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CSIBE Benchmark: One Year Perspective and Plans

Arpad Beszédes, Rudolf Ferenc, Tamas Gergely,
Tibor Gyimaothy, Gabor Loki, and LaszI6 Vidacs
Department of Software Engineering
University of Szeged, Hungary
{beszedes,ferenc,gertom,gyimi,loki,lac}@inf.u-szeged.hu

Abstract to produce compact code. Compilers are gen-
erally able to optimize for code speed or code

In this paper we summarize our experiences ir|2€- However, performance has been more ex-
designing and running CSIBE, the new coddensively investigated and little effort has been
size benchmark for GCC. Since its introduc-Made on optimizing for code size. This is true
tion in 2003, it has been widely used by gccfor GCC as well; the majority of the compiler’s
developers in their daily work to help them developers are interested in the performance of

keep the size of the generated code as smdine generated code, not its size. Therefore op-

as possible. We have been making continutimizations for space and the (side) effects of

ous observations on the latest results and inTodifications regarding code size are often ne-
forming GCC developers of any problem whendlected:

necessary. YVe OVerview some CONCrete "SUCa the first GCC summit in 2003, we presented
cess stories” of where GCC benefited fromy,, \vork related to the measurement of the

the benchmark. This paper overviews the;,qe sjze generated by GCC [1]. We compared
measurement methodology, providing some inyhe sjze of the generated code to two non-free

formation about the test bed, the measuring,,hijers for the ARM architecture and found
method, and the hardware/software infrastrucz o+ Gcc was not too much behind a high-

ture. The new version of CSIBE, I'aunched inperformance ARM compiler, which generated
May 2004, has been extended with new feag,qe ahout 16% smaller than GCC 3.3. How-
tures such as code performance measurementSa, 4t the same time we were able to docu-
and a test bed—four times larger—with eveny,ant several problems related to code size as
more versatile programs. well, and more importantly we have demon-
strated examples where incautious modifica-
1 Introduction tions to the code base produced code size
penalties. At that time we had the idea of cre-

. . ating an automatic benchmark for code size.
Maintaining a compact code size is important

from several aspects, such as reducing the neto maintain a continuous quality of GCC gen-
work traffic and the ability to produce software erated code, several benchmarks have been
for embedded systems that require little memused for a long time that measure the per-
ory space and are energy-efficient. The size oformance of the generated code on a daily

the program code in its executable binary for-pasis [4]. However this new benchmark for
mat highly depends on the compiler’s ability
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code size (called CSIBE for GCCode Size  overviews the system architecture while in

BEnchmark) was launched only in 2003 [2]. Section 3 we give some examples of our ob-

This benchmark has been developed by and iservations and other people’s benefits using

maintained at the Department of Software En-CSIBE. Finally, we give some ideas for future

gineering at the University of Szeged in Hun-development in Section 4.

gary [3]. Since its original introduction CSIBE

has been used by GCC developers in their dalil .

work to help keep the size of the generatec? The CSIBE system

code as small as possible. We have been mak-

ing continuous observations on the latest rein this section we overview the measurement

sults and informing GCC developers of anymethodology. We provide some details about

problems when necessary. the test bed, the measuring method, and the
, , ) hardware/software infrastructure.  Although

The new version of CSIiBE, launched in May ¢ cSiBE benchmark is primarily for measur-

2004, has been extended with new featureﬁ%‘g code size, it provides two additional mea-

such as code performance measurements af ements: compilation speed, and code speed
a test bed—four times larger—with even more 4 jimited part of the test bed). GCC source
versatile programs. The benchmark consists of y4e is checked out daily from the CVS, the
a test bed of several typical C applications, gompjlers are built for the supported targets
database which stores daily results and an €aSY5rm/thumb x86, m68k mips and ppd and
to-use web interface with sophisticated querymeasurements are performed on the CSIBE test

mechanisms. GCC source code is automalipey The results are stored in a database, which
cally checked out daily from the central sourceiq 5ccessible via the CSIiBE website using sev-

code repository, the compiler is built and mea-g | kinds of queries. The test bed and the basic

surements are performed on the test bed. Thgeasurement scripts are available for down-
results are stored in the database (the data gogs, 4 as well.

back to May 2003), which is accessible via the
CSIBE yvebsﬂe using seyeral kinds of queries., 4 System architecture
Code size, compilation time, and performance
data are available via raw data tables or usin

appropriate diagrams generated on demand. ?n Figure 1 the overall architecture of the

CSIBE system is shown.

Thanks to the existence of this benchmark, the

compiler has been improved a number of time<SIBE 1S composed of two subsystems.  The
to generate smaller code, either by revertind Nt end serverare used to download daily

some fixes with side effects or by using it to ©CC Shapshots and use them for producing the
fine tune some algorithms. In the period beaW Measurement data. THBack end server

tween May 2003 and 2004 an overall improve-aCtS as a data server by filling a relational
ment of 3.3% in code size of actual GCC main-database with the measurement data, and it is

line snapshots was measured (ARM target witflso responsible for presenting the data to the
_0s ) which, we believe, CSIBE also has con- user through its web interface. The back end
tributed to. ' server together with the web client represents a

typical three-tier client/server system. It serves
In this paper we summarize our experiencesis a data server (Postgres), implements various
in designing and running CSIBE. Section 2query logics and supplies the HTML presenta-
tion. All the servers run Linux.
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Compaq iPAQ
with Linux

ARM execution
device

Back end server Web browser

GCC source Front end servers
repository

CVS checkout, GCC Relational database, WWW client
/cvsroot/gee build, measurement T web server j

Figure 1: The CSIBE architecture

2.2 Front end servers same hardware and software parameters that
are summarized below:

The core of CSIBE is theffline CSIBE bench-
mark which consists of the test bed and re- « Asus A7N8x Deluxe
qguired measurement scripts. This package is

downloadable from the website, so it can also AMD AthlonXP 2500+
be used independently of the online system. 333FSB @ 1.8GHz
The front end servers utilize this offline pack-
age as well.

2x 512MB DDR (200MHz)

The online system is controlled by a so-called « 2x Seagate 120GB 7200rpm HDD
master phasen the front end servers, which

is responsible for the timely CVS checkout, « Linux kernel version 2.4.26,
compiler build, measurements using the offline Debian Linux (woody) 3.0
CSIBE, and uploading the data to the relational

database. :
These two servers are capable of sharing the

measurement tasks (like separating them by
branches) and, in this way, we also have a
backup possibility in case of some unexpected
server failure. These two servers are also used
The actual setup of the front end servers is flexfor measuring the performance of code gener-
ible. At present, it is composed of three Linux ated for the x86 architecture. We are working
machines, one used for CVS checkout that i®n adding performance measurements for the
shared with other university projects, and twoARM architecture as well, which will be made
dedicated PCs for the other front end phaseon a Compaq iPAQ device with the following
These two PCs are really siblings, having thamain parameters:

Hardware and software
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 iPAQ H 3630 with StrongARM-1110 CVS checkout
rev 8 (v4l) core

Snapshots of GCC source code are retrieved

* 16M FLASH, 32M RAM from the CVS daily at 12:00:00 (UTC). The
o complete code base is retrieved once a week on
* Familiar Linux, Mondays and on the other days only the differ-

kernel version 2419-rmk6-pxa1-hh30 ences are downloaded.

Compilers and binaries measured Configuration

We measure daily snapshots of the G@@ain-  The Binutils package is configured with no
line development branch (previously thee-  €xtra flags, whilenewlibis configured with the
ssatoo) along with several release versions thafnly extra flag that enables the optimization
serve as baselines for the diagrams. These af@r space:-enable-target-optspace

the following GCC versions2.95.2.1 3.2.3 We do not buildglibc, rather we use the
3.3.1, and3.4. stock binaries. Finally, GCC is configured

with the following. The common flags are
The compilers are configured as cross-enable-languages=c

compilers for the supported targets. We em-disable-nls -disable-libgcj

ploy standalone targets for use with thewlib  -disable-multilib

runtime library for code size and compilation -disable-checking -with-gnu-as

time measurements, and Linux targets with.with-gnu-Id . Furthermore for compilers
glibc for execution time. At presenhinu-  ysing thenewlib library, the additional flags
tils v2.14 newlib v1.12.0andglibc v2.3.2are  agre -with-newlib -disable-shared

used. -disable-threads and forglibc we also

. ... _use-enable-shared
When we measure code size and compilation

time, we do not include linking time and code
size of the executable. Furthermore, only thoseC
programs that meet certain requirements are

used for performance measurements. These o
are the following: A simple make was used to buildinutils and

the libraries once only, and the same is used for
each GCC snapshot as well.

The project produces at least one exe-

cutable program

ompilation

Measurement
» The source files are not preprocessed
_ _ The code size is measured using the program
The execution environment must not con-size . The final result is the sum of the first
tain any special elements two columns of the output of the command.
This means that only program code and con-

The execution time is measurable (i. e. itstant and initialized data sizes are incorporated
is not too short and not too long) into the final values.
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Compilation time and code execution speed areput is given to a program several times, while
measured three times per object and per tesh other cases the same program is executed
case, respectively. These times are measuregith different inputs. The total size of the test
with the programbin/time in user mode. inputs is currently about 60 MB.

For both compilation and execution times all o o
In the table in Figure 2 some statistics about

gueries through the web will provide a time i ) _
value that is the median of the three valuesthe test projects are given. We listed the num-

While compilation and execution times are pe-Per of source files, size of the source code in

ing measured only vital processes are runnin§Yt€s, number of objects, total size of objects
on the machine. as measured using CSIBE for GCC 3.4, 1686

and-02, and the number of executable pro-
The results of the measurements are stored igrams for each project.
simple files in CSV format (comma separated
values) for further processing. These files ar@.4 Back end server
also the final outputs of the offline CSIBE.

User queries through the CSIBE website are
2.3 Thetest bed processed using PHP scripts, from which the
necessary SQL queries are composed. The data

retrieved from the database is then presented

The test bed consists of 18 projects and it§), the HTML output in data tables, bar charts,
source size is roughly 50 MB. When compiled, 5,4 timeline diagrams.

itis about 3.5 MB binary code in total. The test
bed consists of programs of various types sucifhe central repository in which the measured
as media (gsm, mpeg), compiler, compressolata are stored is a relational database (imple-
editor programs, preprocessed units. Some ahented using Postgres). The database stores
the projects are suitable for measuring perforthe measurement results along with the time
mance and constitute about 40% of the test bedtamp of the measurement and various entities
_ such as the compiler and library version, com-
In the latest version of the test bed we addedyjjer flags and measurement type. The version
some Linux kernel sources as well. With this ot (e test bed is also associated with each re-
aim in mind, we started with the S390 platform gyt \which allows it to store the results of dif-
and turned it into a so-called “testplatform.” torent test beds consistently. If a query is made
On this platform we replaced all assembly codent spans different test bed versions this can

with stubs and left only C code for the impor- o easily displayed on the diagrams.
tant Linux modules (kernel, devices, file sys-

tems, etc.) The last phase in the online CSIBE bench-

mark is the presentation on the website. The

The test bed is composed of two parts, one fopgigg pages provide quick and easy access to

the test programs and measurement scripts, affle most important measurements like the lat-

the other consisting of the test inputs for the exgt results in a timeline diagram or more elabo-

ecutable projects. This separation was carrieg,q query possibilities. Extensive help is pro-

out so the user would be able to add many dify;jed for each function, making CSIBE simple
ferent test cases. The test cases were selectgql ;e |n Figure 3 the opening page can be
to represent one typical execution of the proggep.
gram as our goal was not to attain a good cov-

erage of the program. In some cases the saniEhere are several ways of retrieving the re-



12 « GCC Developers’ Summit

| Project | #Src.  Src. bytes # Obj. Bin. bytes # Exgc.
bzip2-1.0.2 11 242,034 9 80,112 D
cg_compiler_opensrc 42 813,343 22 148,838 -
compiler 9 202,938 6 27,928 1
flex-2.5.31 33 658,799 22 240,206 1
jikespg-1.3 29 978,833 17 267,712 1
jpeg-6b 81 1,119,991 66 156,078 3
libmspack 40 319,611 25 76,506 —+
libpng-1.2.5 21 859,762 18 128,941 2
linux-2.4.23-pre3-testpl ... | 2,430 34,238,976 271 993,815 +—
lwip-0.5.3.preproc 30 928,538 30 86,486 —+
mpeg2dec-0.3.1 43 461,047 29 62,873
mpgcut-1.1 1 28,889 1 29,845 —
OpenTCP-1.0.4 40 545,358 22 38,221 —
replaypc-0.4.0.preproc 39 1,692,413 39 64,221 —
teem-1.6.0-src 370 2,786,644 293 1,210,365 2
ttt-0.10.1.preproc 6 311,311 6 19,049 —
unrarlib-0.4.0 4 93,894 3 16,339 —
zlib-1.1.4 27 305,136 14 42,422 il

] Total \ 3,256 46,587,517 893 3,689,957 ﬂ4

Figure 2: CSIBE test bed statistics

sults. One isSummarized querigsvhich pro- switches. The results can be displayed in a di-
vides instant access with a click of a buttonagram (Figure 4a), in a bar chart (Figure 4b),
to all kinds of results (code size, compilation or as raw data tables. The resulting latest time-
time, and code performance) for a selected tarine diagrams are supplied with two automati-
get architecture. On thkatest resultgpages cally generated links that can be copied for fur-
the last few days or weeks can be observether reference. Th8tatic URLink will always

in several ways: timeline, normalized timeline give the same diagram since all query param-
(the various kinds of data are shown as noreters are converted to absolute time stamp val-
malized to the last value), a comparison of dif-ues, while theReference URLNk supplies the
ferent targets, and raw number data. e  actual query parameters at the time of usage,
vanced queriepages provide the possibility of which gives values relative to the actual time.
retrieving the data in any desired combination;
one can compare any branch and target wit%
any other combination and timeline diagrams
for arbitrary intervals. Baseline values of ma-
jor GCC releases are also available for mosESIBE has been quickly accepted by the com-

queries, which can be optionally selected fofmunity. Patches with references to its usage
the diagrams. started to appear only after 2 months. At

present we have 47 hits per day on average
All queries can be performed by a series ofand a total of 193 downloads of the offline
selections from drop-down lists like the se-benchmark. A good thing about its introduc-
lection of targets, branches, and optimizationtion is that more and more GCC developers

Experiences
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040’ GCC Code-Size Benchmark Environment (CSiBE)
University of Szeged, Department of Software Engineering
it
LatEstoes ity Welcome to the website of CSIBE!
Timeline Latest results may be used
Normalized CSIiBE is a code size benchmark for the GCC compiler, The primary purpose to check various results of
All targets of CSIBE is to monitor the size of the code generated by GCC, In addition, the last few days or weeks
Rawi data compilation time and code speed measurements are also provided. tny setting some essential
AU R et
|1r|zed HEnEE This online benchmark should help observe the effect of changes (the ) .
: benefits and drawbacks) in GCC's optimization framewark, By performing Summarized queries pravide
EHBE'_'?“: regular measurements made on the CSIBE testbed it helps GCC developers instant access to all
i686-linux avoid and fix code size growth, compilation slow-down and code available results for the
mask-elf performance degradation {we summarized some interesting ohservations specified target in a timeline
mips-elf using CSIBE). The benchmark is also available for offline use. diagram,
fl'?:mel.:telf' Use the Site nawigation bar to see the latest results of the measurements, With Adugn:ed gueries any
- = individually or summarized per target architecture, or to perfarm maore combination of the data may
adwvanced gueries. Context sensitive help is available in the Help bar for be retrieved from the
Single - each menu item, The Examples page contains some screenshots of typical database and presented in
Comparison usage of the online benchrmark, any possible form,
Timeline
Normalized The details of the measurement method can be found on the Technical The Observations pages

Observations detalls page. For additional info hear our talk at the 2004 GCC Developers' overview those changes in

isn Summit. GCC which we found to

- produce significant
Time Please give us feedback about this website and about your experiences irregularities in the results
Technical details using the offline version of CSIBE. praduced by the benchmark,

Code size
Compilation time
Execution time

Technical details document
the measurement

Examples I NEWS :: infrastructure, the test bed,
Downloads and measurement b
CSIBE v2.0.0 2004-05-17 - New CSiBE version published methadology used by CSIBE,

The CSIBE website and the offline benchmark have been completely
redesigned, It has been extended with new features such as code
performace measurements and a four times larger testhed.

CSiBEwv1.1.1
CSiBEv1.1.0

On Examples some
screenshots of typical usage
of the online benchmark can

2004-02-20 - Downloadable CSIBE v1.1.1 be found.

Mew version of CSIiBE is available for offline use. Some new features

. = 8] load th fl CSIBE
has been added to the measuring script. Snlies e sl

benchmark from the
Downloads page:

|
| ==

Figure 3: CSIiBE website

seem to be using CSIBE in their daily work to mailing list and found that more and more
check how their modifications affect the codepeople are referring to CSIBE as a reference
size. Some people are developing patches tbenchmark for code size (54 e-mails).
decrease code size, and the effect is measured _

with CSIiBE, while others verify whether other OUr group has also contributed to the overall
modifications affect code size or not. Thanks tdMProvement of code optimization for size, be-
CSIBE, in 4 cases a patch was reverted or jmCaUS€ We are carrying out continuous obser-
proved because of its negative effect on cod¥ations of the results produced by CSIBE, of

size. These statistics suggest that the develof!hich the important ones are documented on
ers are starting to focus not only on code efthe website. Where possible we also suggest

ficiency, but its size as well. We have been possible cause of any anomalies seen in the

following the activity on thegcc-patches latest diagrams, and take steps to draw the at-
tention of the community to the problem. In
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(a) Timeline (b) All targets

Figure 4. Diagram examples

the following we offer some examples of our on ARM with -Os but introduced a new

observations and successful participations: bootstrap failure.
_ » A patch on April 3, 2004 saved about 1%
* On August 31 in 2003 a patch was ap-  of code size for most targets. The patch
plied to improve the condition for gener- inlines very small functions that usually

ating jump tables from switch statements decrease the code size when optimizing
by including the case when optimizing for for size.

size. This caused a code size reduction on
all targets. The threshold value was deter- .
mined based on the CSIBE statistics. 4 Conclusion and future plans

* In September 2003 unit-at-a-time compi-
lation was enabled in mainline, which re-
sulted in major code size improvement for
most targets.

In this paper we overviewed GCC’s code size
benchmark, CSIBE. We presented the over-
all architecture, the test bed and the measur-
ing method. Although it primarily serves as a
« A patch related to constant folding done Penchmark for measuring code size, other pa-
in October 2003 increased the code sizdameters such as compilation time and code ex-
for all targets. Several days later anotherecution performance are also part of the regu-

patch was used to disable some featuredr measurements. We offered some examples
when optimizing for size. of where GCC benefited from using the bench-

mark, and pointed out that, in recent years,
« A significant code size increase was meaa general interest towards code size has in-
sured on October 21, 2003 on ARM ar-creased among GCC developers. As a result
chitecture when optimizing for size due to of this, GCC mainline improved about 3.3%
a patch that allows factorization of con- in terms of generated code size between May
stants into addressing instructions where003 and May 2004 (measured with CSIiBE
optimizing for space. One week later thetest bed version 1.1.1 for the ARM target and
patch was reverted. -Os).

* In January 2004 a patch saved code siz&Ve plan to continue our work with CSiBE and
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hence we welcome users’ comments and sugReferences

gestions. Some of the targets were added af-

ter user requests, and the bigger test bed in the] Arpad Beszédes, Tamas Gergely, Tibor

latest CSIBE version is also composed of pro-
grams based on the demands of those who con-
tacted our team. In the future we will try to
follow the real needs of the GCC community,

those of the developers and users.

One of the straightforward enhancements of
CSIBE might be to introduce new targets and2]
development branches, should there be an in-
terest in it by the community. As long as
the available hardware capacity permits (the
measurement of one day’s data currently takes
about 5 hours), we may extend the test bed with

new programs, should it prove necessary.

Another idea of ours for enhancing the on-
line benchmark is to allow users to upload, via
the web interface, measurement data they pro-
duced offline into the central database. This
would be interesting in cases where a developer

Gyimothy, Gabor Loki, and Laszlo
Vidacs. Optimizing for space:
Measurements and possibilities for
improvement. IrProceedings of the 2003
GCC Developers’ Summpages 7-20,
May 2003.

Department of Software Engineering,
University of Szeged. GCC Code-Size
Benchmark Environment (CSIiBE).
http:

/lwww.inf.u-szeged.hu/CSIBE

3] Department of Software Engineering,

University of Szeged. Homepage.
http://www.inf.u-szeged.hu/
tanszekek/
szoftverfejlesztes/starten.

xml .

makes use of the offline benchmark to measur& The GNU Compiler Collection. GCC

a custom target or examine code performance

with different inputs.

5 Availability

The online CSIBE benchmark can be accessed

at

http://www.inf.u-szeged.hu/CSiBE/

From here the offline version can also be down-

loaded.
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Performance work in the libstdc++-v3 project

Paolo Carlini
SUSE

pcarlini@suse.de

Abstract to Darwin.

. ' The project was started in 1998 and release af-
The GNU Standard C++ Library v3 is a long ter release the “degree of conformance” to the
term project aimed at implementing a fully ;SO C++ Standard is becoming very high, with

conforming C++ runtime library, as mandatedmany features implemented satisfactorily and
by the 1ISO 14882 Standard. Whereas duringyuickly stabilizing.

the first years the focus was mostly on fea-

tures, recently, after my appointment as ondndeed, an analysis of the 3.4.0 Release Notes
of its official maintainers, much more atten- reveals that major changes, that first blush may
tion is devoted to performance issues and conseéem conformance related (e.g., UTF-8 sup-
tributions in the area are particularly encour-port, generic character traits) in fact should be
aged and appreciated. In this paper the maistrictly speaking categorized as Qol improve-
approaches being followed are reviewed (e.g./nents.

hand-coding, exploitation of glibc extensions, .
caching), together with the tools used, and aon the other hand, the users are becoming

number of satisfying results obtained so far’rather demanding as far as performance is con-

particularly, in the iostreams and locales chap-cemed' Among the possible causes: the good

ters. Quantitative comparisons on x86-|inux5p(':'ed n some areas_(e.g_., I/O? of the old,
with the Icc/Dinkumware offer will be also pre-standard, C++ runtime library; new offers,

: . IiJ<e Icc/Dinkumware, on the market and eas-
ted, based d t de ) i .
presente ased on code Snippets proviae y available on the widespread x86-linux plat-

by the new performance testsuite and distille :
orm. More generally, does not seem obvious

from actual performance PRs. In the final : ) :

section, a better integration with the compileranymore that library functions that ha_ve ac I'-.

team is argued for and emphasized. brary counterpart must b? ngcessgrlly slf)wer.
people want a complete “object oriented” ap-
plication not renouncing to performance.

1 Introduction Also, some new facilities offered by the ISO

Standard are recently gaining larger popular-
Today,circa 2004, the libstdc++-v3 project de- ity (e.g., locale) and real world applications are
livers in a typical GCC distribution more than able to emphasize weaknesses that went un-
420000 lines of code, including 1350 regres-noticed to the implementors, naturally caring
sion testcases and a growing performance testnore about conformance, in the first place.
suite. Many different architectures, both 32-bit ) _
and 64-bit, are fully supported, on many differ- The main focus of the work is tht_arefore sl_owl_y
ent OSes, from x86 to s390x and from Linux changing and the purpose of this paper is dis-
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cussing how, using which methods, and ex-
ploiting which instruments. Of course, one
of its main objectives is soliciting feedback
and opening a discussion on such topics. The
first part presents sort-of a chronology of the
most relevant recent achievementspanning
the last year or so: it represents also a nice oc-

improved remarkably the conformance of
the library in the interactions with C stdio
(e.g., cin/stdin). Anyway, as a matter of
fact, cout.rdbuf()->sputc(’a’)

became for instance about three times
faster.

casion to thank some of the most generous corf¥umpunct cache After some initial attempts

tributors. Then, three items will be discussed
more throughly to convey a few specific, gen-
eral points. In the last part, moving from a re-
cent episode, a better integration with the com-
piler team will be wished.

2 A Chronology

Necessarily, there is a good amount of “fuzzi-
ness” in this type of historical reconstruction:

during GCC 3.3 lifetime, finally GCC 3.4
exploits caching for formatted 1/O: this
important issue will be discussed in detail
below. In any case, formatted output of
integer types is now three time faster than
in GCC 3.2.3 (Table 1).

GCC 3.2.3| 14.590u 0.010s 0:14.67 99.5%
GCC 3.3.3] 4.780u 0.010s 0:04.80 99.7%
GCC 3.4.0/ 4.160u 0.010s 0:04.19 99.5%
Icc8.0 10.430u 0.020s 0:10.48 99.7%

many important contributions went in only af- Table 1: Output of irg from 0 to 9999999 to
ter a long discussion, or piecewise, during adev/null

few months. Most of the changes presented be-

low are only in 3.4 (and mainline, of course), Empty string

but, also due to the above mentioned reasons,
not all the performance related improvements

in the current release branch will be exhaus-

tively listed.

Output of integers For GCC 3.3 Jerry Quinn
rewrote from scratch the code formatting
integer types for output, avoiding going
throughsprintf  for performance sake:
probably for the first time, the imple-
mentation interpreted non-trivially one of
those typical “as if” specifications present
in the Standard.

Separate synchedilebuf In this case, it

speedup At the beginning of
2003, Nathan Myers, the original author
of v3 basic_string class, noticed that
the multi-processor bus contention can be
reduced by comparing addresses first, and
never touching the reference count of the
empty object. The final patch has been
committed in time for 3.4 and improves
remarkably the performance on single-
processor systems too: Table 2 presents
satisfying timings for a simple snippet
shown in Figure 1.

for (int i = 0; i < 2000; ++i)

std::string a[100000];

could be said that a speed gain has beehigure 1:.Creating. and immediately destroying
obtained as a (very welcome) by product:lots ofstring  objects

Pétur Runolfsson separate synched filebuf

Lif not otherwise indicated, all the timings are rel-
ative to a P4-2400 machine, linux2.4, glibc-cvs, -02,
Icc8.0 Build 20040412Z.

Non-unified filebuf According to the C++

Standard, aseek is needed in order to
switch from read mode to write mode (and
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GCC 3.3.3] 20.890u 0.020s 0:21.01 99.5%
GCC 3.4.0/ 0.790u 0.000s 0:00.79 100.0%
Icc8.0 17.200u 0.030s 0:17.33 99.4%

Table 2: Execution times for the code dis-
played in Figure 1

vice versa) during I/O. This is a very rea-
sonable requirement, by the way inher-
ited from the C Standard. However, the
old implementation, as a (very puzzling)
Qol feature, had relaxed it: unfortunately,
the upshot was that the get area and put
area pointers had always to be updated
in a lockstep way. Figure 2 compares
GCC 3.3 and GCC 3.4 code feputc :
the former called M_out_cur_move
instead of simply bumping the put area
pointer by way ofpbump. Additionally,
the_M_out_buf size  helperwas also
needed: as a result the function was not
amenable to inlining anymore. The same
happened of course febumpc and else-
where. The performance suffered conse-
quently as Table 3 demonstrates.

GCC3.3.3 42.440u 0.290s 0:42.91 99.5%
GCC34.0 4.080u 0.300s 0:04.39 99.7%
lcc8.0 11.080u 0.360s 0:11.45 99.9%

‘C’ (unlocked) | 6.590u 0.280s 0:06.90 99.5%

Table 3: Char-by-char copy of 1 GB from
/dev/zero  to/dev/null

Fixing this required consistent, in-
vasive changes tostreambuf , and
stringbuf but eventually enabled a
much simpler maintenance and paved the
way to the UTF-8 support.

Input of integers The code parsing integers
could be improved rather easily, thanks
to thenumpunct caching mechanism al-
ready in place and functioning well. In-
terestingly, though, in this area the library

Table-basedctype

Other string

sports some design choices not shared by
other implementations (whereas consis-
tent with the letter of the standard!), to be
discussed below.

In order to obtain fast
time_get andtime_put facets (not
suited for caching, due to their special
requirements), and also for free standing
use,ctype functions, such asarrow |,
widen , andis , are now table-based.
Thanks to a sophisticated solution devised
by Jerry and refined on the discussion list,
for char type it is even avoided the vir-
tual function call cost. The improvement
is more visible forwchar_t , however:
once more, close to an order of magnitude
with respect to the previous generation.

Codecvt rewrite During GCC 3.4 Stage 1

Pétur rewrote theodecvt facet, obtain-

ing a very good support of encoding-zero
(e.g., UTF-8) locales too. In the process,
he provided a rather complete set of test-
cases. Finally, as will be discussed in the
second part, performance has been also
improved, thus delivering for the first time
both correct and efficient support for a
wide set of locales.

improvements In Iltem 29 of
his latest bookEffective STL.Scott Mey-
ers proposes an elegant idiom for copy-

ing a text file into astring  object (Fig-
ure 3).
string Data(istreambuf_iterator <char >(File),
istreambuf_iterator <char >());

Figure 3: Istreambuf_iterateusage

In order for this proposal to be effective,
the constructor from a pair ahput_

iterator s must be efficient: a satis-
factorily fix involved redesigning the lat-
ter to exploit a centralized growth fa-
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cility, previously not available at con-
struction time. Only in 3.4.1-pre is
present another unrelated improvement,
very simple but appreciable in almost ev-
ery use of thestring  clasg. It consists
in special-casing single char changes to
avoid the generatraits::copy and
traits::assign , which end up call-
ing C library functions (Table 4).

GCC3.3.3 1.150u 0.040s 0:01.19 100.0%
GCC34.0 0.670u 0.070s 0:00.74 100.0%
GCC 3.4.1 pre 0.220u 0.060s 0:00.28 100.0%
V2 0.710u 0.030s 0:00.74 100.0%

Table 4. Ten millions ofstr.append(l,
lxl)

Monetary facets Extending thenumpunct
caching work tomoneypunct turned
out to be easy. However, in the pro-
cess, a few bugs and other opportuni-

ties for performance surfaced. Some are GCC 3.3.3

certainly straightforward (e.g., reordering GCC 3.4.0
GCC 3.5.0exp| 0.220u 0.000s 0:00.22 99.9%

lcc8.0

operations orstring  objects to avoid
reallocations), but, nevertheless, the over-
all effect is quite noticeable. For in-

class: a similar effect can be measured in
the formatted input of floating point types,
much more used today.

Locale functions Probably, a large number

of applications doesn’t have these func-
tions as a performance bottleneck. On
the other hand, the way names were pro-
cessed used to be rather dumb, due to
the encoding adopted for “simple” named
locales—that is, roughly, having all the
categories named the same, sy DE.

As pointed out by library-friend Martin
Sebor, most probably the sections of the
standard having to do with combining
named locales (22.1.1.2, 22.1.1.3) will be
amended: therefore the real challenge was
designing a new encoding ready for the
most likely future changes. Table 6 shows
the time needed to compare ten millions
of times viaoperator==  two “simple”
locales.

13.410u 0.000s 0:13.45 99.7%
11.640u 0.000s 0:11.67 99.7%

0.850u 0.000s 0:00.85 99.9%

stance, Table 5 shows the time it takes torgple 6: A simplelocale::operator==
read one million of times a big monetary yenchmark

amount, i.e., 100,000,000,000.00, from an
istringstream into a long double.

GCC333 10.610u 0.020s 0:10.69 99.4%
GCC3.4.0 4.110u 0.000s 0:04.12 99.7%
GCC3.4.1pre 2.910u 0.010s 0:02.93 99.6%
Icc8.0 3.280u 0.000s 0:03.29 99.6%

Table 5: A simpleanoney_get benchmark

The difference between GCC 3.4.0 and
3.4.1-pre is entirely due to the just-
mentioned simple tweak to th&ring

2Internally to the library too, as will be quantified in
the next item.

Getline

speedupsA wide ranging debate
ensued to the submission of PR 15002,
with the participation of Matt Austern,
among others. Both thgetline s had
to be improved: the member taking a
char_type* and astreamsize and
the function taking anistream and

a string An elegant solution, de-
vised by Pétur, could be adopted only
for the former, since it exploitprotected
streambuf members. It became clear
that, ideally, we should have two different
versions of those functions: the fast ver-
sion, which takes advantage of friendship
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and only works forchar andwchar_t , Indeed, this approach has its own virtues:
and a slow version that goes through thethere is no need for caching (and the re-
public interface. For the moment, pro- lated complexitie§ and an efficient table-
filing revealed that a large speedup couldbasednarrow is sufficient alone to obtain
be achieved by appending to thiging good performance; moreover, this approach
object a chunk of each line at a time (say,solves elegantly an issue in the Standard with
128 chars), instead of one char at a timethe “mysterious’find function mentioned in
Table 7 shows timings for reading 600000p8.

lines, each 200 characters, from file, via ) o
In fact, if the function is interpreted (rather nat-

getline s )

urally) astraits::find , the serious prob-
char_type* lem ensues that angharT , other than plain
GCC3.3.3 1.700u 0.090s 0:01.80 99.6% char and wchar_t , needs an appropriate
GCC3.4.0 1.230u 0.070s 0:01.30 100.0% traits<charT>::find to be available:
GCC 3.4.1 pre; 0.180u 0.130s 0:00.30 103.3% the Standard nowhere requires this, still clearly
Icc8.0 1.410u 0.090s 0:01.50 100.0%  mandates in Table 52 to make it possible to in-
string stantiatenum_get onanycharT type.
GCC3.3.3 15.560u 0.070s 0:15.69 99.6%
GCC3.4.0 9.030u 0.160s 0:09.22 99.6% Interestingly, those issues are of course well
GCC3.4.1pre 1.090u 0.110s0:01.2199.1% known to the LWG members, but often dot
lcc8.0 1.910u 0.120s 0:02.04 99.5%  correspond to detailed and well debated DRs.

Anyway, GCC 3.4 provides for the first time
Table 7:Getline  benchmarks a generictraits  class, which includes in-

deed a generidraits<charT>::find

this leads to a complete solution characterized

3 Telling Stories by an excellent performance/conformance bal-
ance. Table 8 below compares the timings for

3.1 Parsing of integer types and caching reading from file ten millions of integers, from
0 to 9999999.

Back in February, in the occasion of some .« 5 5 41 41 180 0.020s 0:41.37 99.5%
changes to the monetary facets that were sup- GCC3.4.0 5.740u 0.030s 0:05.79 99.6%
posed to be completely uncontroversial, along |..s 0 | 142204 0.120s 0:14.41 99 5%
exchange started on the discussion list about /, 5.930u 0.060s 0:06.00 99.8%

the correct way to parse monetary (and nu- Hammer | 18.660u 0.040s 0:18.78 99.5%
meric) quantities.

' ' _ Table 8: A simplenum_get benchmark
In particular, it became evident to everyone that

libstdc++-v3 is probablyalonein closely fol-
lowing the letter of 22.2.2.1.2. Most, if not
all, the other implementations are not using 30nly 3.4 finally managed to have it reliably work-
widen and are not matching characters as preing, fast, and... not leaking memory!

scribed in p8: instead, in order to compute the A POD type.

| f h ific did thi - 50Only DR 303 [WP] and DR 427 [Open] are relevant
value of each specitic Igd something equiv and both the resolution of the former and the comment

alenttoc = narrow(*beg, ') isfirst  added in Kona to the latter are cleadgainstpreferring
computed, thed is given byc - 0" . narrow to widen .

For 3.4, integer types parsing has been rewrit-
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ten, avoidingstrtol , strtoll , and the ticed onlymonthsafter thecodecvt rewrite,
other C library functions previously used, in-a sad episode less likely to happen nowa-
stead directly accumulating the result duringdays thanks to the new performance test8pite
the parsing. Therefore, nstring  objects which currently includes 30 testcases and is
are involved. The hammer-branch entry is alsajuickly growing: most of the tests are distilled
present in the Table in order to quantify whatfrom performance PRs.

could be otherwise achieved within the con-

straints of the 3.3 ABI, basically, by improving Luckily, after some preliminary attempts, only
the use of thestring ~ s. partially successful, the real fix became obvi-

ous: it involved exploitingnbsnrtowcs and
On the current code basgprof reports that wcsnrtombs , two glibc extensions that take
about 58% of the total time is spent in the pars-an extra parameter with respect to the standard
ing loop itself: not much can be done aboutmbsrtowcs andwcsrtombs . Indeed, ad-
this, except, perhaps, avoiding an integer dimittedly, in GCC 3.3codecvt was almost
vision, in principle not necessaryMemchr, broken but already fast, thanks to the use of
called by traits<char>::find , iIs the the latter functions. Table 9 is relative to the
second topmost entry, with about 26%: in theconversion of 400000 buffers, 1024 characters
future, a small ABI change could make possi-each, in the C locale.
ble detecting in advance the occurrence of triv-
ial widen s, very common indeed, then simply GCC 3.3.3] 1.520u 0.000s 0:01.52 100.0%
usingd = *beg - widen(’0’) in such GCC 3.4.0| 1.650u 0.000s 0:01.65 100.0%
cases:traits::find would not be neces-  1cc8.0 41.670u 0.010s 0:41.85 99.5%
sary at all and the Qol would be further im-
proved. All the other entries are below 5%

and __use_cache::operator() is be-
low 1%, a reassuring check. The small difference between GCC 3.3.3 and

GCC 3.4.0 s entirely due to the additional call
In any case, barring unexpected strong request¥ memchr (or wmemchr), which is used for
from the users, much more effort is plannedsplitting the input (the output, respectively) in
in the area of parsing and formatting fdéat-  chunks, ending in \0’ (or L'\Q’, respectively):
ing pointtypes, which probably could be made each one is then processed mpsnrtowcs
about two times faster, but this is another(wcsnrtombs |, respectively).
story. ..

Table 9:Codecvt::in benchmark

The numbers obtained with 1cc8.0 are typi-
cal of an implementation using for correctness
the singlechar C library functionsvcrtomb
and mbrtowc : this is still happening for
As already mentioned, a few months ago belibstdc++-v3 too in the so-called “generic” lo-
came evident that the performance of the mosgale model, which doesn’t have the GNU ex-
important codecvt  functions, such asn , tensions available. Discussingpdecvt is
out , andlength , was not satisfying: that therefore also an opportunity to clarify that the
represented a major roadblock in the way ofQol provided by the library in that model is
efficient encoded 1/0, otherwise made finallysometimes lower than in the GNU model. Im-
possible by the redesignéittbuf  virtuals.  proving this situation is feasible but requires

3.2 Codecvt rewrite

By the way, this problem was unfortunately no-  Established June, 2003.
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more help from people on platforms not basedooking for an interesting example of applica-
on glibc, hereby strongly solicited! tion, nothing more! In a matter déwweeks a
complete framework for canonical Vs creation
was ready and beautifully effective: in it, loops
such as the above can be fully unrolled in case
of a constant _n thus leading to jusperfect

An interesting feature of the C+émath and assembly.

complex facilities is the presence of addi- Besides the technical details of the episode—

tional pow overloads fonntegerexpone_nt,_not who knows, perhaps by the time the Ino-branch
present in the C Standard, that, in principle at ) ’

. " iIs merged the library will not use the very same
least, enable a wide range of additional op-

portunities for optimization. The library im- algorithm—its lesson seems definitely an invi-

plements those overloads using a function tha{tatlon to more frequent and strict exchanges be-

computes the power via the well known “Rus- ween the library and compiler people.
sian peasant algorithm” (Figure 4) which re-

4 The Weird Loop, Outlook

quires onlyO(log n) multiplications. Acknowledgments
template <typename _Tp > Many thanks go to SUSE for the enthusiastic
inline _Tp support of my work; to Benjamin Kosnik, who
__cmath_power(_Tp __x, unsigned int __n) trusted and encouraged me back in 2001 (and
{ still does!); to Nathan “Less is More” Myers, a
Tp _y= _n%22 x:1 constant source of inspiration; to all my Italian
while (_n  >= 1) friends, especially a little smiling hamster (*)
{
_X = X x _ X
if (_n % 2
Y= _Yy *_X
}
return _y

}
Figure 4: Helper function used lpow

As evident from the actual code, the loop is
very simple but nonetheless characterized by a
non-linearinduction variable, not handled un-
til a few months ago neither by the old unroller
nor by the new one, present in the Ino-branch
and actively developed by Zdenek Dvorak and
others.

“Officially” Zdenek considered non-linear IVs
rare and low priority, but actually he was just

’See the audit trail of PR 11710.
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_M_out_buf_size()
{
off_type _ ret = 0;
if (_M_out_cur)
if (_M_out_beg == _M_buf)
_ret = (_M_out_beg + _M_buf size

— _M_out_cur)
else
__ret = _M_out_end — _M_out_cur;
return __ret;
}
_M_out_cur_move(off_type __ n)
{ sputc(char_type _ c)
bool _ testin = _M_in_cur; {
_M_out_cur += __n; int_type __ret;
if (__testin && _M_buf_unified) if (this  —pptr() < this —epptr())
_M_in_cur += _n; {
if (_M_out_cur > _M_out_end) «this —pptr() = __c;
{ this —pbump(1);
_M_out_end = _M_out_cur; __ret = traits_type::to_int_type(__c);
if (__testin) }
_M_in_end += _ n; else
} _ret = this  —overflow(
} traits_type::to_int_type(__c));
return __ret;
sputc(char_type _ c) }
{ (b) GCC 3.4
int_type __ret;
if (_M_out_buf_size())
{
*_M_out_cur = __c;

_M_out_cur_move(1);
__ret = traits_type::to_int_type(__c);
}
else
__ret = this —overflow(
traits_type::to_int_type(__c));

return __ret;

(a) GCC 3.3

Figure 2: GCC 3.3 (a) vs GCC 3.4 (b) code fputc (slightly simplified)
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Abstract tive. Programs in procedural languages de-
scribe precisely the control flow and they map

The techniques for compilation and optimiza-More or less directly to the machine code of the
tion of the declarative (logic and functional) target platform. On the other hand declarative
programming languages are quite differenf@nguages focus on describing the semantics of
from those used for procedural (imperative)th® Program. They do not describe that much
languages, especially on the low level. Theré!oW things should be done, but rather specify
are however several reasons why they are stifvhat result we would like to obtain, leaving the
relevant even for the typically procedural lan-8Xact way how to do it up to the compiler. Of
guage compilers like GCC: On higher level weCOUrse this division is not all that clear—many
can observe similarities, and due to more Sysprocedural languages include some construc-
tematic design of the declarative languages thHONS derived from especially functional lan-

development in these areas is usually more ad3ages, and declarative languages usually con-
vanced. In some contexts it is also considi@in procedural bits in order to handle things

ered a good style to use declarative programl/ke input and output.
ming techniques (I‘eCL!I‘S.IOI‘], generic programyy ;o \yell-known fact that the compilation of
ming, callbacks) even in imperative languages;

tlv th f ities for th declarative languages is in some sense both
currently the periormance penailies 1or tn€S&asier and harder than the compilation of pro-
constructs are usually quite large.

cedural languages. Easier since the semantic
The paper quickly summarizes the similari-description gives more free_dom tothe comp_iler
ties and differences between compilation of2nd makes the analyzes simpler. Harder since
declarative and imperative languages. We theH€ lack of explicit control flow makes it neces-
investigate the techniques used for declaraSary to for a compiler to select a good order of
tive languages—tail recursion and general re€Xecution by itself. This in general cannot be
cursion optimizations, advanced inlining tech-done in compile-time, so this makes it neces-
niques (partial inlining, function specialisa- Sary to handle partially evaluated data in run-

tion, partial evaluation), program analysis, in-time. Also the more high-level nature of the
termodular optimizations, etc., their usability d€clarative languages invites the programmers
and implementability in GCC. to use the constructions whose straightforward

translation would be quite ineffective.

Introduction Of course on the low-level the techniques for
compilation of procedural and declarative lan-
guages are quite different (it is also true that

The contemporar rogramming language
bt A J guag they also differ significantly between the vari-

can be divided into procedural and declara
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ous types of declarative languages). On higherl Compilation of Declarative Lan-
levels however the goals of the optimizations  guages

are more similar, and it is just here where

the declarative languages may use the bene-

fits of their cleaner semantics. Often it hap-In this section we provide a short introduction
pens that even those high-level optimizationgo the techniques used for compilation of the
that could theoretically be used for procedu-declarative languages. References to papers
ral languages as well are only developed forcontaining more detailed descriptions are pro-
the declarative ones, due to the problems wittvided. Of course the approaches different from
the level of analysis necessary to enable the athe ones described below used as well, and the
terations of the control flow prescribed by thebasic schemes can be altered to obtain varia-
procedural program. Also due to this diversitytions useful for specific purposes.

the research groups for declarative and proce-

dural language compilation techniques do not/Vé Mmust distinguish between the different
communicate with each other frequently, so itkinds of declarative languages, especially be-

may happen that the optimizations develope(ﬁween logic (based on the predicate logic) and
by one of them are either unknown or devel-functional (based on the lambda calculus) ones.

There are also other special purpose declar-
ative languages (for constraint programming,
This paper tries to give an overview of (mostly database querying, scene description, etc.), but
high-level) optimizations used in declarative these are out of the scope of this paper.
language compilers and to put them in context

of the procedural language compiler GCC. welnitial stages of compilation of all the lan-

try to investigate their implementability and 9U29es, like lexical and syntactic analysis, are
usefulness and also to derive some optimizagf course very similar and not interesting from

tions based on them that might be more usefuul Point of view. The optimizations (both

for optimization of procedural languages. ~ 9eneric and specific for the given style of
the language) are then performed (some of

First we provide a short introduction to the them will be mentioned in the following sec-
declarative language compiler construction andions). Usually the level of the representa-
define the terms used in the area. Then we coriion is lowered during the process, finally leav-
tinue with the short descriptions of availableing us with just the basic elements of the lan-
optimizations, with more detailed descriptionsguage. Type (and for logic languages mode—
for those that we consider relevant in the con-determining which arguments of predicates are
text of procedural languages. We also providenput/output) checking and eventually special-
some thoughts and pointers on the eventual imization of operations happens during this pro-
plementation in the current infrastructure of thecess

GCC compiler (tree-ssa branch, since all the ) _ _
optimizations are only suitable for implemen- For logic languages the basic elements are uni-
tation on the tree level). fication (that includes both construction and

decomposition of data structures) and defini-
tion of predicates (that usually are recursive
and use some built-in predicates for perform-
ing things like arithmetics). The language
specification also defines the rule for order of
evaluation of the predicates, which may be

oped independently by the other one.
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fixed (Prolog), flexible subject to some mini- are pattern matching (data structure decompo-
mal constraints (Mercury) or even alterable bysition), data structure construction and func-
the program (Goedel). The possible substitution application. Local function definitions
tions to the variables are processed accordingre usually replaced by the global ones, in
to this rule, backtracking whenever such a subprocess called lambda-lifting. The functional
stitution fails. languages often allow polymorphic functions

] _ . . (whose arguments may be of different types,
This rule (or its particular variant chosen by gimjlar to mechanism of virtual methods in ob-
the compiler) is then translated into a code iject oriented programming); these are usually

a low-level abstract machine (which is later|q\ered to explicitly passing the dictionaries of
mapped to the target language). One of thosg,e functions.

used is the Warren Abstract Machine ([W83]).

