes, which fit into one class and
carry a pointer to another class. They might
or might not carry other information. We al-
ready have the notion of aTYPE_DECL; we
could reuse it as an adaptor for context fields
pointing to aTYPE. Context fields can also
point to BLOCKs; for that, we would need a
newBLOCK_DECLadaptor.

The statistics in tables 6 and 7 show that 94–
99% of expression operands areDECLs, so it
would be most efficient to make that the un-
marked case. We would add anEXPR_DECL
adaptor for subexpressions, and use the exist-
ingCONST_DECLas an adaptor for literal con-
stants. This could facilitate conversion to GIM-
PLE form, where all subexpressions are sepa-
rated from their contexts.

5 Conversion plan

Converting to statically typed trees is a con-
siderable amount of work. It will have to be
done either piecemeal on the mainline, or on
its own dedicated branch. If the work is done
on a branch, it will rapidly become very hard
to merge in changes from the mainline. How-
ever, if the work is done on the mainline, it is
likely to be disruptive to other projects. The
conversion may not be monotonic, and there
are several issues as yet unresolved, for which
experimentation will be necessary. Also, this
project is more work than one person can do
alone. Collaboration by emailing patches back
and forth is tedious, compared to collaboration
by working on the same branch.

On balance, we believe that most of the work
should be done on a branch. However, in order
to avoid severe divergence, the project should
be broken into steps which can be merged back

to mainline when complete. We will partition
these steps into three stages.

The first stage of the process is to promote
all multipurposed fields to substructures. It
may be feasible to do this stage before branch-
ing. It is very simple and low-impact for fields
whose accessor macros are already as specific
as they can get. Fields that have non-specific
accessor macros require more thought, and the
change may be quite large, but still mostly
mechanical. Thechain and type fields of
tree_common will migrate into the substruc-
tures that actually use them. It would be nice
to do the same for the common flag bits, but
that may not be feasible without introducing
unwanted padding.

The tree-ssa branch has introduced a number
of new 'x' nodes that are used in expressions,
such asSSA_NAME. These are not in class
'e' mainly to avoid wasting memory on use-
less fields attached to all expressions. If the
substructure conversion is done properly it will
be possible to put them in class'e' or possi-
bly a new expression subclass.

The second stage is to eliminate as much over-
loading as possible, particularly what we might
describe as “abusive” overloading. We discuss
approaches to some of these in sections 5.1–
5.3. The branch will be merged after each
abuse has been rectified. This stage will have
to occur semi-concurrently with the next one,
because we do not know where all of the prob-
lems are.

The third stage is to peel off the major tree
classes from the über-union, one at a time. The
branch will be merged after each step. Ex-
cept where we encounter unexpected abuses,
the substantial changes in this stage affect only
the implementation of the accessor macros.
However, this is the stage where we change
variable declarations, introduce explicit con-
versions, and rename accessor macros to con-
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form to a naming scheme that facilitates auto-
matic generation. This will entail mechanical
changes all over the compiler. We propose to
do this stage in the following order:

Identifiers With the exception of C++ tem-
plate bodies, there are only a few places
where a tree node might or might not be an
identifier, and they are all arguably bugs.
The new C++ parser should make it feasi-
ble to use custom data structures for C++
template bodies, so thatIDENTIFIER_
NODEneed not be an overloading candi-
date at all. In some places, identifiers are
used where unboxed strings would suf-
fice; we will remove all such identifiers in
this step.

ERROR_MARKThere is one error mark node,
which can appear in any context where
the tree is incomplete because the input
program was incorrect. It carries no in-
formation. We mean to replace it with
separateINVALID_TYPE , INVALID_
DECL, INVALID_EXPR, and possibly
INVALID_CST codes. These nodes will
not be unique, and will carry enough in-
formation that later stages of compilation
do not need to be aware of them.

Lists and vectors TREE_LIST must be re-
placed with specialized list nodes that
carry static type information. It is also de-
sirable to use vectors where possible, in-
stead of lists. In this step we will design
a macro API for synthesizing vector and
list types, and the associated runtime API
for building lists, converting lists to vec-
tors, etc. This will allow us to save mem-
ory immediately, by removing the unused
pointers from most lists. In further steps
we will use it to define specialized list and
vector types as needed.

Blocks The lexical binding node,BLOCK, can
only appear within certain nodes and con-

texts, and therefore can be separated out
relatively easily. It contains a list of
DECLs, which will be the first use of spe-
cialized vector types.

