1    	// Copyright 2013 Google Inc. All Rights Reserved.
2    	//
3    	// Licensed under the Apache License, Version 2.0 (the "License");
4    	// you may not use this file except in compliance with the License.
5    	// You may obtain a copy of the License at
6    	//
7    	//     http://www.apache.org/licenses/LICENSE-2.0
8    	//
9    	// Unless required by applicable law or agreed to in writing, software
10   	// distributed under the License is distributed on an "AS IS" BASIS,
11   	// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12   	// See the License for the specific language governing permissions and
13   	// limitations under the License.
14   	//
15   	// A btree implementation of the STL set and map interfaces. A btree is both
16   	// smaller and faster than STL set/map. The red-black tree implementation of
17   	// STL set/map has an overhead of 3 pointers (left, right and parent) plus the
18   	// node color information for each stored value. So a set<int32> consumes 20
19   	// bytes for each value stored. This btree implementation stores multiple
20   	// values on fixed size nodes (usually 256 bytes) and doesn't store child
21   	// pointers for leaf nodes. The result is that a btree_set<int32> may use much
22   	// less memory per stored value. For the random insertion benchmark in
23   	// btree_test.cc, a btree_set<int32> with node-size of 256 uses 4.9 bytes per
24   	// stored value.
25   	//
26   	// The packing of multiple values on to each node of a btree has another effect
27   	// besides better space utilization: better cache locality due to fewer cache
28   	// lines being accessed. Better cache locality translates into faster
29   	// operations.
30   	//
31   	// CAVEATS
32   	//
33   	// Insertions and deletions on a btree can cause splitting, merging or
34   	// rebalancing of btree nodes. And even without these operations, insertions
35   	// and deletions on a btree will move values around within a node. In both
36   	// cases, the result is that insertions and deletions can invalidate iterators
37   	// pointing to values other than the one being inserted/deleted. This is
38   	// notably different from STL set/map which takes care to not invalidate
39   	// iterators on insert/erase except, of course, for iterators pointing to the
40   	// value being erased.  A partial workaround when erasing is available:
41   	// erase() returns an iterator pointing to the item just after the one that was
42   	// erased (or end() if none exists).  See also safe_btree.
43   	
44   	// PERFORMANCE
45   	//
46   	//   btree_bench --benchmarks=. 2>&1 | ./benchmarks.awk
47   	//
48   	// Run on pmattis-warp.nyc (4 X 2200 MHz CPUs); 2010/03/04-15:23:06
49   	// Benchmark                 STL(ns) B-Tree(ns) @    <size>
50   	// --------------------------------------------------------
51   	// BM_set_int32_insert        1516      608  +59.89%  <256>    [40.0,  5.2]
52   	// BM_set_int32_lookup        1160      414  +64.31%  <256>    [40.0,  5.2]
53   	// BM_set_int32_fulllookup     960      410  +57.29%  <256>    [40.0,  4.4]
54   	// BM_set_int32_delete        1741      528  +69.67%  <256>    [40.0,  5.2]
55   	// BM_set_int32_queueaddrem   3078     1046  +66.02%  <256>    [40.0,  5.5]
56   	// BM_set_int32_mixedaddrem   3600     1384  +61.56%  <256>    [40.0,  5.3]
57   	// BM_set_int32_fifo           227      113  +50.22%  <256>    [40.0,  4.4]
58   	// BM_set_int32_fwditer        158       26  +83.54%  <256>    [40.0,  5.2]
59   	// BM_map_int32_insert        1551      636  +58.99%  <256>    [48.0, 10.5]
60   	// BM_map_int32_lookup        1200      508  +57.67%  <256>    [48.0, 10.5]
61   	// BM_map_int32_fulllookup     989      487  +50.76%  <256>    [48.0,  8.8]
62   	// BM_map_int32_delete        1794      628  +64.99%  <256>    [48.0, 10.5]
63   	// BM_map_int32_queueaddrem   3189     1266  +60.30%  <256>    [48.0, 11.6]
64   	// BM_map_int32_mixedaddrem   3822     1623  +57.54%  <256>    [48.0, 10.9]
65   	// BM_map_int32_fifo           151      134  +11.26%  <256>    [48.0,  8.8]
66   	// BM_map_int32_fwditer        161       32  +80.12%  <256>    [48.0, 10.5]
67   	// BM_set_int64_insert        1546      636  +58.86%  <256>    [40.0, 10.5]
68   	// BM_set_int64_lookup        1200      512  +57.33%  <256>    [40.0, 10.5]
69   	// BM_set_int64_fulllookup     971      487  +49.85%  <256>    [40.0,  8.8]
70   	// BM_set_int64_delete        1745      616  +64.70%  <256>    [40.0, 10.5]
71   	// BM_set_int64_queueaddrem   3163     1195  +62.22%  <256>    [40.0, 11.6]
72   	// BM_set_int64_mixedaddrem   3760     1564  +58.40%  <256>    [40.0, 10.9]
73   	// BM_set_int64_fifo           146      103  +29.45%  <256>    [40.0,  8.8]
74   	// BM_set_int64_fwditer        162       31  +80.86%  <256>    [40.0, 10.5]
75   	// BM_map_int64_insert        1551      720  +53.58%  <256>    [48.0, 20.7]
76   	// BM_map_int64_lookup        1214      612  +49.59%  <256>    [48.0, 20.7]
77   	// BM_map_int64_fulllookup     994      592  +40.44%  <256>    [48.0, 17.2]
78   	// BM_map_int64_delete        1778      764  +57.03%  <256>    [48.0, 20.7]
79   	// BM_map_int64_queueaddrem   3189     1547  +51.49%  <256>    [48.0, 20.9]
80   	// BM_map_int64_mixedaddrem   3779     1887  +50.07%  <256>    [48.0, 21.6]
81   	// BM_map_int64_fifo           147      145   +1.36%  <256>    [48.0, 17.2]
82   	// BM_map_int64_fwditer        162       41  +74.69%  <256>    [48.0, 20.7]
83   	// BM_set_string_insert       1989     1966   +1.16%  <256>    [64.0, 44.5]
84   	// BM_set_string_lookup       1709     1600   +6.38%  <256>    [64.0, 44.5]
85   	// BM_set_string_fulllookup   1573     1529   +2.80%  <256>    [64.0, 35.4]
86   	// BM_set_string_delete       2520     1920  +23.81%  <256>    [64.0, 44.5]
87   	// BM_set_string_queueaddrem  4706     4309   +8.44%  <256>    [64.0, 48.3]
88   	// BM_set_string_mixedaddrem  5080     4654   +8.39%  <256>    [64.0, 46.7]
89   	// BM_set_string_fifo          318      512  -61.01%  <256>    [64.0, 35.4]
90   	// BM_set_string_fwditer       182       93  +48.90%  <256>    [64.0, 44.5]
91   	// BM_map_string_insert       2600     2227  +14.35%  <256>    [72.0, 55.8]
92   	// BM_map_string_lookup       2068     1730  +16.34%  <256>    [72.0, 55.8]
93   	// BM_map_string_fulllookup   1859     1618  +12.96%  <256>    [72.0, 44.0]
94   	// BM_map_string_delete       3168     2080  +34.34%  <256>    [72.0, 55.8]
95   	// BM_map_string_queueaddrem  5840     4701  +19.50%  <256>    [72.0, 59.4]
96   	// BM_map_string_mixedaddrem  6400     5200  +18.75%  <256>    [72.0, 57.8]
97   	// BM_map_string_fifo          398      596  -49.75%  <256>    [72.0, 44.0]
98   	// BM_map_string_fwditer       243      113  +53.50%  <256>    [72.0, 55.8]
99   	
100  	#ifndef UTIL_BTREE_BTREE_H__
101  	#define UTIL_BTREE_BTREE_H__
102  	
103  	#include <stddef.h>
104  	#include <string.h>
105  	#include <sys/types.h>
106  	#include <algorithm>
107  	#include <functional>
108  	#include <iostream>
109  	#include <iterator>
110  	#include <limits>
111  	#include <type_traits>
112  	#include <new>
113  	#include <ostream>
114  	#include <string>
115  	#include <utility>
116  	
117  	#include "include/ceph_assert.h"
118  	
119  	namespace btree {
120  	
121  	// Inside a btree method, if we just call swap(), it will choose the
122  	// btree::swap method, which we don't want. And we can't say ::swap
123  	// because then MSVC won't pickup any std::swap() implementations. We
124  	// can't just use std::swap() directly because then we don't get the
125  	// specialization for types outside the std namespace. So the solution
126  	// is to have a special swap helper function whose name doesn't
127  	// collide with other swap functions defined by the btree classes.
128  	template <typename T>
129  	inline void btree_swap_helper(T &a, T &b) {
130  	  using std::swap;
131  	  swap(a, b);
132  	}
133  	
134  	// A template helper used to select A or B based on a condition.
135  	template<bool cond, typename A, typename B>
136  	struct if_{
137  	  typedef A type;
138  	};
139  	
140  	template<typename A, typename B>
141  	struct if_<false, A, B> {
142  	  typedef B type;
143  	};
144  	
145  	// Types small_ and big_ are promise that sizeof(small_) < sizeof(big_)
146  	typedef char small_;
147  	
148  	struct big_ {
149  	  char dummy[2];
150  	};
151  	
152  	// A compile-time assertion.
153  	template <bool>
154  	struct CompileAssert {
155  	};
156  	
157  	#define COMPILE_ASSERT(expr, msg) \
158  	  typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
159  	
160  	// A helper type used to indicate that a key-compare-to functor has been
161  	// provided. A user can specify a key-compare-to functor by doing:
162  	//
163  	//  struct MyStringComparer
164  	//      : public util::btree::btree_key_compare_to_tag {
165  	//    int operator()(const string &a, const string &b) const {
166  	//      return a.compare(b);
167  	//    }
168  	//  };
169  	//
170  	// Note that the return type is an int and not a bool. There is a
171  	// COMPILE_ASSERT which enforces this return type.
172  	struct btree_key_compare_to_tag {
173  	};
174  	
175  	// A helper class that indicates if the Compare parameter is derived from
176  	// btree_key_compare_to_tag.