It consists of the low-level instructions to con- There are two commonly used semantics for
trol unification, predicate lookup and back-functional languages regarding the passing of
tracking. Indeed the main challenge at the lowthe arguments to the functions. The eager eval-
level is to make these operations efficient. uation (Scheme, Erlang) means that the argu-

L ments are evaluated before they are passed to
For unification itis necessary to handle the spefhe function. The lazy evaluation (Haskell)
cial cases of unification with terms with known \,,aans that they are only evaluated on de-

structure, and to employ efficient algorithm .54 \when the called function needs to know
for matching the terms with unknown structureair values. The later approach is theoret-

when this fails. This is complicated by the faCticaIIy more clean (making the identities like
that unification is two-way process (i.e. both (\a.f)g = f[z := g] valid even in cases when
unified sides may get modified). Also we needg,q1yation ofy does not have to terminate), but
to be careful about the possibility to create theignificantly less efficient to implement (it is
cyclic structures when compiling unifications necessary to create thunks for unevaluated ex-
like X' = f(X). pressions whenever we pass an argument to a

Predicate lookup is usually made faster by ﬁl_funct.ion) anq the actual control ﬂ.O\.N 'S hard to
tering out predicates that cannot match due t&re_d'Ct’ making the programs difficult to op-
the known structures of parameters; this index:[!m'ze' Nevertheless the me_th(_)ds of compila-

ing may be either shallow (only looking at the tion of these languages are similar—even eager
topmost level) or deep. The things get more@nguages must be able to suspend evaluation

complicated in languages like Prolog where the?f €XPressions when partially applied functions

program may be changed dynamically. are pgssed as arguments: although their advan-
tage is that from the type information they can

For backtracking we need to implement theoften derive whether this occurs.

rollback mechanism, either using timestamps )

or a clever layout of allocated data structures' '€ €xamples of low-level abstract machines

(or both). used for compilation of the funct_lonal lan-
guages are for example G-machine ([A84],

For more details on construction of logic [J84]) or the Three Instruction Machine

language compilers see for example [R94]([FW87]). Despite the significant differences,

[DCO1] or [HSO2]. the basic operations include manipulation and
guerying of the data structures (to enable their

For functional languages the basic elementggonstruction and pattern-matching), the param-
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eter passing and the function calls. usually produces a better code due to the low-

. level target specific optimizations done by the
There are two basic models used to call func compiler, assuming that there is a possibil-

tions. The “eval-apply” model works by evalu- iy 1o ensure that the important values (for ex-

ating the function, in case of eager languagegmpje stack and heap boundaries) are kept in

evaluating the arguments and applying th&ggisters all the time. The later is more compli-
functions to the arguments. The “push-enter”

. ) cated, but it gives a better compilation speed.
model is used for lazy languages; it pushes

the arguments of the function to the parame-Of course these are just the basic approaches,
ter stack, then enters evaluation of the functionwhich need to be enhanced by various low-
There is no return after the end of the functionlevel optimizations both on the source and the
in this case. resulting code. In result, the performance of

the more practical languages (functional with

For lazy languages, it is necessary to ensurgager evaluation, logic without implicit back-
sharing. For example iA z.z + x) f we want  ycking) is in general the same as of the
f to be evaluated just once. This means thaﬁigher-level procedural languages. The per-

when we finish evaluation of a thunk, we neediqmance of the languages that more precisely
to arrange its value to be rewritten by the result,5tch the clean theoretical ideas (functional

For the reasonable performance, there are sefAnguages with lazy evaluation) tends to be
eral problems to be solved. We need to arrang&/©"S€ by a factor of 2-5.

for a sane argument/return value passing con-

ventions using registers, and to make this worky  paclarative Language Optimiza-
together with the argument stack. The partially .

applied functions present in the form of the tions
thunks must have a mechanism how to apply
additional arguments to them (by copying theMany of the optimizations in the declarative
thunk, creating the linked lists of arguments, orlanguages try to eliminate the inefficiencies of
combination of both depending on the size ofthe models described above. We omit the de-
the thunk). We need to distinguish between alscription of the low-level optimizations com-
ready evaluated values and thunks, which maypletely, since they clearly are not relevant, and
be done either by tagging or by keeping everalso require a detailed knowledge of the par-
evaluated values as trivial thunks that just reticular model. The more high-level examples
turn their value. Similarly either tagging or include

selector function needs to be used for distin-

guishing the variants of values during pattern

matching. » Deforestation ([W90], [G96]) attempts to
. o _ eliminate the need for creating temporary
For more involved description of these deci- structures in clean declarative languages,

sions as well as other issues with compilation  \yhere by clean we mean that the functions
of (especially lazy) functional languages see cannot have side effects, and consequently
e.g. [J92] or [JL92]. it is impossible to rewrite the data in-place
(i.,e. when you need to modify some-
thing, you must create its copy). This is
remotely similar to loop fusion, although
the main effect we want to obtain by it

Usually either some low-level procedural lan-
guage (C) or assembler is used as the target
language. The former is more portable and
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is quite different. For example program- The simplest case is the tail call elimination
mer would usually writenap f (mapgl)  (replacing the calls after that the function ex-
to apply two functiong andg to the list/.  its immediately by ordinary jumps). This op-
This however requires creation of the tem-timization is standard in procedural languages

porary list for the result ofnap gl. De- as well, so we will not describe it in detail here.

forestation rewrites this tenap (f.g)l, Instead we focus on some useful improvements

which produces the result directly. to this basic scheme (most of them based on
[LS99]):

* In lazy languages, strictness analysis de-
termines whether the arguments of the
function will always be evaluated. If this
is true, we may evaluate them directly and
we do not have to create thunks for them.

* In logic languages, analysis of whether
the predicate is deterministic (i.e. always
giving just a single solution) can be used
to omit the code necessary to handle back-
tracking.

Note that despite of the fact that the mentioned
optimizations are quite high-level and they re-
quire nontrivial analyzes, they are obviously
specific for the particular family of models and
they do not seem to be directly applicable to
the procedural programming languages (possi-
bly with the exception of the limited version of
deforestation in languages including map-like
commands, but usually this can be handled by
loop fusion as well).

Still there are some optimizations that seem
relevant. The following sections are dedicated
to them.

3 Recursion Elimination

Since the declarative languages do not in gen-
eral include loop-like statements, all such con-
structions are achieved using recursion. There-
fore it is important to handle recursion ef-
ficiently, and replace it by standard iterative
loops as possible.

» Provided that we have sufficient knowl-
edge about the operations done after the
call, we may be able to reorganize the
computations and remove the recursion.
Consider for example

f(x): if x == 0 then
return 1;
else if x % 2 then
return 5 * f (x - 1);
else
return 3 + f (x - 2);
This can be transformed into
f(x): m = 1,
a = 0;
start:
if x == 0 then
return m + a;
else if x % 2 then
{
X--,
m *= 5;
goto start;

else

X -= 2;
a+=3*m;
goto start;

}

This is what we currently do in GCC.
Note that to get this result we needed a
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plenty of knowledge about nature of the
operations+ and«—distributive law, as-
sociativity, commutativity, and existence
of neutral elements. In the special case
when just a single such operation is used
and all non-recursive exits return the same
value, associativity (and in some cases
commutativity) would be sufficient, but
even these are quite hard to check and
this restricts this approach to just a limited
class of programs.

Provided that we have a sufficient knowl-
edge about the operations done before the
call, we may turn the recursion into itera-
tion without changing the order of opera-
tions executed, in this way:

f(x): if x <= 0 then
return 1,
else
return g (x, f(x-1));

into

f(x): if x <= 0 then
return 1;
r =1,
for (ax = 0; ax = x; )
{
ax++;
r=g (ax n;
}

return r;

We need the function to be in somewhat
restricted shape to perform this transfor-
mation (see [LS99] for details, most im-

other hand effects af (or whatever code
might be there) are unrestricted, since we
do not change the order of execution of
the calls tog.

The situation becomes more complicated
when one of the conditions above is not
satisfied, but still sometimes it can be han-
dled. For example if there are more exits
and some code executed before the recur-
sive call, we can still optimize the func-
tion by creating two loops—one executing
the stuff done before the call and coming
all the way down to the appropriate exit
case, the second one identical to the one
described in the previous case. This re-
quires that those two pieces of code do
not communicate with each other except
for the value of the counter.

Finally if there are also multiple recursive
calls or we are unable to derive the inverse
of the increment, we may eliminate the
recursion by maintaining the stack our-
selves. This gives less benefits than the
previous cases, but still we only need to
save variables that are live across the call,
we save on the cost of the call itself (in-
cluding parameter passing) and we expose
the loops to the loop optimization (but see
also the following section regarding the
subject).

4 Loop Optimizations

portantly no unhandled code can be exeAs mentioned in the previous sections, loops in
cuted before the recursive call), the incre-the declarative programming languages are al-
ment ¢ < x — 1) needs to be invertible most exclusively expressed through recursion.
(see [HK92] for some theory on the topic; Although we have demonstrated several pow-
in practice probably just the simple in- erful techniques for eliminating the recursion,
duction variable-like increments could bein fact in many cases these approaches fail. It
handled), and we need to be able to deteris therefore useful to be able to optimize such
mine the start value of the counter. On theloops.
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The interprocedural loops can be detected usOn intraprocedural level, there are other in-
ing the standard algorithms applied to theteresting high-level loop optimizations. For
graph obtained by taking union of a callgraphexample incrementalization (usage of the val-
and the control flow graphs of the functions.ues computed in the previous iterations—see
Since the strongly connected components ofLSLR02]) can be used to transform code like
mutually recursive functions are usually en-
tered at one point, the concept of the natural
loop seems to be sufficiently general to coverfor (
the most important cases. On a side note, con-
sidering the ordinary intraprocedural loops in
context of this graph may be useful as well, for
example in order to be able to estimate instruc-

tion and data cache effects.

i = 0; i < 100; i++)

suml[i] = 0;
for = 0; ] < 1i; jt++)
sumfi] += afj];

For the interprocedural loops the invariant mo-,
tion and redundancy elimination seem to be"
the easiest to apply and the most useful from
the standard optimizations (some other likesum[0] = 0;

strength reduction could work as well, but onlyfor (i = 1; i < 100; i++)

under assumptions that are quite unlikely to sum[i] = sum[i - 1] + a[i - 1];
happen). The implementation is straightfor-

ward:

to

thus achieving an asymptotic speedup.

» Determine the parameters and global vari- . o
ables that are just passed through un® Inlining and Specialization
changed, and propagate the information to

determine those that are invariant. The declarative programs tend to be composed
of small functions. To make the intraproce-
dural optimizations useful, it is necessary to

« Move the computation of the invariants perform function inlining intensively. See for
out of the loop. It may be necessary to cre-example [JMO2] for discussion of applicability
ate a wrapper around the header functio@nd problems connected with inlining in lazy
of the loop (which is analogical to creat- functional languages.
ing the preheaders) unlessi it is called fro
only one place outside of the loop.

* Run the function local invariant analysis.

Malso generic functions and usage of callback-
type functions is a norm in these languages.
They obviously carry a significant penalties

If the moved invariants are expensive, we carfor their usage with them—such functions are

create a global variable for them, since theharder to optimize and often require passing of

loads from the memory will still pay up. Oth- a partially applied function arguments or func-
erwise we must be able to reserve a registetion dictionaries, which is not cheap. To over-
for them across the functions (which shouldcome this, function specialization (also called
be possible in GCC with just minor modifi- cloning) is necessary. This optimization con-
cations). Obviously we must be very carefulsists of creating duplicates of functions de-
about the register pressure in this case. pending on the call site and optimizing them
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for the particular values or types of arguments.
See for example [FPPOO0] and [P97] for more
details.

Both of these optimizations are studied in the
context of procedural languages as well, and at
least some of the implementation issues should
be covered by Hubicka ([HO4]), so we make
just a few minor points here.

* It is necessary to interleave inlining and
specialization with other optimizations.
The approach that tries to get the best
performance would have to at least op-
timize the functions locally (to get rid
of unreachable calls, decrease the func-
tion sizes and propagate the informa-
tion about values of arguments), then
inline/specialize the optimized function
bodies, rerun the optimizations, then
run inlining and specialization again (to
exploit the interprocedural information
taken into account due to the first inlining
pass), then again rerun the optimizations.
Of course this may get compile-time ex-
pensive, so other variations of the scheme
may be useful at the lower optimization
levels.

» The code growth is the major problem
with both of these optimizations, since it
has bad effects on the instruction caches.
To overcome the problems, having a call-
graph with profiling information is very
useful—we then may optimize just the in-
tensively used functions and function call
sites.

An implementability note: in fact we have
basically everything needed in GCC with
the current profiling scheme—it would be
sufficient to tag the call sites in a unique
way and to emit the cal~ basic block

map before profiling (similar to the cur-
rent .gcno files). The other possibil-

ity would be the early instrumentation of

the call sites. The main problem cur-
rently is that both of these possibilities in-
terfere with the ordinary profiling. The
former possibility needs the function in-
lining not to be run in the training pass.
The later needs to be done before inlin-
ing and changes the code, so it cannot be
done simultaneously with the ordinary in-
strumentation that is done after inlining.
One of the solutions is to do the both at
the same time, which again needs the in-
lining to be done later in the compilation
process.

» Other possibility is to inline just the rel-

evant parts of the function (so-called par-
tial inlining). If we identify that there is a
short hot part in the inlined function, we
may copy just this part and put the rest
into a separate shared function. This is
useful especially for functions that cache
their results, or handle common special
cases in advance.

» There are several approaches to limit the

code growth with specialization. One of
them is to first specialize all possible oc-
currences, optimize the bodies and then
reshare those for that we were not able to
improve the code sufficiently. The other
one is to identify applicability of opti-
mizations in advance and just specialize
those for that we believe it will be useful.

None of these approaches seems to be
suitable for GCC. The former obviously
wastes a lot of compile time, and detecting
the non-improved instances also would
not be straightforward. The later is dif-
ficult to implement (it would need to have
a separate analysis for each optimization)
and unreliable. The realistic approach
seems to identify the obvious possibili-
ties (functions with callback arguments,
boolean flags passed to them and guard-
ing parts of the code in their bodies, con-
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stant integer parameters used as bounds of
the loops, for example) and specialize just
these. Additionally attribute mechanism
could be used to give the programmer a
possibility to tell that he wants the func-
tion to be specialized for the specified ar-
guments.

* Interprocedural loop optimizations men- e
tioned in the previous section as well
as other optimizations may need to cre-
ate simple wrappers around the functions.
This may be useful in other cases as well.
For example we do changing of calling
conventions for static functions. If we
detect that an exported function is often
called locally (from the callgraph profil-
ing, or just by determining that it is called
recursively), creating an exported wrappe

given in C (by ABI for the particular ar-
chitecture). This makes it only possible
to alter it in cases when we are able to
prove that there are no external references
to the structure, and that the program does
not rely on a particular layout of the data
structure.

The exposed pointer arithmetics makes all
analyzes close to impossible. Itis not easy
to handle even the basic prerequisite for
all the optimizations—alias analysis—in a
satisfactory way.

Despite of these problems, some of the opti-
mizations have also been studied in the con-
text of procedural languages, since the mem-
[Ory access times are a bottleneck in many ap-

just calling its local instance may pay up. plications. For these reasons we provide only a

The other possibility would be to clone
a local copy of it, but this would usually
grow the code much more.

» Specialization on the constant arguments
and specialization on types of arguments
is the most commonly used option. Other
possibility is to specialize according to the
information from value range propagation
or other analyzes, but currently there is
not the infrastructure necessary to exploit
this possibility in GCC.

6 Data Structure Analysis and Op-
timizations

This section describes some optimizations re-
lated to data structures used by the programs.
They are mostly relevant for higher-level lan-
guages. Applying them for low-level procedu-
ral languages like C is complicated by the fol-
lowing issues:

* The layout of data structures is precisely

short descriptions of several chosen optimiza-
tions, with references to relevant papers:

 Array reshaping changes the layout of ar-

rays (order of indices and their dimen-

sions) to improve the effectiveness of

caches. See for example [GO0] that imple-
ments the array padding (changing dimen-
sions of an array by adding unused ele-
ments). Memory layout optimizations can

be with advantage used together with loop
nest optimizations ([CL95]).

Linked lists are the basic structures used
in the declarative languages. Therefore
much of effort is directed to their opti-
mizations. Although the procedural pro-
grams often also work with linked lists,
usability of the techniques mentioned be-
low is quite limited due to problems with
identifying this pattern (see [CAZ99] for
overview of such an analysis).

If we are able to detect usage of linked

lists, we may use the knowledge in sev-
eral ways. We may arrange the mem-
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ory to be allocated sequentially, thus im- GCC see for example the recent works of
proving cache behavior ([LAO2] does a the author and Caroline Tice on profiling
similar optimization, but without trying to driven array prefetching.

identify precisely the access pattern). In

cases when the list is accessed in a queue- _

like fashion only, we may also change Conclusions
the representation of the list, for example

by putting several consecutive elements ofSeveral of the techniques we have presented
the list to an array. This decreases thegppear to be implementable GCC (note that at
amount of memory needed by eliminating jeast for some of them this would not be a sim-

the successor (and possibly predecessope task at all, however) and useful enough so

pointers, allows more effective traversalthat they might bring measurable speedups, es-
of the lists (in loops controlled by a nor- pecially

mal induction variable) and consequently

increases efficiency of loop optimizations. _ _ o
* improvements of the recursion elimina-

» Declarative languages often support use tion
of temporary data structures (especially
linked lists) in an almost transparent fash-
ion, leading to initially quite ineffective
code. This makes optimizations like
dead store elimination for partially dead
data structures necessary; see for example « function cloning and specialization
([L98]).

 data access profiling and data structure re-
organization

» call graph profiling

« For some of these optimizations a mem-There are other optimizations that seem to be
ory access profiling might be useful. In “cool” and implementable in the GCC frame-

the most expensive variant, the full list of work, although they are only applicable in very
all memory accesses tagged with the corspecial cases. They probably would not im-
responding references to the source proprove the performance much by themselves,
gram and perhaps also exact values of inbut implementing them might be interesting
dices for array accesses is recorded in théfom theoretical reasons. In some cases there
training pass. This data together with a@lso seem to be a chance to generalize them
memory cache model provides a quite ex-and thus improve their applicability. They in-
act base for determining the parameterglude

for all cache directed optimizations. The
optimizations that require exact analysis
of the access pattern of course cannot be
based just on this empiric data, but they « |oop incrementalization
may at least use it to locate the opportuni-

ties and to evaluate their usefulness. * linear structures analysis and related opti-
mizations

* interprocedural loop optimizations

Obviously recording all memory accesses
may turn quite expensive, so recording
just the relevant information may be nec-Of course there also are many optimizations
essary. For implementation details inthat probably are only useful in context of
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declarative languages (deforestation, strictneg$1K92] P.G. Harrison, H. Khoshnevisa@n
analysis and unboxing, etc.) the synthesis of function inverseActa

. L Informatica, 29(3):211-239, 1992.
The list of the optimizations can by no means

considered complete. | have filtered out the[J92] S.P. Jonesmplementing lazy functional
low-level optimizations that seem too specific languages on stock hardware: the Spine-
for the particular compilation model. | also am less Tagless G-machingournal of Func-
not deeply involved in the declarative language tional Programming 2(2) (April 1992),
compilation research, so | probably missed pp. 127-202.

quite a few relevant techniques; | would be

grateful to anyone pointing my attention to [JL92] S.P. Jones, D. Lestefmplementing
them. functional languages: a tutoriaPub-

lished by Prentice Hall, 1992.
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Abstract

This paper will present a design for loop op-
timizations using high-level loop transforma-
tions. We will describe a loop optimization in-
frastructure based on improved induction vari-
able, scalar evolution, and data dependence
analysis. We also will describe loop trans-
formation opportunities that utilize the infor-
mation discovered. These transformations in-
crease data locality and eliminate data depen- o
dencies that prevent optimization. The trans-
formations also can be used to enable auto-
matic vectorization and automatic paralleliza-
tion functionality.

The TreeSSA infrastructure in GCC provides
an opportunity for high level loop transforms
to be implemented. Prior to the Loop Nest Op-
timization effort described in this paper, GCC
has performed no cache reuse, data locality,
parallelization, or loop vectorization optimiza- 1
tions. It also had no infrastructure to perform
data dependence analysis for array accesses
that are necessary to apply these transforma-
tions safely. We have implemented data de-

on top of TreeSSA, which provides the follow-
ing features:

mining whether two data references have
adependence. The core of the dependence
analysis is a new, low-complexity algo-
rithm for the recognition of scalar evolu-
tions that tracks induction variables across
a def-use graph. It is used to determine
the legality of various transformations, in-
cluding the vectorization transforms being
implemented, and the matrix based trans-
formations.

A matrix-based transformation method
for rearranging loop nests to optimize lo-
cality, cache reuse, and remove inner loop
dependencies (to help vectorization and
parallelization). This method can per-
form any legal combination of loop inter-
change, scaling, skewing, and reversal to a
loop nest, and provides a simple interface
to doing it.

Introduction

S GNU/Linux tackles high-performance sci-
entific and enterprise computing challenges,
GCC (the GNU Compiler Collection)—the
BNU/Linux system compiler—is challenged
as well.

Modern computer processors and

systems are implemented with advanced fea-
tures that require greater compiler assistance
1. A data dependence framework for deterto achieve high performance. Many techniques
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developed for vector and parallel architecturedodies, the indexes and the bounds of loops are
have found new application to superscalar andletected.

VLIW computer architectures, and to systems I _ )
with large memory latencies, more compli-We describe in this section the algorithm used

cated function unit pipelines, and multiple lev- O analyzing the properties of the scalar vari-
els of memory caches. ables updated in a loop. The main extracted
properties are the number of iterations of a
The TreeSSA optimization infrastructure[11] loop, and a form that allows a fast evaluation
in GCC provides an enhanced framework forof the values of a variable for a given iteration.
program analysis. Improved data dependencBased on these two properties, it is possible to
information allows the compiler to transform extend the copy constant propagation pass after
an algorithm to achieve greater locality and im-the crossing of a loop, and the elimination of
proved resource utilization leading to improvedredundant checks. A further analysis extracts
throughput and performance. a representation of the relations between the
reads and the writes to the memory locations

The GCC Loop Nest Optimizer joins & pow- reterenced by arrays, and the classic data de-
erful loop nest analyzer with a matrix trans- pendence tests.

formation engine to provide an extensible loop

transformation optimizer that addresses uni-

modular and scaling operations. The data de, ; Representation of the Program
pendence analyzer is based on a new algorithm

to track induction variables without being lim-

ited to specific patterns. The matrix transfor-.l_he analyzed program is iBtatic Single As-

mation functionality uses a building block de- _. :
. signmenform [10, 5], that ensures the unique-
sign that allows many of the standard toolbox . - :
o ) .. 'ness of a variable definition, and a fast retrieval

of optimizations to be implemented. A simi- L :

. . . of the definition from a use. These properties

lar matrix toolkit is used by proprietary com- . . .
: ) . have lead to the design of an efficient algorithm
mercial compilers. The pieces form a clean . . .
o : L that extracts the scalar evolutions in a bidi-
and maintainable design, avoiding an ad hoc

o o2 ) . Tectional, non-iterative traversal of the control-
set of optimizers with similar technical require-
ments flow graph.

2 Scalar Evolutions 2.2 Chains of Recurrences

After thegenericizatiorandgimplification the  The information extracted by the analyzer
loop structures of the compiled language aras encoded using the chains of recurrences
transformed into lower level constructs that arg(chrecs) representation proposed in [3, 6, 17,
common to the imperative languages: three adi4, 13]. This representation permits fast eval-
dress assignments, gotos and labels. In orderations of a function for a given integer point,
to retrieve the classic representation of loopsising the Newton’s interpolation formula. In
from the GIMPLE representation[9], the natu-the following, we present an intuitive descrip-
ral loop structures are detected, as described ition of the chrecs based on their interpretation,
the Dragon Book [1], then based on the analthen the link between the notation of the chrecs
ysis of the instructions contained in the loopsand the semantics of the polynomial functions.
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r4d =9
rl =0 r5 = 8
r2 =1 r6 = 7
r3 =2 * + copy loop (£3)
loop (£1) @ @ @ result loop (£3)
rl += r2 | r6 += 15
r2 *=r3 end3:
endl: . r5 += réd
Figure 2: Data-flow interpretation end2:

Figure 1: Univariate evolution i
Figure 3: Multivariate

2.2.1 Interpretation of Chrecs loop 1. The register-2 is updated in the loop,
and its evolution is described by the chrec

The main property modeled by the chrecs is thd 1, *; 2}1- 71 is accumulating the successive
effect of the iterative execution of a programVa|UeS ofr2 starting from its initial value0,

on storage points. Each storage point contain@nd consequently it is described by the chrec
an initial value on the entry of a loop. The {0+, {1, %2} }1.

stored value evolves during the execution of the

loop following the operations of the updating Another intuitive description of the chrecs is
statements. The description of the updating exgiven by the data-flow model: the nodes of an
pressions is embedded in the chrecs represegriented graph contain the initial conditions of
tation, such that it is possible to retrieve a parthe chrec, while the oriented edges transfer in-
of the original program from the chrec repre-formation from a node to another and perform
sentation. In other words, only the interest-gn operation on the operands. Figure 2 illus-

ing scalar properties are selected, and the underates the data-flow machine that interprets the
cidable scalar properties are abstracted into thgnrec from Example 1.

unknown element. In the following, the chrecs

representation is illustrated by intuitive exam-Finally, the last example illustrates the inter-
ples based on two interpretation models: usingpretation of a chrec that vary in two loops.

a register based machine, and a data-flow ma-

chine. Example 2 (Multivariate chrec on register machine)

In the register based machine, the coefficientd? Figure 2, the registerrG can be de-
of a chrec are stored in registers. Then thscribed by the multivariate scalar evolution

value of a register is updated at each iteratiort 7 T {8, +,9}2}s. The value of6 is incre-
of a loop, using the operation specified in themented at each iteration of logpby the value

chrec on its own value and the value of the regContained in'5 that vary in loopz.

ister on its right. The first example illustrates
the interpretation of a chrec that vary in a sin-In the register based machine, the value of
gle loop. a chrec at a given integer point is computed
by successively evaluating all the intermedi-
Example 1 (Univariate chrec on register machine) — ate values. The initial values of the chrec are
Figure 2.2.1 illustrates the interpretation of stored in registers that are subsequently up-
the chrec{0, +, {1, x,2}:},. The registers'1, dated at each iteration step. One of the goals
r2, andr3 are initialized with the coefficients of the analyzer is to detect these iterative pat-
of the chrec. Then, the registers are updatederns, and then to recognize, when possible,
in the loop specified in index of the chrec:the computed function. The link between the



40 ¢ GCC Developers’ Summit

chrecs and the classic polynomial functions isused for fast evaluation of the chrec, because

described in the next subsection. some of the parameters can stand for a func-
tion. In order to guarantee that all the coef-
ficients of the chrec have scalar (non varying)

2.2.2 Semantics of Chrecs values, the last step of the analysis fully instan-
tiate all the parameters. When the instantiation

As described in the previous works [3] New- fails, the remaining parameters are all trans-

ton’s interpolation formula is used for fast eval- lated into the unknown element,

uation of the chrec at a given integer point. The

evaluation of the chrefeg, +, ..., +, ¢}, atan
integer pointz is given by the formula 2.2.4 Peeled Chrecs
k
{co, 4. .., +, e} (z) = Zci <x> We have proposed another extension of the
i=0  \! classic chrecs representation in order to model

the variables that have an initial value that is
with cq, ..., ¢ integer coefficients. In the pe- overwritten during the first iteration. For rep-
culiar case of linear chrecs, this formula gives resenting the peeled chrecs, we have chosen a
syntax close to the syntax of the SSA phi nodes
because the symbolic version of the peeled
- chrec is the loop phi node itself. The seman-
{base, +, step}(w) = base + step - x tics of the peeled chrecs is as follows:
wherebase andstep are two integer constants.

As we will see, it is possible to handle sym- { a, during the first iteration of loop k

bolic coefficients, but the above formula for (a,b); = b otherwise.

evaluating the chrecs is not always true.

wherea and b are two chrecs that can be in
a symbolic form. The peeled chrecs are built

whenever the loop phi node does not define a

We have extended the classic representation Qfrongly connected component over the SSA

the scalar evolution functions by the use of Pagyraph. The next section describes in more de-
rameters, that correspond to unanalyzed varigils the extraction algorithm.

ables. The main purpose of this extension is to
free the analyzer from the ordering constraint
that were proposed in the previous versions o
the analyzer. The parameters allow the ana- _
lyzer to postpone the analysis of some scalaF'9ure 4 presents the algorithm that computes
variables, such that the analyzer establishes tH8€ scalar evolutions for all the loapnodes

order in which the information is discovered in Of the loops.  The scalar evolution analyzer
a natural way. is composed of two parts: MaLYZE EvOLU-

TION returns a symbolic representation of the
However, this extension leads to a more exscalar evolution, and the second paysTAN-
pressive representation, on which the NewtoITIATEEVOLUTION completes the analysis by
interpolation formula cannot be systematicallyinstantiating the symbolic parameters. The

2.2.3 Symbolic Chrecs

.3 Extraction Algorithm
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Algorithm: COMPUTEEVOLUTIONS
Input: SSA representation of the procedure
Output: a chrec for every variable defined by logmodes
For each loopg
For each loops noden in loop!
INSTANTIATEEVOLUTION(ANALYZE EvoLuTion(l, 1), 1)

Algorithm: ANALYZE EVOLUTION(I, n)
Input: [ the current loopr the definition of an SSA name
Output: chrec for the variable defined bywithin [
v « variable defined by,
In < loop ofn
If n was analyzed before Then
res «— evolution ofn
Else Ifn matchesV = constant
res «— constant
Else Ifn matchesV = a" Then
res +— ANALYZE EvoLUTION(/, a)
Else Ifn matchesV = a ® b"(with ® € {+, —,*}) Then
res < AnaLyzeEvoLuTion(l, &) @ AnaLyzeEvoLution(l, b)
Else Ifn matchesV = loop- ¢(a, b) "Then
(noticea is defined outside loop: andb is defined inn)
Search in depth-first order a path frdimio v:
(exist update < DEPTHFIRSTSEARCH(n, definition ofb)
If (not exis) (i.e., if such a path does not exist) Then
res < (a,b);
Else Ifupdate is T Then
res«— T
Else
res <« {a, +, updateg;
Else Ifn matchesV = condition-  ¢(a, b) "Then
eva «— INSTANTIATEEvoLUTION(ANALYzE EvoLuTion(l, @), In)
evb «— INsTANTIATEEVOLUTION(ANALYZEEvoLuTion(l, b), In)
If eva = evb Then
res «— eva
Else
res <« T
Else
res < 1
Save the evolution functiores for n
Return the evaluation ofes in loop{

"Then

Algorithm: DEPTHFIRSTSEARCH(h, n)
Input: h the halting loopé, n the definition of an SSA name
Output: (exist updat9, existis true if h has been reached
If (nis k) Then
Return (truep)
Else Ifn is a statement in an outer loop Then
Return (false,L),
Else Ifn matchesV = a" Then
Return DEPTHFIRSTSEARCH(h, definition ofa)
Else Ifn matchesV = a + b" Then
(exist updat§ «— DEPTHFIRSTSEARCH(h, &)
If existThen Return (truejpdate+ b),
(exist updatg < DEPTHFIRSTSEARCH(h, b)
If existThen Return (trueypdate+ a)
Else Ifn matchesV = loop- ¢(a, b) "Then
In < loop ofn
(noticea is defined outsidén andb is defined inn)
If a is defined outside the loop &f Then
Return (false,L)
s < APPLY(In, AnaLvzeEvoLuTion(in, n),
NUMBEROFITERATIONS((72))
If s matches& + t " Then
(exist updat§ < DEPTHFIRSTSEARCH(h, @)
If existThen
Return exist update+ t)
Else Ifn matchesV = condition-  ¢(a, b) "Then
(exist updat§ «— DEPTHFIRSTSEARCH(h, &)
If existThen Return (truey)
(exist updatg < DEPTHFIRSTSEARCH(h, b)
If existThen Return (truey)
Return (false,l)

Algorithm: INSTANTIATEEVOLUTION(chreg 1)
Input: chreca symbolic chred] the instantiation loop
Output: an instantiation o€hrec
If chrecis a constant Then Returrc
Else Ifchrecis a variablev Then
Return ANALYZE EVOLUTION(Z, v)
Else Ifchrecis of the form{e1, +, e2};» Then
41 < INSTANTIATEEVOLUTION(eq, 1)
12 < INSTANTIATEEVOLUTION(e2, [)
Return{ii, +, 2}
Else Ifchrecis of the form(e1, e2);» Then
41 < INSTANTIATEEVOLUTION(eq, 1)
32 <+ INSTANTIATEEVOLUTION(e2, 1)
Return(i1, i2);
Else ReturnT

Figure 4: Algorithm to compute scalar evolutions

main analyzer is allowed to discover only amore details the components of this algorithm,
part of the evolution information. The missing and give two illustration examples.

information is stored under a symbolic form,
waiting for a full instantiation. The role of
the instantiation is to determine an order for
assembling the discovered information. Af-
ter full instantiation, the extracted informa-
tion corresponds to the classic chains of recur] he cornerstone of the algorithm is the search

rences. In the rest of the section we analyze ind reconstruction of the symbolic update ex-
pression on a path of the SSA graph. Let us

2.3.1 Description of the Algorithm
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start with the description of the EPTHFIRST  computed when the exit value of the variable is
SEARCH algorithm. Each step is composed ofa function of the entry value. In such a case, the
a look-up of an SSA definition, and then fol- whole loop is behaving as a macro-increment
lowed by a recursive call of the search algo-operation. When the exit condition depends
rithm on the symbolic operands. The searclon affine chrec only, function 8WBEROFIT-
halts when the starting loopnode is reached. ERATIONS deduces the number of iterations of
When analyzing an assignment whose rightthe loop. Then we call ApPLY to evaluate the
hand side is a sum, the search algorithm exanmverall effect of the inner loop. ApLY imple-
ines the first operand, and if the starting lopp- ments the efficient evaluation scheme for chrec
node is not reachable through this path, it exbased on Newton interpolation series (see Sec-
amines the second operand. When one of thiton 2.2.2). As a side-effect, the algorithm does
operands contains a path to the starting lgop-indeed compute the loop-trip count for many
node, the other operand of the sum is added toatural loops in the control-flow graph. Our
the update expression, and the result is propanethod recovers information that was lost dur-
gated to the lower search steps together witling the lowering process or syntactically hid-
the reconstructed update expression. If the&len in the source program.

starting loops node cannot be found by depth-

first search, i.e., when EPTHFIRSTSEARCH

returns (false,L), we know that the definition 2.3.2 lllustration Examples

does not belong to a cycle of the SSA graph: a

peeled chrec is returned. Let us now illustrate the algorithm on two ex-
amples in Figures 5 and 6. In addition to
rclarifying the depth-first search and instantia-
tion phases of the algorithm, this will exercise
the recognition of polynomial and multivariate
Sevolutions.

INSTANTIATEEVOLUTION substitutes sym-
bolic parameters in a chrec. It computes thei
statically known value, i.e., a constant, a pe
riodic function, or an approximation with in-
tervals, possibly triggering other computation
of chrecs in the process. The call to-I
STANTIATEEVOLUTION is postponed until the _ )

end of the depth-first search, ensuring termiF TSt example. The depth-first search is best
nation of the recursive nesting of depth-firstunderstood with the analysis af = ¢(a,
searches, and avoiding early approximations i) 1N the first example. The SSA edge of the
the computation of update expressions. Cominitial value exits the loop, as represented in
bined with the introduction of symbolic param- Figureé 5.(1). Here, the initial value is left in
eters in the chrec, postponing the instantiatiord SYmbolic form, but GCC would replace it by
alleviates the need for a specific ordering of through constant propagation.

the computation steps. This is a strong ad—, compute the parametric evolution function
vantage with respect to the method by Engeleqys ¢ he analyzer starts a depth-first search

[14] based on a topological sort of all defini- algorithm, as illustrated in Figure 5.(2). We
tions. Furthermore, it becomes possible to recs, 0w the update edge —f to the defini-
ognize evolutions in every possible SSA graphyiqn of  in the loop body: assignmeriit =

although some of them may not yield a closed, | ¢ The depth-first algorithm follows the

form. first operandf —e, reaching the assignmeat

The overall effect of an inner loop may only be= d *+ 7, and finally follows the edge —d

that leads to a loog- node of the same loop.
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a = 3; a = 3; a = 3; a = 3;

b\ 1; b= 1; b =1; b=1;

loop 4) loop ({4) loop () loop (4)
c=0(a f); c=0(a, £); c=0(a, f); c=0(a, £);
d=¢(b, 9); de= 0(b, g); d="(b, g); d =™ (b, gl
if (d>=123) goto end; igud>:123) goto end; i\d> 123) goto end; if (d>»e123)) goto end;
e=d+7; e=d + 7; e=d A\7; e=dHA7;
f=e+c; f‘:e.;., f\:‘e+, f=e+
g=d+5; g 5 g=d ; g 5;

end: end: end: end:

(1) Initial condition  (2) Search “c” (3) Found the halting  (4) the “returning

edge phi path”

Figure 5: The first example

Since this is not the loop-node from which sult of the instantiation yields the polynomial
the analyzer has started the depth-first searclehrec ofc: {3, +,8,+,5};.

the search continues on the other operands that
were not yet analyzed: back en= d + 7,
operand’ is a scalar and there is nothing more

to do, then back orf = e + c , the edge io:o;;ws)
f —c is followed to the starting loop- node, i= ¢(h2 x)
. . . loop (ks)

as illustrated in Figure 5.(3). ISP
k=3+1;

At this point, the analyzer has found the F;(i‘ :9? S

strongly connected component that corre- e '

sponds to the path of iterative updates. Follow- f;i;éé) S

ing this path in execution order, as illustrated in ends: ’ '

Figure 5.(4), the analyzer builds the update ex-

pression as an aggregation of the operands that .

are not on the updating path: in this example, Figure 6: Second example
the update expression is just As a result, the

analyzer assigns to the definitionothe para-

metric evolution functior{a, +, e},. Second example. We will now compute the

evolution ofx in the nested loop example of
The instantiation of the parametric expressiorFigure 6, to illustrate the recognition of mul-
{a,+,e}; starts with the substitution of the tivariate induction variables and the computa-
first operand of the chrea = 3, then the anal- tion of the trip count of a loop. The first step
ysis of e is triggered. First the assignmeat consists in following the SSA edge to the defi-
= d + 7 is analyzed, and since the evolutionnition of x. Consider the right-hand side of the
of d is not yet known, the edge—d is taken definition: since the evolution & along loop
to the definitiond = ¢(b, g) . Since this 5is notyet analyzed, we follow the edge-k
is a loop¢ node, the depth-first search algo-to its definition in loop 6, thek—j ending on
rithm is used as before and yields the evolutiorthe definition of a loops node.
function ofd, {b,+,5};, and after instantia- . . o .
tion, {1,+,5},. Finally the evolution o = At this point we know t_h_at]_ IS updated in
d + 7 is computed:{8, +,5},. The final re- loop 6. T_he initial condltlpn is kept _under

a symbolic form, and the iteration edge-k
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is followed in the body of loop 6. The depth- 3 from the last assignment on the return path.
first search algorithm starts from right-handWe have computed the symbolic chreciaf
side of the assignmet = j + 1 : follow-  {h,+,14}s.

ing the edgek—j we end on the loop> node o _ )
from which we have started the search, mean] N€ last step consists in the propagation of this

ing that the search succeeded. Back on thgvelution function from the loog- node ofi
pathj —k—j , the analyzer gathers the evolu-© 'th_orlglnal node of the'computatlon: the
tion ofj along the whole loop, an increment of définition of x. Back fromi toj, we can

1, and ends on the following symbolic chrec:Partially instantiate its evolution: a symbolic
0,4+ 1. chrec forj is {{h,+,14}5,+, 1}¢. Then back

tok =] + 1 we get a symbolic chrec for
From the evolution of in the inner loop, the k: {{h + 1,+,14}5,+, 1}s; and finally back
analyzer determines the overall effect of loop 6o x = k + 3, we get a symbolic chrec for
onj , that is the evaluation of functiofin) =  x: {h + 14, +, 14};. A final instantiation oh
n + 1 for the number of iterations of loop 6. yields the closed form ot and all other vari-
Fortunately, the exit condition is the simple ex-ables.

pressiort>=9 , andthe chrecfar (orj - i )
is {0, +, 116, an affine (non-symbolic) expres- As We_ have sgen, the analyzer computes the
sion. It comes that 10 iterations of loop 6 will €volution functions on demand, and caches the

be executed for each iterations of loop 5. Call-discovered informations for later queries oc-
ing APPLY(6, {i ,+, 1}6, 10) yields the overall Curfing in different analyzes or optimizations
effectj = i + 10 . that make use of the scalar evolution informa-

tion. In the next section, we describe the appli-
The analyzer does not yet know the evolutioncations that use the informations extracted by
function ofi , and consequently it follows the the analyzer.
SSA edge to its definitioni = ¢(h, X)
Since this is a loog> node, the analyzer must 2.4 Applications
determine its evolution in loop 5. We ignore

the edge to the initial coqdltlon, and Wal_k ba‘CkScaIar optimizations have been proposed in the
_the update edge, searching for a path fiioo early days of the optimizing compilers, and

itself. have evolved in speed and in accuracy with
First, edgé —x leads to the statemert= k the design of new intermediate representations,
+ 3, then following the SSA edgr—k, we such as the SSA. In this section we describe

end on a statement of the loop 6. Again edgéhe extensions to the classic scalar optimization
k—j is followed, ending on the definition f algorithms that are now enabled by the extra

that we have already analyzefd:, +, 1}¢. The iqformation on scglgr evolutions. F?nally, we

depth-first search selects the edgesi , as- 9V€ @ short description of the classic data de-

sociated with the overall effect statemgne ~ Pendence tests.

i + 10 that summarizes the evolution of the

variable in the inner loop. We finally reached

the starting loops nodei . From this point, the

path is walked back gathering the stride of the

loop: 10 from the assignmenjt= i + 10 , In order to determine the number of iterations

then1 from the assignmerk = j + 1 ,and in a loop, the algorithm computes the first it-
eration that does not satisfy the condition that

2.4.1 Condition Elimination
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keeps the execution inside the loop. This samevolution function of a variable after crossing
algorithm can be used on other condition ex-a loop with a static count, it computes a scalar
pressions that don’t keep the loop exit, suchvalue, that can be further propagated in the rest
that the algorithm determines the number ofof the program. This removes the restriction of
iterations that fall in the then or in the else the classic CCP, where constants are only prop-
clauses. Based on the total number of iteraagated from their definition to the dominance
tions in the loop it is then possible to determinefrontier.
whether a branch is always taken during the
execution of the loop, in which case the con-
ctj)ition rc]:an be eliminated together with the dead, 4 4 pata Dependence Analysis

ranch.

Another approach for the condition elimination Several approaches have been proposed for
consists in using symbolic techniques for prov-computing the relations between the reads and
ing that two evolutions satisfy some compari-the writes to the memory locations referenced
son test for all the iterations of the loop. In theby arrays. The compiler literature [4, 15, 10]
case of an equality condition, the algorithm isdescribes loop normalizations, then the extrac-
close to the value numbering technique, and ision of access functions by pattern matching
described in the next subsection. techniques, while more recent works [16], rely
on the discovery of monotonicity properties of
the accessed data. An important part of the effi-
2.4.2 Value Numbering ciency of these approaches resides in the algo-
rithm used for determining the memory access

The value numbering is a technique based on patterns, while the subscript intersection tech-
compile-time classification of the values takendUes remain in the same range of complexity.

atruntime by an expressions. The compiler degyr gata dependence analyzer is based on the
termines the inclusion property of an expres-cjassic methods described in [4, 2]. These tech-

sion into a class based on the results of an analiqes are well understood and quite efficient
ysis: in the classic algorithms, the analysis is gt respect to the accuracy and the complexity

propagation of symbolic AST trees [10, 12]. ot the analysis. However, our data dependence

Using the information extracted by the scalar2N@lyzer can be extended to support the newer
evolution, the classification can be performedd€velopments on mor?otonlcny prophertles lpro-
not only on constants and symbols, but also o?©Sed by Peng Wat al. [16], since the scalar

evolution functions, or on the scalar values de_e\r:olutlon_e;lnglyzer IS abflf_e _to EXtLaCt rllOt only
termined after crossing the loop. chrecs with integer coefficients, but also evo-

lution envelopes, that occur whenever a loop
contains updating expressions in a condition
clause. In the following we shortly describe
the classic data dependence analyzer, and show
how to extend it for handling the monotonicity

] ) ] N informations exposed by the scalar analyzer.
The field of action of the classic conditional

constant propagation (CCP) is limited to codeA preliminary test, that avoids unnecessary fur-
that does not contain loop structures. Wherther computations, classifies the relation be-
the scalar evolution analyzer is asked for theween two array accesses aen dependent

2.4.3 Extension of the Constant Propaga-
tion
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when their base name differ. Thus, the remainthe conflicts occur. When the steps of the con-
ing dependence tests consider only tuples dfiicting iterations are not equal, the dependence
accesses to the same base name array. relation is not captured by the distance descrip-

tion.
The first test separately analyzes each tuple of

access functions in each dimension of the ankh a second step, the analyzer refines the depen-
alyzed array. This tuple is in general called adence relations using the information on sev-
subscript. A basic test classifies a subscript foleral subscripts. The subscript coupling tech-
lowing the number of loops in which it is vary- nique allows the disambiguation of more non
ing. The three classes of subscripts, constantslependent relations in the case of multidimen-
univariate, or multivariate, have different spe-sional arrays. The classic per loop distances
cific dependence tests that avoids the use of there computed based on the per subscript dis-
multivariate generic solver. tance information. When a loop carries two

different distances for two different subscripts,

The iterations for which a subscript accesshe rejation is classified to ben dependent
the same element, or conflicting iterations, are

computed using a classic Diophantinequa- As we have seen, the currentimplementation of
tion solver. The resulting description is a tu-the dependence analyzer is based on the clas-
ple of functions that is encoded yet again usingsic dependence tests. For this purpose, only
the chrecs representation. Banerjee presentsthe well formed linear access functions were
formal description [4] of the classic data de-selected for performing the dependence analy-
pendence tests that we just sketch in this pasis. Among the rejected access functions are all
per. The basic idea is to find a first solution (orthose whose evolution is dependent on an ele-
the first conflicting iteration) to the Diophan- ment that was left under a symbolic form, or
tine equation, then to deduce all the subsequembntain intervals. For all these cases, the con-
solutions from this initial one: this is repre- servative result of the analyzer is thbaknown
sented as a linear function under the form ofdependenceelation. In the case of evolution

a chrec as base plus step. The gcd test providesivelopes, it is possible to detect independent
an easy way to prove that the initial solutiondata accesses based on the monotonicity prop-
does not exist, and consequently it proves therties, as proposed by Peng \&tal. [16].

non dependencproperty and stops the algo-

rithm before the resolution of the Diophantine ) )

equation. The most costly part of this depen-3 Matrix Transformations

dence test is effectively the resolution of the

Diophantine equation, and more precisely they 1 pyrpose

determination of the initial solution.

Once the conflicting iterations are known, theThe reason for using matrix based transforma-
analyzer is able to abstract this information intotions as opposed to separate loop transforma-
a less precise representation: the distance péions in conjunction are many. First, one can
subscript information. When the conflicting it- composite transformations in a much simpler
erations have a same evolution step, the differway, which makes it very powerful. While
ence of their base gives the distance at whiclany of the transformations described could be
written as a sequence of simple loop trans-

1A Diophantine equation is an equation with integer fOrms, determining the order in which to apply
coefficients. them to achieve the desired transformation is




non-trivial. However, with a matrix transform,
one can generate the desired transformation di- DO U=1,3

rectly. In addition, determining the legality of a ( 01 DO V=1,3
given transformation is a simple matter of mul- 0 AV, 2U) = U
tiplication. The algorithm used also allows for ENEEI)\IBC?O
completion of partial transforms.

