

BOSTON, MA JUNE 23-26, 2015

Containers v(rs) Is Virtualization

Jeremy Eder, Principal Performance Engineer Scott Herold, Principal Product Manager, RHEV June 2015

- Venting
- Tech Overview
- Workload Classification
- Cold War ?
- Performance Data Roundup

Agenda

TOP 5 MISCONCEPTIONS ABOUT CONTAINERS

1) Containers are new. 2 Containers equal virtualization. 3 Containers are universally portable. 4 Containers are secure by default. **5** Containers are not enterprise-ready.

VIRTUALIZATION AND CONTAINERS

VIRTUALIZATION ÷ • : APP APP APP Α' Α В . • . • . • . BINS/ BINS/ : **BINS/** -MΝ LIBS . LIBS LIBS GUEST GUEST **GUEST** . . OS OS OS HOST OS HARDWARE

RED HAT ENTERPRISE VIRTUALIZATION

Centralized Management of KVM Hypervisor

VM Workload Management

Self-Service User Portal

Differentiating Features

WHAT ABOUT DENSITY?

"For every VM, you can run 10 billion containers." -- Internet

How many containers will you run on one OS instance ?

• 1 • 10 • 50 • 100 IUU

WHAT ABOUT DENSITY?

"This may be the most misleading stat ever." -- Me

#redhat #rhsummit

Get off my lawn!

Because it's ALL about the workloads

- Some don't care where they run
 - Batch workloads
- Some care greatly
 - Security/Isolation
 - Uptime
 - Performance

What is a workload? Subsystems

What is a workload? Requirements

Culture, Control

I WANT CHANGE

Code Down (Dev) versus Infra Up (Ops)

#redhat #rhsummit

WHEN WILL YOU MAKE SOMETHING THAT MATTERS?

WHEN WILL YOU MAKE SOMETHING COOL?

CONTAINERS VERSUS VRTUALZATIONE

NEW COLD WAR 2

#redhat #rhsummit

Minimum Overheads

Sample Container Overhead

Overhead Capacity

Maximum Overheads

Sample Virtualization Overhead

Overhead Capacity

#redhat #rhsummit

Reducing Overhead in VMs

Workload **CPU-intensive**

Memory-heavy

Network (Latency)

Network (Throughput)

Storage (Latency)

Storage (Throughput)

Mitigation

- •CPU Pinning
- •Avoid syscalls
- Setup NUMA topology in-Guest
- •Use hugepages
- •NUMA Pinning
- •Setup Hugepages in-Guest
- •SR-IOV
- PCI Passthrough
- Busy Poll
- •Not normally an issue
- Increase threads virtio-blk-dataplane coming soon
- •Not normally an issue

CONTAINERS VERSUS VIRTUALIZATION:

PERFORMANCE DATA ROUND-UP

#redhat #rhsummit

CPU Tests: MPI LINPACK

- **MPI Linpack % diff vs Bare Metal**
 - RHEL7.1, KVM, Docker

I/O Tests: fio ... Bare Metal, KVM, Atomic, Docker

Application Tests: Business Analytics

Business Analytics

Network Latency and Throughput

Large OLTP Database, BM vs Container vs KVM

Large OLTP Database (3 instances of 100 Users)Higher is Better

RHEL7.1 + Solarflare OpenOnload Bare Metal / KVM / Containers

- Lower is better
- Alternative kernelbypass mechanism to **DPDK**

Workload

CPU-bound

Memory Intensive

Disk Latency

Disk Throughput

Network Latency

Network Throughput

Security

Uptime (Live Migration)

Deployment Speed

Alternative OS

#redhat #rhsummit

Workload Classification

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

#redhat #rhsummit

RED HAT SUMMIT

• • •

•