
Understanding Kohonen Networks

Imed CHIHI

January 1998

ie
National School for Computer Sciences

n s

1

.

2

Abstract

Kohonen neural nets are some kind of competitive nets. The most commonly known variants

are the Self-Organizing Maps (SOMs) and the Learning Vector Quantization (LVQ). The

former model uses an unsupervized learning, the latter is an e�cient classi�er.

This paper tries to give, in simple words, a clear idea about the basis of competitive neural

nets and competitive learning emphasizing on the SOMs and some of their real-world applica-

tions. It should not be considered as an exhaustive reference but as a simple introductory.

Contents

3

1 Introduction

Teuvo Kohonen is a Finnish researcher very
famous for his work and contributions to neu-
rocomputing. The term Kohonen nets is gener-
ally used ambigously because it refers to multi-
ple neural networks especially Vector Quantiza-

tion, Self Organizing Maps, and Learning Vector
Quantization. Indeed, many other networks are
known as Kohonen nets, these include:

� DEC�Dynamically Expanding Context,

� LSM�Learning Subspace Method,

� ASSOM�Adaptive Subspace SOM,

� FASSOM�Feedback-controlled Adaptive
Subspace SOM,

� Supervised SOM,

� LVQ-SOM.

Almost all of them are competitive nets. In the
next we present the major principles of compet-
itive neural nets without going deep with math-
ematical details. In sections 4, 5 and 6, we give
a detailed presentation of the Self-Organizing
Maps and the Learning Vector Quantization.
Then, we present some real-world applications.

2 Competitive Neural Nets

Competition is one of the most common neu-
rocomputing paradigms. It was �rst used
in Rosenblatt's networks and studied later by

Grossberg (1960). To make a long story short,
competition consists in letting neurons \�ght"
till one wins, and then to \reward" the winner.

2.1 Architecture

Competitive nets are structured (in their sim-
plest form) as a couple of layers. One for input,
all it does is to re
ect the input patterns to the
whole network just like the input layer in Multi-
Layer Perceptrons (MLPs). The second layer
is for competition, each neuron receives some
excitation from the input and produces some
response. The response of a neuron c to the
excitation varies depending on the weights wci

where i covers all the input layer neurons.

(-)

(-)(-)

(-)

Input layer

Competition layer

Figure 1. The input layer passively

distributes the input vector (pattern)

to all the competition layer's neurons.

Each neuron is connected to some

neighborhood with either excitatory

(solid lines) or inhibiting (dashed

lines) lateral links.

To be worth called competitive, a neural net
should have the following features,

� all the neurons have di�erent activations
to a given input pattern. This is generally
granted by the initial settings,

� the activation functions are bounded,

� a concurrency mechanism exists. This
is granted by negatively weighed connec-
tions.

2.2 Learning and Competitive

Dynamics

Each cell on the competition layer receives the
same set of inputs. If an input pattern x is pre-
sented to the input layer, each neuron would
calculate its activation as follows,

s =
X
i

wixi

One of the neurons, say k, will have the high-
est activation. The lateral connections are the
means by which competition occurs. That is,
node k will get even more and more active any
time the vector x is presented. If this process
is iterated with the same vector x, node k will
strengthen its activation while others will have
their activation falling o� to zero. Note that the

4

lateral connections learn nothing, they are there
just to specify the concurrency topology, that is,
what neurons should get active together.

initial

final

k nodes indices

Figure 2. With competitive dynam-

ics, the situation evolves in such a way

that the winning cell gets more and

more specialized for a given input pat-

tern.

The dynamics are governed by the di�erential
equation:

dwij

dt
= ��wij(t) + �f(Yi)(Xj � wij)

The factor (Xj �wij) makes wij go close to
Xj , where f(Yi) insures that a non-active neu-
ron remains non-active so that only the winning
nodes gain more activation.

In the performance phase of a competitive
learning network, the index of the winning neu-
ron is typically the output of the network.

3 The Biological Back-

ground

It often occurs that sensory inputs may be
mapped in such a way that it makes sense to
talk of one stimulus being `close to' another ac-
cording to some metric property of the stimulus
[4]. In the visual area 1 of the mammalian brain,
cells are sensitive to the orientation of the pre-
sented pattern. That is, if a set of alternating
black and white lines is presented, a particular
cell will respond the most strongly when the set
has a particular orientation. The response will
fall quickly as the lines of the set are moved o�
that preferred orientation to some other ones.
This was practically established by the work of
Hubel and Weisel (1962). To make the close-
ness make sense, one should de�ne some metric
or measure of the stimuli.