Figure 9: Interchanged loop
3.2 Algorithm
The code generation algorithm implemented DO U=1,3
for GCC is based on Wei Li's Lambda Loop ( 10 DOV=U+1U+3
Transformation Toolkit [8]. It uses integer lat- 1 AU, 2(v-U)) = 2*(V-U)
tices as the model of loop nests and uses non- ENE[I)\IBSO

singular matrices as the model of the trans-

forms. The implemented algorithm supports Figure 10: Skewed loop
any loop whose bounds can be expressed as a

system of linear expressions, where each lin-

ear expression can include loop invariants in DO U=1,3

the expression. This algorithm is in use by sev-( 1 0) DO V=-3,-1

eral commercial compilers (Intel, HP), includ- \ 0 —1 AU, -2*V) =-V
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ing those known to perform these transforma- END DO
tions quite well. This was a consideration in END DO
choosing it. Using this algorithm, we can per- Figure 11: Reversed loop

form any combination of the following trans-
formations, simply by specifying the applica-
ble transformation matrix.

DO I=1,3
10 DO J=1,3
01 A, 2*3) = J

END DO
END DO

Figure 7: Original loop

DO U=1,3
10 DO V=2,6,2
0 2 A(U, V) = V/2
END DO
END DO

Figure 8: Loop scaling

9, 10, and 11 respectively.

This set of operations includes every unimodu-
lar operation (interchange, reversal, and skew-
ing) plus scaling. The addition of scaling to
the applicable transforms means that any non-
singular transformation matrix can be applied
to a loop, because they can all be reduced to
some combination of the above. Scaling is use-
ful in the context of loop tiling, and distributed
memory code generation.

Legality testing is performed simply by multi-
plying the dependence vectors of the loop by
the transformation matrix, and verifying that
the resulting dependence vectors are lexico-
graphically positive. This will guarantee that
the data dependencies are respected in the loop
nest generated.

The loops produced by applying these trans-
forms to the loop in 7 can be seen in Figures 8The completion procedures allows completion
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of transformation matrices that contain the dewvector and matrix math routines necessary to
sired transformation for some portion of theperform the transformations (inversion, com-
loop, in a way that respects loop dependencieputation of Hermite form, multiplication, etc).

for the entire loop.
The transformation engine implements legality

Consider the following loop: testing, rewriting of loop bounds, rewriting of
loop bodies, and completion of partial trans-
DO 1=4.8 forms.
DO J=3,8 To transform a loop using GCC, we first need
All, ) =A(1-3,3-2) +1 to convert it to a form usable by the code gen-
END DO eration algorithm. There is a simple function
END DO

which takes a GCC loop structure and produces
a loopnest structure usable by the transforma-
5 tion engine. This loopnest structure consists of
D= (2) a system of linear equations representing the

The outer loop can be made parallel if and only??U"dS of each loop.

if it does not carry any dependences, i.e., th@yext, we perform legality testing. We have
first entry of every dependence vector is 0. INprovided a function that takes the loopnest
its current form, this is obviously not true. We gtrycture and a transformation matrix, and re-
can make it parallel if we can find a transfor-tyrs true if it is legal. This mainly is useful
mationT" such that every entry in the first row for transformations that were not produced by
of T'D is 0. We can easily satisfy that with the the completion algorithm, because that compo-

partial transform( 2 =3 ) However, this is  nent only produces legal transforms.
not a complete transformation matrix because

it does not specify what to do with the inner Third, The loop bounds of the loopnest struc-
loop. The completion algorithm will complete turé are rewritten using the aforementioned
this partial transform in a way that maintains code generation algorithm.

the legality of the transform, i.e., respects de-FinaIIy, we transform the loopnest structure
pendences.

back into real GIMPLE/Tree-SSA code. The

The full completion procedure is specified in subroutine accepts a loopnest structure and
[8]. It works by generating vectors that arerewrites the actual loop nest code to match it.
independent of the existing row vectors in theThIS involves two StepS: first the new iteration

partial transformation and within 90 degrees ofvariables, bounds, and exit condition are gen-
each dependence vector. erated. Next, the body of the loop is trans-

formed to eliminate uses of the old iteration
variables. This procedure is straightforward:
given a vector of source iteration variablés
and a vector of the target iteration variables
The GCC implementation of linear loop trans- S;, and the transformation matrik, the func-
forms is decomposed into several pieces: a maion computes the source iteration variables in
trix math engine, a transformation engine, anderms of the target iteration variables using the
converters. equationS; = 7-1S;. This calculation is per-

. . ._formed for each statement in the loop, and the
The matrix math engine implements various

The dependence matrix for this loop is

3.3 Implementation
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old uses are replaced with the new equations.

10.0
As a side note, all of these functions work in- 9.0
dependently of one another. In other words, as 8.07
long as one supplies the function that rewrites o /.07
: 2 6.0
loopnest structures into GCC code, one can ® 5.0
reuse the components for other transforma- & 4.0
tions. 3.0
2.07
L 1.0

3.4 Applications 0 !

regular interchanged

Matrix based loop transforms can be used to

improve effectiveness of parallelization and _ . _
vectorization by removing inner loop depen-Figure 12: Effect of interchanging loop on
dencies that inhibit their substitution. They canSWIM

also be used to perform spatial and temporal lo-

cality optimizations that optimize cache reuse
[7]. mal transform matrix can be calculated in poly-

S ~ nomial time for most loops encountered. The
These types of optimizations have the potentiamatrix transform method can be extended to
to significantly improve both application and perform loop alignment transforms, statement-

benchmark scores. Memory locality optimiza-pased iteration space transforms, and other
tions are observed to produce speedup factorigseful operations.

from 2 to 50 relative to the unmodified algo-
rithm, depending on the application. o

4  Optimizations
As an example of such a speedup, we’ll take

a well known SPE€ CPU2000 benchmark,

SWIM?Z. 4.1 Loop Optimizations

SWIM spends most of its time in a single 100p. The new data dependence and matrix transfor-
By simply interchanging this loop, the perfor- mation functionality allows GCC to implement
mance can be improved sevenfold, as shown ifhop nest optimizations that can significantly

Figure 12. improve application performance. These opti-
mizations include loop interchange, unroll and
3.5 Future plans jam, loop fusion, loop fission, loop reversal,

and loop skewing.

Determination of a good transformation matrix .
g Loop interchange exchanges the order of loops

for optimizing temporal and spatial locality is 1o better match use of 1oop operands to svstem
work in progress. There are many potential al- pop y

gorithms from which to choose. The authorscharacterlstlcs, e.g., improved memory hierar-

are investigating research literature and othe\?v?%gﬁf%sj Fe’it(;ir:;eo; ?é(p;i;\?vg\llzgfo'rtsgtg%ns
compiler implementations in order to choose P '

good algorithm to implement in GCC. An opti-aWh_en the transformation is safe to perform, the
optimal ordering of loops depends on the tar-
2http://www.spec.org/ get system. Depending on the intended effect,
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interchange can swap the loop with the greatioop fission or distribution is the opposite of
est dependencies to an inner position within théoop fusion: breaking multiple computations
loop nest or to an outer position within the nest.into independent loops. It can enable other
The effectiveness of the optimization is limited optimizations, such as loop interchange and
by alias and data dependence information.  blocking. Another benefit is reduction of reg-

) ) _ister pressure and isolation of vectorizable op-
The.UnroII and jam transformation unrolls |t.- erations, e.g., exposing the opportunity to in-
erations of an outer loop and then fuses copie§gke a specialized implementation of an opera-

of the inner loop to achieve greater value reusgq; for vectors or using a vector/SIMD instruc-
and to hide function unit latency. The optimal jo,  \ectorization is a balance between vec-

unrolling factor is a balance between scheduly,, speedup and memory locality. Again, alias

ing and register pressure. The optimization isinformation, data dependence, acduntable
related to loop interchange and unrolling, so itloopsare prerequisites.

similarly requires accurate alias and data de-
pendence information.
DO I=1,N

Loop fusion combines loops to increase com- S =B(l) / SQRT(C(1))

putation granularity and create asynchronous
parallelism by merging independent computa-
tions with the same bounds into a single loop.
This allows dependent computations with inde-
pendent iterations to execute in parallel. Loop
fusion requires appropriate alias and data de-

A(l) = LOG(S)*C(l)
END DO

4

CALL VRSQRT(A,C,N)

A(l) =F(B(1)
C(l) = A(I-1) + Q*B(l)
END DO

Figure 13: Example of Loop Fusion

pendence information, and also requicesint- DO I=1N
able loops A(l) = B()*A(1)
END DO
CALL VLOG(A,AN)
DO I=1,N
= *
DO I=1,N EI\'IA\S)DOA(I) 0
A(l) = F(B(1))
END DO
Q=... Figure 14. Example of Loop Fission
DO J=2,N
C(l) = A(I-1) + Q*B(l)
END DO Loop reversal inverts the direction of iteration
and loop skewing rearranges the iteration space
\ to create new dependence patterns. Both opti-
mizations can expose existing parallelism and
Q=... aid other transformations.
A(1)=F(B(1))
DO I=2,N

4.1.1 Future Plans

After addressing the optimizations that can
be implemented with initial loop transforma-
tion infrastructure, the functionality will be
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expanded to other well-known loop optimiza- modification of loops. Some loop transforma-
tions, such as loop tiling, interleaving, outertion optimizations requirperfect loop nesting
unrolling, and support for triangular and trape-meaning no other code is executed in the con-
zoidal access patterns. taining loop, and most loop optimizations are

] ] limited to countable loops A countable loop
The gpal fL_mctlon for high-level loop trans- has a single entry point, a single exit point, and
formations is dependent on the target systéMy, jeration count that can be determined be-
Communicating the_sys?em charac;teristics t3ore the loop begins. A loop index should be
the GCC loop optimizer is an ongoing area ofy |oc4 variable whose address is not taken and
Investigation. avoids any aliasing ambiguity.

GCC's high-level loop optimization frame- programmers are encouraged to nest loops
work will not implement all, or even most, \yhere possible and restructure loops to avoid
loop transformations in the first release—it IShranches within, into, or out of loops. Ad-
a work in progress, but an effective startinggjionally, the programmer manually can per-
point from which to grow. Future enhance- torm |oop fission to generate separate loops
ments to the framework will expand the func-,iin simple bounds instead of a single loop

tionality in two directions: implementing ad- \yitn complicated bounds and conditionally-
ditional optimizations and reducing the restric- oy acuted code within the loop.

tions on existing optimizations. The transfor-

mations first must be safe to enable for any ap-

plication with well-defined numerical behav- _ _ _

ior. The optimizations will be enhanced to rec-4-2  Interacting with the Compiler: towards an

. . OpenMP implementation

ognize more and different types of loops that

can benefit from these techniques and improve

application performance.
The OpenMP standard can be seen as an ex-
tension to the C, C++, and Fortran program-

4.1.2 Helping the Compiler ming languages, that provides a syntax to ex-
press parallel constructs. Because the OpenMP

The programmer can assist the compiler irdoes not specify the compiler implementation,

its optimization effort while ensuring that the implementations range from the simple source

source code is easy to understand and mairf© source preprocessors suchGdinMP* and

tain. This primarily involves simplifying mem- Omni® to the optimizing compilers likORC,

ory ana|ysis1 |oop structure, and program Struclhat eXpIOit the extra information prOVided

ture to aid the compiler. by the programmer for better optimizing loop
nests. Based on these implementations of the

Limiting the use of global variables and point- OpenMP norm, we give some reflections on a

ers allow the compiler to compute more thor-possible implementation of OpenMP in GCC.

ough alias information, allowing the safety of

transformations to be determined. Replacing

pointers by arrays and array indexing is one

such example. 3http://www.openmp.org/

e i “http://odinmp.imit.kth.se/
Simplified loop structure permits more exten-  shyp://phase.hpce.jp/Omni/

sive analysis of the loops and allows easier Shttp://ipf-orc.sourceforge.net/
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4.2.1 Source to Source Implementations  about the parallel constructs used by the pro-
grammer.

The source to source implementations of
OpenMP include a parser that constructs an ab- o _
stract syntax tree (AST) of the program, then &-2-2  An Optimizing Compiler Approach
pretty printer that generates a source code from
the AST. The AST is rewritten using the in- In the C, C++, and Fortran programming lan-
formation contained in the OpenMP directives.guages, the parallelism is expressed mainly us-
The transformations involved in the rewriting ing calls to libraries that implement threading
of the AST are principally insertions of calls or message passing interfaces. The compiler is
to a thread library, the creation of new func-not involved in the process of optimizing par-
tions, and restructuring of loop bounds andallel constructs because the parallel structures
steps. The main benefit of this approach is thaare masked by the calls to the parallel library.
it requires a reduced compiler infrastructure forln other programming languages, such as Ada
translating the OpenMP directives. and Java, parallel constructs are part of the lan-
) ) ) guage specification, and allow the compiler to
For |mplement|ng this source to source 4P'manage the parallel behavior of the program.
proach in GCC, two main components have tgnenMp directives fill a missing part of the
be designed: C, C++, and Fortran programming languages
with respect to the interaction of the program-

. a directive parserthat is an extension of mer with the compiler for concurrent program-
the parser for generating AST nodes forming. Itis in this extent that the OpenMP norm

each directive. and is interesting from the point of view of an opti-
mizing compiler.

* a directive rewriter that transforms the |, orqer to allow the optimizers to deal with
code in function of the directives. the parallel constructs in a generic way, the
compiler has to provide a set of primitives

In order to keep the code generation parlfor the parallel constructs. For the moment,
generic for all the front-ends, a specificthe GENERIC level does not contain parallel

OMP EXPRiode could contain the informa- Primitives, and consequently the front-end lan-
tion about the directives, until reaching the9uages have to lower their parallel constructs
GENERIC. or the GIMPLE levels. the GIM- before generating GENERIC trees. In this re-
PLE level having the benefit of being simpler, SPECL, the OpenMP directives should not be dif-

and more flexible for restructuring the code. ferent than other languages parallel constructs,
and should not have a speci@VIP_EXPRhat

In the source to source model, the rewrite of theallow these constructs to be propagated to the
directives directly generates calls to a threadGIMPLE level for their expansion as described
ing library, and the rest of the compiler doesin section 4.2.1. The support of OpenMP in
not have to handle th@MP_EXPRodes. This this context is togenericizethe directives to
kind of transformation tends to obfuscate thetheir equivalent constructs in GENERIC and
code by inserting calls to functions in place oflet the optimizers work on this representation.
the loop bodies, rendering the loop optimiza-Using this approach would allow the compiler
tions ineffective. In order to avoid this draw- to choose the right degree of parallelism based
back we have to make the optimizers awaren a description of the underlying architecture.
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Abstract
Prol ! ii=1
Software pipelining is a technique that im- oo 2 3 1
proves the scheduling of instructions in loops  Kemel{ 4 2 3 1
by overlapping instructions from different it- - 4 2 3
erations. Modulo scheduling is an approact = 4

for constructing software pipelines that focuses
on minimizing the cycle count of the loops
and thereby optimize performance. In this pa-
per we describe our implementation of Swing
Modulo Scheduling in GCC, which is a Mod-
ulo Scheduling technique that also focuses on

reducing register pressure. Several key issuqsigure 1: Example software pipelined loop of 4

are discussed, including the use and adaptatigfsiryctions and the resulting kernel, prologue
of GCC’s machine-model infrastructure for 54 epilogue.

scheduling (DFA) and data-dependence graph
construction. We also present directions for fu-
ture enhancements.

tiation Interval— 11, and the bound is called a
Minimum Il — MII (see example in Figure 1).
1 Introduction Then it tries to place the instructions of the

loop in Il cycles, while taking into account the
o . _ machine resource constraints and the instruc-
Software pipelining is an instruction schedul-(on dependencies. In case the loop couldn’t be

ing technique that exploits instruction level gcheqyled in Il cycles it tries with larger 11 until
parallelism found in loops by overlapping suc-;; ¢;,cceeds.

cessive iterations of the loop and executing

them in parallel. The key idea is to find a Swing Modulo Scheduling (SMS) is a heuris-
pattern of operations (named the kernel codeic approach that aims to reduce register pres-
that when iterated repeatedly, produces the efsure [2]. It does so by first ordering the in-
fect that an iteration is initiated before previ- structions in an alternating up-and-down order
ous ones have completed [3]. Modulo schedulaccording to the data dependencies, hence its
ing is a technique for implementing softwarename (see section 2.2). Then the scheduling
pipelining. It does so by first estimating a algorithm (section 2.3) traverses the nodes in
lower bound on the number of cycles it takes tothe given order, trying to schedule dependent
execute the loop. This number is calledthe  instructions as close as possible and thus to



56 ¢ GCC Developers’ Summit

shorten live ranges of registers. 3. Schedule the kernel.

4. Perform modulo variable expansion.

2 Implementation in GCC _
5. Generate prolog and epilog code.

Swing Modulo Scheduling (SMS) [2, 3] was 6. Generate a loop precondition if required.
implemented as a new pass in GCC that im-
mediately precedes the first scheduling pass

An alternative is to perform SMS after reg- Afteraloop Is successfully modulo-sceduled it

ister allocation, but that would require regis-IS marked to preyent su_bsequent re_scheduling
ter renaming and spilling in order to removeby the standard instruction scheduling passes.

anti-dependencies and free additional register?nIy the kernel is marked; the prolog and epi-

for the loop. The new pass traverses the cur>d are subject to subsequent scheduling.

rent function and performs SMS on loops. Itgypsection 3.1 describes the DDG. In the re-

generates a new schedule for the instructiongyainder of this section we elaborate each of
of the loop according to the SMS algorithm, the apove steps.

which is “near optimal” in utilizing hardware
resources and register pressure. It also hany 4 Calculating a Ml
dles long live ranges and generates prologue

and epilogue code as we describe in this se

tion Ql_'he minimum initiation interval (“MII”) is a

lower-bound on the number of cycles required
The loops handled by SMS obey the following by any feasible schedule of the kernel of a loop.
constraints: (1) The number of iterations of theA schedule is feasible if it meets all depen-
loop is known before entering the loop (i.e. isdence constraints with their associated laten-
loop-invariant). This is required because wherries, and avoids all potential resource conflicts.
we exit the kernel, the last few iterations are in-Two separate bounds are usually computed—
flight and need to be completed in the epilogueone based on recurrence dependence cycles
Therefore we must exit the kernel a few itera-(‘recMIl”) and the other based on the resources
tions before the last (or support speculative paravailable in the machine and the resources re-
tial execution of a few iterations past the last).quired by each instruction (“resMII”) [6]:
(2) A single basic block loop. For architectures
that support predicated instructions, multiple MIl = max{recMIl, resMIl}.

basic block loops could be supported. In general, if the computed MIl is not an in-

For each candidate loop the modulo scheduleieger, loop unrolling can be applied to possi-
builds a data-dependence graph (DDG), whoskly improve the scheduling of the loop. The
nodes represent the instructions and edges repurpose of computing Ml is to avoid trying

resent intra- and inter-loop dependences. Th#'s that are too small, thereby speeding-up the

modulo scheduler then performs the followingmodulo scheduling process. Itis not a correct-
steps when handling a loop: ness issue, and being a lower bound does not

affect the resulting schedule.

1. Calculate a MII. The “recMII” lower bound is defined as the
maximum, taken over all cycleS' in the de-
2. Determine a node ordering. pendence graph, of the sum of latencies along



GCC Developers’ Summit 2004 « 57

C divided by the sum of distances alo6g 2.2 Determining a Node Ordering
recMIl = max 2eeC Igtency{e) _ The goal of the “swinging” order is to schedule
CeDDG 3. distancge) an instruction after scheduling its predecessor

or successor instructions and as close to them
s possible in order to shorten live ranges and
hereby reduce register pressure. Alternative
rdering heuristics could be supported in the

Computing the maximum above can be don
in ©(N?) (worst and best) time, wherd is
the number of nodes in the dependence grap
[6]. We chose to |mplgment a less gccuratefuture_ (See figure 7 [1] for the swing ordering
yet generally more efficient computation of aalgorithm).

dependence-recurrence based lower bound, fo-

cusing on simple cycle§ that contain a sin- The node ordering algorithm takes as input a
gle back-ar@(S) (more complicated cycles are data dependence graph, and produces as out-
ignored, resulting in a possibly smaller lowerput a sorted list of the nodes of the graph,

bound): specifying the order in which to list-schedule
the instructions. The algorithm works in two

eCMIl = max 2ces fatencye) steps. First, we construct a partial order of
seppé distanced(S)) the nodes by partitioning the DDG into subsets

) S1,52, ... (each subset will later be ordered in-
(Note that for such simple cyclesS, ternally) as follows:

distancée) = 0 for all edgese € S ex-
ceptb(S).) This maximum is computed by
finding for each back-aré(S) = (h,t) the 1. Find the SCC (Strongly Connected
longest path (in terms of total latency) from Component)/Recurrence of the data-
t to h, excluding back-arcs (i.e. in a DAG). dependence graph having the largest
This scheme should be more efficient because  recMll—this is the first set of nodes; .

the number of back-arcs is anticipated to be
relatively small, and is expected to suffice
because we anticipate most recurrence cycles
to be simple. 3

2. Find the SCC with the next largest recMlI,
put its nodes into the next s&4.

. Find all nodes that are on directed paths
from any previous set to the next sgt

The “resMII” is currently computed by consid-
and add them to the next s€4.

ering issue constraints only: the total number
of instructions is divided by theSSUE _RATE
parameter. This bound should be improved by
considering additional resources utilized by the
instructions.

4. If there are additional SCCs in the depen-
dence graph goto step 2. If there are no
additional SCCs, create a new (last) set of
all the remaining nodes.

In addition to the MII lower-bound, we also

compute an upper-bounc_j on the ”_’ _Ca”edThe second step orders the nodes within each
Maxll. This upper-bound is used to limit the S, set using a directed-acyclic subgraph of the

search for an Il to e.ffecFive values only, andyp s optained by disregarding back-arcs%f
also to reduce compile-time. We set Maxll

> eeppc latencye) (the standard instruction
scheduler should achieve such an 1), and pro- 1. Calculate several timing bounds and prop-
vide a factor for tuning it (see Section 5). erties for each node in the dependence
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graph (earliest/latest times for schedulingwhen scheduling an instruction in cycle(in-

according to predecessors/successors-side its scheduling window), it is inserted into

see subsection 4.1 [1]). row (7" mod I1) of the partial schedule. Once
all instructions are scheduled successfully, the

2. Calculate the order in which the instruc-partial schedule supplies the order of instruc-
tions will be processed by the schedulingtions in the kernel.

algorithm using the above bounds.

A modulo scheduler (targeting e.g. a super-
scalar machine) has to consider the order of
instructions within a row, when dealing with
the start and end cycles of the scheduling win-
The nodes are scheduled for the kernel of thelow. When calculating the start cycle for in-
loop according to the precomputed order. Fig-struction:, one or more predecessor instruc-
ure 2 shows the pseudo code of the schedulinionsp will have a tight boundschedTime,, +
algorithm, and works as follows. For each nodeLatency, ; — distance,; x ii = start (see Fig-
we calculate a scheduling window—a rangeure 2). Ifp was itself scheduled in the start row,
of cycles in which we can schedule the node; has to appear aftérin order to comply with
according to already scheduled nodes. Previthe direction of the dependence. An analogous
ously scheduled predecessors (PSP) increasggument holds for successor instructions that
the lower bound of the scheduling window, have a tight bound on the end cycle. Notice
while previously scheduled successors (PSShat there are no restrictions on rows strictly
decrease the upper bound of the schedulinpetween start and end. In most cases (e.g. tar-
window. The cycles within the scheduling win- gets with hardware interlocks) the scheduler is
dow are not bounded a-priori, and can be posallowed to relax such tight bounds that involve
itive or negative. The scheduling window it- positive latencies, and the above restriction can
self contains a range of at-most Il cycles. Af-be limited to zero latency dependences only.
ter computing the scheduling window, we try

to schedule the node at some cycle within the.4 Modulo Variable Expansion

window, while avoiding resource conflicts. If

we succeed we mark the node and its (absoafter all instructions have been scheduled in
Iute) schedule time. If we could not SChedUIGthe kerneL some values defined in one iter-
the given node within the scheduling window ation and used in some future iteration must
we increment I, and start over again. If Il pe stored in order not to be overwritten. This
reaches an upper bound we quit, and leave thgappens when a life range exceeds Il cycles—
loop without transforming it. the defining instruction will execute more than
once before the using instruction accesses the

If we succeed in scheduling all nodes in Il cy- . .
: value. This problem can be solved using mod-
cles, the register pressure should be checke . : . ;

o variable expansion, which can be imple-

to determine if registers will be spilled (due to u . . :
ented by generating register copy instruc-

[ of instructions), and. . .
overly aggressive overlap ) tions as follows (certain platforms provide such

if so increment Il and start over again. This : : . :
: support in hardware, using rotating-register ca-
step has not been implemented yet. pabilities):

During the process of scheduling the kernel
we maintain gpartial schedulethat holds the 1. Calculate the number of copies needed for
scheduled instructions in Hows, as follows: a given register defined at cycdle def and

2.3 Scheduling the Kernel



ps = create_ps (ii,

= MIl; bump_ii = true;

while (bump_ii && i < maxii){

bump_ii = false; sched_nodes = ¢,
step = 1,
for (i=0, u=order]i;
i<|G|; u=order[++i]) do {
/*Compute sched window for w.*/
PSP = u_preds N sched_nodes;
PSS = u_suces N sched_nodes;
if ( PSP #¢ANPSS=0¢)
start=" max(SchedTime, + Latency, 4

—distance, ,, X ii)Vv € PSP

end = start + ii;

}

else if ( PSP =¢APSS # ¢){
start=" min(SchedTime, — Latencyy ,

+distance, , X ii)Yv € PSS

end = start - ii; step = -1;
}
else if ( PSP # ¢ANPSS # ¢f
estart= max(SchedTime, + Latency, ,
—distance, ,, X ii)Yv € PSP
Istart=" min(SchedTime, — Latencys, .,
+distance, , X ii)Vv € PSS
start =  max(start, estart);
end = min(estart+ii, Istart+1);
}
else ¥ PSP=¢pANPSS=¢ *

start = ASAP,; end = start + ii;
[* Try scheduling u in window. */
for (c = start; ¢ != end; ¢ += step)
if (ps_add_node (ps, u, ¢)X
SchedTime, = C;
sched_nodes = sched_nodes U {u};
success = 1;

}
if (‘success){
ii++; bump_ii = true;
reset_partial_schedule (ps, ii);
}
}* Continue with next node. */
if (lbump_ii
&&check_register_pressure(ps){
ii++; bump_ii = true;
reset_partial_schedule (ps, ii);

}

Y* While bump_ii. */

where:

ASAP, is the earliest time
could be scheduled in[2]

G, DFA_HISTORY);
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used at cycld’_use, according to the fol-
lowing equation:

{Tuse— Tyef

i J + adjustment (1)

where “adjustment” = -1 if the use appears
before the def on the same row in the par-
tial schedule, and zero otherwise. The to-
tal number of copies needed for a given
register def is given by the last use.

2. Generate the register copy instructions
needed, in reverse order preceeding the
def:

Tn < Tn—1;Tn—1 < Tpn—2;...7T1 < Tdef

and attach each use to the approprigte
copy.

2.5 Generating Prolog and Epilog

The kernel of a modulo-scheduled loop con-
tains instances of instructions from different it-
erations. Thus a prolog and an epilog (unless
all moves are speculative) are needed to keep
the code correct.

When generating the prolog and epilog, spe-
cial care should be taken if the loop bound is
not known. One possibility is to add an exit
branch out of each iteration of the prolog, tar-
geting a different epilog. This is complicated
and increases the code size (see [1]. Another
approach is to keep an original copy of the loop
to be executed if the loop-count is too small
to reach the kernel, and otherwise execute a
branch-less prolog followed by the kernel and
a single epilog. We implemented the latter be-
cause it is simpler and has smaller impact on

Figure 2: Algorithm for Scheduling the Kernel ¢qge size.
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3 Infrastructure Requirements for The data dependence graph is built in
Implementing SMS in GCC several steps. First, we construct the
intra-loop dependencies using the stan-
. : dard LOG_LINKS/INSN_DEPEND structures
The modulo scheduler, being a scheduling Opby calling the sched_analyze function of

timization, needs to work with a low level rep- | 7. _ :
. , . haifa-sched.c module; a dependence arc with
resentation close to the final machine code. In

. . .~ _distance zero is then added to the DDG for
GCC thatis RTL. The SMS algorithm requires :

- eachINSN_DEPEND link. We then calculate
several building blocks from the RTL represen-. - : .
tation: inter-loop register dependencies of distance 1

using the df.c module as follows:

1. ldentifying and representing RTL level
loops—we use the CFG representation. 1. The latency between two nodes is calcu-
lated using thensn_cost  function of

2. Building data dependence graph (for the scheduler

loops) with loop carried dependencies—

we implemented a Data Dependence , pFor each downwards reaching definition,
Graph (DDG). if there is an upwards reaching use of the

3. An ordered linked list of instructions (ex- same register (this information is supplied

ists in the RTL). Union, intersection, by the df analysis) aRUE dependence arc
and subtraction operations on sets of IS added between the def and the use.

instructions—we use thsbitmap rep- _ o
resentation. 3. For each downwards reaching definition
find its first definition and connect them

4. Machine resource model support, mainly by an ouTPUT dependence, if they are
for checking if a given instruction will distinct. Avoid creating selbuTPUT de-
cause resource conflicts if scheduled ata  pendence arcs.
given cycle/slot of a partial schedule.

4. For each downwards reaching use find
its first def, if this is not the def feed-
ing it (intra-loop) add ammNTI inter-loop
dependence. Avoid creating inter-loop
ANTI register dependences—modulo vari-
able expansion will handle such cases
(see 2.4).FLow dependence exists in the
opposite direction;

5. Instruction latency model—we use the
insn_cost  function.

We now describe the DDG and Machine model
support.

3.1 Data Dependence Graph (DDG) Genera-
tion

The current representation of data dependerfinally, we calculate the inter-loop memory de-
cies in GCC does not meet the requirementpendencies. Currently, we are over conserva-
for implementing modulo scheduling; it lacks tive due to limitation of alias analysis. This
inter-loop dependencies and it is not easy tassue is expected to be addressed in the future.
use. We decided to implement a DDG, whichThe currentimplementation adds the following
provides additional capabilities (i.e. loop car-dependence arcs, all with distance 1 (unless the
ried dependencies) and modulo-scheduling orinodes are already connected with a dependence
ented API. arc of distance 0):
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1. For every two memory writes add an inter- Several functions are made available to manip-
loop ouTPUT dependence. ulate the partial schedule, the most important
_ one isps_add_node_check_conflicsscribed
2. For every memory write followed by a jn Figure 4; it updates the partial schedule (ten-
memory read (across the back-arc) add ggjvely) with a new instruction at a given cycle,
TRUE memory dependence. and feeds the new partial schedule to the DFA.
If it succeeds it updates the partial schedule and

3. For every memory read followed by a : ) :
. returns success, if not it resets the partial sched-
memory write across the back-arc add an ) .
ule and returns failure. The major drawback of
ANTI memory dependence.

the above mechanism is the increase in compile
time; there are plans to address this concern in

The following general functionality is provided the future.
by the DDG to support the node-ordering algo-+ checks if PS has resource
rithm of SMS: conflicts according to DFA,
from FROM cycle to TO cycle. */
ps_has_conflicts (ps, from, to){
state_reset (state);

i _  for (c = from; ¢ <= to; c++) {
* ldentify cycles (strongly connected com * Holds the remaining. isaue

ponents) in the data dependence graph, slots in the current row. */

i i issue_more = issue_rate;
and sort them according to their recMill. /* Walk DEA through GYCLE C.
. for (I = ps->rows[c % ps->ii)];
* Find the set of all predecessor/successor I; 1 = I->next) {

/* Check if there is room for the

nodes for a given set of nodes in the data current insn 1%/
dependence graph. if (! issue_more
|| state_dead_lock_p (state))
. . . return true;

* Find all nodes that lie on some directed /* Check conflicts in DFA.*
path between two strongly connected sub- if (rzttitrer]—t{i?'t")” (state, 1))
graphs. if (DFA.variable_issue)

issue_more=DFAissue(state, I);
else issue_more--;
3.2 Machine Resource Model Support Ldvance_one_cycle 0:

return false;

During the process of modulo scheduling, we
need to check if a given instruction will cause
resource conflicts if scheduled at a given cy-
cle/slot of a partial schedule. The DFA-based
resource model in GCC [4] works by check-
ing a sequence of instructions, in order. This4 Current status and future en-
approach is suitable for cycle scheduling al-

gorithms, in which instructions are always ap- hancements
pended at end of the current schedule. In or-
der for SMS to use this linear approach, weAn example of a loop and its generated code,
generate a trace of instructions cycle by cyclewhen compiled with gcc and SMS enabled
centered at the candidate instruction, and feed-fmodulo-sched ) is shown in Figure 5.
ing it to the DFA [5]. Figure 3 describes the The kernel combines the fmadds of the cur-
algorithm that checks if there are conflicts inrent iteration with the two Ifsx’s of the next it-
a given partial schedule around a given cycleeration. As a result, the two Ifsx’s appear in

Figure 3: Feeding a partial schedule to DFA.
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/* Checks if a given node causes float dot_product (float *a,
resource conflicts when added to float *b){
PS at cycle C. If not add it. */ int i; float c=0;

ps_add_node_check_conflicts (ps, n, c) for (i=0; i < 100; i++)

{ ¢ += a[il*b[i;

ps_n = add_node_to ps (ps, n, ¢); return c;
from = c - ps->history; }
to = ¢ + ps->history ®)
has_conflicts L5:
= ps_has_conflicts(ps, from, to); slwi r0,r2,2
addi r2,r2,1
[* Try different slots in row. */ Ifsx f13,r4,r0
while (has_conflicts) Ifsx f0,r3,r0
if (Ips_insn_advance_column(ps, fmadds f1,f0,f13,f1
ps_n)) bdnz L5
break; blr
else has_conflicts (b)
= ps_has_conflicts(ps,
from, to); Prolog: addi r2,r2,1
Ifsx fO,r3,r0
if (! has_conflicts) Ifsx f13,r4,r0
return ps_n; li r0,99
remove_node_from_ps(ps, ps_n); mtctr rO
return NULL,; LS5:

} slwi r0,r2,2
addi r2,r2,1
fmadds f1,f0,f13,f1

Figure 4: Add new node to partial schedule lfsx f13,r4,r0
Ifsx f0,r3,r0
bdnz L5

the prolog and the fmadds appears in the epi- Epilog: fmadds f1,f0,f13,f1

log. This could help hide the latencies of the blr

loads. The count of the loop is decreased to ©

99, and no register-copies are needed because

every life range is smaller than II, Figure 5: (a) An example C loop, (b) As-

. . . . sembly code without SMS, (c) Assembly code
Following are milestones for implementing with SMS ¢fmodulo-sched ), on a Pow-

SMS in GCC. erPC G5.
First stage (Approved for mainline) 4. Support for live ranges that exceed Il
cycles by register copies.
1. Implement the required infrastruc- 5. Support unknown loop bound using
ture: DDG (section 3.1), special in- loop preconditioning.
terface with DFA (section 3.2).

6. Prolog and epilog code generation as
2. Implement the SMS scheduling al- described in Section 2.5.

gorithm as described in [3, 2]. 7. Preliminary  register  pressure

3. Support only distance 1 and register measurements—gathering statistics.
carried dependences (including ac-
cumulation). Second stage
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1. Support dependences with distances sms-dfa-history. The number of cycles con-

greater than 1.

2. Improve the interface to DFA to de-
crease compile time.

3. Support for live ranges that exceed Il
cycles by unroll & rename.

4. Improve register pressure heuris-
tics/measurements.

5. Improve computation of resMIl and
possibly recMIl lower bounds.

6. Unroll the loop if tight MIl bound is
a fraction.

Future enhancements [tentative list]

1. Consider changes to DFA to make

sidered when checking conflicts using the
DFA interface. The default value is
0, which means that only potential con-
flicts between instructions scheduled in
the same cycle are considered. Increasing
this value may result in higher Il (possi-
bly less loops will be modulo scheduled),
longer compile-time, but potentially less
hazards.

sms-loop-average-count-threshold. A thresh-

old on the average loop count considered
by the modulo scheduler; defaults to 0. In-
creasing this value will result in applying
modulo scheduling to additional loops,
that iterate on average fewer times.

SMS less time consuming when max-sms-loop-number. Maximum number

checking resource conflicts.

2. Consider spilling during SMS if reg-
ister pressure rises too much.

3. Support speculative moves.

4. Support predicated instructions and
if-conversion.

6

5. Support for live ranges that exceed Il

of loops to perform modulo scheduling,
mainly for debugging (search for first
faulty loop). The default is -1 which
means to consider all relevant loops.

Conclusions

cycles by rotating registers (for ap- N this paper we described our implementa-

example of its effects is given in Section 4.
The major challanges involved using the DFA-

5 Compilation Flags for Tuning based machine model of GCC, and building
a data-dependence graph for loops including

We added the following four options for tuning
SMS:

inter-loop dependences. The current straight-
forward usage of the machine model is time-
consuming and should be improved, which in-

volves changes to the machine model. The
sms-max-ii-factor. This parameter is used tanter-loop dependencies of the DDG should be
tune thesms _MAX 11 threshold, which built more accurately, in-order to allow more
affects the upper bound for Il (maxll). aggressive movements by the modulo sched-
The default value for this parameter isuler. The DDG is general and can be used by
100. Decreasing this value will allow other optimizations as well. Additional oppor-
modulo scheduling to transform only the tunities for improving and tuning the modulo
loops where a relatively small Il can be scheduler exist, including register pressure and
achieved. loop unrolling considerations.
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Abstract callees instead of before.

) _ The new tree-based implementation of inlining
The implementation of call graph based op-j, Gce 3.x solved all of these problems but
timizations in GCC required several designntortunately brought several new issues. For

changes to the interfaces in between front-Very complex C++ programs, the new inlining

ends and back-end parts of the compiler. Weeision heuristics inlined too many functions
describe in detail the new interfaces, Opt"causing extreme memory consumption, large

mizations we implemented (in-lining and ba- .o mpije times, and impractically bloated ap-
sic inter-procedural propagation) and the callyjications. On the other hand the default in-

graph datastructure itself. \We compare memgina [imits were way too low for C programs
ory consumption, compilation time and codeg,ch a5 the Linux kernel, causing many func-
quality of function at a time and unit at a time +i51s to not be inlined at all despite the pro-
compilation scheme. We also outline future,.ammer having manually marked them inline.
plans for the more advanced inter-procedura}?\s a result compiler became almost unusable

optimizations and whole program optimiza- ¢5; some C++ programmers working on tem-

tion. plate heavy code (such as POOMA library) and
Linux kernel developers adopted the paradigm

1 Introduction and motivation of using thealways_inline attribute to
override the default inlining heuristics every-
where.

The implementation of function inlining in gcc

used to be a major source of dissatisfactionin addition to these problems, GCC tradition-

among users of the compiler. Even thoughally was unable to perform “backward inlin-

inlining had been redesigned from scratch ining” (inline functions used before defined),

GCC 3.0, both inliners had serious problems. causing noticeable loss in some benchmarks
such as SPEC2000 when compared to other

The old inlining implementation (based on thecompilers.

low-level RTL intermediate language) could

not remove several ugly artefacts in the codelt seemed impossible to tune the inlining
such as in-memory structures used to pass aheuristics using the available set of parameters,
guments. It also consumed unnecessarily largand thus we started to look for a more involved
amount of memory to store function bodies insolution. While looking at the problem from
RTL form. Memory consumption was further a high level, it seems to be really easy to sim-
increased by storing functions after inlining of
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ply inline all “small” functions as long as doing that the out of line copy is needed) making im-
so does not cause “extreme bloat.” Definingplementation of inter-procedural optimizations
which functions are “small” can be done easilyimpossible. It was necessary to reorganize the
by limiting number of instructions in it's body, compilation process in a way so all functions
while defining code bloat can be done with twoare parsed first, then analyzed and compiled
parameters: first one limits growth of singlelast. We will refer to this scheme of compi-
function body (since compiler algorithms arelation asunit-at-a-timeas opposed to function-
generally not linear, and for really large func- at-a-time used by GCC originally.

tions, produce both poor code and long compi-

lation times) and the second one limits growth "€ main problem that arised was that the
of overall binary size. Unfortunately without ©riginal GCC design made it very difficult to

whole program optimization (still mostly out change the compilation order. The back-end

of reach of the current GCC framework), it is 'S been organized as a library that allowed

impossible to realize the last argument, but ondh€ front-end to compile a specified function.
still can limit the overall growth of single com- E&ch of the front-ends implemented its own

pilation unit and get similar results. (in some cases remarkably complex) logic on
compiling and/or deferring a function and ex-

Because implementation of such a global papected the compilation to happen immediately
rameters for function inlining was very difficult after passing it to back-end (for instance, the
with the original organization of the compiler C++ front-end looked back into the symbols
we took a more difficult path and first devel- actually output to the assembly file to figure
oped an infrastructure to assist inter-procedurabut which functions were referenced and had
optimization, to be used later when focusing onbe compiled).

the inlining issues. ) ) _ ) _
Instead of implementing unit-at-a-time logic

In this paper we describe the infrastructureinto each individual front-end, it seemed eas-
and the new optimizations implemented whileier to reorganize the interface in between the
working on this project. The rest of this pa- front-ends and back-ends to allow implemen-
per is organized as follows. In Section 2 wetation of the generic compilation driver taking

briefly describe some problems we had to deatare of all the decisions. Since reorganizing all
with and solutions we chose for them; in Sec-the front-ends at once was a difficult task, the
tion 3 we describe the basic data structures waew API has been made optional, and we first
use; in Section 4 we describe the interface tamplemented unit-at-a-time for the C front-end
the front-end; in Section 5, the implementationonly and later started work on reorganizing the
of inlining; and Section 6 contains some exper-others.

imental evaluation of the new algorithms. o
At the moment, only the C, Objective C, C++,

Java, and F90 front-ends have been updated to

2 Overall design and the imple- the new API, and with exception of C, each
mentation challenges conversion was a nontrivial task. C++ needed

to look back into assembly files to discover
what templates needs to be instantiated; Ob-
GCC compiled the majority of functions im- jective C gathered information about method
mediately after parsing their bodies (only a fewAPI during compiling the function body, and
functions, such as static inline functions, werelater producing functions using that informa-
special-cased and deferred until it was obvious
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tion; and F90 and Java use trees slightly dif-
ferent from the C++ family, and broke some
expectations in the new code.

Switching to unit-at-a-time by default just
seemed too radical. The main concerns that
were pointed out in the discussion about
the change were about peak memory usage
growth: in function-at-a-time mode, the func-
tion bodies can be released early once the pro-
cessing of given function finished, while unit-
at-a-time mode needs to store into memory all
functions at once. If the amount of memory oc-
cupied by the function bodies gets too large, it
may result in slow down of the compilation.

As a result of this discussion, we decided to al-
low coexistence of both schemes and added the
command line optionfunit-at-a-time

to choose particular one. To date, optimization
levels-O0 and-O1 by default use function-
at-a-time compilation, whileO2 and-O3 use
unit-at-a-time. Once the front-end is converted
into the new API, both supported compila-
tion schemes (unit-at-a-time and function-at-a-
time) appear almost identical to the front-end,
and all the logic is hidden in the new compila-
tion driver implemented icgraphunit.c

The compilation process is now organized as
follows:

1. Parsing phase: This step is fully con-
trolled by the front-end. It is up to the
front-end to decide when a given function
is “finalized” and pass it to the compila-
tion driver. After that point the front-end
is not allowed to make any modifications
on the function body or declaration, and
it is fully up to the compilation driver to
decide when (and if) the function will be
compiled.

It is probably important to note that there

back-end. The C front-end, GCC allows
the function to be first defined astern
inline  and later be re-defined with a
completely different body as an ordinary
function. In this special case, we allow
the finalization to be called twice; we sim-
ply remove all traces of the old body from
the data structures and mark the function
as uninlinable, then, when this situation is
detected.

At this stage, early analysis of finalized
functions is done as well. Certain warn-
ings (such as about unused function pa-
rameters) are output here, since it is the
last time we’ll see unneeded functions. It
is also decided whether the function is an
“entry point"—i.e., whether itis reachable
from unknown code by some way (such as
via external linkage).

The difference between function-at-a-
time and unit-at-a-time mode also lies in
the finalization code. In unit-at-a-time
mode, the function is just stored into
the data-structure and left for later anal-
ysis, while in function-at-a-time mode all
functions are fully analyzed immediately,
the control flow graph is incrementally
built, and most functions are compiled—
the only exceptions being static inline, ex-
tern inline, comdat,and nested functions.
These are just stored into the call-graph
and compiled only when they turn out to
be necessary (i.e., when symbol is output
into the assembly file).

A similar mechanism is implemented for
file-scope variables. In unit-at-a-time,
all variables are stored into variable pool
data-structure, while in function-at-a-time
mode, all variables are output to the as-
sembly file immediately.

In function-at-a-time mode compilation

is one exception the rule disallowing any

functions that may appear in multiple units and are

changes to the functions passed to thédinked into a single function.
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terminates once parsing is finished, while
in unit-at-a-time it goes into following
stages:

. Analysis phase: The call-graph is built
and local optimization information is
gathered at this stage. To reduce the
amount of work done, the call-graph is
built incrementally and only functions
reachable from the entry points are ana-
lyzed. Since we do not handle any depen-
dency edges on data-structures, the reach-
able data-structures are immediately out-
put into the assembly file and further func-
tions/data structures referenced by them
are added into the work lists via a call-
back from back-end function, outputting
a symbol reference into the assembly file.

The local analysis used to drive inter-
procedural optimizations is also supposed
to happen here. At the moment, the size
of function body is estimated for later use
in inlining.

. Optimization phase: Several optimiza-
tions are performed on the call-graph it-
self in sequence. At the moment follow-
ing optimizations are done:

(a) Reclaiming of memory occupied by
the unused (i.e., unanalyzed) func-
tions and data-structures.

(b) Local function discovery: Aocal
functionis a function that is not an
entry point and whose address has
never been taken. We mark these
functions by special flag, since it
is possible to perform optimizations
interfering with the target ABI on
such functions. For instance on i386
we now use register-passing con-
ventions, but there are considerably
more possibilities for target-specific
optimization here. (In PIC compi-
lation, one can, for instance, avoid

recomputing of global offset table
pointers in the prologues of local
functions, and propagate the compu-
tation into callers.)

(c) Construction of inlining plan: We
make all the inlining decisions in ad-
vance and store them in call graph as
a so-called “inlining plan.” See Sec-
tion 5 for details.

(d) Another pass of unreachable func-
tion removal: in some cases, a func-
tion might be reachable only via a
call in an extern inline function that
was never inlined. Since the body
of the extern inline function is never
output, it is possible to remove all
such functions, too. This scenario is
very common for C++ programs.

Note that it is very desirable not to touch
the function bodies at this stage. In real
whole program optimization, the func-
tions are parsed and stored into “object
files” containing intermediate representa-
tion of the program. The intra-procedural
optimization phase executed in linker then
should not need to load everything into
memory at once and instead use the data
files as a database reading the call-graph
information first and using the function
bodies just later in the compilation phase.

. Expansion: We proceed in reverse DFS

order on functions that are still present in
the call-graph, applying inter-procedural
optimizations such as inlining to the func-
tions, and finally leaving them to the back-
end to do the actual optimization and
compilation.

