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Where is the concern applicable?

1) An application with multiple threads 
accessing memory from different nodes*.

2) Multiple processes accessing shared 
memory from different nodes*.

* accesses from same node relevant but less painful.
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Start with simple example

First, basic data structure

   struct foo {
     int w;
     int x;
     int y;
     int z;
   };
   static struct foo f;
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Add some code:
 
 4 threads running in parallel on a 4 socket numa system

  /* Thread 1 on node 0 */
               for (i = 0; i < 1000000; ++i)
                   s += f.x;

  /* Thread 2 on node 1 */
               for (i = 0; i < 1000000; ++i)
                    ++f.y;

  /* Thread 3 on node 2 */
               for (i = 0; i < 1000000; ++i)
                   ++f.z;

  /*Thread 4 on node 3 */
               for (i = 0; i < 1000000; ++i)
                   ++f.zz;
    
Average time for each thread to execute its loop = 120 machine 
cycles
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Now modify the struct

1) Place each member in its own 64 byte aligned cacheline

   typedef int __attribute__((aligned (64))) aligned_int;

    struct foo {
      aligned_int  w;
      aligned_int  x;
      aligned_int  y;
      aligned_int  z;
    };

Average time for each thread to execute its loop drops by 2/3,
from 120 machine cycles to 35 machine cycles
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Basic false sharing – 2 socket system   
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Basic false sharing – 2 socket system   
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Memory

Basic false sharing – 2 socket system   
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Memory

LLC (last level cache)

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0 L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

64-byte cache line

Cacheline 
copy 
64 bytes

      sequence_ctr

      foo

      bar

      is_active

      is_online

      num_cpus

      num_cores

      mem_size

Thread-0
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LLC (last level cache)

Memory

Basic false sharing – 2 socket system   

CPU0CPU0

Memory

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0L1  CPU0L1 CPU0L1 CPU0L1
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64 bytes

Life is good
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Where the trouble begins…

Now the program starts another thread which 
frequently modifies “sequence_ctr”

void random_func() {

   while (true) {
        do_work();
        do_more_work();
        sequence_ctr += 1;
   }
}
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LLC (last level cache)

Memory

The problem   
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Looking a little closer:

● Read latencies for thread-0 and thread-1 read just got 
much longer.

● Every time sequence_ctr is modified:
● threads 0 and 1 need to throw away their cacheline copies 
● Get back in line for an updated cacheline

● Wait for memory controller to synchronize 
● Ex:  suppose sequence_ctr's value is 37 in memory and 38 in 

the modified cacheline
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LLC (last level cache)

Memory

Ans: Put hot modified variable in own cacheline. 
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Memory
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Conditions that aggravate false sharing
● Multiple threads writing to same cacheline. 
● Multiple processes writing to same cacheline in shared 

memory.
● Remote accesses across numa nodes.
● Atomic memory operations.  ex: _sync_fetch_and_add 

● atomic ops lock the cacheline

● Larger systems (8 and 16 numa nodes)

● On busy systems, (>= 4 sockets), false sharing load 
latencies peaking over 60,000 machine cycles are not 
uncommon
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How to detect and find this?
New addition to the Linux perf tool:  
     perf c2c

“c2c” stands for “cache to cache”

Just got pulled into upstream

Look for it in a future RHEL 7.x  (use on Intel IVB or newer) 
Awesome feedback so far on it.

Prototype copy available at:
   http://people.redhat.com/jmario/rhel7_c2c/perf.rhel7.c2c

Extensive usage info in blog at:
   https://joemario.github.io/

http://people.redhat.com/jmario/rhel7_c2c/perf.rhel7.c2c
https://joemario.github.io/
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At a high level, “perf c2c” provides:

1)  The cachelines virtual addr where false sharing was detected.

2)  The readers and writers to those cachelines.

3)  The offsets into the cachelines for those accesses.

4)  The pid, tid, instruction addr, function name, filename.

5)  The source file and line numbers.
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At a high level, “perf c2c” provides (continued):

1)  The average load latency for the loads.

2)  The numa nodes and cpus involved.

3)  Ability to see when hot variables are sharing a cacheline.

4)  Ability to see unaligned hot data structs spilling into multiple 
cachelines.
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Steps to help minimize contention:

1)  Pack read-only/read-mostly variables together.

2)  Place the hottest written variables in their own cacheline.

3)  Pad cachelines as a small tradeoff for reducing contention.

4)  Align your data/buffers/structs on cacheline boundaries.

5)  Lower the granularity of locks (lock smaller chunks of data to 

reduce contention).

6)  Use compile-time asserts to guarantee struct member 

alignment:
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Questions ?
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