Competitive nets simulate this behavior by
making each cell learn to recognize some par-
ticular input patterns. An interesting feature

with biological nets is that cells trained to rec-
ognize the same pattern tend to come close to
one another. In the visual cortex, cells tuned to
the same orientation are placed vertically below
each other perpendicularly to the surface of the
cortex.

4 Self-Organizing Maps

The SOM de�nes a mapping from the input data
space <n onto a two-dimensional array of nodes.
To every node i, a reference vector mi 2 <n is
assigned, in competitive networks jargon this is
called a codebook. An input vector x 2 <n is
compared with the mi and the best match is de-
�ned as \response": the input is thus mapped
onto this location [2]. The best matched one is
the closest to vector x according to some metric.

mi =

0
BBB@

wi1

wi2

...
win

1
CCCA

Figure 3. Weights vector associ-

ated with a node i from the competi-

tion layer. This expression of mi as-

sumes that the input data space is n-

dimensional.

We can say that the SOM is a projection of
the probability density function of the high-
dimensional input data space onto the two-
dimensional display (the map). Let x be an in-
put data vector, it may be compared with all
the mi in any metric, in practice the Euclidean
distances kx�mik are compared to pick up the
best matched node (the one that minimizes the
distance). Suppose now that the node closest to
x is denoted with the subscript c [2].

During learning, the nodes that are topo-
graphically close in the array up to a certain
distance will activate each other to learn from
the same input. Kohonen has shown that the
suitable values of mi are the limit of the conver-
gence of the following learning process (at each
presentation of a new input learning vector,mi's
are updated):

mi(t+ 1) = mi(t) + hci(t)[x(t) �mi(t)]

where t is the discrete-time coordinate. hci is
the neighborhood kernel; it is a function de�ned

5

over the competition layer's neurons, usually it
looks like hci(t) = h(rc � ri; t), where rc and
ri 2 <

n are the radius vectors of nodes c and i,
respectively, it is a measure of the topographic
distance between i and c. As that distance in-
creases, hci ! 0. The most used neighborhood
distributions are the bubble and the Gaussian

forms.

h

r - r

ci

c i

Figure 4. Layout of the neighbor-

hood, bubble (dashed-line) or Gaussian

(dotted-line).

In addition to the neighborhood kernel, a SOM
user should de�ne the shape of the boundaries
of that neighborhood.

By de�ning the neighborhood kernel, we de-
�ne the \radius" of the surrounding region into
which the nodes should be subject to an update.
This is not necessary a circular-shaped; in prac-
tice it is either hexagonal or square.

(a)

(b)

Figure 5. Neighborhood boundaries,

(a) hexagonal and (b) square.

5 Learning Vector Quanti-

zation

Learning Vector Quantization (LVQ) is a tech-
nique which improves the performance of
self-organizing networks in classi�cation tasks
[6].Typically, it consists in iteratively �ne tun-
ing the decision boundaries which are, in some
sense, the boundaries of the map regions cor-
responding to the di�erent classes. Just like
shown above, in the basic learning rule, the
weight vector w of a neuron is modi�ed in re-
sponse to an input vector x.

w(t+ 1) = w(t) + �(t)[x(t) � w(t)]

Many variations of this basic algorithm were
proposed, the most known are LVQ1, LVQ2,
LVQ3 and OLVQ, all proposed by Kohonen.

5.1 LVQ1

LVQ1 is very similar to the basic learning al-
gorithm with a slight modi�cation to support
classi�cation [6]. For a given training vector x
with class cx, the nearest neighbor wc, with class
cc is selected as the winning codebook and then
updated according to the following equations.

If cc = cx (x is classi�ed correctly),

wc(t+ 1) = wc(t) + �(t)[x(t) � wc(t)]

If cc 6= cx (x is classi�ed incorrectly),

wc(t+ 1) = wc(t)� �(t)[x(t) � wc(t)]

One e�ect of the LVQ1 algorithm is to move
the codebooks o� the uncertainty region reduc-
ing ambiguity. Uncertain regions are located
just in between two adjacent portions of the map
where distinct classes are mapped.

6

5.2 LVQ2

The LVQ2 algorithm attempts to better approx-
imate the decision boundaries by making adjust-
ments to pairs of codewords. For each train-
ing vector x with class cx, LVQ2 uses a nearest
neighbor selection scheme to choose the closest
(winning) codeword ww with class cw, and the
second closest (runner up) codeword wr, with
class cr. If the class of x is di�erent from the
winning class cw but the same as the runner up
class cr then the codewords are modi�ed accord-
ing to the following equation.