Function reordering allows more reli-
able propagation of information from the
callee code generation into the caller. For
instance, it is possible to generate a bet-
ter call sequence when the callee’s pre-
ferred stack frame boundary is known.
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Such function ordering would permit im- function with address taken as externally visi-
plementation of more interesting opti- ble function. Optimizers then have to expect
mizations too (for instance simple inter- conservatively that each indirect call and/or
procedural register allocation). On thecall of unknown function might in turn call
other hand, it makes it almost impossi-some of the entry points. The entry points
ble to avoid compilation of some function are merged via flageeded in the call-graph
when its call has been optimized out. Atnode.

the moment we make no attempts to solve ) ) o
this issue: however. in the future we mayFlnally there is a work list used to maintain
want to do early optimization during the nodes that are reachable from the entry points

analysis stage to catch most of these case@nd thus needs to be analyzed or output into the
file.
It also would be also desirable to defer

output of global variables to this stage and3 2  pata-structures for inter-procedural infor-
output only the variables that are still re- mation
ferred by functions after the optimization.

Implementing this feature is easy and wecCall-graph is place to store data needed
hope to do so in the near future. for inter-procedural optimization. All data-
structures are divided into three components:
local_info that is produced while analyz-
3 Data-structures ing the functionglobal_info  that is result
of global walking of the call-graph on the end
of compilation andrtl_info used by RTL

Most of the code in the compilation driver actu-
. back-end to propagate data from already com-
ally manipulates only two data structures, that

is, the call-graph and the variable pool. piled functions to their callers.

The division has been made to make it possible
3.1 The call-graph to reduce memory usage in the future. Each of
the field has different lifetimes and thus they

Thecall-graphconsist of nodes and edges rep_o_lon’t necessarily need to be allocated all the
resented via linked lists. Each function (exter-iMe- At the moment the data-structures are
nal or not) corresponds to the unique node angmall and thus all allocated at once with the

each direct call has corresponding edge fronf!l 9raph nodes, but thegraph_global_
caller to the callee. info , cgraph_local_info , cgraph_
rtl_info accessor functions shall be used to

The mapping from declarations to call-graphaccess the data. These functions already con-
nodes is done using an hash table based on thain sanity checks that enforce the lifetimes of
declarationsDECL_UID, so it is essential that the individual data structures.

the frontend use single declaration ID for each

function or variable. The call-graph nodes ar" the contrast, there is structufenction _
created lazily using thegraph_node func- allocated for each parsed function body tradi-

tion, when an unknown declaration is called. tionally used to store related information by
many other parts of the compiler. This struc-

When the call-graph is built, there is one edgeure has no such organization and it consumes
for each direct call. The indirect calls are notup to 25% of overall memory for some C++
represented at a moment. We simply mark eacprograms. We hope to improve the situation
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by reorganizingstruct function simi-
lar way and moving to the call-graph nodes
some of the data currently held struct
function
the information shall be stored.

3.3 The varpool data structure

In order to allow elimination of unused static
data within the backend, we modified the in-
terface to the output data-structures too. The
varpool module is used to maintain variables in
similar manner as call-graph is used for func-
tions. At the moment it is implemented as
a simple hash table containing entries for all
global data-structures, and a worklist maintain-
ing a list of variables that need to be output into
assembly file. No dependencies or references
are represented explicitly.

4 Front-end API

An important part of the new compilation
driver design is the API to front-end. We tried
hard to make it as easy to use as possible, how-
ever practice has shown that it is not always
trivial to update existing front-ends to the new
philosophy. Hopefully the API will still be nat-
ural to use in the new code.

All functions the front-end programmer shall
be interested in are:

cgraph_finalize_function shall be called

same behavior but is used for file scope
variables.

, remo\/ing redundancies on Wherecgraph_finalize_compilation_unit shall be

called called once parsing of compilation
unit is finalized and trees representing
it will no longer be changed by the
front-end.

In unit-at-a-time mode, call-graph con-
struction and local function analysis takes
place here. Bodies of unreachable func-
tions are released to conserve memory us-
age.

The compilation unit in this point of view
should be compilation unit as defined by
the language—for instance the C front-
end allows multiple compilation units to
be parsed at once and it should call this
function each time parsing is done, in or-
der to save memory. This is not what
happens currently because the C front-end
does global static variable renaming pass
at the very end of compilation. As a result,
unnecessary and duplicate function bodies
are maintained in memory up to very end
of the parsing process.

Modifying the C front-end to use this
scheme is not an easy task. Merging of
C compilation units together involve a lot
of C language specific behavior and we
need to consider whether it is feasible to
implement that logic in the generic pass
or through a some simple set of front-end
hooks.

once front-end has parsed whole body ofcgraph_optimize performs inter-procedural

function and it is certain that the function
body nor the declaration will change.

(As mentioned above, there is one ex-
ception needed for implementing GCC'’s
extern inline functions, but it
should not be used by new code.)

cgraph_varpool_finalize_variable has the

analysis and compile functions in unit-
at-a-time mode (in function-at-a-time
this function does nothing except for
producing debug dumps). Front-end
shall call this function at the very end
of compilation, after releasing all those
internal data-structures that are not passed
to the back-end.
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cgraph_mark_needed_nodecan be wused 5.0.1 Inlining plans

when a function is referenced by some

hidden way (for instance if it is marked

by attributeused , which usually means The function inlining information is decided in

that it is called in inline assembly code). advance (in the optimization phase) and main-

The call-graph data structure is updatedained in the call-graph in the so called inlin-

in a way that function is marked as entrying plan until the function is optimized. Once

point and thus it is never optimized asa function body is physically inlined into an-

local function and always compiled. other, the callgraph data-structure is updated
to reflect new program structure. This orga-
nization is critical to make it possible to save
parsed function bodies into disk and make all
inter-procedural optimizations without actually
touhing the bodies and having them to resist in

_ ~memory all at once.
To overcome problems in the front-end specific

representation of trees, we had to implement he inlining decisions are reflected in the call-
two callbacks that allow a front-end to definegraph as follows: When the heuristics decide to
front-end specific expansion of trees into RTL.inline given call-graph edge, the calle’s node is
We plan to eliminate these completely once thecloned to represent the new function copy that
work on tree-ssa branch is finished. will be later produced by inliner (so each in-
lined call of given function gets unique clone

analyze_expr callback This function should node and all the clones are linked together
lower tree nodes not understood byVia linked list). Each edge has amline_
generic code into understandable ones O,f,alled "field. When the field is set to NULL,

alternatively, should mark referenced call-the call will be inlined. When it is non-NULL
graph and varpool nodes. it contains an reason why inlining wasn'’t per-

formed, that might be eventually output by the
expand_function callback is used to expand injiner when-Winline s specified.

the function into RTL form in front-end

specific way. The front-end should not We originally didn’t clone the nodes and sim-
make any assumptions about when thily had a flag in each edge specifying whether
function can be called. Existence of thisthe given call shall be inlined. This was found
hook is also used as a check on whethesoon to have many limitations. For example,
front-end supports unit-at-a-time API. it is impossible to represent inline plans that
are nottransitive(i.e., once call of functior3

in offline copy of functionA is inlined, each
inline copy of functionA must have the func-
tion B inlined as well). Non-transitive inlining

) i o plans are needed in order to let the programmer
implemented at a moment is inlining we de-¢|aim that all direct and indirect callees shall be
scribe in this section. The inliner implementa-jnjined recursively; experience has shown that

tion can be used as an example how other intefyis kind of control is useful in template-heavy
procedural optimizers can be implemented on-, 1+ numeric code.

the on the top of the new infrastructure, so we
will describe it in greater detail. Reorganizing the code to new scheme also

cgraph_varpool_mark_needed_node
has a similar meaning as function
cgraph_mark _needed_node , butis
used for variables.

5 Inlining Heuristics

Only non-trivial inter-procedural optimization
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turned out to simplify significantly the esti- Toggether with developers from Apple we are
mates of overall code size growth caused byvorking towards a better implementation of
inlining, and allowed to release function bodythis analysis based on tree-ssa representation.
as soon as all of its inline copies are producedThis work is being done tree-profiling branch
and will take into account the runtime call fre-
guencies computed from the profile, allowing
5.0.2 Profitability estimates the compiler to perform a realistic estimate the
costs of individual calls. We also plan to imple-
o . _ . ment a partial specialization pass on functions
Tomake good inlining decisions, the profitabil- ¢ il notice situations where function body
ity of inlining a given call must be estimated. 5 ye significantly simplified when some of its

Ideally, one might take into account the €x-5.4ments are known. This project is however
pected time spent in callee and compute hovgti” far from being finished.

large relative speedup will elimination of the
call overhead is. Itis also desirable to take into
account the new optimization possibilities and
weight it with the expected code size growth.

See for instance [1] for more discussion onthe _ _
topic. As discussed earlier, we provide set of param-

eters to avoid too extreme amount of inlining.
With current very high level and partly front- The final set of parameters are just slightly
end specific intermediate representation it isnore complicated than ones outlined in the in-
difficult to do such a complex analysis andtroduction section:
the profitability analysis actually represent the
weakest spot of our implementation. At a mo-
ment we simply compute estimated functionmax-inline-insns-single sets the maximum
body size in front-end specific way by walk- number of instructions (counted in GCC’s
ing the tree representation and summing cost internal representation) in a single func-
of the nodes. The majority of nodes has a  tion that the tree inliner will consider for

5.0.3 Limiting parameters

cost of 1 with exception of a few nodes that inlining. This only affects functions de-
are known to have zero cost (such as lexical  clared inline and methods implemented in
scope regions or_builtin_constant_p a class declaration (C++). The default

calls) and a few others that are known to be ex-  value is 500.

pensive (such as division or function call) and

are assigned a cost of 10. This imp|ementamaX-inline-insns-auto sets limit on esti-
tion is still a noticeable improvementcompared ~ Mated size of inline candidates when
to previous implementations that were merely ~ -finline-functions (included in
counting number of statements in the source  -O3) is used. The default value is 120.
and completely ignored the different complex-

ities of individual constructs. large-function-insnsis - a limit that
specifies which functions are con-
The cost of inlining given call is estimated sidered to be “large”  for func-
as cost of increasing the callers body cost by  tions greater than this limit, in-
callees cost minus 10 (eliminating the call). lining is constrained by --param
Our objective is to inline as many function calls large-function-growth . This

before reaching given growth limits. parameter is useful primarily to avoid
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extreme compilation time caused by non-cursive calls and its body is called, the calls
linear algorithms used by the back-end.are inlined up to recursion depth computed in
The default value is 3000. a way so function reach size specified by pa-
rameter. This optimization has similar effect

large-function-growth specifies maximal as loop unrolling.

growth of large function caused by
inlining in percent. The default value is

200. 5.0.5 Incremental inlining heuristics

inline-unit-growth specifies maximal overall
growth of the compilation unit caused by The global inlining heuristics can not be used
inlining. This parameter is ignored when in function-at-a-time mode and thus there is an
-funit-at-a-time is not used. The alternative implementation of simple bottom
default value is 150. up inlining heuristics. Most of the code (check-
ing of limits and updating call-graph) is shared
in between the implementations and thus the
5.0.4 Global inlining heuristics implementation is pretty straight forward.

Given the rules established by these five pal "€ major problem of this heuristics appears

rameters, inlining decisions are made in thred® P€ in fact that the overall compilation unit
passes. In the first pass all function calls9roWth argument is ignored. In some ex-

marked with thealways_inline attribute  treme C++ test cases (such as those based on

are inlined, so that other decisions cannot inPOOMA library) the compiler now compiles

terfere with it. faster at-O2 compilation level compared to
-01.

In the second pass inlining of small functions is
performed; all function candidates are put into )
a priority heap ordered by the estimated cost? Experimental Results

of inlining the function into all its callers and

then they are inlined in priority order, updating Evaluating the effectiveness of new infrastruc-
the costs of other enqueued candidates until thieire is difficult task. The benefits (and losses)
heap is empty or the overall unit growth param-vary greatly together with the coding style of

eters reached. the tested application. Very good results can

. . _ be measured in the template heavy C++ code,
This algorithm (often described as knapsack; . as the DLV application or POOMA |i-

style, see [2]) seem to perform better than Simbrary that we use as a benchmark suite. The

ple top-down and bottom-up heuristics result-ye 1 summarizes the results of DLV bench-
Ing In more function cal!s _to b_e |_nI|ne_d with- mark suite evolving over various GCC releases
out breaking the same inline limits dlscussedand it is easy to notice the degradation in per-
above. formance in GCC 3.0, as well as a reduction
In the third pass all functions that are still Of c0de size caused by decreasing inline limits
called just once are inlined unless the called® @void compile time problems as mentioned
body become too large. e_arller. This prot?lem rlemaln.ed apparent un-
til GCC 3.3 despite quite serious attempts to
Finally the fourth pass does so-called “recur-tune the heuristics. GCC 3.4 behaves quite
sive inlining.” When the function contains re- well in both function-at-a-time and unit-at-a-
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time heuristics, but the code size has increasesburce gave savings of 7.4% and 6.6% respec-
noticeably. For this particular benchmark it istively in the overall size of stripped binaries,
possible to reduce the inlining limits somewhatand a partial i386 Open-Office build gave 22%
and get code sizes smaller than GCC 2.95 withsavings. These savings ought to bring a no-
out considerable performance regressions; reiceable improvement in execution time and re-
ducing the limits, however, hurts performanceduction of memory usage too. In addition the
in other benchmarks signalizing that the prof-performance of code shall be improved simi-
itability analysis needs more work. Unfortu- lar way as in the DLV application benchmark
nately it is no longer possible to present GCCpresented here.

3.4 numbers with the old heuristics, but the ini- _ )

tial tests did already show benefits similar adt "émains to discuss the memory usage of the
ones compared to GCC 3.3 so we believe thatompiler. Again it is not difficult to present

majority of the improvements actually come €Xiréme improvements (for example, compil-
from inlining in this particular case. ing the POOMA library only requires 2% of
the memory) as well as extreme regressions: a

The author evaluated number of templatehuge compilation unit consisting of small but
heavy test cases while working on new imple-uninlinable functions will result in arbitrarily
mentation, and the benefits can be virtually in-high unit-at-a-time peak memory usage, with-
finite scaling with complexity of the code. For out increasing peak usage in function-at-a-time
test case based on POOMA library, compila-mode.

tion times went down from 25 minutes to 1
minute with noticeable improvements in exe-
cution time too.

Real world application however show that
compilation units usually require less memory,
both because they are not very large and also
On the other hand, the C and Fortran benchbecause the lifetime data structures used by the
marks shows a much more moderate improvefront-end in unit-at-a-time mode does not over-
ment. Table 3 shows benchmarks made otap with the lifetime of data structures used by
AMD Opteron chip in 32bit and 64bit mode. backend; in addition, unneeded functions and
While majority of the tests improve, the bene-data-structures are released early.

fits are less noticeable. The good news, how- )
ever, are that the unit-at-a-time reduce codd 2Pl 2 shows peak GGC memory usage while

size almost consistently on th@2 level of op- compiling some of relatively large source files.

timization. On the other hand th@©3 scores 1h€ numbers were obtained by compiling
demonstrate that backward inlining can caus&ith --param  ggc-min-expand=0

code size growth without major changes in the~Param ggc-min-heapsize=2048
performance. -Q and examining the GGC debug output

for largest memory usage after the collection.

By comparing the 64-bit and 32-bit scores, oneThe generate.ii is a large test case of
also can notice the benefits of register passingemplate heavy code, whileombine.c is
conventions. one of largest source files of GCC. The graph

) ~of memory usage in unit-at-a-time of the
One area where author was hoping for conside,.. testcase is almost flat demonstrating that
erable improvement is performance of desktogy,q pass releasing unneeded function bodies
applications. Itis difficult to present the bench-g|ease enough memory so the back-end no

marks of the GUI application but the simple |gnger increase the peak. For the C test case
test of compiling x86-64 KDE and Mozilla
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unit-at-a-time from being enabled by default [2] A Comparative Study of Static and

in the future.

7 Contributors

The project would be impossible without fol-
lowing contributions: Steven Bosscher reorga-
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and helped to solve some of issues. Zack Wein-
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Table 1: Speedup in the DLV Benchmark relative GCC 2.95
Execution times in second and relative comparisons to GCC 2.95, smaller is better.

CRISTAL 5.308 5.91s 111.00%d2.67s 239.00% 5.14s 96.00% 4.75s  89.009
21-QUEENS 6.355 7.31s 115.009#0.15s 632.00% 5.09s 80.00% 4.86s  76.009
MSTDir[V=13,A=40] 12.58914.46s 114.00%1.77s 332.00% 9.14s 72.00% 8.60s  68.009
MSTDir[V=15,A=40] 12.62314.49s 114.00%1.44s 328.00% 9.15s 72.00% 8.53s  67.009

benchmark GCC2.95 3.04 3.3.2 3.4 -fno-unit. .. 3.4 -funit-at. ..
STRATCOMP1-ALL 2.45524.92s 1017.00%4.68s 191.00% 8.31s  339.00% 2.58s 105.00%
STRATCOMP-770.2-Q 0.499 0.57s 116.00% 1.22s 248.00% 0.47s 95.00% 0.45s 91.00%
20BF1 10.92313.96s 127.00928.68s 262.00941.06s  101.00% 9.33s 85.00%
PRIMEIMPL2 7.529 8.75s 116.009%#3.60s 579.00% 6.27s 83.00% 6.00s 79.00%
3COL-SIMPLEX1 4.689 4.97s 106.00%d1.13s 237.00% 4.56s 97.00% 4.34s 92.00%
3COL-RANDOM1 6.665 8.15s 122.00%88.14s 572.00% 5.95s 89.00% 5.86s 87.00%
HP-RANDOM1 4,939 5.72s 116.009%8.44s 374.00%5.23s  106.00% 4.44s 90.00%
HAMCYCLE-FREE 0.808 1.12s 140.00% 4.96s 620.00% 1.03s  128.00% 0.72s 90.00%
DECOMP2 8.443 9.59s 113.00%83.91s 401.00%8.53s  101.00% 7.87s 93.00%
BW-P5-nopush 4.459 4.85s 108.00%d2.90s 289.00% 4.25s 95.00% 4.19s 94.00%
BW-P5-pushbin 3.795 4.05s 106.00%d2.61s 332.00% 3.44s 90.00% 3.40s 89.00%
BW-P5-nopushbin 1.213 1.31s 108.00% 4.07s 336.00% 1.13s 93.00% 1.09s 90.00%
HANOI-Towers 2.058 2.19s 106.00% 6.21s 302.00% 1.94s 94.00% 1.82s 88.00%
RAMSEY 5.343 5.69s 106.00%46.69s 312.00% 4.83s 90.00% 4.58s 85.00%
(0]
(0]
(0]
(0]
0
(0]
10
0]

STUNdir[V=13,A=40] 6.479 7.57s 117.00%25.48s 393.00% 4.96s 76.00% 4.61s  71.009
TIMETABLING 7.083 7.37s 104.00%d8.21s 257.00% 6.30s 88.00% 5.90s  83.009
compilation time 2m42s2m53s  106.792m47s  103% 2m9s 79.692m?28s 91.39
Code size 1251k 622k  49.7% 1562k 124.8%1808k 144.5%1628k  130.19

test optimization level| function-at-a-time| unit-at-a-time| savings
generate.iil -O0 33563K 32606K| 2.9%
generate.iil -O1 33462K 32606K| 2.9%
generate.ii -02 43296K 33239K 30%
generate.ii -O3 >55077K 33411K| >64%
combine.c| -O0 3655K 3625K| 1.1%
combine.c| -O1 3199K 3531K| -11%
combine.c| -0O2 3450K 3609K | -4.0%
combine.c| -O3 6245K 4086K 52%

Table 2: Peak GGC memory usage
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Table 3: 64-bit SPECint 2000 -fnon-unit-at-a-time compared to -funit-at-a-time
Performance (relative speedup in percent, bigger is better):

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twalig
-02 -0.89 1.22 0.72 0.00 0.42 0.35 3.514.84-1.19 3.27 0.12 ;0.286
-02 -m32 -0.71 4.02 0.21 -0.19 -1.60 0.1510.39 1.64 -1.82 -0.19 0.14 :0.8&
-0O3 -0.52 4.08 0.93 0.00 0.36 0.34 5.27 0.00 0.50 -0.50 -0.38 @.2T
-O3 -m32 -0.50 7.77 -1.93 0.00 -1.89 -0.71 6.36 0.96 0.26 1.52 -0.28 0.63
-O3 + profile -1.78 3.91 0.19 0.00 -0.37 -0.35 3.84 391 -6.37 -1.61 0.49 ;0.0@
-O3 -m32 + profile|-0.96 10.04 0.52 0.18 0.10 0.42 10.16 2.78 -0.89 -0.63 0.95 |2.02

File size (relative increase of the size of stripped binaries in percent):

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 tydbtal
-02 -20.42 -5.62 -2.08 0.00 -0.02 0.00 -8.58 -1.08 -0.10 -1.41 0.00 2483
-02 -m32 -19.93 -2.66 -2.47 0.00 0.10 -0.03 -7.98 -0.89 -0.09 -0.87 0.00 -20H!
-03 -13.79 -1.47 5.14 0.00 3.68 4.17 -3.89 4.45 222 1.13 12.36 |23
-03 -m32 -12.72 3.62 5.48 0.00 4.33 5.28 -3.66 4.87 2.81 1.01 18.79 | B48!
-03 + profile -14.41 -1.33 5.18 0.00 2.35 4.12 -3.60 4.95 2.58 0.72 13.23 |[2&2
-O4 -m32 + profile|-12.30 3.66 5.66 0.00 4.34 5.43 -3.68 5.21 2.99 1.02 18.29 B9

Performance (relative speedup in percent, bigger is better):

options wupwise swim mgrid applu mesa art equake ammp |dpsal
-02 0.00 0.14 0.00 0.00-0.70 0.32 -0.13 0.00 0@OO
-02 -m32 -0.13 0.00 0.00 0.00 -1.36 1.48 0.72 0.00 0@Q7
-03 0.00 0.00 0.00 0.17 -3.51 0.63 4.87 0.00 0M04
-O3 -m32 1.36 0.29 -0.18 0.00 4.67 1.89 3.75 0.00 0102
-O3 + profile feedback 0.11 0.43 0.00 0.00 3.351.92 1.74 0.00 0M86
-O3 -m32 + profile feedback 0.00 0.00 0.18 0.00 7.36 2.80 3.01 0.00 010Q9

File size (relative increase of the size of stripped binaries in percent):

options wupwise swim mgrid applu mesa art equake ammp |apstal
-02 0.00 0.00 0.00 0.00 -1.73 0.00 0.00 0.00 0-047
-02 -m32 0.00 0.00 0.00 0.00-1.32 0.00 0.24 0.00 0-015
-03 0.00 0.00 0.00 0.00 -0.23 0.00 0.85 0.00 0-006
-03 -m32 0.00 0.00 0.00 0.00-0.24 1.35 5.57 0.00 0.002
-03 + profile feedback 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 0.00 0:007
-0O3 -m32 + profile feedback 0.00 0.00 0.00 0.00 -0.21 1.43 5.16 0.00 0.0003
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Abstract Although GCC already contains size reducing
algorithms, further optimization techniques are

) _ .. needed since GCC is already used for compil-
Though compilers usually focus on optimizing jng for handheld devices. The official com-

for performange, the size_ of the generated COdBiIer for the increasingly popular Symbian OS-
has only received attention recen_tly. _On 9€Nhased mobile phones is GCC [8], some PDAs
eral desktop systems the code size is not thiye the iPAQs already have Linux ports [9]
biggest concern, but on devices with a limited(here, needless to say, the default compiler is

storage capacity compilers should strive for 8%CC) and Linux-based mobile phones are also
small a code as possible. GCC already cong, qijaple.

tains some very useful algorithms for optimiz-

ing code size, but code factoring — a very pow-In this paper we will provide an overview on
erful approach to reducing code size — has notode factoring, a class of powerful optimiza-
been implemented yetin GCC. In this paper wetion techniques for code size reduction, and
will provide an overview of the possibilities of present a new, enhanced algorithm for proce-
using code factoring in GCC. Two code fac-dural abstraction. These algorithms have been
toring algorithms have been implemented samplemented in GCC and have resulted in 3%
far. These algorithms, using CSIiBE as a bencheode size reductions on average, while achiev-
mark, produced a maximum of 27% in codeing a 27% reduction in the best cases, based on
size reduction and an average of 3%. the CSIBE benchmark [5].

The rest of the paper is organized as follows.
1 Introduction In Section 2 we introduce code factoring and
present a new enhancement for procedural ab-
straction. In Section 3 we discuss some de-
In the recent years handheld devices such agils of the implementation of the algorithms
PDAs, telephones and smartphones are becorih GCC, while in Section 4 we give our experi-
ing more important. With these systems themental results. Finally, in Section 5 we present
amount of runtime memory and storage capaceur conclusions and future plans.
ity is often very limited but at the same time
the need for more sophisticated software is in-
creasing. Hence powerful size reducing meth-
ods are required to cram new features into the
applications.
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2 Code Factoring : .

A

B A
Code factoring is the name of a class of use-_.—~ > E
ful optimization techniques developed explic- 8 IIE B
itly for code size reduction [1, 2, 3, 4]. These | E H . PN
approaches aim to reduce size by restructurt (F; ? A 8 3 '
ing the code. The following subsections will | R G F A
discuss two code factoring algorithms, one  ——w— e
of which works with individual instructions, K G

. . . L K

while the other handles longer instructions se- T L

quences.

~~
QD
=
~
O
~

2.1 Local Factoring

Figure 1: Local code factoring. CFG (a) be-

The optimization strategy of I_ocal factorlr_lg fore and (b) after the transformation. Identical
(also known as local code motion, code hoist-

) o ) ’ . letters denote identical instructions.
ing and code sinking) is to move identical in-
structions from basic blocks to their common _
predecessor or successor, if they have any. Theiccessor block for them. Figure 4 shows an
semantics of the program have to be preservegxample CFG for this case.
introduce new onesyma begmos)ed Fiqure 1creation of a new basic block, local factoring

y - "1OUT€ 24 a5 an additional benefit of being good for per-
shows a control-flow graph (CFG) with basic

o . ) formance also.

blocks containing identical instructions. To ob-
tain the best size reduction some of the instruc- _
tions are moved upwards to the common pre2-2 Procedural Abstraction
decessor, while some are moved downwards to
the common successor. Figure 1b shows th@rocedural abstraction is a size optimization
result of the transformation. method which, unlike local factoring, works

. . with whole single-entry single-exit code frag-
Let us now consider some more complicateqnents (instruction sequences smaller than a ba-

cases. While not frequent, it may occur thalgic piock, whole blocks or even larger units)

multiple basic blocks have more than one prejngieaq of single instructions. The main idea
decessors, all of which are common.

In thisef this technique is to find identical regions of

case, if the basic blocks in question have ide”tode, which can be turned into procedures, and

tical instructions and the number of predecessgp replace all occurrences with calls to the
sors is less than the number of the examineﬂe\my created subroutine.

blocks, then the instructions shall be moved to

all the predecessors. Figure 2 depicts this cas@he existing solutions [2, 4] can only deal with
A similar situation is when basic blocks havesuch code fragments that are either identical
more than one common successors (see Figr equivalent in some sense or can be trans-
ure 3.) Furthermore, in the case of sinking everformed somehow (e.g. by means of register re-
those instructions that are not present in all ohaming) to an equivalent form. However, these
the blocks may be moved by creating a newapproaches fail to find an optimal solution for
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(a) (b)
Figure 4: Basic blocks with multiple common

Figure 2: Basic blocks with multiple common Successors but only partially common instruc-
predecessors (a) before and (b) after local facions (a) before and (b) after local factoring.
toring.

of differing lengths without the overhead of su-
I I | perfluous call/return code. The longest possi-
A D = ble sequence shall be chosen as the body of
the new function and entry points need to be

B E G
N> K> defined according to the length of the match-
H I C C

OWX> |«
mO O
O®T

ing sequences. Each matching sequence has to
7 7 H | be replaced with a call to the appropriate en-

1 ' try point of the new function. Figure 5d shows
(a) (b) the optimal solution for the problem depicted
in Figure 5a.

Figure 3: Basic blocks with multiple common Neegless to say, procedural abstraction intro-
successors (a) before and (b) after local factorg ces some performance overhead with the ex-
Ing. ecution of the inserted call and return code.

Moreover, the size overhead of the inserted

those cases where an instruction sequence f&de must also be taken into account. The ab-
equivalent to another one, while a third one isStraction shall only be carried out if the gain
only identical with its suffix (as shown in Fig- resulting from the elimination of duplicates ex-

ure 5a). The current solutions either choosé&€€ds the loss arising from the insertion of ex-

to abstract the longest possible sequence into%2 Instructions.

function and leave the shorter one unabstracted

(Figure 5b) or _turn the ins_tructions common ing Implementation details

all sequences into a function and create another

new function from the remaining common part _ ) o
of the longer sequences, thus introducing th&CC already contains some algorithms similar

overhead of the inserted extra call/return codd® those discussed in Section 2, but they usu-
(Figure 5¢). ally reduce code size only if the transformation

does not introduce a (significant) performance
In this paper we propose to create multiple-overhead. Furthermore, they are usually of less
entry functions in the cases described above tpotential than the previously described ones.
allow the abstraction of instruction sequencedhe cross-jumpingalgorithm merges identical
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: : resentation algorithms can optimize only one

' D G function at a time. Although procedural ab-

. é . CEQA ‘/call gtrgctiqn is inhe.rently' an interprocedural op-

A £ E A £ timization technique, it can be adapted to in-

traprocedural operation. Instead of creating

B B B B B a new function from the identical code frag-
ments, one representative instance of them has

C F H C ret to be retained in the body of the processed

function and all the other occurrences will be
replaced by code transferring control to the

-]
-

-]

{

@) (b) retained i_n_stance. To preserve the semar_1tics
of the original program, however, the point
D é where control has to be returned after the exe-
call call } ¢ cution of the retained instance must be remem-
e D G bered somehow, thus the subroutine call/return
} E Il calll call mechanism has to be mimed. In the currentim-
A ret A plementation we use labels to mark the return
call V—cal‘ﬁch call E addresses, registers to store references to them
e = and jumps on registers to transfer control back
B B to the “callers.”
re ret Unfortunately, the current implementation of

i

1 ! the enhanced procedural abstraction algorithm
F F suffers from the problem of increasing the

' ' compilation time by a factor of 2—4 on aver-

(©) (d) age. This stems from the complex problem of
finding the optimal candidates for abstraction.
Figure 5. Abstraction of (a) instruction se- However, we hope that by applying more effi-
quences of differing lengths to procedures uscient algorithms we will be able to bring down
ing different strategies (b,c,d). Identical lettersthe compilation time factor to a manageable
denote identical sequences. level.

For the sake of simplicity, local factoring has
tails of basic blocks, but this approach can onlybeen split into two parts and implemented in
deal with a very limited subset of the genericGCC as two individual algorithms. One of the
problems of procedural abstraction. Anotheralgorithms implements the hoisting of instruc-
algorithm, calledif conversion has a similar tions, i.e. moving them upwards to their prede-
effect on the code as local factoring when fol-cessor blocks, while the other one is responsi-
lowed by acombinephase. As contrast to local ble for the sinking of the instructions, that is
factoring,if conversionis bound to conditional move them downwards to their successor ba-
jumps. sic blocks. A central problem for both algo-

, _ rithms is to decide whether an instruction may
Both of the new algorithms have been imple-po 1oyeq freely out from its block. An in-
mented as new RTL optimization phases ingction cannot be moved across instructions,
GCC (a snapshot taken from mainline on 2004y, hich yse parameters defined by the instruc-
03-10 12:00:00 UTC). Using the RTL rep-
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tion or define parameters used or defined by theTarget Local  Procedural ~ Combined

instruction. GCC provides methods for gather- Factoring _Abstraction

ing the required definition/use information for arm-elf 0.148% 2.185% 3.120%
; i386-elf 0.701% 1.356% 2.052%

the whole processed function. However, from i686-linux 0.696% 1.448% 2.143%

a local factoring point of view, these methods mésk-elf  0.092% 2.312% 2.401%

are too expensive since only a small portion of

the pomputed m_formatlon_ IS us?d_. ]’herefore.l_able 1: Average code size reduction achieved
the implementation contains a “slim Version, ' . _de factoring alaorithms

of the definition/use calculation code. Being y gayg '
sensitive to the compilation time in the imple-

. , . Target Local Procedural Combined
mentation, we also made it possible to parame- Factoring  Abstraction
terize the maximum number of instructions the arm-elf 3.794% 27.230% 27.342%

algorithms should analyze starting from the top i386-elf 14.621%  13.210% 16.795%

or bottom of the basic blocks when looking for 686-linux  11.592%  13.261%  17.389%
candidates of motion me8k-elf  1.468%  23.174%  23.174%

The implementation of the two algorithms are po o
publicly available. They have been sentin form
of patches to the appropriate mailing list [6, 7].

Maximum code size reduction
achieved by code factoring algorithms.

superior results compared to the existing so-
4 Results lutions. We implemented the discussed al-
gorithms in GCC and achieved a 3% code-

On examining code size we found the code faCsize reduction on average, based on the CSIiBE
toring a|gorithms had impressive effects. WebenChmark. In the best cases the Optimizations
evaluated the discussed algorithms with theyielded reduction ratios as high as 27%.

help of CSIBE, the GCC Code Size Bench- L
. . From the nature of procedural abstraction it
mark Environment, version 1.1.1, and found

) . . foll hat i imize | i -
that a 3% code-size reduction can be achleveg ows that it can optimize larger inputs bet

: er than small ones. To be able to utilize the
on average, but in some cases they are able

) . ; ull potential of the algorithm the current im-
produce reduction ratios as high as 27%. Ta- P g

. ) ) I[:])Iementation has to be modified so that it can
ble 1 details the average code size reductio : . .
work interprocedurally, which means a unit-at-

achieved by each algorithms on some relevant ,. . : ; .
: -time in GCC terminology instead of working
targets. The table also shows the combined et- . :
. ) _Intraprocedurally, i.e. transforming only one
fect of the techniques. The figures are relativ . . : : .
- o2 ._ . function at a time. This may necessitate rewrit-
to the unmodified GCC optimizing for size, i.e. . : . .
ing the implementation so it can work on the

qptlmlzmg with -Os . Table 2 shows the best GIMPLE representation, as some feedback al-
figures for each algorithm.
ready suggested. We are also aware of the algo-
rithm complexity problem and have been striv-
5 Conclusion and future plans ing to improve the implementation in order to
reduce the compilation time by applying more

. , efficient algorithms.
In this paper we gave an overview of two code

factoring algorithms and provided an enhanceWe are already investigating the possibility
ment to procedural abstraction, which providesof making the local factoring implementation
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work on GIMPLE also, even if the algorithm [6] Department of Software Engineering,
cannot be extended to work interprocedurally,
since GIMPLE is now preferred over RTL. Our
preliminary results are very promising.

When we have finished with our ongoing re-

search, we also plan to consider the adaptd¥]

tion and implementation of other algorithms
in GCC such as the procedural abstraction of
single-entry single-exit regions larger than a
basic block or the compaction of matching
single-entry multiple-exit regions.

University of Szeged. [patch] Local fac-
toring algorithms. http://gcc.gnu.
org/ml/gcc-patches/2004-03/
msg01907.html

Department of Software Engineering,
University of Szeged. [patch] Sequence
abstraction. http://gcc.gnu.
org/ml/gcc-patches/2004-03/
msg01921.html

[8] Symbian Ltd. Symbian OS.http://
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Fighting register pressure in GCC
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Abstract is infinite number of virtual registers called
pseudo-registersThe optimizations use them

The necessity of decreasing register pressurré’ store intermediate values and values of small

in compilers is discussed. Various approache¥a”ables' Although there is an untraditional

to decreasing register pressure in compilers argpproach to use only memory to store the vaI_-
ues. For both approaches we need a special

given, including different algorithms of regis- L d .
ter live range splitting, register rematerializa- P35S (or aptimization) to map pseudo-registers

tion, and register pressure sensitive instructio®"© hard registers and memory; for the second

scheduling before register allocation. approach we need to map memory into hard-
registers instead of memory because most in-

Some of the mentioned algorithms were triedstructions work with hard-registers. This pass
and rejected. Implementation of the rest, in-is called register allocation.
cluding region based register live range split-

ting and rematerialization driven by the regis-A, g_(?_od register allocatfor beco_m_es da very
ter allocator, is in progress and probably will Significant component of an optimized com-

be part of GCC. The effects of discussed Oppiler n_owadays b_ecause the gap between ac-
timizations will be reported. The possible di- cess times to registers and to first level mem-

rections of improving the register allocation in ory (cache) wide.ns. for. the high-epd proces-
GCC will be given. sors. Many optimizations (especially inter-

procedural and SSA-based ones) tend to cre-

ate lots of pseudo-registers. The number of
Introduction hard-registers is the same because it is a part of

architecture. Even processors with new archi-

Modern computers have several levels of stort€ctures containing more hard-registers need a

age. The faster the storage, the smaller its sizeg.OOd kr)eglster allqlocator (although in r:ess de-
This is the consequence of a trade-off betweelgree) ec?jusebt € programsl_run OOT these com-
the computer speed and its price. The fastediuters tend to be more complicated too.

storage units are registers (bard registery.  The register allocator is one or more compiler

They are not enough to store the values of 0pgomponents that could be considered as ones
erations and directly referred variables for anysgjying two major tasks (mostly in an inte-
SEerious program. grated way). The first and most interesting one

is to decrease register pressure to the level de-

It is very hard to force any optimization in a : :
compiler (especially in a portable one) to useflned by the number of hard registers by differ-

the hard registers effectively. Therefore mostent _tranhsfocamatl_ons. And thedsecon_d one |?rto
of compiler optimizations is written as if there assign hard registers to pseudo-registers efec-
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tively. Despite its lack of many modern optimizations

present in the new register allocator, the orig-

So what is register pressure? There are W, register allocator can easily compete with
commonly used definitions. The wide one ISthe new one in terms of compiler speed, qual-

the number of hard registers needed t0 StOrgy, of the generated code and size of code. This
values of the pseudo-registers at given progranyas 4 major reason for me to start work on im-
point. - Another one is the number of living h-qying the original register allocator. After

pseudo-registers. thorough investigation, | found that the method

There are a lot of known transformations thatOf @SSigning hard registers is very similar to
decrease register pressure. Some of theége priority based colouringegister allocator

transformations generate code which could anéCh0W84’ Chow30], although itis more similar

should be corrected later. Some transformat® the modifications described in [Sorkin96]. It

tions are easily and naturally integrated with'Vas confirmed later.

other transformations, such as the ones dechoyw's approach is a real competitor to the
creasing register pressure, assigning hard reghaitin/Briggs approach. Some advantages
isters, and fixing the pitfalls of the previous ¢ chow's approach are acknowledged even
transformations (such as register coalescing i?)y Preston Briggs [Briggs89]. Chow’s algo-
a colouring base(_:i register_allocator). Some ofithm is used in SGI Pro64 [Pro64] compiler
them are hard to integrate in one pass. and derived compilers like Open64 [Open64]
and ORC [ORC]. For example, as Briggs’

Currently GCC has two register allocators. The

new one was written about two years agooptimistic colouring, Chow’s algorithm easily

and is described in details in [Matz03]. It finds hard-rggisters for the diamond conflict
is based on the Chaitin, Briggs, and Appelgraph (see Figure 1).

approaches to register allocation [Chaitin81,

Briggs94, Appel96].

The old register allocator (I will call ithe orig-
inal register allocato} has been existing since e e
the very first version of GCC. It was written by

Richard Stallman. Some of its important com- °

ponents stayed practically unchanged since the

first version. Richard Stallman took the regis-

ter allocator design from a portable Pastel (an Figure 1: Diamond graph
extension of the programming language Pas-

cal) compiler written in Livermore Laborato- aj that was mentioned above was a major mo-
ries [Stallman04]. The design of the Pastekjyation to start work on improvement of the

register allocator (which actually was a secontyyiginal register allocator. This article is fo-

version for the Pastel compiler) is very similar o ;sed on improving the original GCC register
to the GCC one [Killian04]—they both have zjjocator. The first section describes the orig-
the same separation on a pass assigning hajigh| GCC register allocator. The second sec-
registers to pseudo-registers and a pass Whigippy describes the method for decreasing the
actually changes the code following the assigntegister pressure for the original register al-
ment and, if it is not possible, generates addijgcator based on register live range splitting.
tional instructions to reload the registers. The third section describes decreasing regis-
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reload pass can solve this task too butin a
less effective manner.

ter pressure based on the live range shrinking
approach. The fourth section describes other
possible improvements to the original register
allocator. The fifth section gives conclusions
from my work.

If register coalescing and global value
numbering (mentioned in Section 4) are a
part of GCC, we could try to remove reg-
ister coalescing from this pass.

1 The original register allocator in
GCC

The instruction scheduler is not a part of the
original register allocator. It is present
just to show GCC’s major passes starting
with the regmove pass. Although the in-
struction scheduler could solve the task
of decreasing register pressure (see sec-
tion “register pressure sensitive instruc-
4( tion scheduling”).

The original register allocator contains a lot of
passes. Figure 2 describes the major passes and
their order.

regmove
(regmove.c)

Regclass.GCC has a very powerful model for
describing the target processor’s register
file. In this model there is the notion of
register class. The register class is a set of
hard registers. You can describe as many
register classes as possible. Of course,
they should reflect the target processor’s

. 1
insn 1
1
]

regclass
(regclass.c)

local global
allocator > allocator - i i i -
S Pt T\ register file. For example, some instruc
metrylglobal tions can accept only a subset of all reg-
Teload N isters. In this case you should define a
post-reload (reloadl.c L i
(postreload.c) [€] (£51029" register class for the subset. Any rela-

\1, tions are possible between different regis-

ter classes: they can intersect or one regis-
ter class can be a subset of another register
class (there are reserved register classes
like NO_REGSwhich does not contain
any register orALL_REGSwhich con-
tains all registers).

Figure 2: The original register allocator

The regmove pass is usually not considered
to be a part of the original register al-
locator. | included it because the pass

The pass regclass (fileegclass.c )
mainly finds thepreferredandalternative

solves one task (register coalescing) pe-
culiar to register allocators. The pass re-
moves some register moves if the registers
have the same value and it can be found in
a basic block scope. Although the major
task of regmove is to generate move in-
structions to satisfy two operand instruc-
tion constraints when the destination and
source registers should be the same. The

register classes for each pseudo-register.
The preferred class is the smallest class
containing the union of all register classes
which result in the minimal cost of their
usage for the given pseudo-register. The
alternative class is the smallest class con-
taining the union of all register classes,
the usage of which is still more profitable
than memory (the clagddO_REGS$ used
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The local allocator assigns

for the alternative if there are no such reg-
isters besides the ones in the preferred
class).

It is interesting to note that the pass also
implicitly does code selection. Regclass
works in two passes. On the first pass,
it defines the preferred and alternative
classes without taking the possible classes
of other operands into account. For ex-
ample, an instruction with two operand
pseudo-registers exists in two variants;
one accepting classésandB, and other
one acceptingc andD. On the first pass,
the algorithm does not see that the variant
with classesA andD will be more costly
because it will require the generation of
additional move instructions. On the sec-
ond pass, the algorithm will take it into
account. As a result the preferred or al-
ternative class of a pseudo-register could
change. This means two passes are not
enough to find the preferred and alterna-
tive classes accurately; but it is a good ap-
proximation.

The file regclass.c also contains func-
tions to scan the pseudo-registers to find
general information about them (like the
number of references and sets of pseudo-
registers, the first and last instructions ref-
erencing the pseudo-registers etc.).

hard-registers
only to pseudo-registers living in-
side one basic block. The result of
the work is stored in the global array
reg_renumber whose element values
indexed by pseudo-register numbers are
hard-registers assigned to the correspond-
ing pseudo-registers.

Besides assigning hard-registers, the local
allocator does some register coalescing
too: if two or more pseudo-registers shuf-
fled by move instructions do not conflict,
they always get the same hard-registers.

T

The global allocator also tries to do this
in a less general way. The local alloca-
tor also performs a simple copy and con-
stant propagation. Itisimplemented in the
functionupdate_reg_equiv

Actually all hard-registers could be as-
signed in the global allocator. Such di-
vision between the local and global allo-
cator has historical roots. In my opinion
it is reasonable to remove the local al-
locator in the future because faster allo-
cation of local pseudo-registers does not
compensate the cost of an additional pass.
If all assigning hard-registers is done in
the global register allocator (but we still
call update_equiv_regs ), GCC is in
average 0.5% faster on SPEC2000 bench-
marks on Pentium 4.

he global allocator assigns hard-registers to

pseudo-registers living in more one ba-
sic block. It could change an assign-
ment made by the local allocator if it

finds that usage of the hard-register for a
global pseudo-register is more profitable
than one for the local pseudo-register.

The global allocator forms a bit-vector
for each pseudo-register containing hard
registers conflicting with the pseudo-
registers, builds a conflict graph for
pseudo-registers and sorts all pseudo-
registers according to the following prior-

ity:

log, Nrefs - Freq

. Si
Live_Length =€

Here Nrefs is number of the pseudo-
register occurrencesfreq is the fre-
quency of its usagelive_Length is the
length of the pseudo-register’s live range
in instructions, and'ize is its size in hard-
registers.

Afterwards the global allocator tries to as-
sign hard-registers to the pseudo-registers
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with higher priority first. If the current
pseudo-register got a hard-register, the
hard-register is added to the hard-register
conflict bit-vectors of all pseudo-registers
conflicting with the given pseudo-register.
This algorithm is very similar to assigning
hard-registers in Chow’s priority-based
colouring [Chow84, Chow?90].

The global allocator tries to coalesce
pseudo-registers with hard-registers met
in a move instruction by assigning the
hard-register to the pseudo-register. It
is made through a preference technique:
the hard-register will be preferred by the
pseudo-register if there is a copy instruc-
tion with them. In brief, the global allo-
cator is looking for a hard-register to as-
sign to a pseudo-register in the following
order:

1. a callee saved hard-register which
is in the pseudo-register’s preferred
class and which is preferred by
the pseudo-register while not be-
ing preferred by another conflicting
pseudo-register.

2. a callee saved hard-register which
is in the pseudo-register’s preferred
class and which is preferred by the
pseudo-register.

3. a callee saved hard-register which
is in the pseudo-register’s preferred
class.

4. as in 1-3 but a caller saved hard-
register (if it is profitable) instead of
callee-saved one.

5. as in 1-4 but the hard-register is
in the pseudo-register’'s alternative
class.

The reload is a very complicated pass. Its

major goal is to transform RTL into a
form where all instruction constraints for

its operands are satisfied. The pseudo-
registers are transformed here into either
hard-registers, memory, or constants. The
reload pass follows the assignment made
by the global and local register alloca-
tors. But it can change the assignment if
needed.

For example, if the pseudo-register got
hard-registeA in the global allocator but
an instruction referring to the pseudo-
register requires a hard-register of another
class, the reload will generate a move of
A into the hard-registeB of the needed
classes. Sometimes, a direct move is
not possible; we need to use an inter-
mediate hard-registet of the third class
or even memory. If the hard-registers
B and C are occupied by other pseudo-
registers, we expel the pseudo-registers
from the hard-registers. The reload will
ask the global allocator through function
retry_global to assign another hard-
register to the expelled pseudo-register. If
it fails, the expelled pseudo-register will
finally be placed on the program stack.

To choose the best register shuffling and
load/store memory, the reload uses the
costs of moving register of one class into

register of another class, loading or stor-

ing a register of the given class. To choose
the best pseudo-register for expelling, the
reload uses the frequency of the pseudo-
register’s usage.