Types Of the remaining tree nodes, types are
the most distinct; there is rarely cross-
class overloading between types and other
things. However, we will need to create
specialized lists of types, and we expect
to find abuses in their relationship to dec-
larations.

Constants In this step we will replace over-
loading between declarations and strings
with anonymousCONST_DECLadaptors.
Also, trees which are alwaysINTEGER_
or STRING_CSTnodes will be replaced
with unboxed integers or strings.

Expressions Next, we give expressions a dis-
tinct type, and make their operands always
be DECLnodes. Subexpressions will be
wrapped inEXPR_DECLadaptor nodes.
This is one of the most invasive changes to
be made; however, a suitably clever defi-
nition of TREE_OPERANDshould make
it possible to do it piecemeal.

Declarations At this point the only things left
in the tree union are declarations. We can
replace all remainingtree variables with
DECLvariables, and delete the union en-
tirely.

We will now discuss a few conversion steps in
more detail.

5.1 C declaration parsing

The C and C++ parsers reuse expression nodes
for temporary structures while parsing declara-
tions, as described in section 2.3. This is in-
compatible with static typing. Also, it is in-
efficient; the temporary structure is far larger
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struct binfo {
unsigned int flags;
tree type;
struct binfo *next;
struct binfo *inheritance;
tree offset;
tree vtable;
tree virtuals;
tree vptr_field;
unsigned int num_bases;
struct base {

tree access;
struct binfo *base;

} bases[];
};

CustomBINFO structure

than it needs to be (for instance, lists of identi-
fiers are used in places where flag words would
suffice) and the entire thing is discarded after
processing bygrokdeclarator , producing
lots of garbage.

We plan to replace these expressions with a
custom data structure. It need only contain
fields for the information added at its level (cv-
qualifiers, attributes, array or function parame-
ters), an enumeration of what is being declared
(array, pointer, etc), and a pointer to the struc-
ture for the next level. It would use the poly-
morphism techniques described in Section 4.1,
but static type constraints would ensure that it
never escaped the front end.

We expect this project to have the pleasant side
effect of replacinggrokdeclarator with a
set of simpler functions, none of which is 1200
lines long.

5.2 BINFOs

TheRECORD_TYPEfor each class declared in
a C++ program has a set ofBINFO structures
to represent its base class organization. There
is oneBINFO for each base class, arranged in a

directed acyclic graph which mirrors the class
hierarchy. They carry data such as the loca-
tion of the base sub-object, the class type of
the base, etc.

A BINFO is a TREE_VECwith indexes de-
fined for each piece of information. Informa-
tion about aBINFO’s baseBINFOs is held in
two additionalTREE_VECs, which is unnec-
essary fragmentation. There is a comment in
tree.h suggesting that this be changed:

??? This could probably be done by
just allocating the base types at the end
of this TREE_VEC(instead of using an-
otherTREE_VEC). This would simplify
the calculation of how many basetypes a
given type had.

As with declarator expressions, we mean to re-
place BINFO with a custom structure. The
fields that point toBINFOs are never over-
loaded, so we do not need to make it a tree
substructure. An example structure is shown
above, as it would appear before conversion to
specific static types. Further memory savings
are possible: we can store less information in
the BINFO and more in theRECORD_TYPE
of the base class, where it is not copied for ev-
ery derived class. Thevirtuals field is a
long list, with one entry for every virtual func-
tion in that class. If it can’t be moved to the
RECORD_TYPE, we can at least convert it to a
specialized vector.

5.3 Template arguments and levels

C++ template parameters may be types, ex-
pressions, or nested templates. Presently, the
C++ front end takes advantage of overloading
to put all these things in a single parameter vec-
tor. Many of the uses ofTYPE_PandDECL_P
within the C++ front end are due to this over-
loading. In this context, types are the most
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struct inner_vec {
unsigned int num_args;
tree args[];

};
struct outer_vec {

unsigned int num_levels;
struct inner_vec *levels[];

};

Two-dimensional template parameter array

common sort of parameter. We could use C++-
specificEXPR_TYPEandDECL_TYPEadap-
tor nodes. Another option is to use a tagged
array of unions, but then we would have to find
somewhere to put the tags.