177  	template <typename Compare>
178  	struct btree_is_key_compare_to
179  	    : public std::is_convertible<Compare, btree_key_compare_to_tag> {
180  	};
181  	
182  	// A helper class to convert a boolean comparison into a three-way
183  	// "compare-to" comparison that returns a negative value to indicate
184  	// less-than, zero to indicate equality and a positive value to
185  	// indicate greater-than. This helper class is specialized for
186  	// less<string> and greater<string>. The btree_key_compare_to_adapter
187  	// class is provided so that btree users automatically get the more
188  	// efficient compare-to code when using common google string types
189  	// with common comparison functors.
190  	template <typename Compare>
191  	struct btree_key_compare_to_adapter : Compare {
192  	  btree_key_compare_to_adapter() { }
193  	  btree_key_compare_to_adapter(const Compare &c) : Compare(c) { }
194  	  btree_key_compare_to_adapter(const btree_key_compare_to_adapter<Compare> &c)
195  	      : Compare(c) {
196  	  }
197  	};
198  	
199  	template <>
200  	struct btree_key_compare_to_adapter<std::less<std::string> >
201  	    : public btree_key_compare_to_tag {
202  	  btree_key_compare_to_adapter() {}
203  	  btree_key_compare_to_adapter(const std::less<std::string>&) {}
204  	  btree_key_compare_to_adapter(
205  	      const btree_key_compare_to_adapter<std::less<std::string> >&) {}
206  	  int operator()(const std::string &a, const std::string &b) const {
207  	    return a.compare(b);
208  	  }
209  	};
210  	
211  	template <>
212  	struct btree_key_compare_to_adapter<std::greater<std::string> >
213  	    : public btree_key_compare_to_tag {
214  	  btree_key_compare_to_adapter() {}
215  	  btree_key_compare_to_adapter(const std::greater<std::string>&) {}
216  	  btree_key_compare_to_adapter(
217  	      const btree_key_compare_to_adapter<std::greater<std::string> >&) {}
218  	  int operator()(const std::string &a, const std::string &b) const {
219  	    return b.compare(a);
220  	  }
221  	};
222  	
223  	// A helper class that allows a compare-to functor to behave like a plain
224  	// compare functor. This specialization is used when we do not have a
225  	// compare-to functor.
226  	template <typename Key, typename Compare, bool HaveCompareTo>
227  	struct btree_key_comparer {
228  	  btree_key_comparer() {}
229  	  btree_key_comparer(Compare c) : comp(c) {}
230  	  static bool bool_compare(const Compare &comp, const Key &x, const Key &y) {
231  	    return comp(x, y);
232  	  }
233  	  bool operator()(const Key &x, const Key &y) const {
234  	    return bool_compare(comp, x, y);
235  	  }
236  	  Compare comp;
237  	};
238  	
239  	// A specialization of btree_key_comparer when a compare-to functor is
240  	// present. We need a plain (boolean) comparison in some parts of the btree
241  	// code, such as insert-with-hint.
242  	template <typename Key, typename Compare>
243  	struct btree_key_comparer<Key, Compare, true> {
244  	  btree_key_comparer() {}
245  	  btree_key_comparer(Compare c) : comp(c) {}
246  	  static bool bool_compare(const Compare &comp, const Key &x, const Key &y) {
247  	    return comp(x, y) < 0;
248  	  }
249  	  bool operator()(const Key &x, const Key &y) const {
250  	    return bool_compare(comp, x, y);
251  	  }
252  	  Compare comp;
253  	};
254  	
255  	// A helper function to compare to keys using the specified compare
256  	// functor. This dispatches to the appropriate btree_key_comparer comparison,
257  	// depending on whether we have a compare-to functor or not (which depends on
258  	// whether Compare is derived from btree_key_compare_to_tag).
259  	template <typename Key, typename Compare>
260  	static bool btree_compare_keys(
261  	    const Compare &comp, const Key &x, const Key &y) {
262  	  typedef btree_key_comparer<Key, Compare,
263  	      btree_is_key_compare_to<Compare>::value> key_comparer;
264  	  return key_comparer::bool_compare(comp, x, y);
265  	}
266  	
267  	template <typename Key, typename Compare,
268  	          typename Alloc, int TargetNodeSize, int ValueSize>
269  	struct btree_common_params {
270  	  // If Compare is derived from btree_key_compare_to_tag then use it as the
271  	  // key_compare type. Otherwise, use btree_key_compare_to_adapter<> which will
272  	  // fall-back to Compare if we don't have an appropriate specialization.
273  	  typedef typename if_<
274  	    btree_is_key_compare_to<Compare>::value,
275  	    Compare, btree_key_compare_to_adapter<Compare> >::type key_compare;
276  	  // A type which indicates if we have a key-compare-to functor or a plain old
277  	  // key-compare functor.
278  	  typedef btree_is_key_compare_to<key_compare> is_key_compare_to;
279  	
280  	  typedef Alloc allocator_type;
281  	  typedef Key key_type;
282  	  typedef ssize_t size_type;
283  	  typedef ptrdiff_t difference_type;
284  	
285  	  enum {
286  	    kTargetNodeSize = TargetNodeSize,
287  	
288  	    // Available space for values.  This is largest for leaf nodes,
289  	    // which has overhead no fewer than two pointers.
290  	    kNodeValueSpace = TargetNodeSize - 2 * sizeof(void*),
291  	  };
292  	
293  	  // This is an integral type large enough to hold as many
294  	  // ValueSize-values as will fit a node of TargetNodeSize bytes.
295  	  typedef typename if_<
296  	    (kNodeValueSpace / ValueSize) >= 256,
297  	    uint16_t,
298  	    uint8_t>::type node_count_type;
299  	};
300  	
301  	// A parameters structure for holding the type parameters for a btree_map.
302  	template <typename Key, typename Data, typename Compare,
303  	          typename Alloc, int TargetNodeSize>
304  	struct btree_map_params
305  	    : public btree_common_params<Key, Compare, Alloc, TargetNodeSize,
306  	                                 sizeof(Key) + sizeof(Data)> {
307  	  typedef Data data_type;
308  	  typedef Data mapped_type;
309  	  typedef std::pair<const Key, data_type> value_type;
310  	  typedef std::pair<Key, data_type> mutable_value_type;
311  	  typedef value_type* pointer;
312  	  typedef const value_type* const_pointer;
313  	  typedef value_type& reference;
314  	  typedef const value_type& const_reference;
315  	
316  	  enum {
317  	    kValueSize = sizeof(Key) + sizeof(data_type),
318  	  };
319  	
320  	  static const Key& key(const value_type &x) { return x.first; }
321  	  static const Key& key(const mutable_value_type &x) { return x.first; }
322  	  static void swap(mutable_value_type *a, mutable_value_type *b) {
323  	    btree_swap_helper(a->first, b->first);
324  	    btree_swap_helper(a->second, b->second);
325  	  }
326  	};
327  	
328  	// A parameters structure for holding the type parameters for a btree_set.
329  	template <typename Key, typename Compare, typename Alloc, int TargetNodeSize>
330  	struct btree_set_params
331  	    : public btree_common_params<Key, Compare, Alloc, TargetNodeSize,
332  	                                 sizeof(Key)> {
333  	  typedef std::false_type data_type;
334  	  typedef std::false_type mapped_type;
335  	  typedef Key value_type;
336  	  typedef value_type mutable_value_type;
337  	  typedef value_type* pointer;
338  	  typedef const value_type* const_pointer;
339  	  typedef value_type& reference;
340  	  typedef const value_type& const_reference;
341  	
342  	  enum {
343  	    kValueSize = sizeof(Key),
344  	  };
345  	
346  	  static const Key& key(const value_type &x) { return x; }
347  	  static void swap(mutable_value_type *a, mutable_value_type *b) {
348  	    btree_swap_helper<mutable_value_type>(*a, *b);
349  	  }
350  	};
351  	
352  	// An adapter class that converts a lower-bound compare into an upper-bound
353  	// compare.
354  	template <typename Key, typename Compare>
355  	struct btree_upper_bound_adapter : public Compare {
356  	  btree_upper_bound_adapter(Compare c) : Compare(c) {}
357  	  bool operator()(const Key &a, const Key &b) const {
358  	    return !static_cast<const Compare&>(*this)(b, a);
359  	  }
360  	};
361  	
362  	template <typename Key, typename CompareTo>
363  	struct btree_upper_bound_compare_to_adapter : public CompareTo {
364  	  btree_upper_bound_compare_to_adapter(CompareTo c) : CompareTo(c) {}
365  	  int operator()(const Key &a, const Key &b) const {
366  	    return static_cast<const CompareTo&>(*this)(b, a);
367  	  }
368  	};
369  	
370  	// Dispatch helper class for using linear search with plain compare.
371  	template <typename K, typename N, typename Compare>
372  	struct btree_linear_search_plain_compare {
373  	  static int lower_bound(const K &k, const N &n, Compare comp)  {
374  	    return n.linear_search_plain_compare(k, 0, n.count(), comp);
375  	  }
376  	  static int upper_bound(const K &k, const N &n, Compare comp)  {
377  	    typedef btree_upper_bound_adapter<K, Compare> upper_compare;
378  	    return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
379  	  }
380  	};
381  	
382  	// Dispatch helper class for using linear search with compare-to
383  	template <typename K, typename N, typename CompareTo>
384  	struct btree_linear_search_compare_to {
385  	  static int lower_bound(const K &k, const N &n, CompareTo comp)  {
386  	    return n.linear_search_compare_to(k, 0, n.count(), comp);
387  	  }
388  	  static int upper_bound(const K &k, const N &n, CompareTo comp)  {
389  	    typedef btree_upper_bound_adapter<K,
390  	        btree_key_comparer<K, CompareTo, true> > upper_compare;
391  	    return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
392  	  }
393  	};
394  	
395  	// Dispatch helper class for using binary search with plain compare.
396  	template <typename K, typename N, typename Compare>
397  	struct btree_binary_search_plain_compare {
398  	  static int lower_bound(const K &k, const N &n, Compare comp)  {
399  	    return n.binary_search_plain_compare(k, 0, n.count(), comp);
400  	  }
401  	  static int upper_bound(const K &k, const N &n, Compare comp)  {
402  	    typedef btree_upper_bound_adapter<K, Compare> upper_compare;
403  	    return n.binary_search_plain_compare(k, 0, n.count(), upper_compare(comp));
404  	  }
405  	};
406  	
407  	// Dispatch helper class for using binary search with compare-to.