Besides this major task, the reload also
does elimination of virtual hard-registers
(like the argument pointer) and real hard-
registers (like the frame pointer), assign-
ing stack slots for spilled hard-registers
and pseudo-registers which finally have
not gotten hard-registers, copy propaga-
tion etc.

The complexity of the reload is a conse-
guence of the very powerful model of tar-
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get processor’s register file, permitting to2.1 Register renaming
describe practically any weird processor.
Register renaming could be considered as no
Postreload. The reload pass does most of its¢qgt Jive range splitting because no additional
work in a local scope; it generates redun-instryctions need to be generated. We can
dant moves, loads, stores etc. The postzhange a pseudo-register into several ones if
reload pass removes such redundant ingere are multiple independent parts of the
structions in basic block context. pseudo-register's usage. The following is a
high level example when register renaming
could be used.
2 Live Range splitting
for (i
for (i

Live range splitting is based on idea that if
we split the live range of a pseudo-register
in several parts, the pseudo-register in eaclfter register renaming (the pseudo-register re-
live range part will conflict with fewer other named is the variablé), the corresponding
pseudo-registers; less hard-registers will b&ode could look like

needed for all the pseudo-registers. Figure 3 il-

lustrates this. Pseudo-regis®iconflicts with 5, = 0. i < n; i++) { ... }

two pseudo-registe®andC, butinpartland for (i1 = 0; i 1 < k; i_1++) { ... }

2 of its live range the pseudo-register conflicts

only with one other pseudo-register. This optimization was written independently

by Jan Hubicka from SUSE and me. Jan’s vari-
ant is in GCC mainline now. Earlier it was
activated by usingfweb (independent part
of a pseudo-register is traditionally called web
in colouring based register allocator). After
solving the problem of generating correct de-
bugging information it is default forO2 now.
Tables 1 and 2 contain SPEC2000 results for
Pentium 4 with and without register renam-
Figure 3: Live range splitting for pseudo- jng. Although the results are not impressive
register A. for SPECInt2000 (mainly because of perlbmk),

this optimization is a “must be” for any opti-
Live range splitting might require the gener-mizing compiler. In most benchmarks it could
ation of additional instructions; e.g. instruc- considerably increase the performance. The re-
tions storing/loading pseudo-register valuesults look much better for SPECfp2000. The
into/from memory, moving the pseudo-registerreduced register pressure means less instruc-
into/from a new pseudo-register, or just recal-tions for spilling and restoring registers and
culation of the pseudo-register value. Cost ofshorter instructions because hard registers in-
such additional instructions can outweigh thestead of memory are used in more instructions.
benefits of reducing the register pressure. Sés the result code size for Pentium 4 is 0.3%
any live range splitting algorithm should take and 0.6% less in average for SPECint2000 and
this problem into account. SPECfp2000 correspondingly.

A C
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Benchmarks | Base ratio| Peak ratio| Change Benchmarks | Base ratio| Peak ratio| Change
164.9zip 747 750 | +0.40% 168.wupwise 383 385 | +0.52%
175.vpr 531 530 | -0.19% 171.swim 388 395 | +1.80%
176.gcc 891 897 | +0.90% 172.mgrid 229 230 | +0.44%
181.mcf 539 539 | +0.00% 173.applu 293 297 | +1.37%
186.crafty 800 798 | -0.25% 177.mesa 660 658 | -0.30%
197.parser 649 648 | -0.15% 179.art 1605 1583 | -1.37%
252.eon 663 682 | +2.87% 183.equake 315 315| 0.00%
253.perlbmk 1019 939 | -7.85% 200.sixtrack 157 161 | +2.55%
254.gap 831 838 | +0.84% 301.apsi 266 267 | +0.38%
255.vortex 973 961 | -1.23% SPEC{p2000 373 375 | +0.53%
256.bzip2 621 628 | +1.11%

300.twolf 665 671 | +0.90%

SPECint2000 728 726 | -0.27% Table 3: SPECfp2000 for Itanium2 GCC with

-O2 without and with register renaming.

Table 1. SPECIint2000 for Pentium 4 GCC
with -O2 -mtune=pentium4  without and of a variable usage are present naturally in
with register renaming. SSA). He reported about 2% improvement for

SPECIint2000 for Pentium 4. When tree-SSA

Benchmarks | Base ratio| Peak ratio] Change branch becomes GCC mainline, Jan’s imple-
168.wupwise 895 898 +0-332/° mentation probably should probably go away
g;fn"é'mj gég gg% Tg?‘;’(y/z because register renaming is made easier and
173.applu 636 637 | +0.16%| faster during the translation of SSA into nor-
177.mesa 654 656 | +0.31% mal form.

179.art 245 250 | +2.04%

183.equake 984 988 | +0.40% 22 Liveran littin

200.sixtrack 352 406 | +15.34% ' € range splitting

301.apsi 406 405 | -0.25%

SPECfp2000 552 563 | +1.99% The idea of this approach is to store a pseudo-

register living through a region but not used in

hthe region right before entering the region and
reload its value right after leaving the region.
It decreases register pressure in the region by
one.

Table 2: SPECfp2000 for Pentium 4 GCC wit
-O2 -mtune=pentium4  without and with
register renaming.

Register renaming also improves instruc-! have implemented practically the same algo-

tion scheduling by removing some anti- rithm described in [Morgan98]. Morgan’s al-

dependencies. So it could be useful even foPOrithm works as a separate compiler pass. It
architectures with many hard registers like IA-Starts work on the topmost loops with the reg-
64. Table 3 contains SPECfp2000 results fofSter pressure higher than the number of avail-
ltanium 2 with and without register renaming. @P1e hard-registers. It searches for pseudo-

The code size for SPECfp2000 was also 0.249F€9iSters living through the loop but not being
less. used there. It chooses a pseudo-register living

through a maximal number of loops (and basic
Andrew Macleod from RedHat also imple- blocks) which are neighbors of the loop being
mented this optimization in the transformationprocessed. Then it spills the pseudo-register
of SSA into normal form (this is made very before the loop(s) and restore the pseudo-
easy on this pass because the independent paregjister after the loop(s). After processing the



92 ¢ GCC Developers’ Summit

loops the algorithm recursively processes sub-
loops. When all sub-loops are processed, the
algorithm tries to decrease register pressure in-
side basic blocks. Figure 4 illustrates how the
algorithm works.

Spill P1

p 1:
re not used

Loo
Pl and P2 4

Spill P3

Loop2:
P3 is not used

Reload P3

P3 is uged here

loop 3:
P2 is used,
Pl is not used

e GCC has a complicated description model
for registers. A hard-register can belong
to more one register class. A pseudo-
register can get a hard-register from two
different classes (see the description of
the original register allocator above). To
calculate register pressure we consider a
pseudo-register belonging to the smallest
register class containing the two pseudo-
register classes (preferred and alternative
ones).

We do not decrease register pressure in-
side the basic blocks. We found that on
most benchmarks this is not profitable.

The current SPECInt95 results for the opti-
mization usage for Pentium 4 are given in Ta-
ble 4. The improvement can be even more for
some benchmarks. For example, Fast Fourier
Transform became 6% faster for Pentium 4

Reload P1
Pl is uged here

Figure 4: lllustration of Morgan’s algorithm of with this optimization, a linear-space Local

live range splitting.

similarity algorithm [Huang91] became 14%
faster, and fftbench [Ladd03] became more

The current implementation is different from 309 faster.

Morgan’s in the following:

Benchmarks | Base ratio| Peak ratio] Change

099.go 68.6 67.8| -1.17%

e Although our implementation also works | 124.m88ksim 72.3 718 -0.69%
on loops, it could be easily modified to | 126-9cc 75.2 74.8| -0.53%
work on any nested regions instead. 129.compress 253 56.4| +1.62%
130.li 78.3 78.0| -0.38%

Instead of spilling the pseudo-register ipto igi:nglg gg:g ;g:g JEE?;//Z
memory before the loop(s) and reloading| 147 vortex 68.1 68.6| +0.73%

it we create a new pseudo-register living|[ SPECint95 69.6 709 +1.87%

only in the loop(s) and inserting instruc-

ﬂog(s)t;: h;ggggofrggggrssge:td?r;;?fr?rjﬁable 4: SPECInt95 for Pentium 4 GCC with
-O2 -mtune=pentium4  without and with

hard-registers (it really can happen in the,. o

) : live range splitting.
reload pass), the move instructions are
coalesced (see the section on coalescinP . S
later in this article). If one pseudo-register see the fOHOW'.ng possible improvements to
gets a hard-register and another one getghe implementation:
memory, the move instructions will be
transformed into memory store and load
instructions.

e Better utilization of profile information to
choose loops with many iterations.
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e Forming regions based on the profile in-whose clobbered registers are live at the end of
formation different from the loops for the basic block.P_Gen; is a set of patterns in ba-
algorithm of live range splitting. sic block whose defined or used locations are
not killed in the basic block after the pattern’s
Choosing pseudo-registers whose livegccurrence and whose clobbered registers are

range splitting does not result in critical not live at the end of the basic block.
edge splitting. As a consequence, no ad-

ditional branch instructions will be gener- After we calculated partial availability of pat-

ated. It could be important for live range terns, we use it as an initial value to calculate

splitting around loops with few iterations. availability of patterns according to the follow-
ing equation.

More accurate evaluation of register pres-

sure for register classes to which a living P-Av17

pseudo-register belongs.

= [ P_AvOut;
JjEPred(i)

P_AvOut; = (P_AvIn; — P_Kill;) | P_Gen;

2.3 Rematerialization The algorithm itself looks like

Instead of reloading a pseudo-register’s value
we could just recalculate it again if it is more
profitable. Such approach is called register re-

foreach insn | defining the
only pseudo-register
if D got a hard-register then

foreach  pseudo-register operand

D do

Op

materialization. Preston Briggs believed that it

is a more promising approach than live range
splitting. It requires that all the pseudo regis-

ters used as operands are live and got hard reg
isters because otherwise we will need to reload
the operand value too. Reloading the operandls
value usually costs the same as reloading the
pseudo-register in question.

if

My current implementation of the register re-
materialization works between global register
allocation and reload passes. To rematerializ
a pseudo-register we insert an existing instruc
tion setting up the pseudo-register’s value. T
know what instructions could be inserted we

fi

done
fi
) done

if

of | do
Op got memory then
Pat := a pattern with a minimal
cost available right before
| and whose the only
destination pseudo-register
is Op and whose all other
operand pseudo-registers
got hard-registers;
there is  Pat and its cost is less
than cost of loading Op then
insert insn before | with pattern
Pat changing Op on D;
change Opin | on D;
break ;

fi

define the partial availability of instruction pat-

terns according to the following equations.  €.0.

P_Pavin;

U P_PavOut,
jEPred(i)
P_PavOut; = (P_PavIn; — P_Kill;)|J P_Gen;

A <- opl
D <- op2
Here P_Kill; is a set of patterns whose de-
fined and used locations (registers or memory)
are redefined or clobbered in basic blockr

if pseudo-registeA got memory and
pseudo-register8, C andD got hard-registers,
the algorithm will work as follows

B ©)
>
D <- opl (B, C)
D <- op2 (D, E)

(A B)

If the second instruction in the example is
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move, the algorithm together with the dead
code elimination will work as

A <- opl (B, C)
->

D <-A D <- opl (B, C)

foreach  basic block BB do
while  the register pressure is too high
in BB do

P := a pattern available and live at
the end of BB with a result
pseudo-register is not used in
and its operands are live
at the end of BB;
if _ there is no such P then
break ;
fi
put insns with pattern P on edges
exiting from BB where P are live;
move the insns to the bottom of CFG as
far as possible along the paths
where P is still available, and
and its operands are live;
update the register pressure in BB and
basic blocks we moved the insns
through;

BB

P

done
done

Table 5 contains results of the optimization for,

SPECint2000 for Pentium 4.
Benchmark Base| Peak| Change
164.9zip 838 | 839 | +0.12%
175.vpr 602 | 598 | -0.66%
176.gcc 1137 | 1146 | +0.79%
181.mcf 715| 715| 0.00%
186.crafty 874 | 875 | +0.11%
197.parser 734 | 734 | 0.00%
252.eon 764 | 763 | -0.13%
253.perlbmk 1145| 1164 | +1.66%
254.gap 954 | 951 | -0.31%
255.vortex 1079 | 1080 | +0.09%
256.bzip2 743 | 745| +0.27%
300.twolf 757 | 767 | +1.32%
Est. SPECint200Q 845 | 848 | +0.36%

Table 5: SPECint2000 for Pentium 4 wiH?2
-mtune=pentium4  without and with regis-
ter rematerialization.

The liveness of a pattern in a CFG point means
that a result register of the pattern is used in an-
other point achieved from the given point. Fig-
ure 5 illustrates how the algorithm works.

P: p3 <= op (pl, p2)

Vi

register pressure
is too high,
p3 is not used

p3 is not used

I
- -~

- N
.- ~s

P is available and live,
pl, p2 are live:

rematerial. of
p3 <= op (pl, p2)

~ .
~ -
----------

p3 is dead

Figure 5: lllustration of Simpson’s algorithm
of rematerialization.

| have implemented Simpson’s approach in
GCC. It gave about 1.3% improvement for

Register rematerialization could be done INSPECint2000 for Pentium 4 on the tree-ssa
a separate pass before the register allocatiooranch. And after deciding to implement Mor-

[Simpson96]. In brief, Simpson’s algorithm

looks like

gan’s live range splitting, | rejected Simpson’s
implementation because | believe that Mor-
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gan’s live range splitting together with regis- 3.1 Register Pressure Sensitive Instruction
ter rematerialization after global register allo- Scheduling
cation will work better. | see the following rea-

sons for this: GCC uses a classical two pass instruction

scheduling approach: instruction scheduling

both before and after the register allocator. It

e It is difficult to know which operand works well for RISC processors with a large
pseudo-registers will get hard-registers inenough number of registers.

the end. Adding instruction rematerializ- _ _ )
ing pseudo-register's value might result in For processors with few registers, however, in-

generation of additional load instructions struction scheduling before register allocation

in the reload pass if the operand pseudo_creates such high pressure that it actually wors-
registers do not get hard-registers. ens the code. Therefore it is switched off for

x86 and sh4.

e Morgan’s approach to live range split- One year ago Dale Johannesen from Apple
ting works in more cases than Simp-added a new heuristic right after the critical
son’s. The instructions shuffling pseudo-path length heuristic. This heuristic prefers in-
registers generated in Morgan’s algorithmstructions with smaller contribution to register
are removed by coalescing and, if it is notpressure. He reported about 2% improvement
possible, rematerialized. for SPECint2000 for PowerPC.

Sanjiv Gupta implemented machine-dependent

e Rematerialization could be done in more . e )
. o ... _register pressure-sensitive instruction schedul-
cases. The single criterion is a profitabil-.

itv not iust hiah redister bressure as in|ng for SH4. He reported a big improvement
y J , g g P for some benchmarks (Table 6) when the first
Simpson’s approach.

instruction scheduler with the register-pressure
heuristic was switched on. Unfortunately, he
did not compare instruction scheduling with
3 Live range shrinking and without the heuristic (probably the re-
sults would be even better because earlier the
first instruction scheduling pass without any

The live range shrinking approach is to moveregister-pressure heuristic was switched off).
the definitions of pseudo-register as close as

possible to their usages. It decreases the nunganjiv’'s implementation is very similar to the
ber of conflicts for the pseudo-register andHsu and Goodman approach [GooHsu88] to
consequently may decrease register pressureegister pressure sensitive instruction schedul-
There are few articles devoted this approacling: when the pressure becomes high, it uses
(one of them is [BalakrishnanQ1]). The rea-register pressure heuristic as major one in-
son for this is in its constraints for modern stead of the critical path length heuristic. |
pipelined processors. Solving this problemhave implemented Hsu’s approach in a ma-
without taking instruction scheduling into ac- chine independent way. My goal was to im-
count could worsen code in many cases. S@rove x86 code by switching on the first in-
live range shrinking mainly became a part ofstruction scheduling pass. Although GCC with
register pressure sensitive instruction schedthe register pressure sensitive approach in the
ulers. first pass generated a more 1% better code for
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Benchmark Base| Peak| Change Benchmarks | Base| Peak| Change
Gsm compression | 31.83| 26.16| +17% 099.go0 68.9| 68.2| -0.73%
Gsm decompression 17.72 | 16.94| +4.4% 124.m88ksim| 52.8| 51.8| -1.89%
cjpeg -dct int 230 234| -1.7% 126.gcc 575| 57.1| -0.70%
cjpeg -dct float 212 2.19 -3% 129.compress 28.0| 27.9| -0.36%
djpeg -dct int 1.53| 1.45 +5% 130.li 58.9| 59.0| +0.17%
djpeg -dct float 1.69| 142| +15% 132.ijpeg 53.1| 50.6| -2.82%
gzip 225 222 +1% 134.perl 79.2| 76.3| -3.66%
gunzip 17.30| 16.69| +3.5% 147 .vortex 50.3| 50.5| +0.40%
Mpgl123 1.29| 1.26 +2% SPECint95 54.0| 53.3| -1.30%
101.tomcatv | 74.1| 75.7| +2.16%

102.swim 139 | 139 | 0.00%

Table 6: Benchmarks for SH4 GCC witfb2 103.su2cor | 22.4| 21.8| -2.68%
without the 1st instruction scheduling and with 104.hydro2d | 24.5| 24.3| -0.82%
the 1st register pressure sensitive instruction | 107.mgrid | 47.71 50.6 | +6.08%
scheduling 110.applu 282 274 | -2.84%
) 125.turb3d 53.2| 514 | -3.38%

141.apsi 325 33.3| +2.46%

145.fpppp 148 | 54.0| -63.51%

146.wave5 77.3| 73.7| -4.66%

SPECITp95 than with the standard first pass, the SPECfp95 522 47.0| -9.96%

results are disappointing in comparison with

GCC without any first instruction scheduling. .
Table 7 contains SPEC95 results for the pro-Table /- SPECI5 results.for Athlon .MP .W'th
grams compiled without the first instruction -02 -.mtune:athlon W'th.OUt the’flrst n-
scheduling pass (default in GCC for x86) andStruction scheduler and with Hsu's register
with Hsu's approach in the first instruction pressure sensitive first instruction scheduling.
scheduler. | used Athlon MP because GCC still

has no pipeline description for Pentium 4. 4  Other improvements of the GCC

The most interesting result is fofpppp original register allocator

the code became practically 3 times slower

(SPECfp95 results would be very close with-4-1 Coalescing

outfpppp. The hot point offppppis the func-

tion with one huge basic block. The registerLive range splitting tends to create unneces-
pressure reaches several hundred there for x8&ary move instructions. As | mentioned above,
GCC. It looks to me like the basic block was we generate additional pseudo-registers and in-
optimized manually to minimize the register structions shuffling them instead of the tradi-
pressure. Any rearrangement of the instructional approach generating instructions spilling
tions results in a higher register pressure, esregisters to memory and restoring them. Even
pecially for x87 floating point top stack regis- if the live range splitting optimization is not
ter. So in my opinion, to make a successfulrun, there are still unnecessary move instruc-
register pressure sensitive instruction schedion generated by the previous optimizations.
uler for x86, we need a more sophisticated apdo remove them, pseudo-register coalescing
proach than Hsu’s on-the-fly approach. Thesés run after the global register allocator. If
approaches should be based on the evaluatidhe pseudo-registers in a move instruction do
of all data flow graphs like a parallel interfer- not conflict we could use one pseudo-register
ence graph [Norris93] or a register reuse grapland remove the move instructions. It is done
[Berson98]. if both pseudo-registers got hard registers or
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both pseudo-registers were placed in memorkernel which usually has strict constraints for
(it means that the move would have been transthe size of the program stack). For example,
formed into instructions moving the memory). the average decrease of function stack frames
The following example describes the two situa-is about 4% with this optimization for Linpack
tions (the number in the parentheses is the hamd86 code. The optimization also improves data
register number given to the pseudo-register):locality and code locality for some architec-
tures like x86 because in many cases smaller
0256 (1) < pl28 (2) displacements in instruction are used (we are
or using the first found stack slot approach). Ta-
p256 (Memory) <- pi28 (Memory) ble 8 shows the text segment’s size decrease
for the SPECfp2000 benchmarks for Pentium

Sometimes, removing a pseudo-register mové. The improved code and data locality con-
instruction when one pseudo-register gets &iderably improves the code. Table 9 shows
hard-register in the global register allocatorthe SPECfp2000 performance results for code
and another one gets memory could be profWithOUt and with the Optimization for Pentium
itable too. The resulting pseudo-register will4-

be placed ip memory afFer (_:t‘)algscing. the two Benchmarks| Base| Peak| Change
pseudo-registers. Profitability is defined by [1ggwupwise| 25128 24648 -1.910%
the execution frequency of the move instruc- | 171.swim 7078 | 7014 | -0.904%
tion and the reference frequency of the pseudo- | 173.applu 58741 | 58453 -0.490%
register which got a hard-register. A typical sit- | 177.mesa | 443993 439369/ -1.041%

: i : Sow : 179.art 12011| 12011| 0.000%
uation when it |s.prof|table IS given on flggre 6. 183.equake | 17026| 17026 0.000%
The pseudo-registgr128got the hard register 200.sixtrack | 844452| 815060 -3.481%
number 2 angh256was placed in memory. 301.apsi 106317 | 103341| -2.799%
Average -1.33%
N
SR Table 8: SPECfp2000 benchmark code
i sizes for Pentium 4 GCC with-O2
Loop: -mtune=pentium4 without and with

no reference for pl28

coalescing the program stack slots.

L

p256 (Memory) <- pl28

(b126 dies herd) The patch improves code and data local-

\L ity, therefore GCC becomes a bit faster.

User time for x86 bootstrapping decreased

from 14m0.150s to 13m58.890s. The better

code and data locality improves SPECFP2000
benchmark results too (about 2.4%).

Figure 6: Coalescing memory and register.

Even if there is no move instruction between _ o

two pseudo-registers which are placed in mem#-2 Register migration

ory (usually on the program stack), we can co-

alesce them. What is the sense of such an optiA/hen the reload pass needs a hard register for
mization? Although the optimization does nota reload, it expels a living pseudo-register from
remove instructions, it decreases the size of théthe hard register assigned to it by the local or
used stack (it is very important for the Linux global register allocator. Then it tries to reas-
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?gg‘?hmarks Base ;agti)o Peak gi?‘) C(;‘gzgl/e The optimization works well with processors
171;‘;"\/‘;&""56 coa 600 +0:83°/Z with irregular register files (which means gen-
173.applu 624 627 | +0.48% eration of more reloads because of strict in-
177.mesa 629 639 | +1.59% struction constraints for input/output registers).
179.art 244 248 | +1.64%

183.equake 964 963 | -0.01% Tables 10 and 11 contain SPEC2000 results
200.sixtrack 337 385 | +14.24% for Pentium 4 for benchmarks whose codes are
301.apsi 401 407 | +1.97% ]  djfferent when the optimization is used. We
SPECInt2000 388 39| +283%|  gee that the code is smaller and the results are

better. Practically the single important degra-
Table 9: SPECfp2000 for Pentium 4 GCC withdation is perlbmk (but it can be fixed by the
-02 -mtune=pentium4  without and with  register rematerialization and live range split-
coalescing the program stack slots. ting mentioned above). Significant improve-
ment for GCC is more important than perlbmk
. . . . degradation because it is more difficult to im-
sign a_free hard register to the pseudo-reglsteligrove GCC than perlomk; 50% of all time of
(functionretry_global_alloc )- Usually V\}oerlbmk is spent in one very specific function.
it f"J?"S especially v_vhen the processor has fe It is regular expression matching. The SPEC95
?Jerlbmk was a more fare benchmark because it
tested the interpreter itself, not regular expres-
%ion matching.

the function. So finally the pseudo-register is
placed in memory. Figure 7 shows an exampl
of such a situation (the pseudo-regispdr28

is expelled from hard registek because it is

) . AR ) Benchmarks| Base ratio| Peak ratio| Change
needed for an instruction which is in the live T75.vpr 594 596 | +0.34%
range ofp128. 176.gcc 1123 1133 | +0.89%

186.crafty 869 877 | +0.92%

A B 197.parser 730 729 | -0.14%
252.eon 765 764 | -0.13%

253.perlbmk 1159 1133 | -2.24%

0256 254.gap 943 944 | +0.11%

Loop: ﬁiii 255.vortex 1052 1056 | +0.38%
256.bzip2 737 735 | -0.27%

B 300.twolf 753 763 | +1.33%

173.applu 771 772 | +0.13%

pl28 177.mesa 720 726 | +0.83%
200.sixtrack 394 392 | -0.51%

p512 301.apsi 486 489 | +0.62%

Table 10: SPEC2000 for Pentium 4 GCC with
-O2 -mtune=pentium4  without and with

Sometimes it is more profitable to use an-the register migration.

other hard register§ in the example) instead

of memory for the pseudo-register. It might This optimization makes GCC a bit faster too
be possible by expelling another rarely usedthe compiler bootstrap test on Pentium 4 is
pseudo-registerp56 and p512in the exam- 0.13% faster with the optimization). As for

ple) from their hard registers. In their own turn architectures with more regular register files,
the expelled pseudo-registers can also migraté.found that three SPECfp95 test codes for

Figure 7. Case for the register migration.
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Benchmarks|  Base| Peak| Change defined or clobbered in basic blo¢k
175.vpr 128917| 128949| 0.025%

176.gcc 1241720| 1241440| -0.022% no definition of p128
186.crafty 204846| 204878| 0.016%

197.parser 85436 85420 -0.019%

252.eon 480338| 480354| 0.003% Loop:

253.perlomk| 473971| 473667 -0.064% 128 < ...

254.gap 421816| 421592| -0.053%

255.vortex 568904| 569128| 0.039% \L

256.bzip2 28133| 28117 -0.057%

300.twolf 181055| 181055| 0.000% oo <= p128

Average -0.013%

173.applu 58741] 58741] 0.000% \l/

177.mesa 443993| 443049| -0.213%

200.sixtrack | 844452| 843892 -0.066%

301.apsi 106317| 106317| 0.000%

Average -0.070% Figure 8: A typical case when accurate life in-

formation is different from the standard one.

Table 11: SPEC2000 benchmark cod
sizes for Pentium 4 GCC with-O2

-mtune=pentium4 without and with
the register migration.

©This information is actually inaccurate because
according to it a pseudo-register may live be-
fore the first assignment to it. Figure 8 demon-
strates such situation. The first assignment to
pseudo-registgpl28happens in the loop. Ac-
PowerPC were different (applu, turb3d, andcording to GCC life analysig128will live in
waveb5). Test applu was sped up about 1% (tw@ny basic block where there is a path from the
others had the same result). basic block to the loop. Such inaccurate live

information results in bigger evaluated register
4.3 More accurate information about register  pressure and worse register allocation because

conflicts pl128conflicts with all pseudo-registers in the

basic blocks preceding the loop.

The original register allocator used standard o )
live information to build a conflict graph. To make the live information more accurate

This live information is based on the most(R€alLive sets) in building conflict graphs we
widely used definition of pseudo-register live- ¢ould use the partial availability according to
ness: RegisteR lives at pointp if there is a  the following equations:

path fromp to some use oR along WhichR  pu,rp, = ) PawOuw,

is not redefined. The live information is de- jePred(i)

scribed by the following data flow equations; @vQuti = (PavIni — Kill;) J Gen;

Liveln; = (Li t; — Def; i . .
z've " (LiveOu . cfi)UUse RealLiveIn; = LivelIn; () PavIn;
LiveOut; = U Liveln,

jeSuce(i) Real LiveOut; = LiveOut; [ PavOut;

Liveln; andLiveOut; are sets of registers cor-

respondingly living at the start and at the end ofPavIn; and PavOut; are sets of registers cor-
basic block. U se; is the set of registers used in respondingly partially available at the start and
basic blocki and not redefined after the usageat the end of basic block Kill; is the set
in the basic block.Def; is the set of registers of registers killed (clobbered) in basic block
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1. Gen; Is the set of registers defined in ba-are different. | believed that most cases be-
sic blocki and not killed after their definition long to this category. GVN even in such
in the basic block. form is still an expensive optimization and a

bit complicated because reaching definitions
It seems that there are few cases where Reglyychnick97] have to be used for this (usually
Live and Live sets are different. In reality there gy is fulfilled in SSA). There are few tests
are a lot of benchmarks whose code is differ{ynere GVN results in different code (e.gon
ent when the accurate live information is used 4 perlbmk SPECint2000 tests for x86. Eon
Tables 12 and 13 contains SPECOS results f0f54 the same performance, perlbmk was about
tests which have a different code when morgy 2, faster). So | think the usage of such opti-
accurate information is used. mization in GCC is not reasonable.

Benchmarks| Base ratio| Peak ratio| Change

126.gcc 80.8 81.4 | +0.74% 4.4 Better utilization of profiling information

130.li 86.4 86.6 | +0.23%

132.ijpeg 79.5 80.0 | +0.63% o _ ) N
134.perl 86.8 87.9 | +1.27% The original register allocator mainly utilizes
141.apsi 57.6 58.0 | +0.69% profiling information in its work. But there are
146.waves 95.6 95.8| +0.21% some instances where it is not true. One such

place is the calculation of profitability of us-

Table 12: SPEC95 for Pentium 4 GCC withage of caller-saved hard registers for pseudo-

-02 -mtune=pentium4  without and with  registers crossing function calls. Currently it is
the accurate life information. based on number of the crossed calls and num-

ber of the pseudo-register usages. Usage of the
frequencies of the crossed calls and the pseudo-

Benchmarks Base Peak| Change
126.gcc 1102160| 1101830] -0.030% register usages instead of the numbers can im-
130.i 44047| 44031 '0-0362/0 prove the generated code especially when the
132.ijpeg 120904 120808 -0.079% execution profile is used. Tables 14 and 15 con-
134.perl 233331| 233315/ -0.007% ) .
141.apsi 103221 103205| -0.016% tain SPECfp2000 results for Pentium 4 when
146.wave5 96668| 96668| 0.000% the profile is used.
Average -0.028%
Benchmarks | Base ratio| Peak ratio| Change
. 168.wupwise 996 1006 | +1.00%
T_able 13: S_PEC95 benchm:_;lrk code | 171 swim 921 928 | +0.75%
sizes for Pentium 4 GCC with-O2 172.mgrid 702 703 | +0.14%
-mtune=pentium4 without and with 173.applu 766 771 | +0.65%
the accurate life information. 177.mesa 734 739 | +0.68%
179.art 381 384 | +0.78%
183.equake 1217 1226 | +0.74%
Another way to decrease the number of con-| 509 sixtrack 454 456 | +0.44%
flicts and as a consequence improve the reg-q 301.apsi 450 479 | +6.44%
ister allocation is to consider the values of | SPECip2000 688 696 | +1.16%

pseudo-registers. Pseudo-registers may get the

same hard-registers if they hold the same Val”%able 14: SPECfp2000 for Pentium 4 GCC
in every point where .they I.ive simultaneously. with -O2 without and with caller-saved regis-
Global value numbering [Simpson96] could beter profitability based on frequency. The profile

information is used.

used for this. | have tried a simplified ver-
sion of GVN where all operators except copies
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Benchmarks Base Peak| Change Benchmarks Base Peak| Change
168.wupwise| 25384 | 25320 -0.252% 168.wupwise| 24872 | 24792 -0.322%
171.swim 7174 7174 | 0.000% 171.swim 7142 7142 | 0.000%
172.mgrid 10015| 10111| 0.959% 172.mgrid 9791 9807 | 0.163%
173.applu 59405| 59509 | 0.175% 173.applu 58197 | 58317 | 0.206%
177.mesa 433609 | 434105| 0.114% 177.mesa 456005 | 458773 | 0.607%
183.equake | 16386| 16418| 0.195% 179.art 13254 | 13494| 1.811%
179.art 12123| 12235| 0.924% 183.equake | 16724 | 16788| 0.383%
200.sixtrack | 835724 | 838972| 0.389% 200.sixtrack | 830268 | 831468| 0.145%
301.apsi 104573| 104837 | 0.252% 301.apsi 103981| 103773| -0.200%
Average 0.31% Average 0.31%
Table 15: SPECfp2000 benchmark code size$able 17: SPECfp2000 benchmark

for Pentium 4 GCC withO2 without and with code sizes for Athlon GCC with-O2

caller-saved register profitability based on fre-—-mtune=athlon without and with caller-

guency. The profile information is used. saved register profitability based on frequency.
Profile information is not used.

The results could be better even without the ) . .
profile information. Tables 16 and 17 con- permits to remove redundancy only in basic

tain analogous results without the profile forPIOCKS.

Athlon. | was going to implement global redundancy
elimination as the next logical step. Fortu-

Benchmarks | Base ratio| Peak ratio| Change nately, it was already done independently by
168.wupwise 533 551 | +3.38% !

171.swim 428 441 | +3.03% Mostafa Hagog from IBM. For PowerPC G5 he
172.mgrid 404 404 | 0.0% reported 1.4% improvement for SPECint2000
173.applu 344 341 | -0.87% (with stunning 15% improvement for perlbmk)
177.mesa 623 632 | +1.44% | and 0.5% degradation for SPECfp2000 (see ta-
179.art 165 163 | -1.21% le 18

183.equake 404 403 | -0.25% ble 18).

200.sixtrack 369 368 | -0.27%

301.apsi 282 287 | +1.77% .

SPECINt2000 372 375 w081 ° conclusions

As | wrote, the priority-based colouring
register allocator can compete with the
Chaitin/Briggs register allocators. Therefore |
believe we should work on the original register
allocator as much as on the new register allo-
cator. It is good to have two register allocators
to choose the better one, depending on archi-
tecture used.

Table 16: SPECfp2000 for Athlon GCC with
-O2 -mtune=athlon without and with
caller-saved register profitability based on fre-
guency. Profile information is not used.

4.5 Global common subexpression elimination

As | wrote, the post-reload pass of the originalThere are a lot of ways to improve the origi-
register allocator removes redundant instrucnal register allocator's code. The most inter-
tions (mostly loads and stores) generated bysting one is live range splitting integrated with
the reload pass. It uses the CSE (common sulthe register allocator. This is the single impor-
expression elimination) library for this. This tant part which is missed in the original GCC
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Benchmarks | Base| Peak| The impfovem‘gm | am grateful to my company, RedHat, for the
igg'sz'rp gg 282 _f'g(ﬁ attention to improving GCC and for permitting
181:rfcf 500| 500 0.0% me to work on this project. | would like to
186.crafty 868 | 872 0.5% thank my colleague Andrew MacLeod for pro-
197.parser 679 | 681 0.3% viding interesting ideas and his reach experi-
252.eon 828 | 819 -1.1% ence in register allocation.
253.perlbmk | 730 | 844 15.6%
ggg-gaa géé ;gg igZ" Last but not least, | would like to thank my son,
.vortex RSy ] . . . .
256.bzip2 619 | 622 0.5% Serguei, for the help in proofreading the article.
300.twolf 605 | 606 0.2%
Est. SPECint| 702.2| 712.0 1.4% References
168.wupwise| 895| 895 0.0%
171.swim 249 249 0.0%
172.mgrid 643 | 643 0.0% [Appel96] L. George and A. Appellterated
ﬁgapplu ggz ggg S-g‘o’f Register Coalescing ACM TOPLAS,
.mesa A%
178 galgel 696 | 697 0.1% Vol. 18, No. 3, pages 300-324, May,
179.art 624| 590 5.4% 1996.
183.equake 996 994 -0.2% . ) ]
187 facerec | 1142 | 1143 0.1% [Balakrishnan01] Saisanthosh Balakrishnan
188.ammp 398 | 398 0.0% and Vinod Ganapathy,Splitting and
189-:}10&330' 838 ggg 8-02/0 Shrinking Live Range<CS 701, Project
191.fma 7 -0.1% i i q _
200.sixtrack | 578 | 562 -2.8% gi’nFalait(z)q/}\;V\-/erveclsJ?/\I/\i/:ctségu(/)f Wiscon
301.apsi 554 | 554 0.0% g : "o :
Est. SPECfp| 656 | 653 0.5% ~saisanth/papers/liverange.
pdf ).
Table 18: SPEC2000 results for PowerPC G3Berson98] D. Berson, R. Gupta, and
GCC with -O3 without and with postreload M. Soffa, Integrated Instruction Schedul-
global redundancy elimination. ing and Register Allocation Techniqyes

Languages and Compilers for Parallel

register allocator from Chow’s algorithm. In Computing, pages 247-262, 1998.

comparison with the Chaitin/Briggs approach,[Briggsg9] Articles of Preston Briggs in com-
the priority-based colouring register allocator piler newsgroup, Nov. 1989.

has an advantage, which is easier implementa-

tion of good live range splitting based on regis-[Briggs94] P. Briggs, K. D. Cooper, and

ter allocation information. It will probably re- L. Torczon.Improvements to graph color-
quire closer integration of the reload pass and ing register allocation ACM TOPLAS,
the global register allocator. \Vol. 16, No. 3, pages 428-455, May 1994.

[Chaitin81] G. J. Chaitin, et. alRegister al-
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Autovectorization in GCC

Dorit Naishlos
IBM Research Lab in Haifa
dorit@il.ibm.com

Abstract before all the stores (into array a); This means
that loops like the one in Figure 1d, where each

Veectorization is an optimization technique thatlt€ration uses a result from a previous iteration,
has traditionally targeted vector processors?a”r_‘c’t be rewritten in vector form. This S|tua-.
The importance of this optimization has in-tion is an example _ofad_ata—dependence that is
creased in recent years with the introduction off@ried across the iterations of the loop. When
SIMD (single instruction multiple data) exten- N such dependences between loop iterations
sions to general purpose processors, and witRXiSt, operations from different iterations can
the growing significance of applications thatPe |n|t|gted in parallel, and vectorlzatllo.n may
can benefit from this functionality. With the P€ applied. Data dependence analysis is there-
adoption of the new Tree SSA optimizationfor_e a_fundamental step in the process of vec-
framework, GCC is ready to take on the chal-torization.

lenge 0(; autc_)t;n attrllc \éectorlzatlé)_n. :n th'st pt"_’"Vectorization, when applied automatically by a
perwe describe he design and implementa 'O'Eompiler, Is referred to amutovectorizationin

of a loop-based vectorizer in GCC. We dlscus%is paper, we use the two terms interchange-

the new issues that arise when vectorizing forably to refer to compiler vectorization.

SIMD extensions as opposed to traditional vec-

torization. We also present preliminary resultsin recent years, a different architectural ap-
and future work. proach to exploit a similar kind of data par-
allelism has become increasingly common. It
follows the Single Instruction Multiple Data
(SIMD) model, in which the same instruction

) ] . __simultaneously executes on multiple data el-
Vector machines were introduced inthe 1970’sg meants that are packed in advance in vector

to increase processor utilization by accelerat'registers. The length of these vectored-

ing the initiation of operations, and keeping the;, length is relatively small. The number of
instruction pipeline full. To take advantage of 45i5 elements that they can accommodate de-
vector hardware, programs are rewritten usingarmines the degree of paralleliswegtoriza-
explicit vector operations on whole arrays (as;gn factor, VF) that can be exploited. This

in Figure 1b) instead of operations on individ-,5/,e varies depending on the data-type of the
ual array elements one after the other (as ijements.

Figure 1a). This rewrite of loops into vector
form is referred to asectorization3]. Vectorizing the loop in Figure la for SIMD

o o therefore implies transforming it to operate on
The vector notation in Figure 1b implies that\/g ojlements at a time, as illustrated in Fig-
all the loads (from arrays a and b) take place

1 Introduction
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(2) original serial loop: As we show in the following sections, practical

forgE]O'_K;\[‘i'] ':*%{[i], vectorization for vector processors, and in par-

} - ’ ticular the more recent SIMD processors, in-
volves much more than loop dependence anal-

(b) loop in vector notation: ysis and introduces some nontrivial issues and

a[0:N] = a[0:N] + Db[O:N]; choices especially for a multi-platform com-

(c) vectorized loop: piler like GCC.

for (i=0; i<(N-N%VF); i+=VF){

ali:i+VF] = ali.i+VF] + b[i:i+VF]; . . .
} WHVE] = aliieVE] + bl v 2 Classic Vectorization vs. SIMD
for (50 < N;i++) { Vectorization

afi] = afi] + bfil;

(d) unvectorizable loop (dependence cycle): Autovec?orlzatlon. IS a mature resear_ch area,
for (i1 i<N: i++){ automatic detect!on of vef;tor loops in serial
ali] = afi-1] + bli; code has been discussed in literature for more
} than adecade [1, 20]. The main focus of classic
vectorization is the theory of data dependences.
It deals with loop analyses to (1) detect state-
ments that could be executed in parallel with-
out violating the semantics of the program, and
ure 1c. This is generally equivalent to strip-(2) increase such occurrences by means of loop
mining the loops by a factovF, while replac- transformations.
ing scalar operations with equivalent vector op-

erations. A serial loop that computes the re-Th€ classic (data-dependence based) vector-

mainingN%\V Fiterations is also added for the ization approach has traditionally targeted the
case thaN does not evenly divide byF. vector machines of the 1970’s. Two main de-

velopments in recent years have shifted the fo-
Applications in many domains have an abun-cus to vectorizing for the modern SIMD archi-
dant amount of natural parallelism presentectures. One is the proliferation of SIMD ca-
in the computations they perform. If this pabilities in modern computing platforms, in-
parallelism can be leveraged to exploit thecluding gaming machines [18], Digital Signal
SIMD/vector capabilities of architectures, theProcessors (DSPs) [7, 10], and even in general
performance of these applications can be conpurpose processors [15, 8]. The second factor
siderably increased. is the growing significance of applications that

S can benefit from SIMD functionality, particu-
The GCC vectorizer implements a Ioop-basecjany those in the multimedia domain.

vectorization approach, which means that it fo-

cuses on exploiting the data parallelism presenthe classic vectorization theory does not ap-
across loop iterations. Data parallelism presenply very successfully to SIMD machines [16],
in straight-line code is not leveraged by thefor several reasons. Traditional vectorization
loop-based vectorizer.  \ectorization tech-has focused on array-based Fortran programs
nigues that exploit this type of parallelism, from the scientific computing domain. Many
such as [12], could be used as a complememsf the important modern workloads, such as
tary approach to loop-based vectorization. Wemultimedia applications, are written in C and
briefly discuss this in Section 8. make extensive use of pointers. The presence

Figure 1. The vectorization transformation
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of pointers, and other programming languagepaper.
differences [2] give rise to a new domain of
problems critical for the success of vectoriza- :
tion. 3 Data-Dependence Analysis

The primary difficulties in applying classic The classic approach for vectorization is based

ditional vector architectures.  First, SIMD pased analyses and transformations are already

memory architectures are typically Weakerpresent in GCC (currently in the loop-nest-
than those of traditional vector machines. Theoptimizations (Ino) branch of GCC).

former generally only support accesses to con-

tiguous memory items, and only on vector-The first step in dependence analysis is the con-
length aligned boundaries.  Computationsstruction of a data dependence graph (ddg).

however, may access data elements in an oifhe nodes of the graph are the loop state-

der which is neither contiguous nor adequatelyments, and edges between statements repre-
aligned. SIMD architectures usually provide sent a data dependence between them. There
mechanisms to reorganize data elements iare two types of such edges. Edges between
vector registers in order to deal with such sit-scalar variables represent a def-use link be-

uations. These mechanisms (packing and urtween statements. These links can be trivially

packing data elements in and out of vector regecomputed from a SSA representation, such as
isters and special permute instructions) are ndhe one used in the tree-ssa representation level
easy to use, and incur considerable penaltiesf GCC.

For a vectorizer, this implies that generating

vector memory accesses becomes much morg'€ second kind of edges are those be-
involved tween memory references. The classic data-

dependence theory focused on array-based
In addition, the instruction sets of SIMD archi- Fortran programs, and therefore only array ref-
tectures tend to be much less general purposgrences have traditionally been considered. In
and less uniform. Many specialized domain-other (e.g., C) programs, memory references
specific operations are included, many oper<can take other forms (e.g., indirect references
ations are available only for some data typeshrough pointers), and these are considered by
but not for others, and often a high-level un-the GCC vectorizer. Memory dependences are
derstanding of the computation is required indetermined by applying a set of dependence
order to take advantage of some of the functests [9, 3] that compare array subscripts. Sim-
tionality. Furthermore, these particular characpler and faster tests (GCD, Banerjee) are ap-
teristics differ from one architecture to another.plied to simple subscript forms. More complex

and accurate tests (Gamma, Delta, Omega) are

These attributes demand that low-levelgyplied to more complicated subscripts.
architecture-specific factors will be consid-

ered throughout the process of vectorizationlf a dependence is carried by the relevant nest-
Classic dependence analysis is therefore onling level then an edge is added to the ddg.
a partial solution to vectorizing for SIMD For example, in Figure 1, loops (a) and (d)
extensions. Code transformation issues requirboth have a dependence between the two ref-
much more attention, as discussed later in therences to arrag, but only the dependence
in loop (d) is carried across the loop itera-
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tions and prevents vectorization. In GCC,(Ilno) branch  fttp://gcc.gnu.org/

tests that compute dependences between gsrojects/tree-ssa/lno.html ), at the
ray references are implemented in the moduléR level of SSA-ed GIMPLE trees. The
tree-data-refs.c . They are used by the current development status can be found
vectorizer to detect dependences between datm http://gcc.gnu.org/projects/
references in inner-most loops. tree-ssa/vectorization.html .

) ) The vectorizer is enabled by the
The classic data dependence analysis Profyee-vectorize flag which also

ceeds to detect Strongly Connected Compoy,gkes the scalar-evolutions analyzer, upon
nents (SCCs) in the ddg. SCCs that consist ofy hich the vectorizer relies for induction vari-

a single node represent a statement that can By recognition and loop bound calculation.

executed in parallel at the loop level that is be-rhe |k of the vectorizer functionality can be
ing considered. SCCs that consist of multiplesy ,nd in two files {ree-vectorizer.c

nodes represent statements that are involved ify, ytree-vectorizer.h ). The vectorizer
a dependence cycle, and prevent the vectorizayis, yses loop-related utilities that reside else-

tion of the loop unless the cycle can be “0ro-\yhere, many of which are new contributions
ken. developed in the Ino branch.