It is possible for a template to have more than
one level of template parameters. Such tem-
plates have a vector of parameter vectors, one
for each level. To avoid overhead, templates
with only one level of parameters omit the
outer vector. This is another kind of over-
loading, and it costs quite a bit of complexity
(mostly incp-tree.h ’s macros for manipu-
lating template trees). A specialized two-dim-
ensional array would have substantially less
overhead. One possible structure layout is
shown here.

6 Closing remarks

This paper concentrates mostly on the common
code, and the C and C++ front ends. The Java,
Ada, Fortran and Objective C front ends will no
doubt have specific issues during conversion.
With the possible exception of Ada, we expect
that these will be no more trouble than the C++
front end. We will need support from front end
maintainers to complete the conversion for all
front ends.

We have glossed over the process of defining
specialized list and vector types. By the time
that is necessary, we will have already con-

verted some list usages, giving experience in
the features that are necessary. We expect that
at that time a good approach will be obvious.
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Tables and figures

In Tables 4–7, upper case indicates nodes with a particular tree structure; lower case indicates
nodes with a particular tree code. An entry with just a dash (—) indicates a field that was never
used.

Utilization
Class Proportion chain type
BLOCK 1.61% 47.78% 0.00%
DECL 26.46% 89.81% 99.30%
EXPR 35.72% 0.00% 100.00%
STMT 14.85% 60.21% 0.00%
IDENTIFIER 1.72% 0.00% 0.00%
CONSTANT 14.75% 0.00% 100.00%
TYPE 4.89% 0.00% 71.42%

Table 2:tree_common utilization by class in C program

Utilization
Class Proportion chain type
BLOCK 3.85% 2.35% 0.00%
DECL 33.60% 60.80% 99.68%
EXPR 19.23% 0.00% 43.45%
STMT 14.46% 38.93% 0.00%
IDENTIFIER 7.26% 0.00% 7.40%
CONSTANT 3.18% 0.00% 100.00%
TYPE 12.80% 0.00% 65.98%

Table 3:tree_common utilization by class in C++ program

Field Null Len Type Purpose Value
call_expr.op[1] 2% 3.5 — — EXPR
record_type.minvala 99% 3.0 — — DECL
function_type.values 0% 3.7 — — TYPE
enumeral_type.values 0% 23.1 — identifier integer_cst
DECL.attributes 91% 1.4 — identifier — b

TYPE.attributes 98% 1.9 — identifier list
constructor.op[0] 0% 9.6 — field_decl 65% EXPR

integer_cst 35%
TYPE.attributes.value 0% 2.1 — — identifier 26%

integer_cst 74%

aC_TYPE_INCOMPLETE_VARS; the C front end has invented its own multipurposing
for this field (see section 2.5).

bThis field is non-NULL for some attributes, none of which are used in the program we
measured.

Table 4: Lists in C program
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Field Null Len Type Purpose Value
record_t.pure_virtuals 99% 8.7 — — method_t
record_t.befriending_classes 96% 1.3 — — record_t
record_t.vfields 85% 1.0 — — record_t
record_t.friend_classes 97% 2.3 — — record_t
type_d.initial.value 0% 2.0 — — DECL
var_d.initial 17% 2.3 — — EXPR
nw_expr.operands[0] 77% 1.0 — — EXPR
call_expr.operands[1] 32% 2.4 — — EXPR >99%

identifier <1%
TYPE.attributes.value 0% 1.6 — — integer 82%

identifier 18%
function_t.binfo 73% 1.0 — — null 99%

record_t 1%
method_t.binfo 82% 1.0 — — null >99%

record_t <1%
cast_expr.operands[0] 32% 1.1 — — DECL 55%

EXPR 38%
CONST 7%

namespace_d.initial 57% 1.0 — namespace —
namespace_d.saved_tree 71% 1.0 — namespace —
DECL.attributes 96% 1.4 — identifier —
TYPE.attributes 99% 1.7 — identifier list
type_d.initial 99% 1.3 — identifier list
enumeral_t.values 0% 16.9 — identifier integer
record_t.vcall_indices 85% 5.6 — function_d integer
constructor.operands[0] 0% 8.6 — integer EXPR
record_t.template_info 24% 1.0 — DECL vec
record_t.vbases 98% 1.0 — record_t vec
template_d.arguments 0% 1.0 — int_cst vec
DECL.template_info 63% 1.0 — DECL >99% vec

overload <1%
ctor_initializer.operands[0] 10% 2.1 — DECL 95% list

record_t 5%
record_t.decl_list 50% 19.4 — record_t 99% DECL

null 1%
function_t.values <1% 3.3 — null >99% TYPE

EXPR <1%
method_t.values 0% 3.3 — null 97% TYPE

EXPR 3%
TEMPLATE_PARMS 0% 1.0 — null 74% DECL

TYPE 25%
EXPR 1%

template_d.vindex 96% 3.4 — vec record_t 97%
null 3%

template_d.size 56% 2.0 null 99% vec DECL 99%
record_t 1% vec 1%

namespace_d.vindex 57% 1.0 — null 67% null 67%
namespace 33% namespace 33%

Note: _t is short for_type, _d for _decl.