408  	template <typename K, typename N, typename CompareTo>
409  	struct btree_binary_search_compare_to {
410  	  static int lower_bound(const K &k, const N &n, CompareTo comp)  {
411  	    return n.binary_search_compare_to(k, 0, n.count(), CompareTo());
412  	  }
413  	  static int upper_bound(const K &k, const N &n, CompareTo comp)  {
414  	    typedef btree_upper_bound_adapter<K,
415  	        btree_key_comparer<K, CompareTo, true> > upper_compare;
416  	    return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
417  	  }
418  	};
419  	
420  	// A node in the btree holding. The same node type is used for both internal
421  	// and leaf nodes in the btree, though the nodes are allocated in such a way
422  	// that the children array is only valid in internal nodes.
423  	template <typename Params>
424  	class btree_node {
425  	 public:
426  	  typedef Params params_type;
427  	  typedef btree_node<Params> self_type;
428  	  typedef typename Params::key_type key_type;
429  	  typedef typename Params::data_type data_type;
430  	  typedef typename Params::value_type value_type;
431  	  typedef typename Params::mutable_value_type mutable_value_type;
432  	  typedef typename Params::pointer pointer;
433  	  typedef typename Params::const_pointer const_pointer;
434  	  typedef typename Params::reference reference;
435  	  typedef typename Params::const_reference const_reference;
436  	  typedef typename Params::key_compare key_compare;
437  	  typedef typename Params::size_type size_type;
438  	  typedef typename Params::difference_type difference_type;
439  	  // Typedefs for the various types of node searches.
440  	  typedef btree_linear_search_plain_compare<
441  	    key_type, self_type, key_compare> linear_search_plain_compare_type;
442  	  typedef btree_linear_search_compare_to<
443  	    key_type, self_type, key_compare> linear_search_compare_to_type;
444  	  typedef btree_binary_search_plain_compare<
445  	    key_type, self_type, key_compare> binary_search_plain_compare_type;
446  	  typedef btree_binary_search_compare_to<
447  	    key_type, self_type, key_compare> binary_search_compare_to_type;
448  	  // If we have a valid key-compare-to type, use linear_search_compare_to,
449  	  // otherwise use linear_search_plain_compare.
450  	  typedef typename if_<
451  	    Params::is_key_compare_to::value,
452  	    linear_search_compare_to_type,
453  	    linear_search_plain_compare_type>::type linear_search_type;
454  	  // If we have a valid key-compare-to type, use binary_search_compare_to,
455  	  // otherwise use binary_search_plain_compare.
456  	  typedef typename if_<
457  	    Params::is_key_compare_to::value,
458  	    binary_search_compare_to_type,
459  	    binary_search_plain_compare_type>::type binary_search_type;
460  	  // If the key is an integral or floating point type, use linear search which
461  	  // is faster than binary search for such types. Might be wise to also
462  	  // configure linear search based on node-size.
463  	  typedef typename if_<
464  	    std::is_integral<key_type>::value ||
465  	    std::is_floating_point<key_type>::value,
466  	    linear_search_type, binary_search_type>::type search_type;
467  	
468  	  struct base_fields {
469  	    typedef typename Params::node_count_type field_type;
470  	
471  	    // A boolean indicating whether the node is a leaf or not.
472  	    bool leaf;
473  	    // The position of the node in the node's parent.
474  	    field_type position;
475  	    // The maximum number of values the node can hold.
476  	    field_type max_count;
477  	    // The count of the number of values in the node.
478  	    field_type count;
479  	    // A pointer to the node's parent.
480  	    btree_node *parent;
481  	  };
482  	
483  	  enum {
484  	    kValueSize = params_type::kValueSize,
485  	    kTargetNodeSize = params_type::kTargetNodeSize,
486  	
487  	    // Compute how many values we can fit onto a leaf node.
488  	    kNodeTargetValues = (kTargetNodeSize - sizeof(base_fields)) / kValueSize,
489  	    // We need a minimum of 3 values per internal node in order to perform
490  	    // splitting (1 value for the two nodes involved in the split and 1 value
491  	    // propagated to the parent as the delimiter for the split).
492  	    kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
493  	
494  	    kExactMatch = 1 << 30,
495  	    kMatchMask = kExactMatch - 1,
496  	  };
497  	
498  	  struct leaf_fields : public base_fields {
499  	    // The array of values. Only the first count of these values have been
500  	    // constructed and are valid.
501  	    mutable_value_type values[kNodeValues];
502  	  };
503  	
504  	  struct internal_fields : public leaf_fields {
505  	    // The array of child pointers. The keys in children_[i] are all less than
506  	    // key(i). The keys in children_[i + 1] are all greater than key(i). There
507  	    // are always count + 1 children.
508  	    btree_node *children[kNodeValues + 1];
509  	  };
510  	
511  	  struct root_fields : public internal_fields {
512  	    btree_node *rightmost;
513  	    size_type size;
514  	  };
515  	
516  	 public:
517  	  // Getter/setter for whether this is a leaf node or not. This value doesn't
518  	  // change after the node is created.
519  	  bool leaf() const { return fields_.leaf; }
520  	
521  	  // Getter for the position of this node in its parent.
522  	  int position() const { return fields_.position; }
523  	  void set_position(int v) { fields_.position = v; }
524  	
525  	  // Getter/setter for the number of values stored in this node.
526  	  int count() const { return fields_.count; }
527  	  void set_count(int v) { fields_.count = v; }
528  	  int max_count() const { return fields_.max_count; }
529  	
530  	  // Getter for the parent of this node.
531  	  btree_node* parent() const { return fields_.parent; }
532  	  // Getter for whether the node is the root of the tree. The parent of the
533  	  // root of the tree is the leftmost node in the tree which is guaranteed to
534  	  // be a leaf.
535  	  bool is_root() const { return parent()->leaf(); }
536  	  void make_root() {
537  	    ceph_assert(parent()->is_root());
538  	    fields_.parent = fields_.parent->parent();
539  	  }
540  	
541  	  // Getter for the rightmost root node field. Only valid on the root node.
542  	  btree_node* rightmost() const { return fields_.rightmost; }
543  	  btree_node** mutable_rightmost() { return &fields_.rightmost; }
544  	
545  	  // Getter for the size root node field. Only valid on the root node.
546  	  size_type size() const { return fields_.size; }
547  	  size_type* mutable_size() { return &fields_.size; }
548  	
549  	  // Getters for the key/value at position i in the node.
550  	  const key_type& key(int i) const {
551  	    return params_type::key(fields_.values[i]);
552  	  }
553  	  reference value(int i) {
554  	    return reinterpret_cast<reference>(fields_.values[i]);
555  	  }
556  	  const_reference value(int i) const {
557  	    return reinterpret_cast<const_reference>(fields_.values[i]);
558  	  }
559  	  mutable_value_type* mutable_value(int i) {
560  	    return &fields_.values[i];
561  	  }
562  	
563  	  // Swap value i in this node with value j in node x.
564  	  void value_swap(int i, btree_node *x, int j) {
565  	    params_type::swap(mutable_value(i), x->mutable_value(j));
566  	  }
567  	
568  	  // Getters/setter for the child at position i in the node.
569  	  btree_node* child(int i) const { return fields_.children[i]; }
570  	  btree_node** mutable_child(int i) { return &fields_.children[i]; }
571  	  void set_child(int i, btree_node *c) {
572  	    *mutable_child(i) = c;
573  	    c->fields_.parent = this;
574  	    c->fields_.position = i;
575  	  }
576  	
577  	  // Returns the position of the first value whose key is not less than k.
578  	  template <typename Compare>
579  	  int lower_bound(const key_type &k, const Compare &comp) const {
580  	    return search_type::lower_bound(k, *this, comp);
581  	  }
582  	  // Returns the position of the first value whose key is greater than k.
583  	  template <typename Compare>
584  	  int upper_bound(const key_type &k, const Compare &comp) const {
585  	    return search_type::upper_bound(k, *this, comp);
586  	  }
587  	
588  	  // Returns the position of the first value whose key is not less than k using
589  	  // linear search performed using plain compare.
590  	  template <typename Compare>
591  	  int linear_search_plain_compare(
592  	      const key_type &k, int s, int e, const Compare &comp) const {
593  	    while (s < e) {
594  	      if (!btree_compare_keys(comp, key(s), k)) {
595  	        break;
596  	      }
597  	      ++s;
598  	    }
599  	    return s;
600  	  }
601  	
602  	  // Returns the position of the first value whose key is not less than k using
603  	  // linear search performed using compare-to.
604  	  template <typename Compare>
605  	  int linear_search_compare_to(
606  	      const key_type &k, int s, int e, const Compare &comp) const {
607  	    while (s < e) {
608  	      int c = comp(key(s), k);
609  	      if (c == 0) {
610  	        return s | kExactMatch;
611  	      } else if (c > 0) {
612  	        break;
613  	      }
614  	      ++s;
615  	    }
616  	    return s;
617  	  }
618  	
619  	  // Returns the position of the first value whose key is not less than k using
620  	  // binary search performed using plain compare.
621  	  template <typename Compare>
622  	  int binary_search_plain_compare(
623  	      const key_type &k, int s, int e, const Compare &comp) const {
624  	    while (s != e) {
625  	      int mid = (s + e) / 2;
626  	      if (btree_compare_keys(comp, key(mid), k)) {
627  	        s = mid + 1;
628  	      } else {
629  	        e = mid;
630  	      }
631  	    }
632  	    return s;
633  	  }
634  	
635  	  // Returns the position of the first value whose key is not less than k using
636  	  // binary search performed using compare-to.
637  	  template <typename CompareTo>
638  	  int binary_search_compare_to(
639  	      const key_type &k, int s, int e, const CompareTo &comp) const {
640  	    while (s != e) {
641  	      int mid = (s + e) / 2;
642  	      int c = comp(key(mid), k);
643  	      if (c < 0) {
644  	        s = mid + 1;
645  	      } else if (c > 0) {
646  	        e = mid;
647  	      } else {
648  	        // Need to return the first value whose key is not less than k, which
649  	        // requires continuing the binary search. Note that we are guaranteed
650  	        // that the result is an exact match because if "key(mid-1) < k" the
651  	        // call to binary_search_compare_to() will return "mid".
652  	        s = binary_search_compare_to(k, s, mid, comp);
653  	        return s | kExactMatch;
654  	      }
655  	    }
656  	    return s;
657  	  }
658  	
659  	  // Inserts the value x at position i, shifting all existing values and
660  	  // children at positions >= i to the right by 1.