In order to increase the potential for vector-the yectorization pass is in early stages of
ization, the vectorizable parts can be separategevempmem; the basic infrastructure is in

from the groups of statements that are involveqﬂace, supporting initial vectorization capabil-

in dependence cycles (loop distribution). Thisjjies These capabilities are demonstrated by

is done by creating a separate loop for eachye yectorization test-cases, which are updated
SCC, after having topologically sorted the ré-i, reflect new capabilities as they are added.

duced graph in which each SCC is representelork is underway to extend these capabilities

by a single node. There is a preliminary imple-5n tg introduce more advanced vectorization
mentation of ddg construction in GCC (as partgtyres.

of the scalar-evolutions module) but it is not
yet used. Loop distribution to increase vector-4 1 ectorizer layout
ization opportunities is not yet supported, how-

ever other loop tr.ansformatlons th‘fﬂ NCTEASE\h outline of the vectorization pass is given in
parallelism (loop interchange, scaling, SkeW'Figure 2. The main entry to the vectorizer is

ing, and reversal_) are supported in GCC as par\;ectorize_loops(loops) " The vector-
of the tree-loop-linear module.

izer applies a set of analyses on each loop, fol-
Lastly, special kinds of dependence cycles cafpwed by the actual vector transformation for
be dealt with if recognized as certain idioms,the loops that had successfully passed the anal-
such as reduction. The GCC vectorizer will beysis phase.

enhanced to recognize and handle such situa-

tions in the near future. 4.2 vectorizer analysis

The first analysis phasegnalyze loop_
form() , examines the loop exit condition and
number of iterations, as well as some control-
The vectorization optimization pass is flow attributes such as number of basic blocks
developed in the loop-nest-optimizationsand nesting level. One major restriction im-

4 \/ectorizer Overview
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vect_analyze_loop (struct loop *loop) { (a) uncountable |00p;
loop_vec_info loopinfo; . _
loop_vinfo = vect_analyze loop_form (loop); while (*p !'= NULL){
if (lloop_vinfo) *p++ = X
FAIL; }
if (lanalyze_data_refs (loopinfo))
FAIL; . R
if ('analyze_scalar_cycles (loopinfo)) (b) reduction - summation:
FAIL; for (i=0; i<n; i++){
if (‘analyze_data_ref_dependences (loopinfo)) sum += a[i]'
FAIL; '
if (‘analyze_data_ref_accesses (loopinfo)) }
FAIL; _ _
if (lanalyze_data_refs_alignment (loopinfo)) (c) induction:
FAIL; A
if (lanalyze_operations (loopinfo)) for (_I_O’J__F)' i<n; jh i)
FAIL; ali] = j;
LOOP_VINFO_VECTORIZABLE_P (loopinfo) = 1; }
return loopinfo;
} (d) non consecutive access pattern:
vect_transform_loop (struct loop *loop) { for (i=0; i<n; i++){
FOR_ALL_STMTS_IN_LOOP(loop, stmt) a[2*] = X;
vect_transform_stmt (stmt); }

vect_transform_loop_bound (loop);

}

Figure 2: Vectorizer outline Figure 3: Loop examples

o tion, and will be relaxed in the near future.
posed on a loop for vectorization to be ap-

plicable, is that the loop is countable—i.e, anDependences which do not involve mem-
expression that calculates the loop bound caory operations are analyzed directly from the
be constructed and evaluated either at compil&SA representation. The functiamalyze

time or at run-time. For example, the loop inscalar_cycles() examines such “scalar-
Figure 3a is not a countable loop. The loopcycles” (dependence cycles which involve only
bound analysis is carried out by the scalar evoscalar variables), and verifies that any scalar
lution analyzer. To simplify the initial im- cycle, if exists, can be handled in a way that
plementation, the vectorizer also verifies thatoreaks the cross-iteration dependence.

the loop is an inner-most loop, and consists of ,
a single basic block. Multi-basic-block con- One kind of such “breakable” scalar cycles are

structs such as if-then-else are collapsed intd10S€ that represent reductions. A reduction
conditional operations if possible, by an if- operation computes a scalar result from a set

conversion pass prior to vectorization. of data-elements. The loop in Figure 3b for
example, computes the sum of a set of array

Next,analyze data_refs() finds allthe elements into a scalar residtm. Some re-
memory references in the loop, and checks ifluction operations can be vectorized, generally
they are “analyzable™—i.e., an access func-by computing several partial results in parallel,
tion that describes their modification in the and combining them at the end (reducing them)
loop (evolution) can be constructed. This isto single result. Scalar cycles can also be cre-
required for the memory-dependence, accessted by induction variables (IVs). Certain Vs
pattern and alignment analyses (described ithat are used for loop control and for address
Section 5). Other restrictions enforced at thiscomputation, are handled as an inherent part of
point are there for simplicity of implementa- vectorization. An example of an IV of this type
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isi from Figure 3c. Other IVs such gsfrom (&) before vectorization:

the same example require special vectorizatioRl’ X = b[']i _

support. S}Jpport foryectorization of redyctions3; ;[i]_ :X 2 Y

and induction will be introduced to GCC in the

near future. (b) after vectorization of S1:
VS1: vx = vpb[indx];

The final analysis phase analyze S1: x = bf[i]; ---> VS1

operations() scans all the operations S2: z = X +;

in the loop and determines a vectorization>3 2l = z

factor. The vectorization factoVE) repre-  (c) after vectorization of S2:
sents the number of data elements that willys1: vx = vpblindx];
be packed together in a vector, and is also the1: x = b[i]; --> VS1
strip-mining factor of the loop. Itis determined VS2: vz = vx + vy,
according to the data-types operated on in thg2= 2 = X * ¥ -> VS2
loop, and the length of the vectors supporte all = z
by the target platform. Currently we use a sim-(d) after vectorization of S3:
ple approach that allows a single vector length/s1: vx = vpblindx];
per platform and a single data-type per loopS1: x = bfi; ---> VS1
but these restrictions will be relaxed in the near/S2: VZ = VX + vy,
future. analyze operations() also oX : =X *Y > VS2
— : VS3: vpalindx] = vz;
checks that all the operations can be supported
in vector form. The cost of expanding them to _ ]
scalar code in case they are not supported, is Figure 4: The transformation process
expected to offset the benefits of vectorizing
the loop. In the future, a cost model should be
devised to support the vectorizers decisions odown (defs are vectorized before their uses),
which loops to vectorize. inserting a vector stateme¥S in the loop for
each scalar stateme@that needs to be vector-
ized, and recording in thetmt_vec_info
attached tdS a pointer toVS; This pointer is
used to locate the vectorized version of state-

During the analysis phase the Vvector-ments during the vectorization of subsequent
izer records information at three lev- statements that depend 6n

els of granularity—at the loop level
(loop_vect_info ), at the statement After all statements have been vectorized, the
level (stmt_vec info ), and per memory original scalar statements may be removed.

4.3 vectorizer transformation scheme

reference data_reference ). These Storesto memory are explicitly removed by the
data-structures are later used during the loopectorizer; the remaining scalar statements are
transformation phase. expected to be removed by dead code elimina-

o _ tion pass after vectorization.
The vectorization transformation can be gener-

ally described as “strip-mine bYF and sub- Figure 4 illustrates the transformation process;
stitute one-to-one,” which implies that eachFirst, stmtS1 is vectorized into stmV/S1; In
scalar operation in the loop is replaced by itsorder to vectorize stn2, the vectorizer needs
vector counterpart. The loop transformationto find the relevant vector def-stmt for each
phase scans all the statements of the loop tomperand ofS2. The figure only shows how
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this is done for the operand first, the scalar an access function has been computed (for the
def-stmt ofx, S1, is found (using SSA), and array index or the pointer) the vectorizer pro-
the relevant vector defx is retrieved from the ceeds to apply a set of data-ref analyses, which
vectorized statement &1, VS1. Similarly for  we describe here.

S3, except thaB3 is also removed.

. . " 5.1 Dependences and aliasing
In practice, many cases require additional han-

dling beyond the “one-to-one substitution.” _ . _
Constants and loop invariants require that vec’-A_‘S mentioned above, one of the basic restric-

tors be initialized at the loop pre-header. Othef!ONS that has to be enforced in order to safely
computations require special epilog code af2PPly vectorization is that no dependence cy-
ter the loop (e.g., reductions, and induction<C!€S €Xist. A simplified form of the stan-

that are used after the loop). Some acceséiard memory dependence analysis, which we

patterns require special data manipulations bet-’_rlefly described in Section 3, is applied, using
tween vectors within the loop (e.g., data imer_smple dependence tests from the tree-data-ref

leaving and permutations). Some scalar opMedule of the Ino-branch.

erations cannot be replaced by a single veCthig analysis can be enhanced in several direc-
tor operation (e.g., when mixed data-types ions, including: (1) using more complex de-

present). Sometimes a sequence of scalar op&landence tests, (2) pruning dependences with
ations can be replaced by a single vector operggisiance greater than the vectorization factor,
tion (e.g., saturation, and other special idioms) 4 (3) not failing when a dependence is found,

It might be possible to hide some of these comy, ;t instead attempting to resolve the depen-
plications from the vectorizer, and handle themyance by reordering nodes in the dependence

at Iowg:r Ievel; of code generation. We discus%raph (consequently distributing the loop).
these issues in Section 6.

. ) Pointer accesses require in addition alias anal-
Finally, the loop bound is transformed to re-ysis to conclude whether any two pointer-

flect the new number of iterations, and if necesy.cesses in the loop may alias. If we cannot

sary, an epilog scalar loop is created to handlgye oyt the possibility that two pointers may
cases of loop bounds which do not divide by,jias 1oop versioning can be used, with a run-

the vectorization factor. This epilog also mUSttime-overIap test to guard the vectorized ver-
be generated in cases where the loop bound i§5 of the loop.

not known at compile time.

5.2 Access pattern

5 Handling Memory References o _ _
When the data is laid out in memory exactly in

the order in which it is needed for the computa-
Memory references require special attentiortion, it can be vectorized using the simple one-
when vectorizing. This is true in the clas- to-one vectorization scheme. However, com-
sic vectorization framework, and even moreputations may access data elements in an or-
so when vectorizing for SIMD. The vector- der different from the way they are organized
izer currently considers two forms of data-in memory. For example, the computation in
refs—one-dimensional arrays (represented aBigure 3d uses a strided access pattern (with
ARRAY_REF that are VAR_DECE), and stride 2). Non-consecutive access patterns usu-
pointer accessedNDIRECT_REFs). Once ally require special data manipulations to re-
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order the data elements and pack them intdlifferent vectors in each iteration of the loop.

vectors. This is because the memory architec-

ture restricts vector data accesses to consecf]! 0rder to avoid these penalties, techniques
tive vector-size elements. like loop peeling and static and dynamic align-

ment detection [11, 13, 4] can be used. Align-
Some architectures provide relatively flexiblement handling therefore consists of three lev-
mechanisms to perform such data manipulaels: (1) static alignment analysis, (2) transfor-
tions (gather/scatter operations in traditionaimations to force alignment, including runtime
vector machines, indirect access through vecehecks, and (3) efficient vectorization of the re-
tor pointers [14]). SIMD extensions usu- maining misaligned accesses.
ally provide mechanisms to pack data from )
two vectors into one (and vice versa), whileThe  functions compute_data_refs_
possibly applying a permutation on the data?lignment()  and enhance_data_refs_
elements. Some SIMD extensions provide?lignment()  (called fromanalyze_data_
specialized support for certain access-patterd€fs_alignment() ) are responsible for
(most commonly for accessing odd/even elel€ms (1) and (2) above.compute_data_

ments for computations on complex numbers)'éfs_alignment() computes misalignment
but these are usually limited only to a few OIO_mformatlon for all data-references; currently
erations and a few data types. only a trivial conservative implementation is

provided.
The underlying data reorganization support de- ) _ )
termines whether vectorization can be applied™llowing  the  alignment  computation,
and at what cost. These data manipulation§® ~ function  enhance_data_refs_
need to be applied in each iteration of thedlignment() uses loop versioning and

loop and therefore incur considerable over/OOP Peeling in order to force the alignment of

head. In fact, some access patterns, such as if2{@ references in the loop. Loop peeling can
direct access, cannot be vectorized efficienty?nlY force the alignment of a single data refer-
on most SIMD/vector architectures. The func-€NC€, SO the vectorizer needs to choose which
tion analyze access_pattern() veri- data reference DR to peel_ for. In the peeled
fies that the access pattern of all the data refl0P. only the access DR is guaranteed to be
erences in the loop is supported by the vector2ligned. Loop versioning could be applied on

izer, which is currently limited to consecutive ©OP Of peeling, to create one loop in which
accesses only all accesses are aligned, and another loop in

which only the access DR is guaranteed to be
aligned. A cost model should be devised to
guide the vectorizer as to which access to peel
for, and whether to apply peeling or versioning
Accessing a block of memory from a loca- or a combination of the two, considering the
tion which is not aligned on a natural vector-code size and runtime penalties. Figure 5
size boundary is often prohibited or bears allustrates these different alternatives.

heavy performance penalty. These memory _

alignment constraints raise problems that caf data-references which are not known to be
be handled using data reordering mechanism&ligned still remain afteenhance_data_
Such mechanisms are costly, and usually inf€fs_alignment() , the vectorizer will
volve generating extra memory accesses angroceed to vectorize the loop only if the tar-
special code for combining data elements fronfl€t platform provides mechanisms to support

5.3 alignment



GCC Developers’ Summit 2004 « 113

(a) original loop, before alignment analysis:

for (i = 0; i < N; i++) {

x = [i]; //misalign(q) = unknown
plil] = vy; //misalign(p) = unknown
}

(b) after compute_data_refs_alignment():

for i = 0; i < N; i++) {
x = g[i]; //misalign(q) = 3
pli] = vy; //misalign(p) = unknown

(c) option 1—loop versioning:

if (p is aligned) {

for(i= 0; i < N; i++) {
= q[i]; //misalign(q) =

p[] =y, //misalign(p) =

}
} else {
for(i: 0; i < N; i++) {
q[] /Imisalign(q) = 3
p[|] = y; //misalign(p) = unknown
}
}

(d) option 2—peeling for access q[i]:
for (i = 0; i < 3; i++) {

x = qli;
pli] =
}
for (i = 3; i < N; i++) {
= q[i]; //misalign(gq) = 0
pli] = vy; //misalign(p) = unknown

(e) option 3—peeling and versioning:
for(|:0 i < 3;itt) {
= qfil;

p[l] =Y
}
if (p is aligned) {
for(i:3 i < N; i++) {

x = q[i]; //misalign(q) =

pli] = y; //misalign(p) =

} else {

for i = 3; i < N; i++) {
X = q[i]; //misalign(q)
p[|] = y; //misalign(p)

unknown

Figure 5: Alternatives for forcing alignment

misaligned accesses. Figure 6¢ presents a pos-
sible scheme for handling misalignment [6]. It
relies on a pair of target hooks: one that cal-
culates the misalignment amount, and repre-
sents it in a form that the second hook can
use (a shift amount or a permutation mask).
The second hook combines data from two vec-
tors, permuted according to the misalignment
shift amount. In some cases the code could be
further optimized by exploiting the data reuse
across loop iterations, as shown in Figure 6d.

Targets that support misaligned accesses di-
rectly, do not need to implement these hooks;
in this case, misaligned vector accesses will
look just like regular aligned vector accesses,
as in Figure 6b. Section 6 discusses the trade-
offs involved in this implementation scheme.

6 \ectorization issues

An issue that repeatedly comes up during the
development of the GCC vectorization is the
tension between two conflicting needs. One
is the requirement to maintain a high-level,
platform-independent program representation.
The other is the need to consider platform-
specific issues and express low-level constructs
during the process of vectorization.

In many ways, the tree-level is the suitable

place for the implementation of a loop-based
vectorizer in GCC. Arrays and other language
constructs are represented in a relatively high-
level form, a fact that simplifies analyses such
as alignment, aliasing and loop-level data-
dependences. Analyses are further simplified
due to the SSA representation. Implementing
the vectorizer at the tree-ssa level allows it to
benefit from the vast suite of SSA optimiza-

tions, and in particular, the loop related utilities

developed in the Ino-branch.

On the other hand, at this IR level it is not
so trivial to handle situations in which target-
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(a) scalar data-ref:
i = init;
LOOP:
x = ai];
i++

(b) vectorized data-ref:
vector *vpx = &alinit];
indx = 0;

LOOP:
vector vx = (*vpx)[indx];
indx++

(c) vectorized data-ref with misalignment support:

vector *vpx1l = &alinit];
vector *vpx2 = &alinit+VF-1];
shft = target_hook_get_shft

(&a[init])

indx = O;
LOOP:
vx1 (*vpx1)[indx];

VX2 = (*vpx2)[indx];

vx = target _hook combine_ by shft
(vx1, vx2, shft)

indx++;

(d) optimized misalignment support:
vector *vpx1l = &alinit];
vector *vpx2 = &alinit+VF-1];
shft = target_hook get_ shft

(&alinit]):

indx

vx1l
LOOP:

vx2 = (*vpx2)[indx];

vx = target_hook_combine

(vpx1)[indx];

(vx1, vx2, shft);

indx++;
vXx1l = vXx2;

Figure 6: Handling data-refs (load example)

specific information needs to be consulted, and
even less trivial to handle situations in which
target-specific constructs need to be expressed.

Misalignment is an excellent example of such a
situation. The low-level functionality that sup-
ports misaligned accesses must somehow be
expressed in the tree IR. The implementation
should maintain the following properties: (1) It
should hide low-level details as much as pos-
sible. (2) It should be general enough to be
applicable to any platform. SIMD extensions
vary greatly from platform to platform. (3) De-
spite these restrictions, it should be as efficient
as possible on each platform.

In terms of the above criteria, the misalignment
scheme that was presented in the previous sec-
tion: (1) exposes the vectorizer to low-level
details of misalignment support, (2) might not
be general enough (it assumes that low-order
address bits are ignored by load operations),
and (3) is potentially inefficient for targets that
would be better supported by alternative meth-
ods.

To tackle these problems, two alternatives can
be considered. Alternative 1: Annotate mis-
aligned accesses and let the subsequent RTL
expansion pass handle the details. This is the
most natural way to address architecture spe-
cific details. However, this solution can po-
tentially be very inefficient, because it neglects
to take advantage of data reuse between itera-
tions. To do that, the lower-level RTL passes
would have to rediscover the kind of loop-level
information the vectorizer already had. Alter-
native 2. Hide all these implementation details
in a "black box" target hook, that would gener-
ate the most efficient code for its platform. A
disadvantage would be that functionality that
is common to many targets would have to be
duplicated. Also, the vectorizer would be un-
aware of what’s going on, and would have dif-
ficulty estimating the overall cost of applying
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vectorization, for example. secutive array data references for which align-

. ) ment can be forced, and (3) operations that do
Low-level architectural details are not only i create a scalar-cycle (no reduction or in-

problematic with respect_ to representing the”ljuction), that all operate on the same data-type,
at a high-level platform-independent abstrac—nq that have a vector form that can be ex-
tion. Specific architectural vector support Canpressed using existing tree-codes.

directly affect the vectorization transformation,

and even determine whether it should be apRecent development has focused on broaden-
plied at all. These details must be consideredng the range of loop-forms and data refer-
during vectorization because the choices madences that the vectorizer can support. This in-
at the vectorization stage are not easily alteredludes the vectorization of loops with unknown
at later low-level stages of compilation. Thisloop bounds, an if-conversion pass that allows
is especially true in cases of architectural feathe vectorizer to handle some forms of multi-
tures that require recognition of an entire com-basic-block loops, vectorization of unaligned
putational idiom, a task best supported by highioads, and vectorization of pointer accesses.
level analysis (reductions for example may beThese features are likely to be added by the
difficult to identify without the entire context time this paper is presented, and will soon be
of the loop). followed by support for peeling and versioning

for alignment. Other future directions include

These are some of tradeoffs and decisions ingnnort for multiple data-types, and for reduc-
volved in the implementation of the GCC vec-jon and induction operations. In the next sec-

torizer. These kinds of problems often come upjon, we discuss additional directions for further
in optimizing compilers, but are especially evi- development of the vectorizer.
dent in the context of SIMD vectorization, and

even more so when implemented in a multi-
platform compiler like GCC. 8 Future Work

Following is a list of potential enhancements to

7 Status the vectorizer, organized into four categories:

Support additional loop forms. Support for
e : unknown loop bounds and if-then-else con-
izer in GCC was contributed to the '”O'branChstructs is nearly complete. The major remain-

on January 1st, 2004. It has since been efq restriction on loop form is the nesting level,
hanced with additional capabilities, including \iectorization of nested loops will be consid-
support for vectorization of constants, 100pgreqin the future.

invariants, and unary and bitwise operations.

The vector test-suitegfc/gec/testsuite/ Support additional forms of data references
gdd.dg/tree-ssa-vect/ ) reflects the cur- Potential extensions in this category include
rent vectorization functionality. The domain of enhancements to the dependence tests (as dis-
vectorizable loops can be summarized in termgussed in Section 5) and support for additional

of the supportable (1) loop forms, (2) dataaccess patterns (reverse access, and accesses
references, and (3) operations. Currenththat require data manipulations like strided or
support includes (1) inner-most, single-basicpermuted accesses). Exploiting data reuse as
block loop forms, with a known loop bound in [17] is an optimization related to data refer-
divisible by the vectorization factor; (2) con- ences that we plan to consider in the future.

The first implementation of a basic vector-
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Support additional operations. Vectorization  With the introduction of support for unknown
of loops with multiple data-types and type cast-loop bounds, pointers, misalignment, and con-
ing is the first extension expected in this cateditional code, the GCC vectorizer will be in
gory. This capability requires support for datarelatively good shape compared to other vec-
packing and unpacking, which breaks out oftorizing compilers. The major remaining re-
the one-to-one substitution scheme, and carstrictions (inner-most loops, consecutive ac-
not be directly expressed using existing treecesses and a single data-type per loop) tend to
codes. The next capabilities to be introducedbe common to vectorizing compilers in gen-
will be support for vectorization of induction, eral [5, 19]. However, as the (long) list above
reduction, and special idioms (such as saturamplies, most of the exciting features still lie
tion, min/max, dot product, etc.), using targetahead.

hooks or adding new tree-code as necessatry.
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Design and Implementation of Tree SSA

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

Abstract Although Tree SSA represents a significant
change in the internal structure of GCC, its

. imization f Kf main design principle has been one of evolu-
Tree SSA Is a new optimization framework for i, “not revolution. As much as possible, we

G(_ZC that allows the _implementation of Ma-¢iad to make Tree SSA a “drop-in” module. In
c_hlne and_ language mdgpendent tra‘_nSformaﬁarticular, we decided to keep thieee and
tions. This paper describes the. MaYor COMyy  gata structures so that neither front ends
ponents of Tree SSA, how they interact with . a0l ends needed to be re-implemented
the rest of the compiler and, more |mportantly,fr0m scratch. This was an important engineer-
how to use the framework to implement nevVing decision that (a) allowed us to reach to a

optimization passes. working system in a relatively short period of
time, but (b) it exposed a few weak spots in the
existing data structures that we will need to ad-

1 Introduction dress in the future (Section 8).

This paper describes Tree SSA from a pro-
grammer’s point of view. Emphasis is placed

on how the different modules work together

and what is necessary to implement a Tree SSA
pass in GCC. Section 2 provides an overview
of the new files and compiler switches added to
other developers in the community expresse CC. Se(_:tlon 3 d(_—:'scrlbes the GE.NERIC and
interest in it and a development branch off the IMPLE intermediate representations. Sec-

main GCC repository was started. Soon thereJElon 4 describes the contro! flow graph (CFG)’
lock and statement manipulation functions.

after, Red Hat began sponsoring the projec _ ) o

and, over time, other organizations and devel: ection 5 describes how optimizafion passes

opers in the community also started contribut-2"¢ Scrsledltj.led ;gd de_(;lare?h tobthg pgsts r;lwan-

ing. Presently, about 30 developers are activel ger. section escribes the basic qata Tlow
nfrastructure: statement operands and the SSA

involved in itt, and work is underway to im- . .
plement vectorization and loop optimizationsforrn as implemented on GIMPLE. Section 7

based on the Tree SSA framework. We expec@Iescribes alias analysis. Conclusions and fu-
Tree SSA to be included in the next major re-Lure work are in Section 8.
lease of GCC.

The main goal of the Tree SSA project is to
evolve GCC’s optimization infrastructure to al-
low more powerful analyses and transforma
tions that had traditionally proven difficult or
impossible to implement in RTL. Though orig-
inally started as a one person hobby project

1This is a rough estimate based only on Changelog
entries.
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2 Overview e uid : Show the unique ID (i.e.DECL_

UID) for every variable.
2.1 Command line switches

We currently support enabling and disabling
Most of the new command line options addedmost individual SSA passes. Although, it is not
by Tree SSA are only useful to GCC develop-clear whether that will be always supported,
ers. They fall into two broad categories: de-jt js sometimes useful to disable passes when
bugging dumps and individual pass manipulagebugging GCC. Note, however, that even if
tion. the bug goes away when disabling an individ-

Al the debugging dumps are requested WithuaI pass, it does not mean that the pass itself is

fdump-tree-  pass modifie By default, faulty. The bug may exist somewhere else and

the tree representation is emitted in a synta>'<s exposed at this point.

resembling C. Passes can be individually sea|| the new command line switches are de-

lected, but the most common usage is to enscribed in detail in the GCC documentation.
able all of them usingfdump-tree-all

When enabled, each pass dumps all the func; 5 New files

tions in the input program to a separate file.
Dump files are numbered in the same order in

which passes are applied. Therefore, to see thAeII the necessary APl and data structure def-

between theV and N + 1 dumps. 9 y categ

as basic infrastructure, transformation passes,
Modifiers affect the format of the dump files analysis passes and various utilities.
and/or the information included in thénCur-

rently, the following modifiers can be used:
2.2.1 Basic infrastructure

 raw: Do not pretty-print expressions.
Use the traditional tree dumps instead.

tree-optimize.cis the main driver for the
tree optimization passes. In particular, it
contains init_tree_optimization_
passes , which controls the scheduling
of all the tree passes, ariete_rest

* details Request detailed debugging
output from each pass.

. stats : Request statistics from each ~ ©f_compilation — which performs all
pass. the gimplification, optimization and ex-
pansion into RTL of a single function.
* blocks : Show basic block boundaries.

tree-ssa.gctree-into-ssa.@ndtree-outof-ssa.c

» vops : Show virtual operands (see Sec-
tion 6 for details).

* lineno : Show line numbers from the in-
put program.

°Note that not all passes are affected by these mod-
ifiers. A pass that does not support a specific modifier
will silently ignore it.

implement SSA renaming, Vverification
and various functions needed to interact
with the SSA form.

tree-ssanames.and tree-phinodes.ample-

ment memory management mechanisms
for re-usingSSA_NAMENdPHI_NODE
tree nodes after they are removed.
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tree-cfg.ccontains routines to build and ma- tree-ssa-loop.¢s currently a place holder for
nipulate the CFG. all the optimizations being implemented

. in the LNO (Loop Nest Optimizer) branch
tree-dfa.cimplements general purpose rou- [1]. Presently, it only implements loop

tines for dealing W_ith program va_LriabIes header copying, which moves the condi-
and data flow queries like immediate use  tjonal at the bottom of a loop to its header

information. (benefiting code motion optimizations).

tree-ssa-operands.c contains routines
for scanning statement operands
(get_stmt_operands ).

tree-tailcall.c marks tail calls. The RTL op-
timizers will make the final decision of
whether to expand calls as tail calls based

tree-iterator.c contains routines for insert- on ABI and other conditions.

ing, removing and iterating over GIMPLE
statements. Two types of iterators are pro-
vided, those that do not stop at basic block
boundaries (known asee statement iter-
ators) and those that do (known dock
statement iterato)s Most optimization
passes use the latter.

tree-ssa-phiopt.dries to replace PHI nodes
with an assignment when the PHI node is
at the end of a conditional expression.

tree-nrv.cimplements the named return value
optimization. For functions that return
aggregates, this optimization may save a

c-gimplify.c gimplify.candtree-gimple.con- st_ructure copy by building the return yalue
tain the routines used to rewrite the code  diréctly where the target ABI needs it.
into GIMPLE form. They also provide

functions to verify GIMPLE expressions. tree-ssa—copyrename.U|es to r_educe the
number of distinct SSA variables when

they are related by copy operations. This
22.2 Transformation passes increases the chances of user variables
o surviving the out of SSA transformation.

gimple-low.c removes binding scopes and
converts the clauses of conditional expres-
sions into explicit gotos. This is done
early before any other optimization pass
as it greatly simplifies the job of the opti-
mizers.

tree-mudflap.dmplements pointer and array
bound checking. This pass re-writes ar-
ray and pointer dereferences with bound
checks and calls to its runtime library.
Mudflap is enabled withfmudflap

tree-ssa-pre.Cc  tree-ssa-dse,c tree-ssa- (rée-complex.c tree-eh.c and tree-nested.c

forwprop.¢ tree-ssa-dce, dree-ssa-ccp.c rewrite a function in GIMPLE form to ex-
tree-sra.cand tree-ssa-dom.émplement pand operations with complex numbers,
some commonly known scalar transfor- exception handling and nested functions.

mations: partial redundancy elimination,

dead store elimination, forward propaga-

tion, dead code elimination, conditional 2.2.3 Analysis passes

constant propagation, scalar replace-

ment of aggregates and dominator-basedtree-ssa-alias.cimplements type-based and
optimizations. flow-sensitive points-to alias analysis.
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tree-alias-type.c tree-alias-ander.c and and/or nested. If necessary, a front end can
tree-alias-common.c implement flow- use language-dependent trees in its GENERIC
insensitive  points-to alias analysis representation, so long as it provides a hook
(Andersen analysis). for converting them to GIMPLE. In particu-
lar, a front end need not emit GENERIC at
all. For instance, in the current implementa-
2.2.4 Various utilities tion, the C and C++ parsers do not actually
emit GENERIC during parsing.

tree-ssa-copy.contains support routines for _

tion. timization. Both its name and the basic gram-
mar are based on the SIMPLE IR used by the

domwalk.cimplements a generic dominator McCAT compiler at McGill University [3]. Es-
tree walker. sentially, GIMPLE is a 3 address language with

_ _ _ no high-level control flow structures.
tree-ssa-live.ccontains support routines for

computing live ranges of SSA names.
1. Each GIMPLE statement contains no

tree-pretty-print.c implements print_ more than 3 operands (except function
generic_stmt and  print_ calls) and has no implicit side effects.
generic_expr  for printing GENERIC Temporaries are used to hold intermediate
andGIMPLE tree nodes. values as necessary.
tree-browser.dmplements an interactive tree 2 | exical scopes are represented as contain-
browsing utility, useful when debugging ers.
GCC. It must be explicitly enabled with
--enable-tree-browser when 3. Control structures are lowered to condi-
configuring the compiler. tional gotos.

4. Variables that need to live in memory are
3 Intermediate Representation never used in expressions. They are first
loaded into a temporary and the temporary

is used in the expression.
Although Tree SSA uses tlieee data struc- P

ture, the parse trees coming out of the vari-

ous front ends cannot be used for optimiza-The process of lowering GENERIC into GIM-
tion because they contain language dependefp{ E, known asgimplification works recur-
CieS, side effects and can be nested in arbitrargive|y, rep|acing Comp|ex statements with se-
ways. To address these problems, we havguences of statements in GIMPLE form. A

implemented two intermediate representationSgront end which wants to use the tree optimiz-
GENERIC and GIMPLE [4] ers needs to

GENERIC provides a way for a language front

end to represent entire functions in a language- 1. have a whole-function tree representation,
independent way. All the language semantics

must be explicitly represented, but there are no 2. provide a definition ofLANG_HOOKS _
restrictions in how expressions are combined  GIMPLIFY_EXPR,
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3. call gimplify_function_tree to in the function being compiledc@rrent
lower to GIMPLE, and, function_decl ).

4. hand off to tree rest of It is also possible to do a variety of common
compilation to compile and out- operations on the flow graph and statements:
put the function. edge insertion, removal of statements and in-

sertion of statements inside a block. Detailed

) o information about the flow graph can be found
The GCC internal documentation includes 3n GCC’s internal documentation.

detailed description of GENERIC and GIM-
PLE that an implementor of new language
front ends will find useful. 5 Pass manager

4 Control Flow Graph and IR ma- Every SSA pass must be registered with the
. : pass manager and scheduledhinh_tree_
nipulation

optimization_passes . Passes are de-
clared as instances sfruct tree_opt_

Data structures for representing basic blockpass, which declares everything needed to
and edges are shared between GIMPLE ancun the pass, including its name, function to
RTL. This allows the GIMPLE CFG to use all execute, properties required and modified and
the functions that operate on the flow graph inwhat to do after the pass is done.

dependently of the underlying IR (e.g., domi- _ _ _ _
nance information, edge placement, reachabilln this context, properties refer to things like

ity analysis). For the cases where IR informa-dominance i_nformation, the flow graph, SSA
tion is necessary, we either replicate functionform and which subset of GIMPLE is required.

ality or have introduced hooks. In theory, the pass manager would arrange for

these properties to be computed if they are
The flow graph is built once the function is put not present, but not all properties are presently
into GIMPLE form and is only removed once handled. Each pass will also declare which
the tree optimizers are dohe properties it destroys so that it is recomputed

_ _after the pass is done.
Traversing the flow graph can be done using

FOR_EACH_BBwvhich will traverse all the ba- To add a new Tree SSA pass, one should
sic blocks sequentially in program order. This
is the quickest way of going through all ba-
sic blocks. It is also possible to traverse the
flow graph in dominator order usingalk

dominator_tree . 2. create aextern declaration for the new
pass inree-pass.h , and,

1. create a global variable of tyruct
tree_opt_pass

Each basic block has a list of all the statements
that it contains. To traverse this list, one should 3. sequence the new pass in
use a special iterator calleolock statement tree-optimize.c:init_tree_

iterator (BSI). For instance, the code frag- optimization_passes by calling
mentin Figure 1 will dlsplay all the statements NEXT_PASS If the pass needs to be

31t may be advantageous to keep the CFG all the way app“eq more t_han once, uslJP_PASS
to RTL, so this may change in the future. to duplicate it first.
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{
basic_block bb;

block_stmt_iterator si;

FOR_EACH_BB (bb)
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{

tree stmt = bsi_stmt (si);
print_generic_stmt (stderr, stmt, 0);

}
}

Figure 1: Traversing all the statements in the current function.

6 SSAform represent a single, non-aliased, memory loca-
tion which is atomically read or modified by

Most of the tree optimizers rely on the datath€ statement (i.e., variables of non-aggregate
flow information provided by the Static Single tYPeS whose address is not taken). Virtual
Assignment (SSA) form [2]. The SSA form operands_represent either pgrtlal or gllased ref-
is based on the premise that program variable§€Nces (i.e., s_tructures_, unions, pointer deref-
are assigned in exactly one location in the pro€rences and aliased variables).

gram. Multiple assignments to the same vari-S

) ; ince the SSA form uses a versioning scheme
able create new versions of that variable.

on variable names, in principle it would not be

Naturally, actual programs are seldom in gsApossible to assign versiqn numbers to virtual
form initially because variables tend to be as-CP€rands. So, the compiler associates a sym-
signed multiple times. The compiler modifies P0l name to the operand and provides SSA ver-
the program representation so that every tim&loning for that symbol. Symbols for virtual

a variable is assigned in the code, a new V(_:.rc_)|o_e_rands are either created or derived from the
sion of the variable is created. Different ver-riginal operand:

sions of the same variable are distinguished by

subscripting the variable name with its version « For pointer dereferences, a new symbol
number. Variables used in the right-hand side  called a memory tag(MT) is created.

of expressions are renamed so that their version  Memory tags represent the memory lo-
number matches that of the most recent assign-  cation pointed-to by the pointer. For in-
ment. stance, given a pointant *p , the state-
ment*p = 3 will contain a virtual defi-
nition to p’s memory tag (more details in
Section 7).

This section describes how the compiler rec-
ognizes and classifies statement operands rec-
ognized, the process of renaming the program
into SSA form and how is aliasing information  « For references to variables of non-

incorporated into the SSA web. aggregate types, the base symbol of the
reference is used. For instance, the state-
6.1 Statement operands menta.b.c = 3 , is considered a vir-

tual definition fora. Other terms to refer
Tree SSA implements two types of operands:  to virtual definitions include rhay-defs
real andvirtual. Real operands are those that when they refer to aliased stores, and
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“non-killing defs when they refer to par-
tial stores to an object of a non-aggregate
type. Similarly, virtual uses are known as
“may-uses

Using this scheme, the compiler can now re-

name both real and virtual operands into SSA

form. Every symbol that complies witRSA _ void

VAR_Pwill be renamed. This include¢AR ?rmt‘(’ps (tree stmt)
DECL PARM_DECLand RESULT_DECL  ue optype vuses:
nodes. To determine whether 8SA_VAR_P vdef_optype vdefs;
will be renamed as a real or virtual operand, def_optype defs;
the predicates_gimple_reg is used. If it use-optype uses;
returnstrue the variable is added as a real :;Et‘taril_n‘t antt
operand, otherwise it is considered virtual. ’

. get_stmt_operands (stmt);
Every statement has 4 associated arrays repré-nn - stmt_ann (stmt)

senting its operand®EF_OPSndUSE_OPS
hold definitions and uses for real operands, defs = DEF_OPS (ann); '
while VDEF_OPSand VUSE_OPshold po- ~ for (i = 0: 1 < NUM-DEES (defs); i++)

print_generic_expr (stderr,

3

tential or partial definitions and uses for. Vir- DEF_OP (defs, i), 0):
tual operands. These arrays are filled in by
get_stmt_operands . The code fragment  uses = USE_OPS (ann);

in Figure 2 shows how to print all the operands for (i = 0; i < NUM_USES (uses); i++)
of a given statement. Operands are stored in- Print-generic-expr (suderr,

. . USE_OP (uses, i), 0);
side an auxiliary data structure knownstate-
ment annotation(stmt_ann_t ). That’s a vdefs = VDEF_OPS (ann);
generic annotation mechanism used through- for (i = 0; i < NUM_VDEFS (vdefs); i++)
out Tree SSA to store optimization-related in- ~ print-generic_expr (stderr, .
formation for statements, variables and SSA VDEE_OP (vdefs, 1), 0);

names. vuses = VUSE_OPS (ann);
for (i = 0; i < NUM_VUSES (vuses); i++)
6.2 SSA Renaming Process print_generic_expr (stderr,

VUSE_OP (vuses, i), 0);

We represent variable versions usi&HA

NAMEnodes. The renaming processtige-  Figure 2: Accessing the operands of a state-
into-ssa.anraps every real and virtual operand ment.

with an SSA_NAMEode which contains the

version number and the statement that created

the SSA_NAME Only definitions and virtual

definitions may create ne®SA_NAMMBodes.

Sometimes, flow of control makes it impossi-
ble to determine what is the most recent ver-
sion of a variable. In these cases, the compiler
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inserts an artificial definition for that variable
called PHI function or PHI node This new
definition merges all the incoming versions of
the variable to create a new name for it. For
instance,

if (...)

a; = 5;
else if (...)
a, = 2;

else
a, = 13;

3 =

# a, = PHI <a,, a,, a;>
return a,;

.#“az = VDEF <a;>
afi] = £ ();

.#“a3 = VDEF <a,>
afjl = g ();

#”a4 = VDEF <a,>
ak] = h ();

Notice how everyVDEF has a data depen-

dency on the previous one. This is used mostly

to prevent errors in scalar optimizations like
Since it is not possible to statically determineC0d€ motion and dead code elimination. Passes
which of the three branches will be taken atthat wantto manipulate statements with virtual

runtime, we don’t know which ofi;, as or as

operands should obtain additional information

to use at the return statement. So, the SSA rd€-9-, by building an array SSA form, or value

namer creates a new versiarn, which is as-
signed the result of “merging” all three other

numbering as is currently done in the domi-
nator optimizers). The SSA form for virtual

versions. Hence, PHI nodes mean “one ofoperands is actually a factored use-def (FUD)

these operands. | don’t know which.”

Previously we had described virtual definitions

representation [5]. When taking the program
out of SSA form, the compiler will not in-
sert the copies needed to resolve the overlap.

as non-killing definitions, this means that givenVirtual operands are simply removed from the
a sequence of virtual definitions for the samecode.

variable, they should all be related somehow.
To this end, virtual definitions are considered
read-write operations. So, the following code
fragment

'#”a = VDEF <a>
afi] = f ();

.#“a = VDEF <a>
afil = g ();

'#”a = VDEF <a>
ak] = h ();

is transformed into SSA form as

Such considerations are not necessary when
dealing with real operandsSSA_ NAME for
real operands are considered distinct variables
and can be moved around at will. When the
program is taken out of SSA forntrée-outof-
ssa.§, overlapping live ranges are handled by
creating new variables and inserting the neces-
sary copies between different versions of the
same variable. For instance, given the GIM-
PLE program in SSA form in Figure 3a, op-
timizations will create overlapping live ranges
for two different versions of variable namely

bs and b, (Figure 3b). When the program is
taken out of SSA form, prior to RTL expansion,
the two different versions df will be assigned
different variables (Figure 3c).
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foo (a, b, c)
{ foo (a, b, c)
a, = by; {
. . foo (a, b, ¢
if (c5 < a,) if (c5 < by) { ( )
goto <LO>; goto <LO>; if (c < b)
else else goto <LO>;
goto <L1>; goto <L1>; else
oto <L1>;
<L0>: <L0>: g
b, = by + a; b, = by + by; <LO0>:
Cg = C5 + 4y, Cg = Cs + by; b.0=b + b;
c=c+Db;
# ¢, = PHI <c,, c>; # ¢, = PHI <cs, cg>; b = b.0;
# b, = PHI <b,, b,>; # b, = PHI <b,, b,>;
<L1>: <L1>: <L1>:

return b1 + Cy;

} }
(a) Original SSA form.

return b1 + Cy;

(b) SSA form after optimization.

return b + c;

}
(c) Resulting normal form.

Figure 3: Overlapping live ranges for different versions of the same variable.

foo (int *p)

{
# TMT.1; = VDEF <TMT.1,>;

*pl - 5,

# VUSE <TMT.1:>;
T.0, = "p;;

return T.O2 + 1;

}

Given this mechanism, whenever the compiler
determines that a pointermay point to vari-
ablesa andb (andp is dereferenced), a mem-
ory tag forp is created and variablesandb
are added tp’s memory tag.

The code fragment in Figure 5 illustrates this
scenario. The compiler determines thamay
point to a or b, and so whenevep, is deref-
erenced, it adds virtual referencesd@nd b.

Figure 4: Representing pointer dereferenceilso notice that since both andb have their

with memory tags.

7 Alias analysis

Aliasing information is incorporated into the
SSA web using artificial symbols calledem-

ory tags A memory tag represents a pointer : - S h
Since there are no multi-leveP have different alias sets. This is becauses

dereference.

pointers in GIMPLE, it is not necessary for the
compiler to handle more than one level of indi-

rection. So, given a pointer, every time the
compiler finds a dereference of (*p), it is
considered a virtual reference &6 memory
tag (Figure 4).

addresses taken, they are always considered
virtual operands.

The compiler computes three kinds of aliasing
information: type-based, flow-sensitive points-
to and flow-insensitive points-to

Going back to the code fragment in Figure 5,
notice how the two different versions of pointer

found to point to either or d, while p, points
to eithera or b. In this case, the compiler is us-
ing flow-sensitive aliasing information and will
create two memory tags, one f@rand another

4This one is currently not computed by default. It is
enabled with-ftree-points-to=andersen
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Figure 5: Using flow-sensitive alias informa-

tion.

foo (int i)
{
<LO0>:
# p, = PHI <&d, &c>;

# Cs = VDEF <cs>;
# d,, = VDEF <d,,>;
*pl = 5,

<L3>:

# p, = PHI <&b, &a>;

# a,y = VDEF <a,>;
a=3;
# bzo = VDEF <b6>;
b =2;

# VUSE <a;9>;
# VUSE <b,,>;
T.0g = *py;

# a, = VDEF <a >;
# b,, = VDEF <b,,>;
*p2 = T.19;

}

for p,. Since these memory tags are associ-
ated withSSA_NAMBDbjects, they are known
asname memory tagdMT).

In contrast, when the compiler cannot com-
pute flow-sensitive information for ea8@BA _
NAME it falls back to flow-insensitive infor-
mation which is computed using type-based or
points-to analysis. In these cases, the com-
piler creates a single memory tag that is asso-
ciated toall the different versions of a pointer
(i.e.,itis associated with the actvaAR_DECL

or PARM_DECInode). Such memory tag is
calledtype memory tagTMT).

Figure 6 is similar to the previous example, but
in this case the addresses@fb, ¢ andd es-
cape the current function, something which the
current implementation does not handle. This
forces the compiler to assume that all versions
of p may point to either of the four variables

b, c andd. And so it creates a type memory tag
for p and puts all four variables in its alias set.

The concept of ‘escaping’ is the same one

used in the Java world. When a pointer or

an ADDR_EXPFRescapes, it means that it has

been exposed outside of the current function.
So, assignment to global variables, function ar-
guments and returning a pointer are all escape
sites.

We also use escape analysis to determine
whether a variable is call-clobbered. If an
ADDR_EXPRscapes, then the associated vari-
able is call-clobbered. If a pointét; escapes,
then all the variables pointed-to by (and its
memory tag) also escape.

In certain cases, the list of may aliases for a
pointer may grow too large. This may cause
an explosion in the number of virtual operands
inserted in the code. Resulting in increased
memory consumption and compilation time.

When the number of virtual operands needed
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Figure 6: Using flow-insensitive alias informa-

tion.

foo (int 1)

{
# a, = VDEF <a;>;
# b, = VDEF <b,>;
# c¢,; = VDEF <c,,>;
# d,5 = VDEF <d,,>;
p, = baz (&a, &b, &c, &d);
# a6 = VDEF <ag>;
# b, = VDEF <b,>;
# Cig = VDEF <Ci5>;
# d,y = VDEF <d,;>;
*pz = 5,

# a, = VDEF <a >

VDEF <b,,>;

S 3
o
=
I

# VUSE <a,>;
# VUSE <b,,>;
# VUSE <c>;
# VUSE <d,,>;
T.17 = *pz;

}

foo ()

{
# TMT.5, = VDEF <TMT.5 ,>;

p, = baz (&a, &b, &c, &d);

# TMT5,, = VDEF <TMT.5,,>;
*pz = 5’

# TMT.5, = VDEF <TMT.5,,>;
a=3;

# TMT.S5,, = VDEF <TMT.5,,>;
b =2;

# VUSE <TMT.5,>;
T.17 = *p2;

}

Figure 7: Effects of alias grouping.

to represent aliased loads and stores grows
too large (configurable withparam max-
aliased-vops ), alias sets are grouped to
avoid severe compile-time slow downs and
memory consumption. The alias grouping
heuristic essentially reduces the sizes of se-
lected alias sets so that they are represented by
a single symbol. This way, aliased references
to any of those variables will be represented by
a single virtual reference. Resulting in an im-
provement of compilation time at the expense
of precision in the alias information.

Figure 7 shows the same exam-
ple from Figure 6 compiled with
--param max-aliased-vops=1

Notice how all four variables are represented
by p’'s type memory tag, namelyMT.5 Even
references to individual variables, like the
assignment = 3 are considered references to
TMT.S

8 Conclusions and future work

Tree SSA represents a useful foundation to
incorporate more powerful optimizations and
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We expect the infrastructure to keep evolv-
ing, particularly as new optimizations are

added, we will probably find design and/or

implementation limitations that will need to

be addressed. We have tried to make the
basic design sufficiently flexible to permit

such changes without overhauling the whole
middle-end.

New Tree Representation for Entire Func-
tions. In Proceedings of the 2003 GCC
Summit Ottawa, Canada, May 2003.