Table 5: Lists in C++ program
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In Tables 6 and 7,italics indicate a multipurposed field; roman font indicates an overloaded field.

Field Primary Secondary Outlier
BLOCK.supercontext DECL 99% BLOCK 1%
DECL.context DECL 100% TYPE <1%
DECL.initial DECL 79% EXPR 19% TYPE 2%

BLOCK <1%
DECL.result TYPE 86% DECL 14%
EXPR.operands DECL 99% EXPR <1%

IDENTIFIER <1%
LIST <1%
BLOCK <1%

TYPE.context DECL 87% BLOCK 13%
TYPE.name DECL 100% IDENTIFIER <1%
TYPE.values LIST 76% DECL 24% TYPE <1%

Table 6: Multipurposing and overloading in C program

Field Primary Secondary Outlier
BLOCK.supercontext DECL 98% BLOCK 2%
DECL.arguments DECL 79% LIST 14%

INT_CST 7%
DECL.context DECL 98% TYPE 2%
DECL.initial TYPE 54% DECL 16% LIST 1%

BLOCK 12% STRING <1%
INT_CST 11%
EXPR 5%

DECL.befriending_classes LIST 60%
DECL 40%

DECL.result DECL 98% TYPE 2%
DECL.saved_tree EXPR 100% LIST <1%
DECL.size INT_CST 88% LIST 12%
DECL.vindex DECL 54% INT_CST 22% TYPE 4%

LIST 19%
EXPR.operands DECL 94% EXPR 5% LIST <1%

INT_CST <1%
BLOCK <1%
STRING <1%
TYPE <1%

TYPE.context DECL 62% TYPE 38%
TYPE.values LIST 67% DECL 22% IDENTIFIER 1%

TPI 9% EXPR <1%
TYPE <1%

Table 7: Multipurposing and overloading in C++ program
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/* If V has type T, return V, else issue an error. */
#define verify_type(T,V) \

(__builtin_choose_expr \
(__builtin_types_compatible_p (typeof(V), T), \

(V), (void) 0))

/* If V has type T or F, return (T)V, else issue an error. */
#define validated_cast(T,F,V) \

(__builtin_choose_expr \
(__builtin_types_compatible_p (typeof(V), T) \

|| __builtin_types_compatible_p (typeof(V), F), \
(T) (V), (void) 0))

/* If V has static type F or T and dynamic type K, return (T)V, else
issue an error. F and T are checked at compile time, K at runtime. */

#define with_dynamic_type(K,T,F,V) \
({ T _v = validated_cast(T,F,V); \

if (_v->common.kind != K) \
abort (); \

_v; })

enum cst_kind { INTEGER_CST, ... };

struct cst_common
{

enum cst_kind kind : 8;
bool warned_overflow : 1;
bool overflow : 1;
/* possibly other flag bits */

};
typedef struct cst_common *CONST;
#define CONST(C) verify_type(CONST, &C->common)

#define CONST_OVERFLOW(C) CONST(C)->overflow
#define CONST_WARNED_OVERFLOW(C) CONST(C)->warned_overflow

struct cst_int
{

struct cst_common common;
unsigned HOST_WIDE_INT low;
HOST_WIDE_INT high;

};
#define CST_INT(C) \

with_dynamic_type(INTEGER_CST, struct cst_int *, CONST, C)

#define CST_INT_LOW(C) CST_INT(C)->low
#define CST_INT_HIGH(C) CST_INT(C)->high

Figure 1: Structure and macro conventions for type safety
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What is binary compatibility?