661  	  void insert_value(int i, const value_type &x);
662  	
663  	  // Removes the value at position i, shifting all existing values and children
664  	  // at positions > i to the left by 1.
665  	  void remove_value(int i);
666  	
667  	  // Rebalances a node with its right sibling.
668  	  void rebalance_right_to_left(btree_node *sibling, int to_move);
669  	  void rebalance_left_to_right(btree_node *sibling, int to_move);
670  	
671  	  // Splits a node, moving a portion of the node's values to its right sibling.
672  	  void split(btree_node *sibling, int insert_position);
673  	
674  	  // Merges a node with its right sibling, moving all of the values and the
675  	  // delimiting key in the parent node onto itself.
676  	  void merge(btree_node *sibling);
677  	
678  	  // Swap the contents of "this" and "src".
679  	  void swap(btree_node *src);
680  	
681  	#ifdef NDEBUG
682  	  static constexpr auto no_debug = true;
683  	#else
684  	  static constexpr auto no_debug = false;
685  	#endif
686  	  // Node allocation/deletion routines.
687  	  static btree_node* init_leaf(
688  	      leaf_fields *f, btree_node *parent, int max_count) {
689  	    btree_node *n = reinterpret_cast<btree_node*>(f);
690  	    f->leaf = 1;
691  	    f->position = 0;
692  	    f->max_count = max_count;
693  	    f->count = 0;
694  	    f->parent = parent;
695  	    if (!no_debug) {
696  	      memset(&f->values, 0, max_count * sizeof(value_type));
697  	    }
698  	    return n;
699  	  }
700  	  static btree_node* init_internal(internal_fields *f, btree_node *parent) {
701  	    btree_node *n = init_leaf(f, parent, kNodeValues);
702  	    f->leaf = 0;
703  	    if (!no_debug) {
704  	      memset(f->children, 0, sizeof(f->children));
705  	    }
706  	    return n;
707  	  }
708  	  static btree_node* init_root(root_fields *f, btree_node *parent) {
709  	    btree_node *n = init_internal(f, parent);
710  	    f->rightmost = parent;
711  	    f->size = parent->count();
712  	    return n;
713  	  }
714  	  void destroy() {
715  	    for (int i = 0; i < count(); ++i) {
716  	      value_destroy(i);
717  	    }
718  	  }
719  	
720  	 private:
721  	  void value_init(int i) {
722  	    new (&fields_.values[i]) mutable_value_type;
723  	  }
724  	  void value_init(int i, const value_type &x) {
725  	    new (&fields_.values[i]) mutable_value_type(x);
726  	  }
727  	  void value_destroy(int i) {
728  	    fields_.values[i].~mutable_value_type();
729  	  }
730  	
731  	 private:
732  	  root_fields fields_;
733  	
734  	 private:
735  	  btree_node(const btree_node&);
736  	  void operator=(const btree_node&);
737  	};
738  	
739  	template <typename Node, typename Reference, typename Pointer>
740  	struct btree_iterator {
741  	  typedef typename Node::key_type key_type;
742  	  typedef typename Node::size_type size_type;
743  	  typedef typename Node::difference_type difference_type;
744  	  typedef typename Node::params_type params_type;
745  	
746  	  typedef Node node_type;
747  	  typedef typename std::remove_const<Node>::type normal_node;
748  	  typedef const Node const_node;
749  	  typedef typename params_type::value_type value_type;
750  	  typedef typename params_type::pointer normal_pointer;
751  	  typedef typename params_type::reference normal_reference;
752  	  typedef typename params_type::const_pointer const_pointer;
753  	  typedef typename params_type::const_reference const_reference;
754  	
755  	  typedef Pointer pointer;
756  	  typedef Reference reference;
757  	  typedef std::bidirectional_iterator_tag iterator_category;
758  	
759  	  typedef btree_iterator<
760  	    normal_node, normal_reference, normal_pointer> iterator;
761  	  typedef btree_iterator<
762  	    const_node, const_reference, const_pointer> const_iterator;
763  	  typedef btree_iterator<Node, Reference, Pointer> self_type;
764  	
765  	  btree_iterator()
766  	      : node(NULL),
767  	        position(-1) {
768  	  }
769  	  btree_iterator(Node *n, int p)
770  	      : node(n),
771  	        position(p) {
772  	  }
773  	  btree_iterator(const iterator &x)
774  	      : node(x.node),
775  	        position(x.position) {
776  	  }
777  	
778  	  // Increment/decrement the iterator.
779  	  void increment() {
780  	    if (node->leaf() && ++position < node->count()) {
781  	      return;
782  	    }
783  	    increment_slow();
784  	  }
785  	  void increment_by(int count);
786  	  void increment_slow();
787  	
788  	  void decrement() {
789  	    if (node->leaf() && --position >= 0) {
790  	      return;
791  	    }
792  	    decrement_slow();
793  	  }
794  	  void decrement_slow();
795  	
796  	  bool operator==(const const_iterator &x) const {
797  	    return node == x.node && position == x.position;
798  	  }
799  	  bool operator!=(const const_iterator &x) const {
800  	    return node != x.node || position != x.position;
801  	  }
802  	
803  	  // Accessors for the key/value the iterator is pointing at.
804  	  const key_type& key() const {
805  	    return node->key(position);
806  	  }
807  	  reference operator*() const {
808  	    return node->value(position);
809  	  }
810  	  pointer operator->() const {
811  	    return &node->value(position);
812  	  }
813  	
814  	  self_type& operator++() {
815  	    increment();
816  	    return *this;
817  	  }
818  	  self_type& operator--() {
819  	    decrement();
820  	    return *this;
821  	  }
822  	  self_type operator++(int) {
823  	    self_type tmp = *this;
824  	    ++*this;
825  	    return tmp;
826  	  }
827  	  self_type operator--(int) {
828  	    self_type tmp = *this;
829  	    --*this;
830  	    return tmp;
831  	  }
832  	
833  	  // The node in the tree the iterator is pointing at.
834  	  Node *node;
835  	  // The position within the node of the tree the iterator is pointing at.
836  	  int position;
837  	};
838  	
839  	// Dispatch helper class for using btree::internal_locate with plain compare.
840  	struct btree_internal_locate_plain_compare {
841  	  template <typename K, typename T, typename Iter>
842  	  static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) {
843  	    return t.internal_locate_plain_compare(k, iter);
844  	  }
845  	};
846  	
847  	// Dispatch helper class for using btree::internal_locate with compare-to.
848  	struct btree_internal_locate_compare_to {
849  	  template <typename K, typename T, typename Iter>
850  	  static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) {
851  	    return t.internal_locate_compare_to(k, iter);
852  	  }
853  	};
854  	
855  	template <typename Params>
856  	class btree : public Params::key_compare {
857  	  typedef btree<Params> self_type;
858  	  typedef btree_node<Params> node_type;
859  	  typedef typename node_type::base_fields base_fields;
860  	  typedef typename node_type::leaf_fields leaf_fields;
861  	  typedef typename node_type::internal_fields internal_fields;
862  	  typedef typename node_type::root_fields root_fields;
863  	  typedef typename Params::is_key_compare_to is_key_compare_to;
864  	
865  	  friend class btree_internal_locate_plain_compare;
866  	  friend class btree_internal_locate_compare_to;
867  	  typedef typename if_<
868  	    is_key_compare_to::value,
869  	    btree_internal_locate_compare_to,
870  	    btree_internal_locate_plain_compare>::type internal_locate_type;
871  	
872  	  enum {
873  	    kNodeValues = node_type::kNodeValues,
874  	    kMinNodeValues = kNodeValues / 2,
875  	    kValueSize = node_type::kValueSize,
876  	    kExactMatch = node_type::kExactMatch,
877  	    kMatchMask = node_type::kMatchMask,
878  	  };
879  	
880  	  // A helper class to get the empty base class optimization for 0-size
881  	  // allocators. Base is internal_allocator_type.
882  	  // (e.g. empty_base_handle<internal_allocator_type, node_type*>). If Base is
883  	  // 0-size, the compiler doesn't have to reserve any space for it and
884  	  // sizeof(empty_base_handle) will simply be sizeof(Data). Google [empty base
885  	  // class optimization] for more details.
886  	  template <typename Base, typename Data>
887  	  struct empty_base_handle : public Base {
888  	    empty_base_handle(const Base &b, const Data &d)
889  	        : Base(b),
890  	          data(d) {
891  	    }
892  	    Data data;
893  	  };
894  	
895  	  struct node_stats {
896  	    node_stats(ssize_t l, ssize_t i)
897  	        : leaf_nodes(l),
898  	          internal_nodes(i) {
899  	    }
900  	
901  	    node_stats& operator+=(const node_stats &x) {
902  	      leaf_nodes += x.leaf_nodes;
903  	      internal_nodes += x.internal_nodes;
904  	      return *this;
905  	    }
906  	
907  	    ssize_t leaf_nodes;
908  	    ssize_t internal_nodes;
909  	  };
910  	
911  	 public:
912  	  typedef Params params_type;
913  	  typedef typename Params::key_type key_type;
914  	  typedef typename Params::data_type data_type;
915  	  typedef typename Params::mapped_type mapped_type;
916  	  typedef typename Params::value_type value_type;
917  	  typedef typename Params::key_compare key_compare;
918  	  typedef typename Params::pointer pointer;
919  	  typedef typename Params::const_pointer const_pointer;
920  	  typedef typename Params::reference reference;
921  	  typedef typename Params::const_reference const_reference;
922  	  typedef typename Params::size_type size_type;
923  	  typedef typename Params::difference_type difference_type;
924  	  typedef btree_iterator<node_type, reference, pointer> iterator;
925  	  typedef typename iterator::const_iterator const_iterator;
926  	  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
927  	  typedef std::reverse_iterator<iterator> reverse_iterator;
928  	
929  	  typedef typename Params::allocator_type allocator_type;
930  	  typedef typename allocator_type::template rebind<char>::other
931  	    internal_allocator_type;
932  	
933  	 public:
934  	  // Default constructor.
935  	  btree(const key_compare &comp, const allocator_type &alloc);
936  	
937  	  // Copy constructor.
938  	  btree(const self_type &x);
939  	
940  	  // Destructor.
