
 Red Hat Performance Engineering

CPU Cacheline False Sharing

 - What is it?

 - How it can impact performance.

 - How to find it? (new tool)

Joe Mario
Oct 26, 2016
Senior Principal Engineer
Red Hat Performance Engineering

 Joe Mario2

Where is the concern applicable?

1) An application with multiple threads
accessing memory from different nodes*.

2) Multiple processes accessing shared
memory from different nodes*.

* accesses from same node relevant but less painful.

 Joe Mario3

Start with simple example

First, basic data structure

 struct foo {
 int w;
 int x;
 int y;
 int z;
 };
 static struct foo f;

 Joe Mario4

Add some code:

 4 threads running in parallel on a 4 socket numa system

 /* Thread 1 on node 0 */
 for (i = 0; i < 1000000; ++i)
 s += f.x;

 /* Thread 2 on node 1 */
 for (i = 0; i < 1000000; ++i)
 ++f.y;

 /* Thread 3 on node 2 */
 for (i = 0; i < 1000000; ++i)
 ++f.z;

 /*Thread 4 on node 3 */
 for (i = 0; i < 1000000; ++i)
 ++f.zz;

Average time for each thread to execute its loop = 120 machine
cycles

 Joe Mario5

Now modify the struct

1) Place each member in its own 64 byte aligned cacheline

 typedef int __attribute__((aligned (64))) aligned_int;

 struct foo {
 aligned_int w;
 aligned_int x;
 aligned_int y;
 aligned_int z;
 };

Average time for each thread to execute its loop drops by 2/3,
from 120 machine cycles to 35 machine cycles

 Joe Mario6

Basic false sharing – 2 socket system

CPU0CPU0

Memory

LLC (last level cache)

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

Memory

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

Node 0 Node 1

 Joe Mario7

Basic false sharing – 2 socket system

CPU0CPU0

Memory

LLC (last level cache)

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0 L1 CPU0L1 CPU0L1 CPU0L1
CPU0 L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

Memory

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

 sequence_ctr

 foo

 bar

 is_active

 is_online

 num_cpus

 num_cores

 mem_size

64-byte cache line

 Joe Mario8

Memory

Basic false sharing – 2 socket system

CPU0CPU0

Memory

LLC (last level cache)

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0 L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

64-byte cache line

Cacheline
copy
64 bytes

 sequence_ctr

 foo

 bar

 is_active

 is_online

 num_cpus

 num_cores

 mem_size

Thread-0
reads bar

 Joe Mario9

LLC (last level cache)

Memory

Basic false sharing – 2 socket system

CPU0CPU0

Memory

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

64-byte cache line

 sequence_ctr

 foo

 bar

 is_active

 is_online

 num_cpus

 num_cores

 mem_size

Thread-0
reads bar

Thread-1
reads num_cores

Cacheline
copy
64 bytes

Cacheline
copy
64 bytes

Life is good

 Joe Mario10

Where the trouble begins…

Now the program starts another thread which
frequently modifies “sequence_ctr”

void random_func() {

 while (true) {
 do_work();
 do_more_work();
 sequence_ctr += 1;
 }
}

 Joe Mario11

LLC (last level cache)

Memory

The problem

CPU0CPU0

Memory

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

64-byte cache line

 sequence_ctr

 foo

 bar

 is_active

 is_online

 num_cpus

 num_cores

 mem_size

Thread-0
reads bar

Thread-1
reads num_cores

Cacheline
copy
64 bytes

Cacheline
copy
64 bytes

Thread-2
sequence_ctr+=1

Cacheline
exclusive
write
64 bytes

 Joe Mario12

Looking a little closer:

● Read latencies for thread-0 and thread-1 read just got
much longer.

● Every time sequence_ctr is modified:
● threads 0 and 1 need to throw away their cacheline copies
● Get back in line for an updated cacheline

● Wait for memory controller to synchronize
● Ex: suppose sequence_ctr's value is 37 in memory and 38 in

the modified cacheline

 Joe Mario13

LLC (last level cache)

Memory

Ans: Put hot modified variable in own cacheline.

CPU0CPU0

Memory

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

sequence_ctr

 <pad>

 <pad>

 <pad>

 <pad>

 <pad>

 <pad>

 <pad>

Thread-0
reads bar

Thread-1
reads num_cores

Cacheline
copy
64 bytes

Cacheline
copy
64 bytes

Thread-2
sequence_ctr+=1

Cacheline
exclusive
write
64 bytes

 <pad>

foo

bar

is_active

is_online

num_cpus

num_cores

mem_size

 Joe Mario14

Conditions that aggravate false sharing
● Multiple threads writing to same cacheline.
● Multiple processes writing to same cacheline in shared

memory.
● Remote accesses across numa nodes.
● Atomic memory operations. ex: _sync_fetch_and_add

● atomic ops lock the cacheline

● Larger systems (8 and 16 numa nodes)

● On busy systems, (>= 4 sockets), false sharing load
latencies peaking over 60,000 machine cycles are not
uncommon

 Joe Mario15

How to detect and find this?
New addition to the Linux perf tool:
 perf c2c

“c2c” stands for “cache to cache”

Just got pulled into upstream

Look for it in a future RHEL 7.x (use on Intel IVB or newer)
Awesome feedback so far on it.

Prototype copy available at:
 http://people.redhat.com/jmario/rhel7_c2c/perf.rhel7.c2c

Extensive usage info in blog at:
 https://joemario.github.io/

http://people.redhat.com/jmario/rhel7_c2c/perf.rhel7.c2c
https://joemario.github.io/

 Joe Mario16

At a high level, “perf c2c” provides:

1) The cachelines virtual addr where false sharing was detected.

2) The readers and writers to those cachelines.

3) The offsets into the cachelines for those accesses.

4) The pid, tid, instruction addr, function name, filename.

5) The source file and line numbers.

 Joe Mario17

At a high level, “perf c2c” provides (continued):

1) The average load latency for the loads.

2) The numa nodes and cpus involved.

3) Ability to see when hot variables are sharing a cacheline.

4) Ability to see unaligned hot data structs spilling into multiple
cachelines.

 Joe Mario18

Steps to help minimize contention:

1) Pack read-only/read-mostly variables together.

2) Place the hottest written variables in their own cacheline.

3) Pad cachelines as a small tradeoff for reducing contention.

4) Align your data/buffers/structs on cacheline boundaries.

5) Lower the granularity of locks (lock smaller chunks of data to

reduce contention).

6) Use compile-time asserts to guarantee struct member

alignment:

 Red Hat Performance Engineering

Questions ?

	Red Hat Performance Engineering Status Update, Q1 2016
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