The Java Language Specification [2] has an
entire chapter, Chapter 13, dedicated to bi-
nary compatibility. This chapter lays out rules
for writing binary compatible programs: pro-
grams can be changed in these ways with-
out requiring the recompilation of dependent
modules. This covers some simple, obvious
things, such as the fact that adding or removing
thesynchronized keyword from a method
won’t affect binary compatibility. It also cov-
ers more complex rules, so for instance it is
possible to override an inherited method or re-
arrange fields in a class without affecting com-
patibility.

Note that binary compatibility and source com-
patibility differ. For instance, it is binary
compatible to change a field’s access from
protected to public . This is not source
compatible in some situations.

Binary Compatibility has a great promise: with
a few restrictions, you will never have to re-
compile libraries again.

1 Why we want it

Initially, the gcj project paid no attention to
Chapter 13. In practice we implemented a
more static language than Java, and it looked
as if it would be difficult to get good perfor-
mance from pre-compiled code that adhered to
the binary compatibility rules.

This led to one important restriction on gcj-
compiled code, namely that two classes with
the same name could not both be loaded at
once: this is PR 6819 [4]. Over time, this has
proved to be more and more difficult to work
around. For instance, in 2003 we split out some
libraries from libgcj because some programs
shipped their own copies; this in turn caused
other problems.

Another important problem we tried to solve in
2003 was the proper operation of class loaders.
As it turned out, class loading and binary com-
patibility are related, and we realized we could
solve both problems with the same implemen-
tation.

In particular, sophisticated applications such as
Eclipse rely on Java’s lazy loading and linking
capabilities to control class loading and visibil-
ity. It isn’t possible both to satisfy the proper
semantics of a class loader and to have ordinary
ELF-style linking.

The Java language gives programmers facili-
ties that go far beyond what is possible in more
conventional programming languages. For ex-
ample, you may define a class loader to load
your own classes into the virtual machine.
Your class loader will have its own name space
and it will inherit classes from the base Java
class loader but its own loaded classes will not
be externally visible. You can define your own
scheme for resolving symbols.

It is quite possible for the same Java class to be
loaded several times by several different class
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loaders, and in each case its references will be
resolved differently.

When a class is loaded, references it makes
to other classes are not immediately resolved.
This allows mutually dependent classes to
be loaded, and later fixed up by calling
resolveClass .

All of this is a very long way from what can be
achieved by using conventional ELF linkage.

2 Implementation

The implementation of a new binary compati-
bility ABI for gcj began several years ago with
the work of Bryce McKinlay, and the paper Yu
[1].

The basic idea behind our implementation ap-
proach is to put all references made by a class
into two special tables, called theatable and
theotable .

Theotable , or Offset Table, is a table of off-
sets from some base pointer. Theatable , or
Address Table, is a table of absolute addresses.
Every class has anatable and anotable .
Initially these tables are filled with symbolic
references. Later, when the class is linked,
these symbolic references are turned into off-
sets or addresses, as appropriate.

2.1 Class references

Class references are handled via the constant
pool, a table that already existed in the old ABI.
Entries in the constant pool are resolved when
a class is prepared; an operation likenew or
instanceof refers to an entry in the pool.

2.2 Static methods and fields

A static method or field is referred to via the
atable . Each symbolic entry in theatable

consists of three parts: a class name, a mem-
ber name, and a type signature. At class prepa-
ration time, the appropriate class and member
are found, access checks are done, and then
the address of the member is written into the
atable slot. So, code in Class A that refers
to a static member of Class B does so via an
index into theatable belonging to Class A.

If a static method is not found, we simply write
the address of a function which will throw the
appropriate exception.

If a static field is not found, we throw an
IncompatibleClassChangeError
at class preparation time. In Yu [1] this is
mentioned as a bug in the design; however,
we believe that this behavior is specifically
allowed by the linking rules in section 12.3 of
the Java Language Specification [2].

2.3 Instance methods

Instance methods are handled via theotable ,
not the atable . Like the atable , the
otable holds class names, member names,
and type signatures. However, instead of map-
ping these to addresses, it instead maps them to
offsets.

When computing the value of anotable slot
for an instance method, we load and lay out
the target class and all its superclasses as well.
As part of this process, we compute the tar-
get class’s vtable; from this we find the correct
value to put in theotable slot.

Old-ABI code calls virtual methods like:

(((vtable *) obj)[index]) (obj, ...)

With the new ABI, this is transformed to:

(((vtable *) obj)[otable[index]])
(obj, ...)
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If an instance method is not found, we
put a special value into theotable slot
which, when the vtable lookup is done, re-
sults in a call to a method that throws
IncompatibleClassChangeError .