M. J. Wolfe. High Performance Com-
pilers for Parallel Computing Reading,
Mass.: Addison-Wesley, Redwood City,
CA, 1996.
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Abstract This optimization is supported by target archi-
tecture hooks and is currently implemented and

. tested for SH4 architecture.
In most modern processor architectures, dif-

ference in data access time for values kep_rL 1 What is remat?

in registers as compared to those in memory" '

is quite high. Thus, compilers should imple- : . :

ment efficient register allocation strategies to;egg;n;;#[ezg] ;;u?é:ct;ﬁi?ec daggjrgzcg;;nee::\e dds
improve the runtime performance of the COde'WiII always t;e available for the computation
Register rematerialization is a technique to im- '

prove register allocation effectively by improv- gllj(r::l Vallggzl ?éeis(t:glrlez)a?lozz\tliia k'gig ;;a;ldifl'
ing spill code generation. It is often desirable 99 9 pass,

to compute expressions at a “use” rather thargﬁ\ée;ggfiovilge: ﬁg&notthzer:egté? fl%iif;
use an earlier spilled value. Normally, “re- should recognize v‘\)/hen ’it is che% er to recom
materializable” values are derived from reg- d P

isters that are live throughout the function.pUte the value .e. to rematerializg It [REMAT],
On register-starved architectures with with agrather than to store and refoad it from stack.
dressing modes supporting limited displace--”.IIS often happens W|th_frame pointer (FP) rel-
ment, spilling values, which can be remateri-2tve address computations as well as address
alized, incurs an additional loss in performancecompUtatlonS of large struct or arrays in local
due to instructions generated to fetch data fro COPE, where unnecessary Sp.'"S .are seen. A
the frame. Hence, rematerialization aids inPrme example of this can be cited:
good usage of registers to give a good gain in ,
execution performance of the code generated. 1. GCC calculates FP + offset and stores into
Experimental results indicate a gain of 1-6% in r3 (say).

code size and 1-4% improvement in execution 2. GCC spills and restores r3 to (from) stack
performance. even though it would be cheaper to clob-
ber the register and recompute the value

1 Introduction OfFP + offset.

Register remat occurs as part of a larger prob-
Let us see the register rematerialization (rematlem of improved spill code generation during
concept in GCC in more detail. We discussglobal register allocation. The description be-
the proposed improved remat implementatiorlow co-relates the two facets—Register Allo-
in GCC as it occurs as a part of graph coloringcation Problem and remat as a method of im-
register allocator (in the new regalloc branch).proved spill code generation.
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1.2 Register Allocation as Graph coloring
Problem

The new register allocator in GCC models reg-
ister allocation as a graph-coloring problem. It
first constructs an interference graph G where
nodes in G represent live ranges and edges rep-
resentinterferences So there is an edge from
nodei to nodej if and only if live rangel; in-
terferes with live rangé; i.e. they are simul-
taneously live at some point and hence cannot
occupy the same register. Live ranges that in-
terfere withl; are its neighbors in the graph, the
degree of; is the number of neighbors it has in
the graph.

To find an allocation from G, the compiler
looks for a k-coloring of G, i.e. an assignment
such that neighboring nodes always have dis-
tinct colors. If we choose k to match the num-
ber of machine registers, then we can map a
k-coloring for G into a feasible register assign-
ment for the underlying code. Because find-
ing a k-coloring of an arbitrary graph is NP-
complete, the compiler uses a heuristic method
to search for a coloring, it is not guaranteed tol
find a k-coloring for all k-colorable graphs. Ifa
k-coloring is not discovered, some live ranges
are spilled, i.e. the values are kept in memory,
rather than in registers [GCRA].

3

ing on stack and inserting corresponding
reloads before all uses these defs flow
into. This spilling technique is fast but not
optimal as it would generate lot of spill
code.

An improved but sloweinterference Re-
gion Spilling approach, which involves
spilling a live range partly. An interfer-
ence region for two live ranges can be
defined as the portion of the data flow
where they are live simultaneously. By
spilling interference region for one of the
live ranges, they will no longer be live si-
multaneously, thus will no longer inter-
fere. This effectively removes an edge be-
tween the two nodes in the interference
graph, making the graph more easily col-
ored. Any spill code addition due to inter-
ference region spilling would insert spill
code say after a particular use point (only
those uses which lie in the interference re-
gion). This use point may or may not be
the first one in the live range.

Improving the quality of spill code—Remat
Opportunities

In the existing implementation of new regis-

ter allocator, remat is performed only for those

Spilling one or more live ranges changes bottvalues whose definition consists of moving a
the intermediate code and the interferencémmediate value to a pseudo. The proposed
graphs; hence register allocation. The compilefpproach can enhance the scope of remat by
proceeds by iteratively spilling live ranges andtaking into account more potential remat can-
attempting to color the resulting new graph.didates and hence improvement in spill code
This process is guaranteed to terminate. generation.

The new register allocator framework takesThe opportunities identified for remat can be
two approaches while spilling a live range

* Immediate loads of integer/float constants

A simple Spill Everywhereapproach in-
volves spilling the entire live range in case
it needs. This would involve spilling all
the defs of value live range is represent-

 Loads from literal pools

 Computing a constant offset from the
stack pointer
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 Computing a constant offset from the Hence the remat strategy can be segregated into
static data area pointer the following sub-problems

* Any Branch Related target Labels
» Gather and propagate remat/live-range in-
» Address computations for access to non-  formation

local names in case of nested functions
* Criterion for spilling/remat decision
* Address computations from pointer to

global offset table in case of position in- * Performing remat
dependent code

 Address computations resulting from pa—z'l Remat Information

rameter registers (e.g. r4..r7 in case _ o _

callee save registers which dont have defénformation needs to be built during the data-
elsewhere in the function flow analysis. All the defs can be analyzed

to see whether they come from any of the re-

« Address computations resulting from re-mat sources. Such defs can be tagged with
turn register (e.g. r0 in case of SH4) ortheir corresponding remat efinitions. Any re-
return register copied to other callee savemat definition resulting from an operation on
registers which don’t have defs elsewherewo or more rematerializable definitions (say a

in the function def consisting of adding a constant value to the

label) can be tagged likewise.
2 Remat Strategy

2.2 Remat Criterion

scribed in Section 2.3. But due to some issues

which can be allocated a distinct symbolic reg- . i naq further, it might not be possible to

ister number. The interference graph for Webs(:alculate the exact spill costs. Another method

con_S|sts of a_number of such intersecting Websfo choose remat in the absence of spill cost cri-
the intersection between any two webs OCCUMNSarion has been described in Section 2.4

when they have a use in common. If a web
can't be assigned a register then a decision i

" 3.3 Spill vis Remat Cost
made to spill it. pill v/s Remat Cos

The proposed improved remat optimizationWhenever a decision is taken to mark a web
consists of identifying remat defs during data-for spilling, check if the definition in the web is

flow analysis and propagating this informationrematerializable. Calculation of the remat and
to the web spilling phase. The spilling phasespill cost will be implemented in a target de-
can choose between spilling or rematerializapendent hook. Remat cost will be calculated in
tion of a web based on relative cost analysisterms of the aggregate of all the insns’ costs,
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which would be required to recompute a rematfThe first problem related to spill cost compu-
definition before every use of such definition.tation can be partially resolved by tracking the
Similarly spill cost can be computed as instruc-size of frame data and number of pseudos be-
tion cost aggregate of all the insn’s cost genering spilled so as to have an estimate of spill
ated to spill (and restore) the value. Chooseffsets. This can predict the number of in-
the one with lower cost. However in the exist- structions that would actually be required to
ing new register allocator, it may be difficult to spill (restore). However in the existing frame-
calculate the exact accurate remat (spill) costsvork of new register allocator, spill cost can-
of any value because not be computed correctly in some cases due
toreload _cse issue mentioned.

» During web spilling, actual stack offsets o4 R Wi " culat
of spill locations are not defined, instead?# Remat Without Spill Cost Calculation

only stack pseudos are assigned o _
In the absence of a definite cost available for

» Thereload_cse pass may use addressspilling, spill cases can be segregated accord-
inheritance information and may mergeing to the reason for their occurrence and also
some instructions for loading the offset, cases, which will definitely be cheaper to re-
by reusing any value close to or equal tomaterialize than to spill
the offset loaded in some other pseudo.

Hence cost decisions may get inva"dated:)eﬁnitive Remat Some defS can be |dent|f|ed
later as remat cases based on the fact that they re-
quire 1/2 insns to compute and re-computing

. them will always be less than or equal to mini-
€.g. In case of SH4, the number .OT mstruc-mum cost of spilling a def for the given target.
tlons tq .Sp'" (restore) can be a minimum of Examples for such definitive remat would in-
1, if spilling takes place at an offset less thanClude

64 bytes relative to a base register. In case
the spill offset is more than 64 bytes, spilling
(restoring) may take two or more instructions,
one instruction for loading the stack offset to « [ gbel Loads

spill (restore) and another consisting of stor-

ing (restoring) the value. In order to calcu- pgfg having up to 1 insn in their remat insn

late spill (restore) offset (and the number of . 4in (spill (restore) together would require a
instructions required for spill ), stack slot in- . inimum of two insns).

formation to which the pseudo is likely to be

spilled to, needs to be built and tracked for allFor defs having two or more insns in their re-
such pseudos, depending on which the numberomputation sequence, insn merging can be at-
of instructions needed to spill (restore) can beéempted on that sequence based on a target de-
calculated. pendent hook. If such sequence merging gen-

~erates a valid single insn for the target, then it
Thereload_cse  pass may further merge in- tits a5 a candidate for definitive remat.
structions for loading the offset, by reusing any

value close to or equal to the offset loaded inFor remat in such cases, all the insns lead-
some other pseudo. In this case, even if théng to definition of rematerializable value be-

spill location is at an offset greater than 64ing spilled can be moved immediately before
bytes, it may require 1 instruction. its use.

» Constant loads
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Moving Defs Near UsesThis approach may mov.l  .L1038,r1

be used for remat cases not covered in previ- bsrf ri

ous section. Spilling generally happens as a

result of spacing between the actual def and

use of values in case of high register pressurd=or remat in such cases, the all the insns lead-
This can happen in case of complex compuing to definition of rematerializable value be-
tations involved in some program statementsing spilled can be moved immediately before
where LHS computations and some other interits use.

mediate computations have to be spilled. Such o )

cases of spilling require generation of 2—4 spill There are certain issues regarding the move-

and restore instructions (e.g. 64-byte stack offMent of insns in this case. The placement of a
set criterion in SH4). In case the computationdef before use requires addition of insns before

being spilled is rematerializable, spilling be- the use point which leads to increased register

comes unnecessary. The remat cost criterioS29€ there. Hence, a good heuristic needs to

need not be taken into account here becaud® devised to make sure that such insn inser-
spilling is definitely not required. tion keeps the register pressure in check and

does not actually end up increasing it.
In both the approaches for spilling described _ _ _
above, unnecessary spill cases can be identifidgterference Region SpillsAs discussed ear-

as those having their spill point just after deflier, in case of interference region spilling, spill
(before 1st use). point may or may not be before the first use

point. Hence in such a case for spilling, we
The following assembly illustrates this case: have to choose between spill/rematerialize (in
the absence of cost of spilling). This case of

chanserv.ilload_cs_dbase (in spilling generally occurs in spilling calculated
stress 1.17) compiled with -O2 offsets for arrays/structs, and may not require a
-ml -m4 -fnew -ra lesser remat cost in most of the cases. Here re-
-fno-argument-alias materialization decision is not taken, as spilling
-fno-schedule -insns might actually be cheaper. Nevertheless, the
-fno-schedule-insns2 -g -S decision may not be correct for all the cases.
-fpic generates
11404: 2.5 Performing Remat

Jdoc 1 2844 0

mov.l  .L1036,0 <- 1 Remat of a value involves inserting re-

mov.l  @(r0,r12),r0<-- 2 computation sequence for a definition before

mov.w  @r0,rl ins:"cﬁai(r:erlngg use points by moving the insns forming the

movw  rl@rl4 < spil definition before use points.

before 1st use

.L612: ; ;

oo 1 2845 0 3 Implementation in GCC

mov.w .L1037,r0

mov.w  @rl4,rl <-- Reload The patch at the link

mov.w r1,@(ro,r11)

doc 1 2848 0 http://gcc.gnu.org/ml/gcc-patches/

mov ri4,r4 2003-12/msg01985.html
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is the implementation of the ideas presented iWeb Spilling Phase In this file i.e. ra_
the paper in GCC. This implementation scopeewrite.c  , the allocator is let to spill as it
and its constraints are discussed as follows. was doing earlier. After the first level spilling

is done, the spilled webs whose defs can be re-
3.1 Current Implementation Approach mat are picked up and the remat patterns for
those defs can replace the restore insns for the
defs spilled. At the point of inserting compu-

Data Flow PhaseThe improved remat handler [ . .
. .p tatlons, it needs to be ensured that the regs that
detemines the defs, which have been generat
orm the remat sequence

from never-killed sources and creates a remat
pattern sequence to recompute those defs. This

code is implemented along with the data flow ¢ DO not increase the register pressure at
routines in df.c that point.

* Live range of those regs is not exceeded.

Eg. r159 <- constl Q)
ri60 <- r14 + ri59 2) The remat handler only concentrates on the
r161 <- mem (r160) (3) first pass of the allocator and spills generated

for the first time are handled only. Later rounds

do not call the remat sequence building rou-
Here defs for r159, r160, r161 are all re-tjnes.

mat, as all have been derived from never-killed

sources. The data flow routines determine alProblems Encountered With Full Scope

such defs and store the respective patterns that

would be required for recomputing each poten- < In the absence of a good register pres-
tial remat definition. sure estimation heuristic, insertion of defs
with multiple insns in the remat sequence
poses problems. Also, the register alloca-
tor has strong asssumpions about the web
structure. Hence after inserting recompu-
tation patterns of length- 1 in place of
the restore insn, the allocator got stuck
up in a lot of in tight consistency checks
of ra_build.c especially inparts_
to_webs 1 .

So in the above example,
def(r159)=remat_sequence = (1)
def(rl60)=remat_sequence = (1), (2)

and def(rl61)>remat_sequence = (1), (2), (3)

Web Construction PhaseThe cost of webs
in ra_build.c is modified to accommodate
the cost of those webs which have rematerial-
izable defs. The cost for all the defs is added . pye to the same problem, function pointer
up whether for remat defs or non-remat ones. and return register are not being consid-

Web Colorize PhaseThe webs, which have ered for remat.

potentially, remat defs and the cost conse-

quently is lower than other defs are promotedCurrent Implementation Scope Due to the
for spilling. This advocates their spilling, in Problems cited above, the current implementa-

turn relieving the conflict edges. Remat han-tion implements the following remat handling:
dler later picks up such webs and appropri-

ate processing is done there. This happens in « The data flow phase constructs remat se-
ra_colorize.c guences in full and then tries to collapse
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H ; File size size with decrease
them (If a_IIowed by the target) ”df—_ Name with new-ra | improved-remat| (%)
remat_validate . Rest of the chains [ 3bitstreamo | 7424 6944 6.46

; H H aiunit.o 18880 17760 5.93

are discarded at this point. ecanine.o 2400 279 =20

. . . L advdomestic.o 8280 7960 3.86

* The build phase involving modifying | tif_fax3.o 10208 10176 3.13
: tif_packbits.o 1316 1284 2.43

costs for remat webs functions as before. | | =02 20752 20272 531

. . melee2.0 27516 26940 2.09

» The colorize phase functions as before. navion_aero.o| 1600 1568 2.00
chanserv.o 63296 62112 1.87

: S_serv.o 29740 29196 1.82

* The rewrite pass replaces_the source of re-| {"gecode.o | 290000 285936 140
store insns before the spilled uses of the qqant(;ze.o %08(152 293?55 8-64

. . 1. 4064 4 A1

webs and replaces it with the remat source| poufis.o 5808 e 036
(a single pattern). map_fog.o 26272 28880 -9.6

Table 1: Code Size Comparisons
The restricted implementation is scalable

enough to support the original concept of re- Input Data| Gain
mat envisaged and should stand any changes in Benchmark . Size (%)
the register allocator passes. GZIP Compression | 80.5MB 4
Mpg 123 - 4
GZIP Decompression 16.2MB | 2.6
4 Performance Data GSM Compression 1.72MB | 0.05
GSM Decompression 361 KB 0
The performance improvement due to register Table 2: Execution Timings
rematerialization depends on the following fac-
tors.

and without improved remat. The execution
results for some benchmarks are shown in
1. Register Pressure and consequently nunfable 2.

ber of values spilled.

2. The values spilled from rematerializable5 Further Improvements In New
sources and found to be obeying the con-  RA
straints for performing remat

5.1 Loop Variable Spilling
During performance analyis, se-

lect  benchmarks were —compiled  US-|geq)y register allocation should take into ac-
ing GCC-2.3 20021119  (new-regalloC ¢t the variables present inside the loops
branch) for SH4 target using OpUoNs gnq in case of high register pressure, try to as-
-02 -ml -m4 -static . A new option  gjon registers to frequently accessed variables
namely -fimproved-remat Is introduced i3 1o0p (for example loop indexes) on a pri-
to enable improved remat. The benchmarkgjry, pasis. But such an allocation scheme is

were executed on SH4 evaluation boards with, . being observed in some cases. The follow-
QNX 6.1. Itis observed that best performancqng example illustrates this fact

improvement for execution performance is 4%
and that for code size is 6.46%. Table 1 gives
code size comparisons of stress1.17 files witlthanserv.i/check_modes compiled



138 ¢ GCC Developers’ Summit

with -O2 -ml -m4 -fnew-ra -fno-
argument-alias -fno-schedule-insns
-fno-schedule-insns2 -g -S:

doc 1 4743 0
mov.| .L2970,r7
mov.b @r7,r1

cmp/pl rl
bf/s L2942
and ro,r3
mov #0,r1 <- (1)
mov #64,r0 <- (2)
mov.| r1,@(r0,r14)<-- (3)
mov #0,r2
doc 1 4745 0
mov #64,r0

.L3043:
mov.| @(r0,r14),r6 <-- (4)
add r7,r6 <-- (5)

mov.| ré,@(r0,r14) <-- (6)
mov ré,ro
mov.| @(4,r6),ré

tst rée,r3
bt .L2922
mov.b @ro,r1
doc 1 4747 O
mov.b rl,@rl12
add #1,r12
doc 1 4748 0
not r6,ré
mov.| @(56,r10),r1
and re,rl
mov.| rl,@(56,r10)
doc 1 4743 0
.L2922:
add #8,r2 <-- (7)
mov #64,r0 <-- (8)

mov.| r2,@(ro,r14) <-- (9)
mov r2,r0
mov.b @(r0,r7),r1

cmp/pl rl
bt/s .L3043
mov #64,r0

an example clearly illustrates inefficient regis-
ter allocation.

5.2 Loop Invariant Code Spilling

In case of any loop, invariant part of the code
is moved outside the loop. In some cases
such address computations might be spilled
onto a stack locations outside the loop. Inside
the loop these values are reloaded from stack.
Such cases are NOT direct candidates of remat
(as generally remat cost will be higher than the
spill cost). However in case the computation
requires single instruction within the loop (e.g.
loads within 64 byte window to a base regis-
ter i.e. rl4, r12, r11 etc.) then it should well
be computed inside the loop instead of being
moved out as invariant code. This would result
in saving one instruction per loop iteration.

However, changes required in this case would
involve GCC passes, which move loop invari-
ant code.
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Abstract fected; the source is not changed. When dis-

cussing about memory, the effect of Memory

GCC has no formal addressing mode seIectioNanagement Unit can be ignored, since we are

mechanism. It uses target hooks to generat%oncemed with the addresses generated by the

valid addressing modes for a target. However-®™PIe"

a significant amount of high level information Architectures have wide variance of features
is destroyed while doing this, especially for tar-\yhile considering addressing modes of a ma-
gets lacking a rich set of addressing modesghine. Every processor, based on its appli-
This leads to poor aliasing, and subsequently.ation domain, has its unique set of address-
poorerCSE GCSE and scheduling. Hence, anjng mode features. This choice is usually

unoptimal object code. This paper proposeg function of various parameters like regis-

an abstraction over RTL to generate machinger set, instruction size and alignment restric-
independent addressing modes to achieve befipns. The most common addressing modes for

ter aliasing. The actual addressing modes Ofgads/stores on a typical RISC architecture are:
the target are exposed after the first scheduling

pass, where they are selected based on current _ _
execution scenario. Inter block address inheri- * Displacement addressing mode: Itis used
tance is also done at this point. The ideacanbe  When data is at known offset from some

extended to specify a general “mid-level” RTL base address in a register.
for GCC.
mov.l @(4, rl),r2 1
1 Introduction « Register Indirect addressing mode: It is
used when memory address of the re-
1.1 Addressing Modes quired data is taken from register.

In simple terms, addressing modes specify the mov.l @rl,r2

way instruction operands are chosen at run _ ) _

time. In most general purpose machines, an ad- * Register Index addressing mode is used
dressing mode can specify a location in mem- yvhen the exact offset from a base address
ory, a register or a constant/literal. This paper IS notknown.

talks about addressing modes mainly in con-

text of memory loads and stores i.e. operations mov.| @(r0,r1),r2

which move data between registers and mem- ithe assembly snippets correspond to SH4 proces-
ory. In both operations, the destination gets afsor.
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» Auto Increment/Decrement modes: They < Several initial RTL optimization passes
combine memory access and address would be able to perform better.
arithmetic.

» Addressing Mode Selection based on ex-
ecution scenario is likely to be better as
address arithmetic is reduced.

mov.l @rl+,r2 !post-inc
mov.l rl,@-r2 !pre-dec

Some processors also allow pc-relative loads,

where effective address is relative to the curl.3 Address Inheritance Problem

rent point of execution. The above mentioned

modes can also occur with some restrictions , , ,

e.g. the SH4 processor allows only 4-bit dis-Every addressing mode has its associated cost.

placement in displacement addressing mode. 'NiS_cost could be evaluated in terms of
pipeline characteristics of the processor, the in-

structions involved in address arithmetic, or the
cost imposed by the target design. The concept
of address inheritance encourages the reuse
The compiler owns the responsibility of pro- of address calculations. It states that wher-
ducing optimized code that exploits the fea-ever possible, the side effects of address arith-
tures of target processor. The optimal choicemetic instructions should be carried forward,
of addressing modes aims at reduced code siz» that there are no recalculations at the point
and increased performance. GCC traditionallyof next load/store operation. It looks similar
usesRTL as its intermediate language. Al-to CSEGCSEDbut there is a subtle difference.
thoughRTL representation is machine indepen-CSE/GCSEIlook at exact expressions.They do
dent, theRTL actually generated for a target not know the relationship between two ex-
is machine dependent. This is becag3& is pressions of the formeg+kl andreg+k2 ,
generated directly from information in the ma-wherekl, k2 are constants. The fact that
chine description file. The machine descrip-these can possibly be derived from each other
tion contains the description of exact instruc-in target specific way is out of scope for their
tion set of the target. ThBTL can therefore functionality.

be described as low-level intermediate form(or _ _ _ _
targetRTL). This form is not very suitable for Agdress inheritance can be viewed as function
several high level/mid-level optimizations. The With two parameters—time and space. Spa-
tree-ssa  work overcomes the difficulty to a tla_llly related _addresses are those which do not
large extent by defining a new high level in- alias angl which can be acgesseq from the same
termediate form. But some sort of mid-level P2S€ without address arithmetic. The tem-

RTL would is desirable for effective optimiza- POral local addresses are those which do not
tions by GCC'sRTL optimizer. In one sense, &llas and which are separated by minimum
the notion of infinite pseudo registers can bgUmber of instructions. Both can assume two

considered a mid-levetTL abstraction. attributes—near andfar . Spatially related
addresses represents a range of addresses al-

We propose that addressing modes can also bewed in reg+displacement addressing mode.
abstracted as part of mid-leveTL. The advan- Temporal relation is determined by number of
tages would be: available registers and control flow graph.

1.2 Addressing Mode Selection
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Time | Space Inherit(Yes/No) {

near | near Yes I = 234;

near | far Sometimes Possible afi] = 12123

far near | Register Pressure Issues = 290:

far far No a[|] = 12123
Architectures with relatively more number of | = 236;
registers are potential candidates fdar" a[|] = 12123,
& near ” combination, whereas architectures = 208:
having more number of bits reserved for offset a[|] = 12123:
in displacement addressing mode are potential
candidates forfiear & far ” combination. }

2 Problem Description
Figure 1: Random Accesses in an Array

The machine description files are used to gen- mov.w .L3.r1
erate target-IL at the time ®RTL generation. mov.w .L4,r0
As already emphasized, thougTL represen- mov.l r1,@(r0,r14)
tation is machine independent, but its gener- mov.w .L5,r0
ation is machine dependent. GCC imposes mov.l r1,@(r0,r14)
the restriction that every pass should generate mov.w .L6,r0
valid targetRTL. This strategy hampers the ad- mov.l r1,@(r0,r14)
dressing mode optimization, since subsequent add #-32,10
passes are more restricted. L3 mov.I r1,@(r0,r14)
.short 12123
2.1 The Current Scheme L4
.short 936
In the current situation, GCC relies on several  .L5:
target macros. It useSO_IF_LEGITIMATE_ .short 1160
ADDRESSo verify all memory address related .L6:
changes. DurinRTL generation, the macro .short 944

LEGITIMIZE_ADDRESS, is used to break large
offsets to valid targeRTL form. When using
one addressing mode, GCC queries whether
the chosen mode is too expensive for the target.
It uses the target hooKARGET ADDRESS._ Figure 1 illustrates some aspects of addressing
COST to compute the cost of an address-mode selection problem.

ing mode. Targets definBPARGET_ADDRESS
COSTas simple heuristic values. The hook ex-
hibits a limited form of cost model for address-
ing mode choice, but it is not a complete frame-
work and certainly misses optimal choice in
most cases. » The value ofi is known at compile time,

Figure 2: Output without AMS for Figure 1

Figure 2 shows the code generated by current
implementation of GCC. There are few points
noteworthy here:
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1 mov.w  .L3r1 The selection of the optimal addressing modes
:2:, g]dodv.w rlijg v_vith minimal code size and minimal execu_tion
4 movl 11 @’(24 2) time depe'nds on many parlameters 'and is NP
5 MOV W .I’_5,ro ’ cqmplete in gene.raI[Ecksteln]. One |mp9rtant
6 mov.  rL@(r0,r14) crlterla_ for choos!ng approprlgte que is the
7 mov.w  .L6.r0 execution scenario. The choice which seems
8 mov.  r1,@(32,r2) to be best in one scenario may prove to be un-
9 mov.l  rl,@r2 optimal in another execution sequence. For ex-
10 .L3: ample in Figure 3, dual register indirect ad-
11 .short 12123 dressing mode is used in line 6. Note tin@t

12 L4 suffices many needs on SH4, and it is generally
13 .short 912 advisable to avoid the use df wherever pos-

14 L5 sible. Still, this mode is the best choice in this
15 -short 1160 execution sequence. The other choice left is

register-indirect which would generate the se-
Figure 3: Output with AMS for Figure 1~ 9Uence

] mov.w .L5,r3
but copy propagation could not take ad- 44 r14.r3

vantage of it due to target restrictions. mov!  rl.@r3

» Since GCC assumeisis not known at The f hoice is better si it :
compile time, it has chosen register index © (()jrdmer ¢ o_;:le 'St. € etr S'?Ce ITlfl sa\t/)mg
addressing mode. It could have done petON€ address anthmetic nstruction. The above

: example shows the choice of addressing mode
ter as Figure 3 shows. ) .
should be determined by the execution sce-
nario. Hence, it should be decided flexibly, and

s There are three rel ressé L :
ere are three related addressés rigidly as done in GCC currently.

the snippet, viz. a[228], a[234],
a[238] ; but GCC is unable to recognize

the fact. 2.2 Address Inheritance in GCC

- Extra pc-relative loads are generated. ~ GCC implements address inheritance in lim-
ited form through two passesregmove and
reload _cse . regmove intents register to

The optimal assembly for the above snippet igegister copy elimination. As a side effect, it
shown in Figure 3. The line numbers are notdoes the following transformation:
part of assembly; these are kept for further ref-
erence. PX<-pA+N | ~ pX <- pA + N
->
With this improvement, even in this trivial ex- 65<<-pA+|\/|| | pX <- pX + (M - N)
ample, we get 4 bytes of code size reduction,
lesser stress om0, the only index register

available on SH4. and one fewer PC-rel load. This transformation is an address inheritance

transformation as the the address computed in

2The notion of related addresses is explained in thé?X IS reused subsequentlyegmove is inef-
next subsection. fective in several cases because:
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« CSEandGCSEboth run beforeegmove ,  void foo (float *a, float *b)
and they attempt to optimize address

arithmetic prior toregmove . They zg;} z ZE)} I Zﬁg}f
pull address calculations near basic block } '
boundaries whereegmove cannot opti-
mize them. mov (4,12

add #H72,1r2

* regmove pass cannot see beyond basicfmovS @r2,fr2 1Load a[18]
blocks and is unable to propagate infor-,,, r4 }3
mation across basic blocks. fmov.s @r4,frl 'Load a[0].

. . add #68,r3
* regmove is able to do the required trans- fadd  fr2.frl 1Add

formation only forSimode accesses for .0, s fr1 @r3 IStore a[17].

SH4. fmov.s @r5,frl 'Load bjo0].
fmov.s @r2,fr2 !Load a[18] again.
fadd fr2,frl

reload_cse is simple CSE pass over hard fmov.s frl,@rl IStore b[17].

registers after reload. @ The functions of
reload_cse include:
Figure 4: The Alias problem

1. It eliminates no-op moves where two dif-

ferent registers are assigned to the same o
hard register, and then copied one to the * Use distinct constant offsets from the same

other. register

2. It detects cases where we load a value
from memory into two registers, and
changes it to simply copy the first regis-
ter into the second register if memory is
more expensive than registers.

 one of them points to stack

3. Itscans the operands of each instruction to
see whether the value is already availablé=or machines that do not have “reg + dis-
in a hard register. If possible, it replacesplacement” addressing mode, pointer arith-
the operand with the hard register. metic is necessary to compute a pointer to the
desired address. GCC lacks the mechanism
to determine aliasing between such computed
pointers[Sanjiv]. Consider the code in Fig-

o ) _ ure 4. The Figure 4 also shows the correspond-
Several passes need alias information for domgng SH4 assembly with -O2 option.

effective optimizations. Alias information is

most important for passes lik&SE loop invari-  Since SH4 doesn’t support “reg + displace-
ant code motion, instruction scheduling, andment” addressing mode for floats, GCC alias
register allocator. GCC can successfully deteranalysis mechanism fails. HenC8Eis unable
mine aliasing between two memory referenceso determine if a value can be retained in a reg-
if they ister across a write araf18] is loaded twice.

2.3 Alias Analysis
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3 Solution Strategy 2. The mode of a pointer is the mode in
which the register is accessed or used.

3.1 Designing an Abstraction over RTL . . ,
gning 3. The slack of a pointer is the maximum

negative value, which can currently be
added to the pointer and still properly ad-
dress the memory references which have
already been assigned to this pointer.

It is desirable to have some sort of abstrac-
tion to hide target addressing modes to elimi-
nate problems highlighted in the previous sec-
tions. We initially pretend some standard high
level addressing modes. The change to tar- _ _
get's addressing mode is done in a separatéhe algorithm also defineslacked_pool

pass after first scheduling pass. The schedf pointer pseudos which contains bias values

uler can do better load/store scheduling with2t @ specific execution point. A locked regis-

et e There s a ew marocallff &A1 D 5 e for s
TARGET _USE_ABSTRACT_MODESf this is y

o without any bias changes. The look ahead win-
nonzero, this will force the front end to gener- yow is normally a basic block. We also define
ate memory references with following abstrac-;niocked pool registers with each regis-

tions. ter's bias. An unlocked register is a register
which is currently not usable for an address
« Infinite displacement (natural register within the currently visible lookahead window

size) for register+offset addressing mode.without any bias changes. E.g., consider the
reference sequence with addresses:

» Dual register indexed mode with two gen-
eral purpose pseudos—i.e., @(rm, rn)—is

supported. (plus:Pmode (fp,124))

(plus:Pmode (fp,120))

« Auto-ionic modes are disabled as they ef-  (Plus:Pmode (fp,128))

fect the scheduling adversely.
where fp is the frame pointer. It can be
3.2 Addressing mode selection pass any base register in general. Initially, a new
pseudo (sayn) is created with a<bias,
The addressing mode selection pass (AMSylack> value pair a<124, 60> for SH4.
lowers mid-leveRTL to a low-levelRTLby im-  We can then access memory at (fp, 124) sim-
posing target’s constraint on addressing modegly as (rn, 0)  with displacement address-
At the same time, it would generate the re-ing mode. At second access, (fp, 120), we note
quired arithmetic. Address inheritance is partthat we can reuse with a bias change of 4.

of the functionality of the AMS pass. So we change thebias, slack>  value to
<120, 56> . When an offset is not reachable

Virtual Displacement Handling: The transfor- \ith any pseudo in the locked pool, then a new
mation of infinite virtual displacements to tar- pseudo (sayn+1 ) is created.
get specific displacements is done as follows.

The pointer pseudo is given the following at- By applying the above reasoning the following
tributes: output is generated for SH4(which has 60 byte

valid displacement):

1. The bias of a pointer is the value currently
added to the base pointer. mov #120,r2
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add r14,r2 Ir14 is fp Inter-Block Address Inheritance: The tech-
mov.l  @(4,r2),r1 'fp+124 nique described needs to be extended to retain
mov.l  @r2,r3 ifp+120 <bias, slack>  values across basic blocks.

- Taking control flow graph into account is a
mov.l  rl,@(8,r2) 'fp+128 difficult problem. For simplicity, we propa-

_ gate thelocked _pool information only to
With current framework GCC ends up generatt|ithry  basic blocks. So some address cal-

ing code like this for SH4. culations are saved across basic blocks. The
overall strategy is still in investigative phase.

mov ri4,r2
add #64,r2 )
mov.l  @(60,r2),r1 4 Conclusion

mov.| @(56,r2),r2

Implementation of the ideas presented here
have confirmed the expected aliasing gains.
The implementation has been tested for SH4
and IA-64. Preliminary benchmarking indicate
. ) . 0

The address arithmetic is reduced in formerthat execution gains can be. as h'gh as 5-7%.
. ) However, some more work is required for the
case. To avoid creating too many pseudos .

: _ idea to work on CISC machines.
during the process, some heuristics have been
tried. Limiting pseudos to approximately half
of the register set usually turns out be good5 Acknowledgements
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Abstract pointing to tree nodes have the typee |,

which can address any node no matter what

The current abstract syntax tree of GCC useds internal structure is. To access the data car-
a dynamically typed tiber-union for nearly all ried in a node, one mgst use the macros defined
nodes. The desire for a statically typed tree dell tree.nh . These hide the exact representa-
sign has been raised several times over receffn @nd can be configured to carry out consis-
years, but there has been no concerted effofNCY checks at runtime (of GCC). We discuss
to implement such a design. We describe thdhe in-memory representation and the accessor

impacts of the current design, both in imple-macros in more detail below.

mentation anq performgnce degradation. Wel’hecodeofatree node determines its dynamic

p(esentade5|gnfor statically typed tree.s, alon%,pe_ The generic (language independent) por-

W'th. case studies of part of the_ conversion. We[ion of the compiler defines approximately 150

outline a plan for full conversion and dISCUSScodes. Front ends can define additional codes

further improvements that this would enable. if necessary. There are tetassegconceptual
categories) of tree codes; each has a tag charac-

1 Current architecture ter to identify it. Front ends cannot define new
classes. Presently, the classes are

GCC uses a data structure calledree for

its high-level intermediate representation. The
parser and semantic analyzer for a given pro-
gramming language construct an initial tree
representation of the program to be compiled.
The high-level optimizers work directly on this
tree. After they are done, the “expander” con-

X "o un o= ANRO

, constants

, unary arithmetic operators

, binary arithmetic operators

, comparison operators
references (e.g. array indexing)
, other expressions (e.@: )

0 's', statements
verts the optimized tree to a lower-level repre- . :
. o , declarations
sentation calledRTL for further optimization 1 types

and assembly output. We will not be discussing
RTL in this paper, but it is worth mentioning ’
that many of the same issues also apply.

miscellaneous

Here are some example tree nodes, with the in-

A tree structure is a directed graph mbdes formation they carry:

Each node is a block of memory (asGuct )
on the heap; the graph edges are pointers be-

tween these blocks. Tree nodes are dynamiSTRING_CST (class “constant”)

cally typed. All variables and structure fields A string constant. The node holds a



150 ¢ GCC Developers’ Summit

pointer to a separately-allocated byte ar-1.1 Substructure
ray, and the length of this array.

The tree type is a pointer to ainion of

PLUS_EXPR("binary expression”) struct s. We will call these structs “substruc-
An addition operation. The node holds ;g »

pointers to tree nodes representing the two

addends. .
union tree_node
“ {1 {
IF—STMT (Statement) 3 struct tree_common common,;
An if statement. The nod_e holds point- struct tree_type type;
ers to tree nodes representing the control- struct tree_decl decl;
ling expression, the “then” clause, and the struct tree_list list;
“else” clause.

\

VAR_DECL(“decIaration") typedef union tree_node *tree;

A declaration of a variable. The node
is the root of a directed graph of nodesAll tree nodes include the fields aftruct
which collectively describe the properties tree_common .* Most nodes also carry ad-

of the variable. ditional information stored in one of the other
substructures. The tree code, which is a field
INTEGER_TYPE (“type”) of the common substructure, determines which

A description of an integer data type, substructure is active.

either intrinsic to the programming lan- _

gram being compiled. Again, the node iscording to which substructure is valid. This
the root of a directed graph describing thecategorization is similar, but not identical, to

properties of the type. the categorization into classes. Front ends
can also define new substructures, if necessary.
TREE_LIST (“miscellaneous”) Unfortunately the mechanism for this is some-

A linked list of other trees. Each node What awkward, since there is no way in C to
of the list can point to up to three differ- augment the contents of a union.

ent trees (known as thgpe purpose and
value); however, usually only one of these
slots is used.

Naturally, accessing the wrong substructure of
a node can have grave consequences. To pre-
vent this, GCC can be configured so that the
ERROR_MARKmiscellaneous”) accessor macros inspect the tree code and ver-

A placeholder used when an error is en_ify that they have been applied to the proper
countered during compilation. This node kind of tree. These checks are partially ad-hoc
carries no information. The compiler al- and partially machine-generated. The code is

locates only onERROR_MAR#ode per only known when the compiler is running, so
invocation. - the checks perforce must occur then. If one

fails, GCC halts translation with the infamous
“internal compiler error” (ICE) messagde.

Trees exhibit three levels of polymorphism, Ibecause all the other substructures inclsiect
which we will refer to assubstructure, mul-  ee common as their first member.

tipurposing, andoverloading. 2Jeff Law added the checking mechanism in 1998.
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Accessor Used with Content
TYPE_VALUES ENUMERAL_TYPE | A list of CONST_DECY, one for each
enumeration constant.

TYPE_DOMAIN SET_TYPE An integer type whose range determines
ARRAY_TYPE the set of all valid indexes of this type.

TYPE_FIELDS RECORD_TYPRE A list of FIELD_DECLs, one for each
UNION_TYPE data member of the type.

TYPE_ARG_TYPES | FUNCTION_TYPE A list giving the type of each parameter,
METHOD_TYPE in order, to the function or method.

TYPE_DEBUG_ VECTOR_TYPE The type to use when describing this type

REPRESENTATION _ to the debugger. (Most debuggers do not

TYPE understand vectors.)

Table 1: Multipurposing of thegalues field of tree_type

1.2 Multipurposing Of course, not all possibilities can occur within
avalid tree structure. The accessor macros par-

Some fields of a substructure have differentially validate the targets of pointer fields, and

meanings for different tree codes. When therd1iand-coded assertions finish the job. When a
is more than one possible meaning, we say thdteld can legitimately point to more than one

that field is multipurposed. For instance, akind of node, we say that the field is over-

tree_type  structure represents a data typeloaded.

in the program being Complleq. There 4"®The distinction between overloading and mul-

twenty tree codes that use this substructure

Eight of them assign one of five possible mean_tlpurposmg is whether the code of the node

ings to thevalues _ field. Table 1 enumerates containing the field determines what the field

the possibilities. The field goes unused in type'loS omtjsltitoﬁrTgizlui\SrPljﬁ gj gi;c;u;ssde?gg(\j/e
nodes with one of the other twelve codes. purp ) - P

fields are overloaded—we do not know, upon
A relatively common special case of multipur- encountering alPLUS_EXPRwhether its op-
posing is when a field has only one possibleerands are expressions, declarations, or con-
meaning, but only a subset of the tree code§tants. (Wedo know that they are in one of
for that substructure need to use that field. Théhose three categories.)
others leave it aslULL

13 Overloading 2 Issues of the status quo

Many of the fields of a tree node are pointersThe present architecture has a number of de-
to other nodes. These, like all pointers to treesign issues, which manifest either as runtime
nodes, have the tyfgeee ; as far as the C type overhead (both space and time) or as increased
system is concerned, they can point to any treburden on the maintainers of the program.
node. The operands of &LUS_EXPRneed For an obvious example of both, the runtime
not be expressions; they can be declarationghecking done by the accessor macros slows
constants, types, or anything else. the compiler down 5-15% (depending on in-
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put). This is substantial enough that checkingadditional complexity in the accessor macros.
is disabled in release builds, which can mean ]

that bugs go undetected. It is on by default in"While many nodes have fields that are never
development builds, which means GCC develYS€d, some nodes do not have enough, which

opers all put up with a slower compiler for the leads to ancillary data being maintained out-
sake of dynamic type safety. A slow compiler side the tree structure. This may consume more

hence a slow edit-compile-link-debug cycle, ismemory than would have been required oth-

a maintenance burden in itself; also, the check€"Wis€, and it also makes the program harder

ing mechanism is complicated and easy to mistO maintain, since all the necessary informa-

program (see section 2.2 for an example). tion is not in one place. lronically, the _declg-
ration structure is also an example of this, with

Each of the above varieties of polymorphismsubstantial ancillary data being carried in the
has its own set of issues, which we will dis- cgraph_node structures.

cuss in turn. We will also discuss a number of

related issues that we intend to address at the,  \uyltipurposing and generic accessors

same time.

In the past, the accessor macros and the de-
bugging pretty-printerdebug_tree ) did not
know anything about multipurposing. One
The dynamic type system has a certain level ofvould use the same accessor macfyRE __
intrinsic overhead. In many cases, GCC’s ownVALUES for all five purposes listed in Ta-
source code, not the content of the program beble 1. This led to confusion about which
ing compiled, completely determines the coddree codes might use a given field. While
of atree node. However, we must still maintainconsiderable work has gone into introducing
the node header, which is a full word (the codemore specific accessors, some generic acces-
plus 24 flags). For smaller nodes, this can be gors still exist. Furthermore, the set of valid
considerable amount of memory overhead. codes for each accessor may be incorrect. As
~we were writing this paper, we discovered that
In the larger substructures, many of the fields,yo of the accessor macros for thalues
are only applicable to a few of the_ tree c_odesﬁem allowed &VECTOR_TYPEObviously the
that use those substructures. This obviouslysme field cannot serve two purposes simulta-

wastes memory. Itis a particularly severe prOb'neoust. Tightening up the checks exposed a
lem for type and declaration nodes; the contenf 5 rmiess bug irexpr.c and a more serious
of a CONST_DECIcould fit into 16 bytes or bug incp/decl.c

SO0 on a 32-bit host, but it occupies 116 bytes

anyway. The other side of this problem is thatAccessors for fields with only one use are still
adding a new field to a substructure consumebkely to check only that the substructure is cor-
memory proportional to the total number of rect, not that the field is relevant to the spe-
nodes using that substructure, not just the numeific code. They thus fail to document or en-
ber of nodes it's relevant to. People there-force which codes the fieldare meaningful
fore avoid adding fields to substructures. In-for. Generic routines that inspect trees (such
stead they add new purposes to existing fieldsas the debug-info generators) won't bother to
which adds to maintenance burden instead. Weheck for an appropriate code; they’ll rely on
could solve this within the existing framework the fields beindNULLwhen they are irrelevant.
by defining new substructures, at the cost ofThis situation can persist unnoticed until some-

2.1 Substructure overhead
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one decides to introduce a second purpose for == TYPE_DECL)
one of these fields. In the process that person name = DECL_NAME (name);
will tighten the checking macros, which will
probably cause the generic routines to fail. if (TREE_CODE (name)
I= IDENTIFIER_NODE)

2.3 Abusive overloading abort ();

Tree overloading sometimes happens naturally? less troublesome, but still unwise, case of
For instance, the tree the parser builds for #verloading is the C and C++ parsers’ reuse
complex arithmetic expression will consist of Of expression nodes while parsing declarations.
EXPRnodes which may point to oth&XPRs, Normally aCALL_EXPRrepresents a call to a
to DECIs, or to constants. This is a straightfor-function; its operands are the function to call,

ward way to represent an abstract syntax treednd a list of actual arguments. But the C and
and it rarely causes trouble. C++ front ends also use this expression to rep-

resent a function declaration; then its operands
However, since all pointers to trees have theare the function’s name, and a list of formal pa-
generic typetree , overloading can poten- rameter declarations. This is convenient for the
tially happen anywhere. Since this flexibil- parser, but necessitates a complicated conver-
ity is available, it has been used whenever itsjon routine grokdeclarator ) to generate
was locally convenient, without thought for the type and declaration structures expected by
global consequences. Indeed, usually there at@e rest of the compiler. These peculiar expres-
none—at the time. Once overloading has beegions are intended never to escape the C front
added to a tree, every routine that examines ignd, so they have not had creeping global con-
must be prepared for whatever it might find insequences. However, from time to time one

the overloaded field. The only way to prove does escape and cause an ICE elsewhere in the

that a given tree field is not overloaded is tocompiler.

do a global data flow analysis, which can be

very difficult. Thus, global consequences creep/Ve can generate a crude estimate of the num-

into the compiler over time, as new routinesber of places that have to take care when in-

are added that inspect trees that might be ovegpecting overloaded trees by counting uses of

loaded. the TYPE_P and DECL_P macros. As of
March 15, there were 41 and 80 uses, respec-

An example of these creeping consequencegvely, of these macros in the magtc direc-

is the name field of struct tree_type . tory, or about one use every 4000 lines. The
This usua_lly points to a'YPE_DECLnode, C++ front end had more, 143 and 67 uses re-
but sometimes it points to dDENTIFIER_  spectively, or about one use every 500 lines.

NODEnstead. When you get which, and whatThis is due to heavy overloading in the trees

that means, is not documented anywhere. Roussed to represent templates; see section 5.3 for
tines that just want to know the printable namefyrther discussion.
of a type have to use locutions like the follow-

Ing: 2.4 Lists of trees

name = TYPE_NAME (t); Linked lists are very common within trees.
This data structure is convenient when the size
if (TREE_CODE (name) of the list is not known in advance. However,
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struct tree_list {

(as always) consumes a full word; it is fair to
struct tree_common {

consider that entirely wasted, since lists are al-

ggg f;pa;’ ways known from context and the flag bits go
enum tre1e code code ‘8 unused. (See section 3.2 for details.) For a list
I* 24 flag bits */ ’ with only one data pointer per node, this struc-
¥ ture is 60% wasted space; compared to a vector
tree purpose; or an internally chained list, 80%.
tree value;

Because all the pointers are generidREE _
LIST does not reveal any information about its
Substructure oTREE LIST contents. Code that processes lists must know
- from context what the list contains, or else be
prepared to encounter anything. Context deter-

linked lists have notably more overhead tharfMines the contentin most cases; again, this wil
vectors on several different grounds. be discussed in detail in section 3.2.

h

Singly linked lists can be constructed using re- g Language-specific trees

served fields in the nodes carrying the data,

or using separate “cons cells.” Ignoring mal- _

loc overhead, a linked list using reserved fielddS W€ mentioned above, language front ends
in the data nodes consumes exactly the sandVe the ability to define new tree codes. Of-

amount of memory as a vector of pointers tole" these codes do not need their own sub-

those nodes. Either way, there is one extr&tructures. For instance, all of the language-
pointer for each node. Linked lists built out SPeCific codes defined by the C front end are

of separate cons cells, on the other hand, uslor C-specific operators, which use the generic

twice as much memory as a vector; two extra €Xpression” substructure. However, some lan-

pointers per node. In exchange, a data node c4#'@ges need their own substructures. The C++

be on more than one list if separate cons Ceng_ront end defines five such. Since the defini-

are used. Either way, traversing a linked list istion Of the basidree type is in a language-

more likely to cause memory-cache thrashing"dependent header file, there is no way to
than traversing the vector. Include these substructures in the tree union.