(1) Event exn_spec_violation: An exception of type "_ZN5boost16exception_detail10clone_implINS0_19error_info_injectorINSt8ios_base7failureB5cxx11EEEEE" is thrown but the throw list "throw()" doesn't allow it to be thrown. This will cause a call to unexpected() which usually calls terminate().
Also see events: [fun_call_w_exception]
941  	  ~btree() {
(2) Event fun_call_w_exception: Called function throws an exception of type "_ZN5boost16exception_detail10clone_implINS0_19error_info_injectorINSt8ios_base7failureB5cxx11EEEEE". [details]
Also see events: [exn_spec_violation]
942  	    clear();
943  	  }
944  	
945  	  // Iterator routines.
946  	  iterator begin() {
947  	    return iterator(leftmost(), 0);
948  	  }
949  	  const_iterator begin() const {
950  	    return const_iterator(leftmost(), 0);
951  	  }
952  	  iterator end() {
953  	    return iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
954  	  }
955  	  const_iterator end() const {
956  	    return const_iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
957  	  }
958  	  reverse_iterator rbegin() {
959  	    return reverse_iterator(end());
960  	  }
961  	  const_reverse_iterator rbegin() const {
962  	    return const_reverse_iterator(end());
963  	  }
964  	  reverse_iterator rend() {
965  	    return reverse_iterator(begin());
966  	  }
967  	  const_reverse_iterator rend() const {
968  	    return const_reverse_iterator(begin());
969  	  }
970  	
971  	  // Finds the first element whose key is not less than key.
972  	  iterator lower_bound(const key_type &key) {
973  	    return internal_end(
974  	        internal_lower_bound(key, iterator(root(), 0)));
975  	  }
976  	  const_iterator lower_bound(const key_type &key) const {
977  	    return internal_end(
978  	        internal_lower_bound(key, const_iterator(root(), 0)));
979  	  }
980  	
981  	  // Finds the first element whose key is greater than key.
982  	  iterator upper_bound(const key_type &key) {
983  	    return internal_end(
984  	        internal_upper_bound(key, iterator(root(), 0)));
985  	  }
986  	  const_iterator upper_bound(const key_type &key) const {
987  	    return internal_end(
988  	        internal_upper_bound(key, const_iterator(root(), 0)));
989  	  }
990  	
991  	  // Finds the range of values which compare equal to key. The first member of
992  	  // the returned pair is equal to lower_bound(key). The second member pair of
993  	  // the pair is equal to upper_bound(key).
994  	  std::pair<iterator,iterator> equal_range(const key_type &key) {
995  	    return std::make_pair(lower_bound(key), upper_bound(key));
996  	  }
997  	  std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
998  	    return std::make_pair(lower_bound(key), upper_bound(key));
999  	  }
1000 	
1001 	  // Inserts a value into the btree only if it does not already exist. The
1002 	  // boolean return value indicates whether insertion succeeded or failed. The
1003 	  // ValuePointer type is used to avoid instatiating the value unless the key
1004 	  // is being inserted. Value is not dereferenced if the key already exists in
1005 	  // the btree. See btree_map::operator[].
1006 	  template <typename ValuePointer>
1007 	  std::pair<iterator,bool> insert_unique(const key_type &key, ValuePointer value);
1008 	
1009 	  // Inserts a value into the btree only if it does not already exist. The
1010 	  // boolean return value indicates whether insertion succeeded or failed.
1011 	  std::pair<iterator,bool> insert_unique(const value_type &v) {
1012 	    return insert_unique(params_type::key(v), &v);
1013 	  }
1014 	
1015 	  // Insert with hint. Check to see if the value should be placed immediately
1016 	  // before position in the tree. If it does, then the insertion will take
1017 	  // amortized constant time. If not, the insertion will take amortized
1018 	  // logarithmic time as if a call to insert_unique(v) were made.
1019 	  iterator insert_unique(iterator position, const value_type &v);
1020 	
1021 	  // Insert a range of values into the btree.
1022 	  template <typename InputIterator>
1023 	  void insert_unique(InputIterator b, InputIterator e);
1024 	
1025 	  // Inserts a value into the btree. The ValuePointer type is used to avoid
1026 	  // instatiating the value unless the key is being inserted. Value is not
1027 	  // dereferenced if the key already exists in the btree. See
1028 	  // btree_map::operator[].
1029 	  template <typename ValuePointer>
1030 	  iterator insert_multi(const key_type &key, ValuePointer value);
1031 	
1032 	  // Inserts a value into the btree.
1033 	  iterator insert_multi(const value_type &v) {
1034 	    return insert_multi(params_type::key(v), &v);
1035 	  }
1036 	
1037 	  // Insert with hint. Check to see if the value should be placed immediately
1038 	  // before position in the tree. If it does, then the insertion will take
1039 	  // amortized constant time. If not, the insertion will take amortized
1040 	  // logarithmic time as if a call to insert_multi(v) were made.
1041 	  iterator insert_multi(iterator position, const value_type &v);
1042 	
1043 	  // Insert a range of values into the btree.
1044 	  template <typename InputIterator>
1045 	  void insert_multi(InputIterator b, InputIterator e);
1046 	
1047 	  void assign(const self_type &x);
1048 	
1049 	  // Erase the specified iterator from the btree. The iterator must be valid
1050 	  // (i.e. not equal to end()).  Return an iterator pointing to the node after
1051 	  // the one that was erased (or end() if none exists).
1052 	  iterator erase(iterator iter);
1053 	
1054 	  // Erases range. Returns the number of keys erased.
1055 	  int erase(iterator begin, iterator end);
1056 	
1057 	  // Erases the specified key from the btree. Returns 1 if an element was
1058 	  // erased and 0 otherwise.
1059 	  int erase_unique(const key_type &key);
1060 	
1061 	  // Erases all of the entries matching the specified key from the
1062 	  // btree. Returns the number of elements erased.
1063 	  int erase_multi(const key_type &key);
1064 	
1065 	  // Finds the iterator corresponding to a key or returns end() if the key is
1066 	  // not present.
1067 	  iterator find_unique(const key_type &key) {
1068 	    return internal_end(
1069 	        internal_find_unique(key, iterator(root(), 0)));
1070 	  }
1071 	  const_iterator find_unique(const key_type &key) const {
1072 	    return internal_end(
1073 	        internal_find_unique(key, const_iterator(root(), 0)));
1074 	  }
1075 	  iterator find_multi(const key_type &key) {
1076 	    return internal_end(
1077 	        internal_find_multi(key, iterator(root(), 0)));
1078 	  }
1079 	  const_iterator find_multi(const key_type &key) const {
1080 	    return internal_end(
1081 	        internal_find_multi(key, const_iterator(root(), 0)));
1082 	  }
1083 	
1084 	  // Returns a count of the number of times the key appears in the btree.
1085 	  size_type count_unique(const key_type &key) const {
1086 	    const_iterator begin = internal_find_unique(
1087 	        key, const_iterator(root(), 0));
1088 	    if (!begin.node) {
1089 	      // The key doesn't exist in the tree.
1090 	      return 0;
1091 	    }
1092 	    return 1;
1093 	  }
1094 	  // Returns a count of the number of times the key appears in the btree.
1095 	  size_type count_multi(const key_type &key) const {
1096 	    return distance(lower_bound(key), upper_bound(key));
1097 	  }
1098 	
1099 	  // Clear the btree, deleting all of the values it contains.
1100 	  void clear();
1101 	
1102 	  // Swap the contents of *this and x.
1103 	  void swap(self_type &x);
1104 	
1105 	  // Assign the contents of x to *this.
1106 	  self_type& operator=(const self_type &x) {
1107 	    if (&x == this) {
1108 	      // Don't copy onto ourselves.
1109 	      return *this;
1110 	    }
1111 	    assign(x);
1112 	    return *this;
1113 	  }
1114 	
1115 	  key_compare* mutable_key_comp() {
1116 	    return this;
1117 	  }
1118 	  const key_compare& key_comp() const {
1119 	    return *this;
1120 	  }
1121 	  bool compare_keys(const key_type &x, const key_type &y) const {
1122 	    return btree_compare_keys(key_comp(), x, y);
1123 	  }
1124 	
1125 	  // Dump the btree to the specified ostream. Requires that operator<< is
1126 	  // defined for Key and Value.
1127 	  void dump(std::ostream &os) const {
1128 	    if (root() != NULL) {
1129 	      internal_dump(os, root(), 0);
1130 	    }
1131 	  }
1132 	
1133 	  // Verifies the structure of the btree.
1134 	  void verify() const;
1135 	
1136 	  // Size routines. Note that empty() is slightly faster than doing size()==0.
1137 	  size_type size() const {
1138 	    if (empty()) return 0;
1139 	    if (root()->leaf()) return root()->count();
1140 	    return root()->size();
1141 	  }
1142 	  size_type max_size() const { return std::numeric_limits<size_type>::max(); }
1143 	  bool empty() const { return root() == NULL; }
1144 	
1145 	  // The height of the btree. An empty tree will have height 0.
1146 	  size_type height() const {
1147 	    size_type h = 0;
1148 	    if (root()) {
1149 	      // Count the length of the chain from the leftmost node up to the
1150 	      // root. We actually count from the root back around to the level below
1151 	      // the root, but the calculation is the same because of the circularity
1152 	      // of that traversal.
1153 	      const node_type *n = root();
1154 	      do {
1155 	        ++h;
1156 	        n = n->parent();
1157 	      } while (n != root());
1158 	    }
1159 	    return h;
1160 	  }
1161 	
1162 	  // The number of internal, leaf and total nodes used by the btree.
1163 	  size_type leaf_nodes() const {
1164 	    return internal_stats(root()).leaf_nodes;
1165 	  }
1166 	  size_type internal_nodes() const {
1167 	    return internal_stats(root()).internal_nodes;
1168 	  }
1169 	  size_type nodes() const {
1170 	    node_stats stats = internal_stats(root());
1171 	    return stats.leaf_nodes + stats.internal_nodes;
1172 	  }
1173 	
1174 	  // The total number of bytes used by the btree.
1175 	  size_type bytes_used() const {
1176 	    node_stats stats = internal_stats(root());
1177 	    if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
1178 	      return sizeof(*this) +
1179 	          sizeof(base_fields) + root()->max_count() * sizeof(value_type);
1180 	    } else {
1181 	      return sizeof(*this) +
1182 	          sizeof(root_fields) - sizeof(internal_fields) +
1183 	          stats.leaf_nodes * sizeof(leaf_fields) +
1184 	          stats.internal_nodes * sizeof(internal_fields);
1185 	    }
1186 	  }
1187 	
1188 	  // The average number of bytes used per value stored in the btree.