If (cx 6= cw); (cx = cr) and x falls within the
\window",

ww(t+ 1) = ww(t)� �(t)[x(t) � ww(t)]

wr(t+ 1) = wr(t)� �(t)[x(t) � wr(t)]

For the above equation to apply, the train-
ing vector x must fall within the boundaries of
a \window" de�ned in terms of the relative dis-
tances dw and dr from ww and wr respectively.
This \window " criterion is de�ned below,

min(
dw

dr
;
dr

dw
) > s;

where

s =
1� w

1 + w

5.3 LVQ3

The LVQ2 has the so called codewords drifting

away disadvantage with lengthy running learn-
ing. The LVQ3 is a combination of both LVQ1
and LVQ2 to produce a stable and e�cient al-
gorithm. Like LVQ2, for each training vector
x with class cx, LVQ2 uses a nearest neighbor
selection scheme to choose the closest two code-
words wi with class ci, and wj with class cj . If
the class of x is the same as one of the winning
codeword classes and di�erent from the other,
an update scheme similar to LVQ2 is employed
with the same window criterion. If the classes
of both codewords are the same as the class of
x, then an update rule similar to that used by
LVQ1 is applied.

If (cx 6= ci); (cx = cj) and x falls within the
\window",

wi(t+ 1) = wi(t)� �(t)[x(t) � wi(t)]

wj(t+ 1) = wj(t) + �(t)[x(t) � wj(t)]

For k 2 fi; jg, and cx = ci = cj

wk(t+ 1) = wk(t)� ��(t)[x(t) � wk(t)]

The scalar learning constant � depends upon
the size of the window. Reasonable values for �
range between 0.1 and 0.5. With LVQ3, code-
words placement does not change with extensive
learning. It is said to be self-stabilizing [6].

6 Applications

6.1 SOMs in High Performance

Computing

Tomas Nordstr��m from the Department of Sys-
tems Engineering and Mathematics, Lulea Uni-
versity of Technology, Sweden is leading a team
working on the design of parallel computer ar-
chitectures to support neural networks algo-
rithms [7]. They are building a parallel com-
puter especially tuned for SOM, which they
called REMAP.

Many other computers were built to do com-
putation with SOM. These architectures are ex-
pected to have high broadcasting capabilities.
Indeed all it is needed into a SOM is to dis-
tribute weights and to calculate a neighborhood,
which involves continuous broadcasting.

CNAPS (Connected Network of Adaptive
Processors) manufactured by Adaptive
Solutions. It is a 256 processing ele-

ment (PE) machine with a broadcast in-
terconnection scheme. CNAPS performs
up to 10240 Million Instructions Per Sec-
ond (MIPS) on dot-product operations
and about 183 Million Connection Up-
dates Per Second (MCUPS).

CM (Connection Machine) Manufactured by
Thinking Machine Corp., it runs at 48
CUPS (for CM-2). SOMs are basically
computation bound1, that's why in a high-
communication variant of SOM where
broadcast could not be used e�ciently, a
30 node Transputer machine would run at
one third of the CM-2 speed.

1The useful computation time dominates the time spent on communications.

7

MasPar Uses between 1024 and 16384 PEs.
Achieves a peak performance of 1500
MFlops (on the 16k-PE version).

Warp A one-dimensional array of 10 or more
powerful PEs developed at the Carnegie
Mellon University. It has a performance
of about 10 MFlops per PE.

TInMANN Is an all digital implementation
of Kohonen's learning. Indeed, Van den
Bout and others have proposed a modi�ca-
tion to the SOFM model making it possi-
ble to build very simple implementations.

6.2 LVQ in Image Compression

Here are the results of an image compression
neural net using a variant of Vector Quanti-
zation, the Tree Structure Vector Quantization
(TSVQ). According to the its authors, it pro-
vides a good tradeo� between the computational
complexity of the conventional vector quantiza-
tion and the quality of the compressed image.

(a) Original image (8 bpp)

(b) Compressed image (0.75 bpp)

(c) Compressed image (0.5 bpp)

Figure 6. Performance of the TSVQ.

Even with a compression ratio of 16,

the quality loss is undetectable.

7 Practicing SOMs

The following experiment was performed us-
ing the LVQ PAK and SOM PAK program
packages, available from anonymous ftp to
cochlea.hut.fi. A 12 by 8 two-dimensional
map is used to build a neural network and train
it for monitoring tasks.