Thus, the accessor macros for those substruc-
All tree nodes have ahain field, reserved tures mustinclude casts to the appropriate type,
for chaining the node into a linked list. How- which is a minor hassle. Also, the garbage
ever, this field goes unused in approximatelycollector must assume that language-specific
two-thirds of all nodes (not countin§REE_  substructures can be encountered anywhere,
LIST ; see more detailed analysis below, inwhich adds both runtime overhead (determin-
Section 3.1). Instead, separate lists are built ouhg which substructure is active costs two func-
of TREE_LIST nodes. This is the “cons cell” tion calls per node visited) and source com-
technique, but with far more overhead, becauselexity (special annotations to indicate that the
each node in the list has the ability to point totree union is not exhaustive).

three data nodes instead of just one. .
Thetype anddecl substructures include an

In practice, slightly more than half of all lists opaque pointer field that front ends can use to
use only one data pointer per node, and almosittach their own special data to type and dec-
all the rest use only two. Also, the node headetaration nodes. This mechanism provides a
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clear separation between generic and languagésr what, anddebug_tree  prints them with
specific data. It requires no casting, since thgeneric names.

opaque pointer refers to a forward-declared _ ) ) _
struct  type. Front ends simply provide a Languages sometimes invent their own multi-

complete declaration. However, it does requird®/'Posings for fields that would otherwise go

a second memory allocation, which adds overtnused. The C front end has recycled the
head. TYPE_VFIELDfield of incomplete(RECORD _

TYPE nodes to carry a list oVAR_DECk
Also, the front end might need to multipur- with the incomplete type, so that it can ad-
pose this field—storing different information just them later if the type is completed. This
depending on what sort of type or declaration iis much more efficient than the previous ap-
is—Dbut this is inconvenient, since these strucproach of carrying around a list of all vari-
tures arenot trees and cannot use the machin-ables with incomplete types in the transla-
ery that exists for tree polymorphism. The C++tion unit. However, it directly violates the
and Java front ends solve this problem by dulanguage-independent compiler’'s assumptions
plicating much of that machinery. The Ada about what can appear imYPE_VFIELD.
front end, instead, pretends that the field pointSeveral bugs have been traced to this list es-
to a tree, which can then be multipurposed incaping the C front end.
the normal fashion. Neither is an ideal solu-

tion. TYPE_VFIELD is available for use in the C

front end becausBRECORD_TYP&EN C never
The substructure for a bare identifier (codehave vtables. Th&RECORD_TYPEode is
IDENTIFIER_NODE) also provides for front used for object classes as well as “plain old
ends to attach their own data. Because idendata” structs, so it has all the fields necessary to
tifiers are so frequent, this data is appendethandle both, even though classes never occurin
to the generic substructure instead of beingC. More generally, language-independent trees
separately allocated. This is efficient, but re-carry fields needed to represent the constructs
quires front ends to define complex macros taf all the languages that GCC supports, even
access their own data, just as they would foif they are being used to represent a language
entirely language-specific substructures. Alsothat doesn’t have those constructs. This is
IDENTIFIER_NODESs are used in contexts memory overhead, no more...unless, as with
where the language-specific data will nevelTYPE_VFIELD, someone gets clever.
be used (notabpECL_ASSEMBLER_NAME

but space is allocated for it anyway. 2.6 Memory allocation, precompiled headers

The tree_common structure carries seven _
flag bits specifically for use by front ends, andGCC uses a garbage-collecting allocator for

several more that have generic names but ardl treées. This is convenient, because no one
only relevant to front ends. Thigpe sub- €Ver has to worry about the lifetime of these
structure carries another seven. teel sub- data structured It also facilitates precompiled
structure eight. These are not overhead as théjeaders (PCH). The currentimplementation, to
occupy space that would otherwise be paddin irst order, simply serializes to disk all live data
However, they are a maintenance burden, bl garbage-collected memory.
cause they are _heaV|Iy multipurposed. _It IS (_)f' 3Before the garbage collector was introduced, in
ten unclear which front ends use which bits1999, use-after-free bugs appeared about once every two
weeks; now they are unheard of.
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When the garbage collector was first intro-what more predictable lifetimes. In conjunc-
duced, the marking routine for each data struction with the “zone collector” project, which is
ture had to be written by hand. Now insteadworking towards a generational collection al-
we use specialGTY annotations in the source gorithm, this should offer substantial perfor-
code, and a program callegtngtype which  mance improvements.
understands a subset of C’s type grammar. It
scans the source code and generates markir})g Measurements
routines, directed by the annotations. It also
generates slightly different walking routines
which are used for PCH save and restore. In order to make sensible plans to solve the
_ _ problems we have discussed, we need hard
Both these things are great achievements frorata on how severe they are. Code inspection
a software maintenance standpoint. In the noreap reveal potential problems, but does not tell
mal course of affairs, programmers need neveys what the actual allocation patterns are, and
worry about memory lifetime. PCH requires tnere is no way to get a sense of the “big pic-

slightly more attention as one must ensure thage Overloading in particular is very hard to
everything that needs serialization is properlygiscover by code inspection.

annotated. Thgengtype program is a pow-

erful tool for doing introspection on GCC’s We therefore modified thgengtype pro-
data structures. We used it for this paper, t@ram to generate instrumentation which would
gather statistics on how fields of tree nodes areneasure how much overloading appeared in
used. We discuss below some other ways ithe trees produced by compilation of a test pro-
could be helpful. gram. We classified each node twice, once by

~ its tree code and once by its substructure.
On the other hand, the garbage collector is not

at all efficient. It allocates memory out of For each field that pointed to another tree node,
fixed-size buckets, with pages reserved for alwe recorded what kinds of tree it could point
locations of a given size, which causes considto, including nothing. When substructures con-
erable memory fragmentation. The collectortained arrays, such agruct tree_exp ,
uses a naive mark-and-sweep algorithm, whichve considered each element a separate field.
has to scan the entire active memory set ol his reveals for instance that the first operand
each collection. This is so slow that GCC con-of a CALL_EXPRIs usually anADDR_EXPR
tains throttling heuristics that effectively dis- and the second is alwaysT&REE_LIST. We
able all memory reuse for average-size transinstrumented lists specially, recording their av-
lation units. The auto-generated marking rou-erage length and the value distribution of the
tines require that type tags be in the samentire list, instead of treating each node as a
block of memory as the unions they disam-separate entity.

biguate; in some places (notably the C++ front
end's struct lang_decl ) this forces the YSINg CVS HEAD as of 15 March 2004, we

creation of a redundant tag. measured allocations for the compilation of
GCC’s own C and C++ front ends (this exer-
This paper does not directly address any ofises only the C compiler) and for a small STL-
the problems with the garbage collector. How-based C++ program. Each of these was com-
ever, we expect our changes will cause trees tpiled in a single pass, using GCC's intermodule
use substantially less memory and have someanode. All inlining was disabled, and all func-
tion bodies retained, so that each function body
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would be counted exactly once. Measurementthe chain field could be eliminated, saving
were taken once at the end of compilation, seven more memoryDECILs andBLOCI§ are
transitory tree nodes were not inspected. Unehained together to indicate the lexical scope of
fortunately this means we missed some of theleclarations and these lists could easily be re-
more bizarre things done with trees, such aplaced with vectors. Furthermore, in the GIM-
the declaration expressions discussed in Se®LE representation (which had not yet been
tion 2.3. merged when these measurements were taken)

_ o . statements are held in sequence with an exter-
The C compiler generated a similar dlstrlbutlonna| doubly-linked list, so they do not need in-
of tree nodes during compilation of both front yo 4 chaining either.

ends, so we present here only data for the C++

front end. Compiling this C program gener- e
ated about 1 million instrumented nodes, occu-?"2 List distribution
pying 75MB of storage. The C++ program was
smaller. Compiling it generated about 150,000TREE_LIST nodes are used for all external

nodes, occupying 9MB. singly-linked lists. If we looked at these nodes
in isolation, all their fields would appear to be
3.1 Fields oftree_common heavily overloaded. However, our instrumenta-

tion captured the context of each list, revealing

: hat most lists have predi I nami :
Thetree_common substructure contains two that most lists have predictable dynamic types

tree-pointer fieldschain andtype , which  The C front end allocated roughly 300,000
are presentin every node whether it needs themst nodes while compiling the C++ front end.
or not. The utilization of these fields is laid out There were seven major contexts, which are
in Tables 2 and 3. (The “proportion” column is enumerated in Table 4. Of these, only two
proportion of total GC memory allocation; not have nontrivial amounts of overloading, and
all of this is trees.) Itis immediately clear that gne of those is becau@ONSTRUCTORdes
memory could be saved just by excluding thesgre used to initialize both arrays and structures.
fields from substructures that never use them. |t js also apparent that thgpe field of these
lists is completely unused, and tperpose

++ i i . . .
For our C++ test case, remoylng tobain field is unused in half of the cases. We could
pointer from nodes where it isn’t used saves

0 :
134KB, or 1.5% of the total memory alloca- Eavceogc\)llé?t?rl]y ?::/Ie ?n(glﬁgi;theiiﬁilegll\?ecggcr)sn)
tion. Removing theype pointer saves 58KB, y g P '

or 0.6% of total memory. The numbers areThe C++ front end uses a wider variety of lists.
more impressive for C: removirghain  saves  Qur C++ test case produced 70,000 tree nodes
2.3MB, or 3.1% of memory; removintype in about 30 different uses, which are enumer-
saves 780KB, or 1.0% of memory. If inter- ated in Table 5. Like the C front end, thge
nal memory fragmentation is reduced by thisfield is unused in nearly all contexts, and the
change, which is likely as many of the affectedpurpose field is unused in about half of the
nodes are one word bigger than a power of twogases. There is quite a bit of overloading, but
memory savings could be even bigger. in most cases there is one primary usage and a
ffew outliers. The structures used to represent
templates, however, will require special atten-
4All statistics are for a host architecture with 32-bit tion and is discussed in Section 5.3. If all of
pointers. these uses were converted to specialized vec-

With more code changes, all of the uses o
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tors, we might be able to save ab@y8MB of  without multipurposing being involved. These
memory (8% of the total). fields point “upward” in the abstract syntax

_ ) tree, toward larger lexical structures. Since
We did notinstrumentREE_VEGs carefully 1ypgs andDECIs can nest inside each other

asTREE_LIST, but it shows similar proper- agpecially in C++), the context fields need to

ties. It does not carry three data pointers pepea gple to point to botYPEs andDECIs.
entry, but it does have the full overhead of

atree_common header, whosehain and _
type fields go unused. The entries are, a## Redesign
usual, declared asee s rather than anything

more specific, but in most cases the entries argyyr primary goal in redesigning trees is to re-

homogeneous within a given class. duce runtime overhead and maintenance bur-
dens. As we have discussed, overhead comes
3.3 Overloaded fields first from wasted memory. The primary causes

of wasted memory are unused fields in various

S tree substructures, and overuse of linked lists.
Tables 6 and 7 show the distribution of over-

loaded and/or multipurposed fields for the CWe could address unused fields without intro-
and C++ test programs respectively. Multipur-ducing any new static types. We could simply
posed fields are iitalics. We only show cross- promote all instances of multipurposed fields
class overloading, as we are not proposing téo substructures. Constants are already like
get rid of within-class overloading. Most over- this. Each code in the “constant” class (integer,
loading occurs among one primary class andeal, complex, string, vector) has its own sub-
a few outliers. Where there are “secondary”structure. Structure initializers are exceptional
uses, appearing in more than 5% of measureuh that they are not treated as constants, but as
nodes, that is usually a case of multipurposingexpressions—this should probably be changed.
It would not be hard to extend this to other

The primgry class is not always what onegyctyres. We would also want to break up
expects—in C, both BLOCK.supercontext andtree_common , moving its pointers into the

EXPR.operands are 99®ECIs, where one
might expect to find morBLOCK andEXPRs
respectively. This reflects the form of the typ- Furthermore, we already haveT&RREE_VEC
ical C program. Inner scopes tend not to havenode that could replacéREE_LIST when-
variable declarations, and therefore not to needver the list length is known in advance and
BLOCKnodes. Expressions tend to be simplepnly one pointer per element is needed. For
hence moseEXPRnodes point directly to vari- instance, it would be feasible to do this for
ableDECIs rather than to subexpressions. TheBLOCK_VARSWhere this will not work, we
C++ front end does more overloading than Ccould invent new lists with only one or two data
but we still observe the same pattern of primarypointers per node.

uses and outliers, except where there is mul- )
tipurposing. Expressions appear to be mord hese changes would reduce maintenance bur-
complicated in C++ than in C, but still 94% of dens only because accessor macros would have

EXPRs point directly taDECLS. more specific names, and the documentation
would be improved. They would do nothing

TYPE.context and DECL.context are anoma-at all for the overhead entailed by runtime type

lous in having substantial secondary target€hecking. In fact, they might make it worse,

substructures where they are actually used.
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since many checking macros would becometanceCOND_EXPRan be either & opera-
more specific. For instancREE_CHAIN tor or anif statement. This does not preclude
and TREE_TYPEcurrently do no checking at a front end from making a strong distinction in
all; in the above regime they would be replacedts own data structures, if that is appropriate to
by several new macros, which would check forthe language it recognizes.

specific substructures. )
Each of the miscellaneous trees (class )

In order to go any further, we need to makerequires individual attention. Some of them
the static types of trees more specific. That iscan be replaced with plain Gtruct s that
we need to stop usintyee as the type dec- never participate in overloading. Tid OCK
laration of every pointer to a tree. If we are node for instance will get this treatment. Other
to do this, we must decide how specific to benodes will be be recategorized into one or more
in our static declarations. Where possible weof the above classes. For instance, we need
will use pointers to specific structures. How-equivalents oERROR_MAR#r each of the
ever, some degree of overloading is necessargbove categories; these shoulok be unique,
We propose to introduce four new types, eaclso that they can carry information (such as the
of which covers a subset of the present tredocation of the error).

classes. A pointer with one of these types can o _ _

be overloaded freely within that subset, but noOPVviously it will not be possible to continue
outside. We discuss techniques for removinq‘s'ng one structure, carrying no static type in-

cross-class overloading in section 4.3. The reformation, for all linked lists. However, as
placement types are: we detail in Section 3.2, most lists point to

data items whose dynamic types are both pre-
dictable and homogeneous. Therefore, with
TYPE Type nodes: the presetit class. For a moderate amount of effort we can replace
instance,INTEGER_TYPE POINTER_ TREE_LIST with specialized list nodes for
TYPE andRECORD_TYPE each of the classes.

DECL Declaration nodes: the preseiit
class. For instanceEUNCTION DECL 41 Type safety
VAR_DECIlL.andTYPE_DECL
) Under the old design, all pointers had the
EXPR Expression nodes: the preseft , gyme static type, so there was never any need
2, ,'< ,and'e classes. For i, convert them. Under the new design, we
instance, PLUS_EXPR LE_EXPR and ,4|d like to make the static types of point-
ADDR_REF ers as specific as possible. The four classes

CONST Constant nodes: the preselt above are base types in the C++ sense, and

class. For instancdNTEGER CSTand each substructure is a derived type. We will
STRING CST - need a type-safe and terse way to convert be-

tween base and derived type pointers. Unfortu-

nately the C language does not provide conve-
The's' class is not included in this mapping nient facilities for this sort of operation. Point-
because, with the introduction of GENERIC ers to differentstruct s are not assignment-
and GIMPLE, the language-independent comcompatible. There is only one cast operator,
piler no longer makes a strong distinction be-( type ), which does not validate the incom-
tween statements and expressions. For ining type at all.
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We can simulate the C++ derived-type compat4.2 Language augmentations
ibility rule and dynamic_cast<>  operator

in C, with a small amqunt of ext'ra verbosity The coding convention shown in Figure 1 de-
and some GNU extensions. In Figure 1 we il-jiperately does not use unions, unlike the cur-
lustrate one way to implement the conversionyent convention. This is because the union
operations, and the associated structure layoutannot include any language-specific substruc-
Code written to this convention should look al-t,res  and we want to put them on an equal
most the same as codt_a_wrltte_n to the old CONtooting with language-independent substruc-
vention, but with specific variable types andyyres, The checked-cast approach is similar to
occa_smnal explicit conversions. It might be\yhat is done now for language-specific sub-
possible to usgengtype to generate all of gyryctures, but safer. If the macros are auto-
the accessor macros and checking logic fromyatically generated, it will also be much less
the substructure definitions, thus eliminatingiedious. Front ends are also free to declare
that source of bugs and tedium. new polymorphic classes; for instance, a lan-
guage that wants a strong distinction between
statements and expressions can invedit M T

s.

There would be acommonstructure for each
of the four major static types. Any fields that
truly are common to all substructures of that®'®s
type can be placed there. In the example, Wye also want to make it easier to add language-
included two boolean fields which are docu-gpecific data to generic substructures. It is
mented as relevant to all constants. We havgyajghtforward for a language to declare an
not yet decided what naming convention usey,gmented substructure and accessors, as they
for the new types; the mixture of struct tags andyg now for IDENTIFIER NODE. However,
all-caps typedefs in figure 1 is only one possithe garbage collector must be advised to allo-
bility. cate more memory for the augmented structure,
Iand to walk the complete structure for point-

The GNU extensions are only necessary fo e o
y y ers when marking live data. This is done for

type checking. When GCC is built with a com- : :
piler that does not support them, the mac:roéDE'\mFlER—NODE with specialTYmark-

can expand to unchecked casts; the compile\(?/‘\r/S ﬂnd Iangiuagte dhopdksc,i whlchtdot_n(;t S(t:ﬁle'
will still work. The compile-time error mes- € have not yet decided on a tactic tor this

sage produced by these macros is suboptima'P,rOblem'

it could be improved with a_builtin_ Finally, we intend to make tree codes more
error  primitive. Also, in real life the run-  gpacific so that languages do not have to incur
time checks would call a more specific ICE- gyerhead for functionality they do not use. For
reporting routine thambort . These details jnsiance, the(RECORD_TYPEode will apply
were omitted from the example for brevity. only to “plain old data?’ we will introduce a

Some checking does still occur at runtime. WenewCLASS_TYPEnode for object classes.

expect that the overhead will be substantially

lower in this scheme, but we can still dis-4-3 Adaptor nodes

able runtime checking in release builds for ef-

ficiency. Section 3.3 outlined instances of cross-class
overloading, that is, cases whdree point-
ers can refer to more than one of the four static
classes discussed in Section 4. We can elimi-
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nate many of these, but some are legitimate. to mainline when complete. We will partition

, these steps into three stages.
We do not want to combine tHBECL, EXPR

and CONSTclasses, but we could introduce The first stage of the process is to promote
adaptor nodes, which fit into one class and all multipurposed fields to substructures. It
carry a pointer to another class. They mightmay be feasible to do this stage before branch-
or might not carry other information. We al- ing. It is very simple and low-impact for fields
ready have the notion of &YPE_DECL we whose accessor macros are already as specific
could reuse it as an adaptor for context fieldsas they can get. Fields that have non-specific
pointing to aTYPE Context fields can also accessor macros require more thought, and the
point to BLOCIs; for that, we would need a change may be quite large, but still mostly
newBLOCK_DECladaptor. mechanical. Thehain andtype fields of

o tree_common will migrate into the substruc-
The statistics in tables 6 and 7 show that 94,05 that actually use them. It would be nice

99% of expression operands d&&Cls, SO it 5 (g the same for the common flag bits, but

would be most efficient to make that the un-yhat may not be feasible without introducing
marked case. We would add &XPR_DECL |, vanted padding.

adaptor for subexpressions, and use the exist-

ing CONST_DECAhs an adaptor for literal con- The tree-ssa branch has introduced a number
stants. This could facilitate conversion to GIM- of new'x’ nodes that are used in expressions,
PLE form, where all subexpressions are sepasuch asSSA_NAME These are not in class
rated from their contexts. ‘e’ mainly to avoid wasting memory on use-
less fields attached to all expressions. If the
substructure conversion is done properly it will
be possible to put them in cla®s or possi-

bly a new expression subclass.

Converting to statically typed trees is a con- _ o
siderable amount of work. It will have to be The second stage is to eliminate as much over-

done either piecemeal on the mainline, or orl0ading as possible, particularly what we might
its own dedicated branch. If the work is donedescribe as “abusive” overloading. We discuss
on a branch, it will rapidly become very hard @PProaches to some of these in sections 5.1-
to merge in changes from the mainline. How-2-3. The branch will be merged after each
ever, if the work is done on the mainline, it is abuse has been rectified. This stage will have
likely to be disruptive to other projects. The to occur semi-concurrently with the next one,
conversion may not be monotonic, and therd?€cause we do not know where all of the prob-

are several issues as yet unresolved, for whiclgms are.

experimentation will be necessary. Also, this.l.he third stage is to peel off the major tree

project is more work than one person can doclasses from the Uber-union, one at a time. The

alone. Collaboration by emailing patches baCli)ranch will be merged after each step. Ex-

and forth is tedious, compared to coIIaboratlonCept where we encounter unexpected abuses,
by working on the same branch.

the substantial changes in this stage affect only

On balance, we believe that most of the workthe implementation of the accessor macros.
should be done on a branch. However, in ordeflowever, this is the stage where we change
to avoid severe divergence, the project Shouw'aria_tble declarations, introduce explicit con-
be broken into steps which can be merged backersions, and rename accessor macros to con-

5 Conversion plan
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form to a naming scheme that facilitates auto-  texts, and therefore can be separated out

matic generation. This will entail mechanical relatively easily. It contains a list of
changes all over the compiler. We propose to  DECILs, which will be the first use of spe-
do this stage in the following order: cialized vector types.

Types Of the remaining tree nodes, types are
the most distinct; there is rarely cross-
class overloading between types and other
things. However, we will need to create
specialized lists of types, and we expect
to find abuses in their relationship to dec-
larations.

Identifiers With the exception of C++ tem-
plate bodies, there are only a few places
where atree node might or might not be an
identifier, and they are all arguably bugs.
The new C++ parser should make it feasi-
ble to use custom data structures for C++
template bodies, so th#DENTIFIER _

NODEneed not be an overloading candi- constants In this step we will replace over-

date at all. In some place_s, identifiers are loading between declarations and strings
used where unboxed strings would suf- with anonymousCONST_DEChdaptors.

fice; we will remove all such identifiers in Also, trees which are alwaydTEGER
this step. or STRING_CSTnodes will be replaced
ERROR_MARRhere is one error mark node, ~ With unboxed integers or strings.

which can appear in any context WhereExpressions Next, we give expressions a dis-
the tree is inco mplete becausg the mput tinct type, and make their operands always
program was Incorrect. It carries no In- be DECLnodes. Subexpressions will be
formation. We mean to replace it with wrapped inEXPR_DECladaptor nodes.

separateNVALID_TYPE, lNVALID.— This is one of the most invasive changes to
DECL, INVALID_EXPR, and possibly be made; however, a suitably clever defi-

INVALID_CST codes. These nodes will nition of TREE OPERANBhould make
not be unique, and will carry enough in- it possible to do it piecemeal.

formation that later stages of compilation
do not need to be aware of them. Declarations At this point the only things left

in the tree union are declarations. We can
replace all remainingree variables with
DECLvariables, and delete the union en-
tirely.

Lists and vectors TREE_LIST must be re-
placed with specialized list nodes that
carry static type information. Itis also de-
sirable to use vectors where possible, in-
stead of lists. In this step we will design
a macro API for synthesizing vector and e will now discuss a few conversion steps in
list types, and the associated runtime APlygre detail.
for building lists, converting lists to vec-
tors, etc. This will allow us to save mem- ¢ ;1 = yeclaration parsing
ory immediately, by removing the unused

pointers from most lists. In further steps The C and C4+ . q
we will use it to define specialized list and etan parsers reuse expression nodes

for temporary structures while parsing declara-

tions, as described in section 2.3. This is in-

Blocks The lexical binding nodeBLOCKcan compatible with static typing. Also, it is in-
only appear within certain nodes and con-efficient; the temporary structure is far larger

vector types as needed.



GCC Developers’ Summit 2004 * 163

struct binfo {
unsigned int flags;
tree type;
struct binfo *next;
struct binfo *inheritance;

tree offset; A BINFO is a TREE_VECwith indexes de-
:ree Vﬁblel’ . fined for each piece of information. Informa-
t:gg thﬁé’ld_ tion about aBINFO's baseBINFOs is held in
unsigned_int num_bases; two addltlonaITRE_E_VE@, Wh_lch Is unnec-
essary fragmentation. There is a comment in

struct base { X - _
tree access: tree.h  suggesting that this be changed:

struct binfo *base;
} bases[];

directed acyclic graph which mirrors the class
hierarchy. They carry data such as the loca-
tion of the base sub-object, the class type of
the base, etc.

??? This could probably be done by
g just allocating the base types at the end
of this TREE_VEQinstead of using an-
otherTREE_VEGQG. This would simplify
the calculation of how many basetypes a
than it needs to be (for instance, lists of identi-  given type had.

fiers are used in places where flag words would

suffice) and the entire thing is discarded afte
processing bgrokdeclarator , producing
lots of garbage.

CustomBINFO structure

'As with declarator expressions, we mean to re-
place BINFO with a custom structure. The
fields that point toBINFOs are never over-

We plan to replace these expressions with &#aded, so we do not need to make it a tree
custom data structure. It need only contairSubstructure. An example structure is shown
fields for the information added at its level (cv- @b0ve, as it would appear before conversion to
qualifiers, attributes, array or function parame-SPecific static types. Further memory savings

ters), an enumeration of what is being declared@'® Possible: we can store less information in
(array, pointer, etc), and a pointer to the structhe BINFO and more in the(RECORD_TYPE

ture for the next level. It would use the poly- Of the base class, where it is not copied for ev-

morphism techniques described in Section 4.1€1y derived class. Theirtuals  field is a

but static type constraints would ensure that itong list, with one entry for every virtual func-
never escaped the front end. tion in that class. If it can’t be moved to the

RECORD_TYPHRve can at least convert it to a
We expect this project to have the pleasant sidgpecialized vector.
effect of replacingyrokdeclarator with a
set of simpler functions, none of which is 12005 3 Template arguments and levels
lines long.

C++ template parameters may be types, ex-
pressions, or nested templates. Presently, the
C++ front end takes advantage of overloading
TheRECORD_TYPtor each class declared in to put all these things in a single parameter vec-
a C++ program has a set BINFO structures tor. Many of the uses ofFYPE_PandDECL_P

to represent its base class organization. Thereithin the C++ front end are due to this over-
is oneBINFO for each base class, arranged in doading. In this context, types are the most

5.2 BINFOs
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struct inner_vec {
unsigned int num_args;
tree argsl];

h

struct outer_vec {
unsigned int num_levels;
struct inner_vec *levels]];

h

verted some list usages, giving experience in
the features that are necessary. We expect that
at that time a good approach will be obvious.
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Tables and figures

In Tables 4—7, upper case indicates nodes with a particular tree structure; lower case indicates
nodes with a particular tree code. An entry with just a dash (—) indicates a field that was never
used.

Utilization
Class Proportion chain type
BLOCK 1.61% | 47.78% 0.00%
DECL 26.46% | 89.81% | 99.30%
EXPR 35.72%| 0.00% | 100.00%
STMT 14.85% | 60.21% 0.00%
IDENTIFIER 1.72% | 0.00% 0.00%
CONSTANT 14.75%| 0.00% | 100.00%
TYPE 4.89% | 0.00% | 71.42%

Table 2:tree_common utilization by class in C program

Utilization
Class Proportion chain type
BLOCK 3.85% | 2.35% 0.00%
DECL 33.60% | 60.80% | 99.68%
EXPR 19.23%| 0.00% | 43.45%
STMT 14.46% | 38.93% 0.00%
IDENTIFIER 7.26% | 0.00% 7.40%
CONSTANT 3.18% | 0.00% | 100.00%
TYPE 12.80%| 0.00% | 65.98%

Table 3:tree_common utilization by class in C++ program

Field Null | Len | Type Purpose Value
call_expr.op[1] 2% | 35| — — EXPR
record_type.minvdl | 99% | 3.0| — — DECL
function_type.values| 0% | 3.7| — — TYPE
enumeral_type.values 0% | 23.1| — identifier integer_cst
DECL.attributes 91% | 14| — identifier —b
TYPE.attributes 98% | 19| — identifier list
constructor.op[0] 0% | 9.6| — | field decl 65% EXPR
integer_cst  35%
TYPE.attributes.value 0% | 2.1 | — — identifier 26%
integer_cst  74%

8C_TYPE_INCOMPLETE_VAR%he C front end has invented its own multipurposing
for this field (see section 2.5).

bThis field is non-NULL for some attributes, none of which are used in the program we
measured.

Table 4: Lists in C program
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Field Null | Len Type Purpose Value
record_t.pure_virtuals 99% | 8.7 — — method_t
record_t.befriending_classes96% | 1.3 — — record_t
record_t.vfields 85% | 1.0 — — record_t
record_t.friend_classes 97% | 2.3 — — record_t
type_d.initial.value 0% | 2.0 — — DECL
var_d.initial 17% | 2.3 — — EXPR
nw_expr.operands[0] 77%| 1.0 — — EXPR
call_expr.operands[1] 32% | 24 — — EXPR >99%
identifier <1%
TYPE.attributes.value 0% | 1.6 — — integer 82%
identifier 18%
function_t.binfo 73% | 1.0 — — null 99%
record_t 1%
method_t.binfo 82% | 1.0 — — null >99%
record_t <1%
cast_expr.operands|0] 32% | 1.1 — — DECL 55%
EXPR 38%
CONST 7%
namespace_d.initial 57% | 1.0 — namespace —
namespace_d.saved_tree | 71% | 1.0 — namespace —
DECL.attributes 9%% | 1.4 — identifier —
TYPE.attributes 99% | 1.7 — identifier list
type_d.initial 99% | 1.3 — identifier list
enumeral_t.values 0% | 16.9 — identifier integer
record_t.vcall_indices 85% | 5.6 — function_d integer
constructor.operands[0] 0% | 8.6 — integer EXPR
record_t.template_info 24% | 1.0 — DECL vec
record_t.vbases 98% | 1.0 — record_t vec
template_d.arguments 0% | 1.0 — int_cst vec
DECL.template_info 63% | 1.0 — DECL >99% vec
overload <1%
ctor_initializer.operands[0] | 10% | 2.1 — DECL 95% list
record_t 5%
record_t.decl_list 50% | 19.4 — record_t 99% DECL
null 1%
function_t.values <1% | 3.3 — null >99% TYPE
EXPR <1%
method_t.values 0% | 3.3 — null 97% TYPE
EXPR 3%
TEMPLATE_PARMS 0% | 1.0 — null 74% DECL
TYPE 25%
EXPR 1%
template_d.vindex 96% | 3.4 — vec record_t 97%
null 3%
template_d.size 56% | 2.0 | null 99% vec DECL 99%
record t 1% vec 1%
namespace_d.vindex 57% | 1.0 — null 67% | null 67%
namespace 33% namespace 339

Note: _tis short for_type, _dfor _decl

Table 5: Lists in C++ program




GCC Developers’ Summit 2004 « 167

In Tables 6 and 7talics indicate a multipurposed field; roman font indicates an overloaded field.

Field Primary Secondary Outlier

BLOCK.supercontext DECL  99% BLOCK 1%

DECL.context DECL 100% TYPE <1%

DECL.initial DECL 79% | EXPR 19%| TYPE 2%
BLOCK <1%

DECL.result TYPE 86% | DECL 14%

EXPR.operands DECL 99% EXPR <1%
IDENTIFIER <1%
LIST <1%
BLOCK <1%

TYPE.context DECL 87% | BLOCK 13%

TYPE.name DECL 100% IDENTIFIER <1%

TYPE.values LIST 76% | DECL 24% | TYPE <1%

Table 6: Multipurposing and overloading in C program

Field Primary Secondary Outlier
BLOCK.supercontext DECL 98% BLOCK 2%
DECL.arguments DECL 79% | LIST 14%
INT_CST 7%
DECL.context DECL 98% TYPE 2%
DECL.initial TYPE 54% | DECL 16% | LIST 1%
BLOCK 12% | STRING <1%
INT_CST 11%
EXPR 5%
DECL.befriending_classes LIST 60%
DECL 40%
DECL.result DECL 98% TYPE 2%
DECL.saved_tree EXPR 100% LIST <1%
DECL.size INT_CST  88%]| LIST 12%
DECL.vindex DECL 54% | INT_CST 22%| TYPE 4%
LIST 19%
EXPR.operands DECL 94% | EXPR 5% | LIST <1%
INT_CST <1%
BLOCK <1%
STRING <1%
TYPE <1%
TYPE.context DECL 62% | TYPE 38%
TYPE.values LIST 67% | DECL 22% | IDENTIFIER 1%
TPI 9% | EXPR <1%
TYPE <1%

Table 7: Multipurposing and overloading in C++ program
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/* If V has type T, return V, else issue an error. */
#define verify_type(T,V) \
(__builtin_choose_expr \
(__builtin_types_compatible_p (typeof(V), T), \
(V). (void) 0))

[* If V has type T or F, return (T)V, else issue an error. */
#define validated_cast(T,F,V) \
(__builtin_choose_expr \

(__builtin_types_compatible_p (typeof(V), T) \

[| __builtin_types compatible_p (typeof(V), F), \

(T) (V), (void) 0))

[* If V has static type F or T and dynamic type K, return (T)V, else

issue an error. F and T are checked at compile time, K at runtime.

#define with_dynamic_type(K,T,F,V) \
({ T _v = validated_cast(T,F,V); \
if (_v->common.kind != K) \
abort (); \
v}

enum cst_kind { INTEGER_CST, ... };

struct cst_common
{
enum cst_kind kind : 8;
bool warned_overflow : 1;
bool overflow : 1;
/* possibly other flag bits */
h
typedef struct cst_ common *CONST;
#define CONST(C) verify_type(CONST, &C->common)

#define CONST_OVERFLOW(C) CONST(C)->overflow
#define CONST_WARNED_OVERFLOW(C) CONST(C)->warned_overflow

struct cst_int
{
struct cst_common common,;
unsigned HOST_WIDE_INT low;
HOST_WIDE_INT high;
3
#define CST_INT(C) \
with_dynamic_type(INTEGER_CST, struct cst_int *, CONST, C)

#define CST_INT_LOW(C) CST_INT(C)->low
#define CST_INT_HIGH(C) CST_INT(C)->high

*/

Figure 1: Structure and macro conventions for type safety
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What is binary compatibility? This led to one important restriction on gcj-

compiled code, namely that two classes with

The Java Language Specification [2] has aile same name could not both be loaded at
entire chapter, Chapter 13, dedicated to bi®nce: this is PR 6819 [4]. Over time, this has

nary compatibility. This chapter lays out rules Proved to be more and more difficult to work

for writing binary compatible programs: pro- &round. Forinstance, in 2003 we split out some
grams can be changed in these ways withlPraries from libgcj because some programs
out requiring the recompilation of dependentShipped their own copies; this in turn caused
modules. This covers some simple, obviouther problems.

things, such as the fact that adding or FeMOVINGy hother important problem we tried to solve in

thesynchronized  keyword from a method 2003 was the proper operation of class loaders.

won't affect blnallry COPpat'b'";y' It atlso CO,‘:’, As it turned out, class loading and binary com-
ers more complex rules, so for instance | ISpatibility are related, and we realized we could
possible to override an inherited method or re

: . : _ 'solve both problems with the same implemen-
arrange fields in a class without affecting com-

o tation.
patibility.
. . In particular, sophisticated applications such as
Note that binary compatibility and source com-ECIiIose rely on Java’s lazy loading and linking

patibilit)_/bldiffer. hFor i”Sti.“ﬁg; It is bina;ry capabilities to control class loading and visibil-
compatible to change a field's access ror"’ity. It isn’t possible both to satisfy the proper

protectggl : to pUbI'C. ) .Th's IS NOt SOUrce  gomantics of a class loader and to have ordinary
compatible in some situations. ELF-style linking.

Binary Compatibility has a great promise: with
a few restrictions, you will never have to re-
compile libraries again.

The Java language gives programmers facili-
ties that go far beyond what is possible in more
conventional programming languages. For ex-
ample, you may define a class loader to load
1 Why we want it your own classes into the virtual machine.
Your class loader will have its own name space

N _ _ ) ) and it will inherit classes from the base Java
Initially, the gcj project paid no attention 10 |55 [oader but its own loaded classes will not

Chapter 13. In practice we implemented apq oxternally visible. You can define your own
more static language than Java, and it looked -heme for resolving symbols.

as if it would be difficult to get good perfor-
mance from pre-compiled code that adhered tdt is quite possible for the same Java class to be
the binary compatibility rules. loaded several times by several different class
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loaders, and in each case its references will beonsists of three parts: a class nhame, a mem-
resolved differently. ber name, and a type signature. At class prepa-

_ ) ration time, the appropriate class and member
When a class is loaded, references it makegre found, access checks are done, and then

to other classes are not immediately resolvedy,e address of the member is written into the
This allows mutually dependent classes t039ple  slot. So, code in Class A that refers

be loaded, and later fixed up by callingg 5 static member of Class B does so via an
resolveClass . index into theatable  belonging to Class A.

All of this is a very long way from what can be |t 4 static method is not found, we simply write
achieved by using conventional ELF linkage. the address of a function which will throw the
appropriate exception.

2 Implementatlon If a static field is not found, we throw an

IncompatibleClassChangeError
The implementation of a new binary compati-at class preparation time. In Yu [1] this is
bility ABI for gcj began several years ago with mentioned as a bug in the design; however,
the work of Bryce McKinlay, and the paper Yu we believe that this behavior is specifically
[1]. allowed by the linking rules in section 12.3 of

th L ification [2].
The basic idea behind our implementation ap- e Java Language Specification []

proach is to put all references made by a clas§ 3
into two special tables, called tla¢gable and '
theotable

Instance methods

Instance methods are handled viadhable
Theotable , or Offset Table, is a table of off- not the atable . Like the atable , the
sets from some base pointer. Témable , or otable holds class names, member names,
Address Table, is a table of absolute addresseand type signatures. However, instead of map-
Every class has aatable and anotable . pingthese to addresses, it instead maps them to
Initially these tables are filled with symbolic offsets.
references. Later, when the class is linked,

these symbolic references are turned into offYVhen computing the value of anable slot
sets or addresses, as appropriate. for an instance method, we load and lay out

the target class and all its superclasses as well.
As part of this process, we compute the tar-
get class’s vtable; from this we find the correct

Class references are handled via the constar\{?lue to putin theotable  slot.

pool, a table that already existed in the old ABI.Q|d-ABI code calls virtual methods like:
Entries in the constant pool are resolved when

a class is prepared; an operation likew or
instanceof  refers to an entry in the pool.

2.1 Class references

((vtable *) obj)[index]) (obj, ...)

2.2 Static methods and fields With the new ABI, this is transformed to:

A static method or field is referred to via the ((table *) obj)otable[index]])
atable . Each symbolic entry in thatable (obj, ...)
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If an instance method is not found, we DWARF-2 exception table. The class name
put a special value into thetable slot is suitably mangled so that the type matching
which, when the vtable lookup is done, re-function for a catch block can distinguish be-
sults in a call to a method that throws tween old and new ABI code.

IncompatibleClassChangeError o
When an exception is thrown, these class

names are looked up by the appropriate class
loader and turned into references to the corre-

, - . sponding classes.
Instance fields are handled similarly to instance P g

methods. Where old ABI code compiles a field
reference:

2.4 Instance fields

2.7 Versioning

gcj still statically generates an instance of Class
*((type *) (obj + offsetof (field))) for each class that is compiled. In the fu-
ture we plan instead to generate a class de-
scriptor, which will be instantiated as a Class
at runtime. This will insulate compiled code
_ from changes to java.lang.Class, and it will
*((type *) (0bj +t blelfield ind also make it slightly easier for us to handle
otableffield_index])) ABI versioning. We intend to add an ABI ver-
sion number to the class descriptor, and then
Although this is an extra memory reference,let the runtime library handle compatibility as
it is less painful than might first appear: thedesired.
otable and atable have good locality,
typically being referred to many times in a 2.8 libgcj API
method.

the new ABI produces the equivalent of:

. Compiled code must still make references to
Note that because all class layout is done dy- P

. S - _2symbols exported from libgcj. For instance,
namically, even references to one’s own private : .
. . operations such asew or instanceof are
fields must go through thetable , as one’s

superclass might add or remove fields and thiimplemented by means of exportedv_
1D 9 : ?unctions; the compiler generates direct calls
will change the offsets of all subclass fields.

to these functions.

2.5 Interfaces We have considered redirecting calls to these

functions via theatable as well, but as there
Interface dispatch also requires an extra indiare only twenty or so it seems simpler to handle
rection via theotable , and it requires us to these according to the usual versioning rules
compute interface dispatch tables at runtimefor shared libraries.

much as we compute the vtables and class Iayc-: iled cod fi to know the | t of
out at runtime. ompiled code continues to know the layout o

array types. We don't anticipate arrays chang-

2.6 Exception handlers ing incompatibly.

We plan to continue to compile parts of the

Forcatch clauses we write a class hame (in-core library—in all likelihood at leagava.
stead of a reference to a Class object) into théang andjava.io —using the old ABI. Ap-
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plication code cannot portably replace theséll the “static” properties of bytecode, such as
classes, so there is no drawback to compilingvhether the declared stack depth is sufficient,

them old-style. can be verified once. Now, when the verifier is
asked to verify a fact about a type or method,
2.9 Bytecode Verification it always yielddrue , and adds a “verification

assertion” to the generated code.

One related problem is that of bytecode verifi-

cation with an ahead-of-time compiler. At runtime, these assertions are verified when

the class is linked. This process is much

In Java, the compile-time and runtime environ-quicker than ordinary bytecode verification,
ments might be very different. In order to han-which requires modeling the control flow of the
dle this and still ensure runtime type safety, acode. These assertions are of the form ‘A im-
typical JVM will perform bytecode verification plements B’ or ‘A extends B’, which are very

in the runtime environment. easy to check.

gcj inplu_des a bytecode_ yerifier as part of its, 14 Type assertions for source code
compilation, when compiling from bytecode to

object code. However, this is insufficient when o N

the bytecode can be loaded into an arbitrary® SiMilar problem occurs when compiling
runtime environment. In particular it would be from Java source to native code. In this situ-
possible to construct an environment where alftion; there is no verification step to split. In-
the requirements of the compiled code (name_§tead' the assertion table is filled based on any

of types and methods) are met, but where thdMPlicit upcasts that appear in the source; each
result allows subversion of the type system. such cast represents a constraint on the type hi-
erarchy that must remain true at runtime.

For example, a class f might be defined:

. 2.11 CNI
class f implements B

{

CNI, the Compiled Native Interface, is a way to

write Javanative  methods in C++ with zero
and a user could write an initializer overhead. With CNI, Java classes are used to
generate C++ header files, which then enable
relatively ordinary C++ code to make calls on
Java objects.

B thing = new f();

but if an incompatible change were made to f

class f CNl is also going to require some changes. In
{ essence this will involve duplicating some of
the atable andotable logic from gcj in
g++ and arranging for these references to be
the variablething would now refer to an ob- resolved at runtime when appropriate. We an-
ject that did not implement B. This is a viola- ticipate accomplishing this by emitting static
tion of the type system. initializers which will register table contribu-

_ o tions from the current compilation unit with the
The solution to this is to perform bytecode“bgcj runtime.

verification in two steps. The first step, still
in gcj, works much like an ordinary verifier. We plan to make several other CNI changes
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now, while we're changing the ABI, in order existing Java applications run with decent per-
to postpone any other needed ABI changes. Ifiormance, you would then only need to com-
particular we plan to introduce smart pointerspile each .jar file and copy the resulting .so
to allow seamlesNULL-pointer checking on into the cache. No application changes would
all platforms, and we plan to tighten the rulesbe needed. Another approach we're investigat-
about what parts of memory can be assumed tmg is to chang@JRLClassLoader to trans-

be scanned by the garbage collector. parently find shared libraries corresponding to

Jar files on its class path.

3 Consequences 3.2 VM independence

This approach to binary compatibility has rhe code generated by gcj is also surprisingly
some very interesting consequences for gcj ang_independent. It refers to the various ta-

gcj-compiled code. bles ptable , atable , assertion table), and
to the small number of libgcj builtin functions
31 gcjasdIT known to gcj. This means that gcj-compiled

code could easily be loaded into any VM im-

Due to the new runtime linkage model andplementing this interface; the biggest assump-
the new approach to bytecode verification, gcfion is that the runtime includes a conservative
can now compile a single .class file in com-garbage collector. Even that may not neces-
plete isolation. That is, compiling a class file sarily be true in the future: a few garbage col-
doesn’t require gcj to read any other classeg€ection hooks would remove even that require-
not evenjava.lang.Object . This works ment.

lass file h I lic in= : o
becauge a class fiie has comp gte sy.mbo " InThe generated code is also quite independent of
formation about its dependencies—just what

. other aspects of the runtime environment, for
the atable and otable require—and be- . . .
e ) . instance the kernel or libc. It should be possi-

cause verification will answer “yes” to any

. . .~ ble to compile Java code once, and then simply
type-related question without actually examin- o
) . . never recompile it even as the rest of the sys-
ing any other types until runtime.

tem, including libgcj, is upgraded.

This property in turn lets us use gcj We're hoping other free Java implementations

itself as a caching JIT. Conventionally, . . :
) will adopt this same approach as the basis of a
ClassLoader.defineClass() takes an o
pluggable JIT” interface.

array of bytes that is the binary code for a class
and loads it into memory. Instead, we compute _
a cryptographic checksum of the bytes and usé-3 Performance and Size

it as a key into a cache of shared libraries. If

the class is found, we simpbllopen() it. If  Itistoo early to know the precise impact of the
not, we invoke gcj (which is possible and rela-new ABI. For some cases, we know that the
tively efficient because we only need the claspenalty will be small: for instance, the cost of
file in isolation) to put a new shared library in a static method invocation via tteable is
the cache. similar to the cost of indirection via the PLT.

We’re also considering the possibility of mak- On the other hand, we expect some costs to be
ing it easy to prime the libgcj cache. To makelarger: for example, instance field references
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will be more expensive. perhaps still preliminary, version of this ABI

in GCC 3.5, with real compatibility promised

The Yu [1] paper quotes an average perfor'starting with 3.6.

mance penalty of less than 2%; however, their
implementation did not implement field indi-
rection.

4 Problems and gotchas
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rely on the precise link-time behavior of ex-
isting VMs. In case it becomes necessary to

change our approach, we believe we can emReferences

ulate the more lazy behavior of other VMs in

one of two ways. On machines with the re-[1] Zhong Shao Dachuan Yu and Valery

quired support, we can map a special, unwrite-
able memory segment, and then &llable

slots with pointers into this area. This approach
will let us differentiate betweeNULL pointer
traps and invalid field traps, and then throw the
appropriate exception. For other platforms, we
can add extra instrumentation to the compiled
code, at some performance cost.
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5 Today and Tomorrow

As of this writing, Andrew is still finishing
the implementation of the core parts of the
new ABI. His work builds on some earlier
patches from Bryce, and is checked in on
gcj-abi-2-dev-branch . Tom hopes to

begin work on the verification problem soon. 4

Andrew has built a demo version of gcj-as-JIT
and posted some results to the gcj list; see his
post [3]. The results are surprisingly good—
a longer startup delay, as would be expected,
but performance falling between that of Sun’s
and IBM’s JITs on Linux. We anticipate some
useful performance gains from tree-ssa as well,
eventually—in particular smarter array bounds
checking.
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