1189 	  static double average_bytes_per_value() {
1190 	    // Returns the number of bytes per value on a leaf node that is 75%
1191 	    // full. Experimentally, this matches up nicely with the computed number of
1192 	    // bytes per value in trees that had their values inserted in random order.
1193 	    return sizeof(leaf_fields) / (kNodeValues * 0.75);
1194 	  }
1195 	
1196 	  // The fullness of the btree. Computed as the number of elements in the btree
1197 	  // divided by the maximum number of elements a tree with the current number
1198 	  // of nodes could hold. A value of 1 indicates perfect space
1199 	  // utilization. Smaller values indicate space wastage.
1200 	  double fullness() const {
1201 	    return double(size()) / (nodes() * kNodeValues);
1202 	  }
1203 	  // The overhead of the btree structure in bytes per node. Computed as the
1204 	  // total number of bytes used by the btree minus the number of bytes used for
1205 	  // storing elements divided by the number of elements.
1206 	  double overhead() const {
1207 	    if (empty()) {
1208 	      return 0.0;
1209 	    }
1210 	    return (bytes_used() - size() * kValueSize) / double(size());
1211 	  }
1212 	
1213 	 private:
1214 	  // Internal accessor routines.
1215 	  node_type* root() { return root_.data; }
1216 	  const node_type* root() const { return root_.data; }
1217 	  node_type** mutable_root() { return &root_.data; }
1218 	
1219 	  // The rightmost node is stored in the root node.
1220 	  node_type* rightmost() {
1221 	    return (!root() || root()->leaf()) ? root() : root()->rightmost();
1222 	  }
1223 	  const node_type* rightmost() const {
1224 	    return (!root() || root()->leaf()) ? root() : root()->rightmost();
1225 	  }
1226 	  node_type** mutable_rightmost() { return root()->mutable_rightmost(); }
1227 	
1228 	  // The leftmost node is stored as the parent of the root node.
1229 	  node_type* leftmost() { return root() ? root()->parent() : NULL; }
1230 	  const node_type* leftmost() const { return root() ? root()->parent() : NULL; }
1231 	
1232 	  // The size of the tree is stored in the root node.
1233 	  size_type* mutable_size() { return root()->mutable_size(); }
1234 	
1235 	  // Allocator routines.
1236 	  internal_allocator_type* mutable_internal_allocator() {
1237 	    return static_cast<internal_allocator_type*>(&root_);
1238 	  }
1239 	  const internal_allocator_type& internal_allocator() const {
1240 	    return *static_cast<const internal_allocator_type*>(&root_);
1241 	  }
1242 	
1243 	  // Node creation/deletion routines.
1244 	  node_type* new_internal_node(node_type *parent) {
1245 	    internal_fields *p = reinterpret_cast<internal_fields*>(
1246 	        mutable_internal_allocator()->allocate(sizeof(internal_fields)));
1247 	    return node_type::init_internal(p, parent);
1248 	  }
1249 	  node_type* new_internal_root_node() {
1250 	    root_fields *p = reinterpret_cast<root_fields*>(
1251 	        mutable_internal_allocator()->allocate(sizeof(root_fields)));
1252 	    return node_type::init_root(p, root()->parent());
1253 	  }
1254 	  node_type* new_leaf_node(node_type *parent) {
1255 	    leaf_fields *p = reinterpret_cast<leaf_fields*>(
1256 	        mutable_internal_allocator()->allocate(sizeof(leaf_fields)));
1257 	    return node_type::init_leaf(p, parent, kNodeValues);
1258 	  }
1259 	  node_type* new_leaf_root_node(int max_count) {
1260 	    leaf_fields *p = reinterpret_cast<leaf_fields*>(
1261 	        mutable_internal_allocator()->allocate(
1262 	            sizeof(base_fields) + max_count * sizeof(value_type)));
1263 	    return node_type::init_leaf(p, reinterpret_cast<node_type*>(p), max_count);
1264 	  }
1265 	  void delete_internal_node(node_type *node) {
1266 	    node->destroy();
(1) Event fun_call_w_exception: Called function throws an exception of type "_ZN5boost16exception_detail10clone_implINS0_19error_info_injectorINSt8ios_base7failureB5cxx11EEEEE". [details]
1267 	    ceph_assert(node != root());
1268 	    mutable_internal_allocator()->deallocate(
1269 	        reinterpret_cast<char*>(node), sizeof(internal_fields));
1270 	  }
1271 	  void delete_internal_root_node() {
1272 	    root()->destroy();
1273 	    mutable_internal_allocator()->deallocate(
1274 	        reinterpret_cast<char*>(root()), sizeof(root_fields));
1275 	  }
1276 	  void delete_leaf_node(node_type *node) {
1277 	    node->destroy();
1278 	    mutable_internal_allocator()->deallocate(
1279 	        reinterpret_cast<char*>(node),
1280 	        sizeof(base_fields) + node->max_count() * sizeof(value_type));
1281 	  }
1282 	
1283 	  // Rebalances or splits the node iter points to.
1284 	  void rebalance_or_split(iterator *iter);
1285 	
1286 	  // Merges the values of left, right and the delimiting key on their parent
1287 	  // onto left, removing the delimiting key and deleting right.
1288 	  void merge_nodes(node_type *left, node_type *right);
1289 	
1290 	  // Tries to merge node with its left or right sibling, and failing that,
1291 	  // rebalance with its left or right sibling. Returns true if a merge
1292 	  // occurred, at which point it is no longer valid to access node. Returns
1293 	  // false if no merging took place.
1294 	  bool try_merge_or_rebalance(iterator *iter);
1295 	
1296 	  // Tries to shrink the height of the tree by 1.
1297 	  void try_shrink();
1298 	
1299 	  iterator internal_end(iterator iter) {
1300 	    return iter.node ? iter : end();
1301 	  }
1302 	  const_iterator internal_end(const_iterator iter) const {
1303 	    return iter.node ? iter : end();
1304 	  }
1305 	
1306 	  // Inserts a value into the btree immediately before iter. Requires that
1307 	  // key(v) <= iter.key() and (--iter).key() <= key(v).
1308 	  iterator internal_insert(iterator iter, const value_type &v);
1309 	
1310 	  // Returns an iterator pointing to the first value >= the value "iter" is
1311 	  // pointing at. Note that "iter" might be pointing to an invalid location as
1312 	  // iter.position == iter.node->count(). This routine simply moves iter up in
1313 	  // the tree to a valid location.
1314 	  template <typename IterType>
1315 	  static IterType internal_last(IterType iter);
1316 	
1317 	  // Returns an iterator pointing to the leaf position at which key would
1318 	  // reside in the tree. We provide 2 versions of internal_locate. The first
1319 	  // version (internal_locate_plain_compare) always returns 0 for the second
1320 	  // field of the pair. The second version (internal_locate_compare_to) is for
1321 	  // the key-compare-to specialization and returns either kExactMatch (if the
1322 	  // key was found in the tree) or -kExactMatch (if it wasn't) in the second
1323 	  // field of the pair. The compare_to specialization allows the caller to
1324 	  // avoid a subsequent comparison to determine if an exact match was made,
1325 	  // speeding up string keys.
1326 	  template <typename IterType>
1327 	  std::pair<IterType, int> internal_locate(
1328 	      const key_type &key, IterType iter) const;
1329 	  template <typename IterType>
1330 	  std::pair<IterType, int> internal_locate_plain_compare(
1331 	      const key_type &key, IterType iter) const;
1332 	  template <typename IterType>
1333 	  std::pair<IterType, int> internal_locate_compare_to(
1334 	      const key_type &key, IterType iter) const;
1335 	
1336 	  // Internal routine which implements lower_bound().
1337 	  template <typename IterType>
1338 	  IterType internal_lower_bound(
1339 	      const key_type &key, IterType iter) const;
1340 	
1341 	  // Internal routine which implements upper_bound().
1342 	  template <typename IterType>
1343 	  IterType internal_upper_bound(
1344 	      const key_type &key, IterType iter) const;
1345 	
1346 	  // Internal routine which implements find_unique().
1347 	  template <typename IterType>
1348 	  IterType internal_find_unique(
1349 	      const key_type &key, IterType iter) const;
1350 	
1351 	  // Internal routine which implements find_multi().
1352 	  template <typename IterType>
1353 	  IterType internal_find_multi(
1354 	      const key_type &key, IterType iter) const;
1355 	
1356 	  // Deletes a node and all of its children.
1357 	  void internal_clear(node_type *node);
1358 	
1359 	  // Dumps a node and all of its children to the specified ostream.
1360 	  void internal_dump(std::ostream &os, const node_type *node, int level) const;
1361 	
1362 	  // Verifies the tree structure of node.
1363 	  int internal_verify(const node_type *node,
1364 	                      const key_type *lo, const key_type *hi) const;
1365 	
1366 	  node_stats internal_stats(const node_type *node) const {
1367 	    if (!node) {
1368 	      return node_stats(0, 0);
1369 	    }
1370 	    if (node->leaf()) {
1371 	      return node_stats(1, 0);
1372 	    }
1373 	    node_stats res(0, 1);
1374 	    for (int i = 0; i <= node->count(); ++i) {
1375 	      res += internal_stats(node->child(i));
1376 	    }
1377 	    return res;
1378 	  }
1379 	
1380 	 private:
1381 	  empty_base_handle<internal_allocator_type, node_type*> root_;
1382 	
1383 	 private:
1384 	  // A never instantiated helper function that returns big_ if we have a
1385 	  // key-compare-to functor or if R is bool and small_ otherwise.
1386 	  template <typename R>
1387 	  static typename if_<
1388 	   if_<is_key_compare_to::value,
1389 	             std::is_same<R, int>,
1390 	             std::is_same<R, bool> >::type::value,
1391 	   big_, small_>::type key_compare_checker(R);
1392 	
1393 	  // A never instantiated helper function that returns the key comparison
1394 	  // functor.
1395 	  static key_compare key_compare_helper();
1396 	
1397 	  // Verify that key_compare returns a bool. This is similar to the way
1398 	  // is_convertible in base/type_traits.h works. Note that key_compare_checker
1399 	  // is never actually invoked. The compiler will select which
1400 	  // key_compare_checker() to instantiate and then figure out the size of the
1401 	  // return type of key_compare_checker() at compile time which we then check
1402 	  // against the sizeof of big_.