2.4 Instance fields

Instance fields are handled similarly to instance
methods. Where old ABI code compiles a field
reference:

*((type *) (obj + offsetof (field)))

the new ABI produces the equivalent of:

*((type *) (obj +
otable[field_index]))

Although this is an extra memory reference,
it is less painful than might first appear: the
otable and atable have good locality,
typically being referred to many times in a
method.

Note that because all class layout is done dy-
namically, even references to one’s own private
fields must go through theotable , as one’s
superclass might add or remove fields and this
will change the offsets of all subclass fields.

2.5 Interfaces

Interface dispatch also requires an extra indi-
rection via theotable , and it requires us to
compute interface dispatch tables at runtime,
much as we compute the vtables and class lay-
out at runtime.

2.6 Exception handlers

For catch clauses we write a class name (in-
stead of a reference to a Class object) into the

DWARF-2 exception table. The class name
is suitably mangled so that the type matching
function for a catch block can distinguish be-
tween old and new ABI code.

When an exception is thrown, these class
names are looked up by the appropriate class
loader and turned into references to the corre-
sponding classes.

2.7 Versioning

gcj still statically generates an instance of Class
for each class that is compiled. In the fu-
ture we plan instead to generate a class de-
scriptor, which will be instantiated as a Class
at runtime. This will insulate compiled code
from changes to java.lang.Class, and it will
also make it slightly easier for us to handle
ABI versioning. We intend to add an ABI ver-
sion number to the class descriptor, and then
let the runtime library handle compatibility as
desired.

2.8 libgcj API

Compiled code must still make references to
symbols exported from libgcj. For instance,
operations such asnew or instanceof are
implemented by means of exported_Jv_
functions; the compiler generates direct calls
to these functions.

We have considered redirecting calls to these
functions via theatable as well, but as there
are only twenty or so it seems simpler to handle
these according to the usual versioning rules
for shared libraries.

Compiled code continues to know the layout of
array types. We don’t anticipate arrays chang-
ing incompatibly.

We plan to continue to compile parts of the
core library—in all likelihood at leastjava.
lang andjava.io —using the old ABI. Ap-
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plication code cannot portably replace these
classes, so there is no drawback to compiling
them old-style.

2.9 Bytecode Verification

One related problem is that of bytecode verifi-
cation with an ahead-of-time compiler.

In Java, the compile-time and runtime environ-
ments might be very different. In order to han-
dle this and still ensure runtime type safety, a
typical JVM will perform bytecode verification
in the runtime environment.

gcj includes a bytecode verifier as part of its
compilation, when compiling from bytecode to
object code. However, this is insufficient when
the bytecode can be loaded into an arbitrary
runtime environment. In particular it would be
possible to construct an environment where all
the requirements of the compiled code (names
of types and methods) are met, but where the
result allows subversion of the type system.

For example, a class f might be defined:

class f implements B
{

...

and a user could write an initializer

B thing = new f();

but if an incompatible change were made to f

class f
{

...

the variablething would now refer to an ob-
ject that did not implement B. This is a viola-
tion of the type system.

The solution to this is to perform bytecode
verification in two steps. The first step, still
in gcj, works much like an ordinary verifier.

All the “static” properties of bytecode, such as
whether the declared stack depth is sufficient,
can be verified once. Now, when the verifier is
asked to verify a fact about a type or method,
it always yieldstrue , and adds a “verification
assertion” to the generated code.

At runtime, these assertions are verified when
the class is linked. This process is much
quicker than ordinary bytecode verification,
which requires modeling the control flow of the
code. These assertions are of the form ‘A im-
plements B’ or ‘A extends B’, which are very
easy to check.

2.10 Type assertions for source code

A similar problem occurs when compiling
from Java source to native code. In this situ-
ation, there is no verification step to split. In-
stead, the assertion table is filled based on any
implicit upcasts that appear in the source; each
such cast represents a constraint on the type hi-
erarchy that must remain true at runtime.

2.11 CNI

CNI, the Compiled Native Interface, is a way to
write Javanative methods in C++ with zero
overhead. With CNI, Java classes are used to
generate C++ header files, which then enable
relatively ordinary C++ code to make calls on
Java objects.