The supposed device is some intricate sys-
tem for which the temperature depends upon a
certain number, say 5, of parameters. We aim
to build a neural network to detect abnormal
situations, it is, anyway, a kind of classi�cation.

The weight vectors are initialized at random
in the space covered by the input data vectors.
The neighborhood layout is hexagonal and its
function type is bubble-shaped.

The map is then trained using 3840 data
vector samples. Two training passes were per-
formed, the �rst with 1000 iterations and a

wide neighborhood (� = 0:05 and radius = 10),
and the second wit 10000 iterations and a tight
neighborhood (� = 0:03 and radius = 3). The
average quantization error were about 3.57.

These are some details of the training phase.

(a)

8

(b)

(c)

(d)

Figure 7. The best-matching cell tra-

jectory along the training. (a) For all

the 3840 training patterns. (b) For vec-

tors representing correct performance

of the device. (c) For vectors represent-

ing faulty performance status. (d) For

vector representing an overheating sta-

tus (moving into the bad region).

Below are the codebook vectors' components.
For a given index k, the (mi)k are drawn in
gray scales in Figure 8. Note that we give an
obvious interpretation of the trajectories in
Figure 7: the daily performance vectors
(Figure 7. a) were mapped to random regions
of the map, the correct performance
measurements (Figure 7.b) were mapped far
away from the fault region (in the sane region),
the faulty status performance vectors (Figure
7.c) were mapped directly into the fault region
and when the device is overheating (Figure

7.d) the mappings seemed to \approach" the
fault region.

F

F F F F F F

(a) Component plane 1

F

F F F F F F

(b) Component plane 2

F

F F F F F F

(c) Component plane 3

F

F F F F F F

(d) Component plane 4

9

F

F F F F F F

(e) Component plane 5

Figure 8. Distribution of the weights'

vectors per plane of components. Cells

marked with 'F' denote a faulty perfor-

mance state.

Looking at Figure 8. e, we can deduce that when
the parameter with subscript 5 in the input data
vectors is high, the device is likely to operate in
the sane region.

8 Conclusion

Competitive nets are a kind of hybrid, where a
feedforward structure contains at least one layer
with intra-layer recurrence. Each node is con-
nected to a large neighborhood of surrounding
nodes by negative or inhibitory weighted inputs,
and to itself (and possible a small local neighbor-
hood) via positive or excitatory inputs. These
lateral connections are usually �xed in magni-
tude and do not partake in the learning process.
It is also connected to the previous layer by a set
of inputs which have trainable weights of either
sign. The point of the lateral recurrent links is
to enhance an initial pattern of activity over the
layer, resulting in the node which was most ac-
tive being turned fully \on", and the others be-
ing turned \o�"; hence the label \competitive"
or \winner-take-all" being applied to these nets.

The object here is to encode groups of pat-
terns in a 1-out-of-n code, where each class is as-
sociated with an active node in the winner-take-

all layer. This mechanism, or some minor vari-
ant, is a key component in Grossberg's Adap-
tive Resonance Theory (ART), Fukushima's
neo-cognitron and Kohonen's nets that develop
topological feature maps.

Acknowledgment

I would like to thank miss Fatma Chaker for her
valuable help. This work was supervised by Dr.
Ra�k Brahem as part of a Master Degree course
on Neural Networks at the National School for
Computer Sciences, Tunisia.

References

[1] Jean-Fran�cois Jodouin. Les r�eseaux neu-

romim�etiques (pp. 111-130). Hermes, Paris,
1994.

[2] T. Kohonen, J. Hynninen, J. Kangas, J.
Laaksonen. SOM PAK The Self-Organizing

Map Program Package. Helsinki University
of Technology, 1995.

[3] T. Kohonen, J. Hynninen, J. Kangas, J.
Laaksonen. LVQ PAK The Learning Vector

Quantization Program Package. Helsinki
University of Technology, 1995.

[4] Kevin Guerney. Neural Nets. Psychology
Department, University of She�eld, 1996.

[5] Warren Sarle. comp.ai.neural-nets.
Neural nets newsgroup, 1997.

[6] Edward Riegelsberger. Context-sensitive

vowel recognition using the FSCL-LVQ

classi�er. Master Degree thesis. Ohio State
University, 1994.

[7] Tomas Nordstr��m. Designing parallel com-
puters for self organizing maps. Lulea Uni-
versity of Technology, Sweden, 1992.

10