1403 	  COMPILE_ASSERT(
1404 	      sizeof(key_compare_checker(key_compare_helper()(key_type(), key_type()))) ==
1405 	      sizeof(big_),
1406 	      key_comparison_function_must_return_bool);
1407 	
1408 	  // Note: We insist on kTargetValues, which is computed from
1409 	  // Params::kTargetNodeSize, must fit the base_fields::field_type.
1410 	  COMPILE_ASSERT(kNodeValues <
1411 	                 (1 << (8 * sizeof(typename base_fields::field_type))),
1412 	                 target_node_size_too_large);
1413 	
1414 	  // Test the assumption made in setting kNodeValueSpace.
1415 	  COMPILE_ASSERT(sizeof(base_fields) >= 2 * sizeof(void*),
1416 	                 node_space_assumption_incorrect);
1417 	};
1418 	
1419 	////
1420 	// btree_node methods
1421 	template <typename P>
1422 	inline void btree_node<P>::insert_value(int i, const value_type &x) {
1423 	  ceph_assert(i <= count());
1424 	  value_init(count(), x);
1425 	  for (int j = count(); j > i; --j) {
1426 	    value_swap(j, this, j - 1);
1427 	  }
1428 	  set_count(count() + 1);
1429 	
1430 	  if (!leaf()) {
1431 	    ++i;
1432 	    for (int j = count(); j > i; --j) {
1433 	      *mutable_child(j) = child(j - 1);
1434 	      child(j)->set_position(j);
1435 	    }
1436 	    *mutable_child(i) = NULL;
1437 	  }
1438 	}
1439 	
1440 	template <typename P>
1441 	inline void btree_node<P>::remove_value(int i) {
1442 	  if (!leaf()) {
1443 	    ceph_assert(child(i + 1)->count() == 0);
1444 	    for (int j = i + 1; j < count(); ++j) {
1445 	      *mutable_child(j) = child(j + 1);
1446 	      child(j)->set_position(j);
1447 	    }
1448 	    *mutable_child(count()) = NULL;
1449 	  }
1450 	
1451 	  set_count(count() - 1);
1452 	  for (; i < count(); ++i) {
1453 	    value_swap(i, this, i + 1);
1454 	  }
1455 	  value_destroy(i);
1456 	}
1457 	
1458 	template <typename P>
1459 	void btree_node<P>::rebalance_right_to_left(btree_node *src, int to_move) {
1460 	  ceph_assert(parent() == src->parent());
1461 	  ceph_assert(position() + 1 == src->position());
1462 	  ceph_assert(src->count() >= count());
1463 	  ceph_assert(to_move >= 1);
1464 	  ceph_assert(to_move <= src->count());
1465 	
1466 	  // Make room in the left node for the new values.
1467 	  for (int i = 0; i < to_move; ++i) {
1468 	    value_init(i + count());
1469 	  }
1470 	
1471 	  // Move the delimiting value to the left node and the new delimiting value
1472 	  // from the right node.
1473 	  value_swap(count(), parent(), position());
1474 	  parent()->value_swap(position(), src, to_move - 1);
1475 	
1476 	  // Move the values from the right to the left node.
1477 	  for (int i = 1; i < to_move; ++i) {
1478 	    value_swap(count() + i, src, i - 1);
1479 	  }
1480 	  // Shift the values in the right node to their correct position.
1481 	  for (int i = to_move; i < src->count(); ++i) {
1482 	    src->value_swap(i - to_move, src, i);
1483 	  }
1484 	  for (int i = 1; i <= to_move; ++i) {
1485 	    src->value_destroy(src->count() - i);
1486 	  }
1487 	
1488 	  if (!leaf()) {
1489 	    // Move the child pointers from the right to the left node.
1490 	    for (int i = 0; i < to_move; ++i) {
1491 	      set_child(1 + count() + i, src->child(i));
1492 	    }
1493 	    for (int i = 0; i <= src->count() - to_move; ++i) {
1494 	      ceph_assert(i + to_move <= src->max_count());
1495 	      src->set_child(i, src->child(i + to_move));
1496 	      *src->mutable_child(i + to_move) = NULL;
1497 	    }
1498 	  }
1499 	
1500 	  // Fixup the counts on the src and dest nodes.
1501 	  set_count(count() + to_move);
1502 	  src->set_count(src->count() - to_move);
1503 	}
1504 	
1505 	template <typename P>
1506 	void btree_node<P>::rebalance_left_to_right(btree_node *dest, int to_move) {
1507 	  ceph_assert(parent() == dest->parent());
1508 	  ceph_assert(position() + 1 == dest->position());
1509 	  ceph_assert(count() >= dest->count());
1510 	  ceph_assert(to_move >= 1);
1511 	  ceph_assert(to_move <= count());
1512 	
1513 	  // Make room in the right node for the new values.
1514 	  for (int i = 0; i < to_move; ++i) {
1515 	    dest->value_init(i + dest->count());
1516 	  }
1517 	  for (int i = dest->count() - 1; i >= 0; --i) {
1518 	    dest->value_swap(i, dest, i + to_move);
1519 	  }
1520 	
1521 	  // Move the delimiting value to the right node and the new delimiting value
1522 	  // from the left node.
1523 	  dest->value_swap(to_move - 1, parent(), position());
1524 	  parent()->value_swap(position(), this, count() - to_move);
1525 	  value_destroy(count() - to_move);
1526 	
1527 	  // Move the values from the left to the right node.
1528 	  for (int i = 1; i < to_move; ++i) {
1529 	    value_swap(count() - to_move + i, dest, i - 1);
1530 	    value_destroy(count() - to_move + i);
1531 	  }
1532 	
1533 	  if (!leaf()) {
1534 	    // Move the child pointers from the left to the right node.
1535 	    for (int i = dest->count(); i >= 0; --i) {
1536 	      dest->set_child(i + to_move, dest->child(i));
1537 	      *dest->mutable_child(i) = NULL;
1538 	    }
1539 	    for (int i = 1; i <= to_move; ++i) {
1540 	      dest->set_child(i - 1, child(count() - to_move + i));
1541 	      *mutable_child(count() - to_move + i) = NULL;
1542 	    }
1543 	  }
1544 	
1545 	  // Fixup the counts on the src and dest nodes.
1546 	  set_count(count() - to_move);
1547 	  dest->set_count(dest->count() + to_move);
1548 	}
1549 	
1550 	template <typename P>
1551 	void btree_node<P>::split(btree_node *dest, int insert_position) {
1552 	  ceph_assert(dest->count() == 0);
1553 	
1554 	  // We bias the split based on the position being inserted. If we're
1555 	  // inserting at the beginning of the left node then bias the split to put
1556 	  // more values on the right node. If we're inserting at the end of the
1557 	  // right node then bias the split to put more values on the left node.
1558 	  if (insert_position == 0) {
1559 	    dest->set_count(count() - 1);
1560 	  } else if (insert_position == max_count()) {
1561 	    dest->set_count(0);
1562 	  } else {
1563 	    dest->set_count(count() / 2);
1564 	  }
1565 	  set_count(count() - dest->count());
1566 	  ceph_assert(count() >= 1);
1567 	
1568 	  // Move values from the left sibling to the right sibling.
1569 	  for (int i = 0; i < dest->count(); ++i) {
1570 	    dest->value_init(i);
1571 	    value_swap(count() + i, dest, i);
1572 	    value_destroy(count() + i);
1573 	  }
1574 	
1575 	  // The split key is the largest value in the left sibling.
1576 	  set_count(count() - 1);
1577 	  parent()->insert_value(position(), value_type());
1578 	  value_swap(count(), parent(), position());
1579 	  value_destroy(count());
1580 	  parent()->set_child(position() + 1, dest);
1581 	
1582 	  if (!leaf()) {
1583 	    for (int i = 0; i <= dest->count(); ++i) {
1584 	      ceph_assert(child(count() + i + 1) != NULL);
1585 	      dest->set_child(i, child(count() + i + 1));
1586 	      *mutable_child(count() + i + 1) = NULL;
1587 	    }
1588 	  }
1589 	}
1590 	
1591 	template <typename P>
1592 	void btree_node<P>::merge(btree_node *src) {
1593 	  ceph_assert(parent() == src->parent());
1594 	  ceph_assert(position() + 1 == src->position());
1595 	
1596 	  // Move the delimiting value to the left node.
1597 	  value_init(count());
1598 	  value_swap(count(), parent(), position());
1599 	
1600 	  // Move the values from the right to the left node.
1601 	  for (int i = 0; i < src->count(); ++i) {
1602 	    value_init(1 + count() + i);
1603 	    value_swap(1 + count() + i, src, i);
1604 	    src->value_destroy(i);
1605 	  }
1606 	
1607 	  if (!leaf()) {
1608 	    // Move the child pointers from the right to the left node.
1609 	    for (int i = 0; i <= src->count(); ++i) {
1610 	      set_child(1 + count() + i, src->child(i));
1611 	      *src->mutable_child(i) = NULL;
1612 	    }
1613 	  }
1614 	
1615 	  // Fixup the counts on the src and dest nodes.
1616 	  set_count(1 + count() + src->count());
1617 	  src->set_count(0);
1618 	
1619 	  // Remove the value on the parent node.
1620 	  parent()->remove_value(position());
1621 	}
1622 	
1623 	template <typename P>
1624 	void btree_node<P>::swap(btree_node *x) {
1625 	  ceph_assert(leaf() == x->leaf());
1626 	
1627 	  // Swap the values.
1628 	  for (int i = count(); i < x->count(); ++i) {
1629 	    value_init(i);
1630 	  }
1631 	  for (int i = x->count(); i < count(); ++i) {
1632 	    x->value_init(i);
1633 	  }
1634 	  int n = std::max(count(), x->count());
1635 	  for (int i = 0; i < n; ++i) {
1636 	    value_swap(i, x, i);
1637 	  }
1638 	  for (int i = count(); i < x->count(); ++i) {
1639 	    x->value_destroy(i);
1640 	  }
1641 	  for (int i = x->count(); i < count(); ++i) {
1642 	    value_destroy(i);
1643 	  }
1644 	
1645 	  if (!leaf()) {
1646 	    // Swap the child pointers.