CNI is also going to require some changes. In
essence this will involve duplicating some of
the atable and otable logic from gcj in
g++ and arranging for these references to be
resolved at runtime when appropriate. We an-
ticipate accomplishing this by emitting static
initializers which will register table contribu-
tions from the current compilation unit with the
libgcj runtime.

We plan to make several other CNI changes
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now, while we’re changing the ABI, in order
to postpone any other needed ABI changes. In
particular we plan to introduce smart pointers
to allow seamlessNULL-pointer checking on
all platforms, and we plan to tighten the rules
about what parts of memory can be assumed to
be scanned by the garbage collector.

3 Consequences

This approach to binary compatibility has
some very interesting consequences for gcj and
gcj-compiled code.

3.1 gcj as JIT

Due to the new runtime linkage model and
the new approach to bytecode verification, gcj
can now compile a single .class file in com-
plete isolation. That is, compiling a class file
doesn’t require gcj to read any other classes,
not evenjava.lang.Object . This works
because a class file has complete symbolic in-
formation about its dependencies—just what
the atable and otable require—and be-
cause verification will answer “yes” to any
type-related question without actually examin-
ing any other types until runtime.

This property in turn lets us use gcj
itself as a caching JIT. Conventionally,
ClassLoader.defineClass() takes an
array of bytes that is the binary code for a class
and loads it into memory. Instead, we compute
a cryptographic checksum of the bytes and use
it as a key into a cache of shared libraries. If
the class is found, we simplydlopen() it. If
not, we invoke gcj (which is possible and rela-
tively efficient because we only need the class
file in isolation) to put a new shared library in
the cache.

We’re also considering the possibility of mak-
ing it easy to prime the libgcj cache. To make

existing Java applications run with decent per-
formance, you would then only need to com-
pile each .jar file and copy the resulting .so
into the cache. No application changes would
be needed. Another approach we’re investigat-
ing is to changeURLClassLoader to trans-
parently find shared libraries corresponding to
.jar files on its class path.

3.2 VM independence

The code generated by gcj is also surprisingly
VM-independent. It refers to the various ta-
bles (otable , atable , assertion table), and
to the small number of libgcj builtin functions
known to gcj. This means that gcj-compiled
code could easily be loaded into any VM im-
plementing this interface; the biggest assump-
tion is that the runtime includes a conservative
garbage collector. Even that may not neces-
sarily be true in the future: a few garbage col-
lection hooks would remove even that require-
ment.

The generated code is also quite independent of
other aspects of the runtime environment, for
instance the kernel or libc. It should be possi-
ble to compile Java code once, and then simply
never recompile it even as the rest of the sys-
tem, including libgcj, is upgraded.

We’re hoping other free Java implementations
will adopt this same approach as the basis of a
“pluggable JIT” interface.

3.3 Performance and Size

It is too early to know the precise impact of the
new ABI. For some cases, we know that the
penalty will be small: for instance, the cost of
a static method invocation via theatable is
similar to the cost of indirection via the PLT.

On the other hand, we expect some costs to be
larger: for example, instance field references
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will be more expensive.

The Yu [1] paper quotes an average perfor-
mance penalty of less than 2%; however, their
implementation did not implement field indi-
rection.

4 Problems and gotchas

It is possible that important Java programs may
rely on the precise link-time behavior of ex-
isting VMs. In case it becomes necessary to
change our approach, we believe we can em-
ulate the more lazy behavior of other VMs in
one of two ways. On machines with the re-
quired support, we can map a special, unwrite-
able memory segment, and then fillatable
slots with pointers into this area. This approach
will let us differentiate betweenNULL pointer
traps and invalid field traps, and then throw the
appropriate exception. For other platforms, we
can add extra instrumentation to the compiled
code, at some performance cost.

5 Today and Tomorrow

As of this writing, Andrew is still finishing
the implementation of the core parts of the
new ABI. His work builds on some earlier
patches from Bryce, and is checked in on
gcj-abi-2-dev-branch . Tom hopes to
begin work on the verification problem soon.

Andrew has built a demo version of gcj-as-JIT
and posted some results to the gcj list; see his
post [3]. The results are surprisingly good—
a longer startup delay, as would be expected,
but performance falling between that of Sun’s
and IBM’s JITs on Linux. We anticipate some
useful performance gains from tree-ssa as well,
eventually—in particular smarter array bounds
checking.

Ideally we would like to see a supported, but

perhaps still preliminary, version of this ABI
in GCC 3.5, with real compatibility promised
starting with 3.6.
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