1647 	    for (int i = 0; i <= n; ++i) {
1648 	      btree_swap_helper(*mutable_child(i), *x->mutable_child(i));
1649 	    }
1650 	    for (int i = 0; i <= count(); ++i) {
1651 	      x->child(i)->fields_.parent = x;
1652 	    }
1653 	    for (int i = 0; i <= x->count(); ++i) {
1654 	      child(i)->fields_.parent = this;
1655 	    }
1656 	  }
1657 	
1658 	  // Swap the counts.
1659 	  btree_swap_helper(fields_.count, x->fields_.count);
1660 	}
1661 	
1662 	////
1663 	// btree_iterator methods
1664 	template <typename N, typename R, typename P>
1665 	void btree_iterator<N, R, P>::increment_slow() {
1666 	  if (node->leaf()) {
1667 	    ceph_assert(position >= node->count());
1668 	    self_type save(*this);
1669 	    while (position == node->count() && !node->is_root()) {
1670 	      ceph_assert(node->parent()->child(node->position()) == node);
1671 	      position = node->position();
1672 	      node = node->parent();
1673 	    }
1674 	    if (position == node->count()) {
1675 	      *this = save;
1676 	    }
1677 	  } else {
1678 	    ceph_assert(position < node->count());
1679 	    node = node->child(position + 1);
1680 	    while (!node->leaf()) {
1681 	      node = node->child(0);
1682 	    }
1683 	    position = 0;
1684 	  }
1685 	}
1686 	
1687 	template <typename N, typename R, typename P>
1688 	void btree_iterator<N, R, P>::increment_by(int count) {
1689 	  while (count > 0) {
1690 	    if (node->leaf()) {
1691 	      int rest = node->count() - position;
1692 	      position += std::min(rest, count);
1693 	      count = count - rest;
1694 	      if (position < node->count()) {
1695 	        return;
1696 	      }
1697 	    } else {
1698 	      --count;
1699 	    }
1700 	    increment_slow();
1701 	  }
1702 	}
1703 	
1704 	template <typename N, typename R, typename P>
1705 	void btree_iterator<N, R, P>::decrement_slow() {
1706 	  if (node->leaf()) {
1707 	    ceph_assert(position <= -1);
1708 	    self_type save(*this);
1709 	    while (position < 0 && !node->is_root()) {
1710 	      ceph_assert(node->parent()->child(node->position()) == node);
1711 	      position = node->position() - 1;
1712 	      node = node->parent();
1713 	    }
1714 	    if (position < 0) {
1715 	      *this = save;
1716 	    }
1717 	  } else {
1718 	    ceph_assert(position >= 0);
1719 	    node = node->child(position);
1720 	    while (!node->leaf()) {
1721 	      node = node->child(node->count());
1722 	    }
1723 	    position = node->count() - 1;
1724 	  }
1725 	}
1726 	
1727 	////
1728 	// btree methods
1729 	template <typename P>
1730 	btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
1731 	    : key_compare(comp),
1732 	      root_(alloc, NULL) {
1733 	}
1734 	
1735 	template <typename P>
1736 	btree<P>::btree(const self_type &x)
1737 	    : key_compare(x.key_comp()),
1738 	      root_(x.internal_allocator(), NULL) {
1739 	  assign(x);
1740 	}
1741 	
1742 	template <typename P> template <typename ValuePointer>
1743 	std::pair<typename btree<P>::iterator, bool>
1744 	btree<P>::insert_unique(const key_type &key, ValuePointer value) {
1745 	  if (empty()) {
1746 	    *mutable_root() = new_leaf_root_node(1);
1747 	  }
1748 	
1749 	  std::pair<iterator, int> res = internal_locate(key, iterator(root(), 0));
1750 	  iterator &iter = res.first;
1751 	  if (res.second == kExactMatch) {
1752 	    // The key already exists in the tree, do nothing.
1753 	    return std::make_pair(internal_last(iter), false);
1754 	  } else if (!res.second) {
1755 	    iterator last = internal_last(iter);
1756 	    if (last.node && !compare_keys(key, last.key())) {
1757 	      // The key already exists in the tree, do nothing.
1758 	      return std::make_pair(last, false);
1759 	    }
1760 	  }
1761 	
1762 	  return std::make_pair(internal_insert(iter, *value), true);
1763 	}
1764 	
1765 	template <typename P>
1766 	inline typename btree<P>::iterator
1767 	btree<P>::insert_unique(iterator position, const value_type &v) {
1768 	  if (!empty()) {
1769 	    const key_type &key = params_type::key(v);
1770 	    if (position == end() || compare_keys(key, position.key())) {
1771 	      iterator prev = position;
1772 	      if (position == begin() || compare_keys((--prev).key(), key)) {
1773 	        // prev.key() < key < position.key()
1774 	        return internal_insert(position, v);
1775 	      }
1776 	    } else if (compare_keys(position.key(), key)) {
1777 	      iterator next = position;
1778 	      ++next;
1779 	      if (next == end() || compare_keys(key, next.key())) {
1780 	        // position.key() < key < next.key()
1781 	        return internal_insert(next, v);
1782 	      }
1783 	    } else {
1784 	      // position.key() == key
1785 	      return position;
1786 	    }
1787 	  }
1788 	  return insert_unique(v).first;
1789 	}
1790 	
1791 	template <typename P> template <typename InputIterator>
1792 	void btree<P>::insert_unique(InputIterator b, InputIterator e) {
1793 	  for (; b != e; ++b) {
1794 	    insert_unique(end(), *b);
1795 	  }
1796 	}
1797 	
1798 	template <typename P> template <typename ValuePointer>
1799 	typename btree<P>::iterator
1800 	btree<P>::insert_multi(const key_type &key, ValuePointer value) {
1801 	  if (empty()) {
1802 	    *mutable_root() = new_leaf_root_node(1);
1803 	  }
1804 	
1805 	  iterator iter = internal_upper_bound(key, iterator(root(), 0));
1806 	  if (!iter.node) {
1807 	    iter = end();
1808 	  }
1809 	  return internal_insert(iter, *value);
1810 	}
1811 	
1812 	template <typename P>
1813 	typename btree<P>::iterator
1814 	btree<P>::insert_multi(iterator position, const value_type &v) {
1815 	  if (!empty()) {
1816 	    const key_type &key = params_type::key(v);
1817 	    if (position == end() || !compare_keys(position.key(), key)) {
1818 	      iterator prev = position;
1819 	      if (position == begin() || !compare_keys(key, (--prev).key())) {
1820 	        // prev.key() <= key <= position.key()
1821 	        return internal_insert(position, v);
1822 	      }
1823 	    } else {
1824 	      iterator next = position;
1825 	      ++next;
1826 	      if (next == end() || !compare_keys(next.key(), key)) {
1827 	        // position.key() < key <= next.key()
1828 	        return internal_insert(next, v);
1829 	      }
1830 	    }
1831 	  }
1832 	  return insert_multi(v);
1833 	}
1834 	
1835 	template <typename P> template <typename InputIterator>
1836 	void btree<P>::insert_multi(InputIterator b, InputIterator e) {
1837 	  for (; b != e; ++b) {
1838 	    insert_multi(end(), *b);
1839 	  }
1840 	}
1841 	
1842 	template <typename P>
1843 	void btree<P>::assign(const self_type &x) {
1844 	  clear();
1845 	
1846 	  *mutable_key_comp() = x.key_comp();
1847 	  *mutable_internal_allocator() = x.internal_allocator();
1848 	
1849 	  // Assignment can avoid key comparisons because we know the order of the
1850 	  // values is the same order we'll store them in.
1851 	  for (const_iterator iter = x.begin(); iter != x.end(); ++iter) {
1852 	    if (empty()) {
1853 	      insert_multi(*iter);
1854 	    } else {
1855 	      // If the btree is not empty, we can just insert the new value at the end
1856 	      // of the tree!
1857 	      internal_insert(end(), *iter);
1858 	    }
1859 	  }
1860 	}
1861 	
1862 	template <typename P>
1863 	typename btree<P>::iterator btree<P>::erase(iterator iter) {
1864 	  bool internal_delete = false;
1865 	  if (!iter.node->leaf()) {
1866 	    // Deletion of a value on an internal node. Swap the key with the largest
1867 	    // value of our left child. This is easy, we just decrement iter.
1868 	    iterator tmp_iter(iter--);
1869 	    ceph_assert(iter.node->leaf());
1870 	    ceph_assert(!compare_keys(tmp_iter.key(), iter.key()));
1871 	    iter.node->value_swap(iter.position, tmp_iter.node, tmp_iter.position);
1872 	    internal_delete = true;
1873 	    --*mutable_size();
1874 	  } else if (!root()->leaf()) {
1875 	    --*mutable_size();
1876 	  }
1877 	
1878 	  // Delete the key from the leaf.
1879 	  iter.node->remove_value(iter.position);
1880 	
1881 	  // We want to return the next value after the one we just erased. If we
1882 	  // erased from an internal node (internal_delete == true), then the next
1883 	  // value is ++(++iter). If we erased from a leaf node (internal_delete ==
1884 	  // false) then the next value is ++iter. Note that ++iter may point to an
1885 	  // internal node and the value in the internal node may move to a leaf node
1886 	  // (iter.node) when rebalancing is performed at the leaf level.
1887 	
1888 	  // Merge/rebalance as we walk back up the tree.
1889 	  iterator res(iter);
1890 	  for (;;) {
1891 	    if (iter.node == root()) {
1892 	      try_shrink();
1893 	      if (empty()) {
1894 	        return end();
1895 	      }
1896 	      break;
1897 	    }
1898 	    if (iter.node->count() >= kMinNodeValues) {
1899 	      break;
1900 	    }
1901 	    bool merged = try_merge_or_rebalance(&iter);
1902 	    if (iter.node->leaf()) {
1903 	      res = iter;
1904 	    }
1905 	    if (!merged) {
1906 	      break;
1907 	    }
1908 	    iter.node = iter.node->parent();
1909 	  }
1910 	
1911 	  // Adjust our return value. If we're pointing at the end of a node, advance
1912 	  // the iterator.
1913 	  if (res.position == res.node->count()) {
1914 	    res.position = res.node->count() - 1;
1915 	    ++res;
1916 	  }
1917 	  // If we erased from an internal node, advance the iterator.
1918 	  if (internal_delete) {
1919 	    ++res;
1920 	  }
1921 	  return res;
1922 	}
1923 	
1924 	template <typename P>
1925 	int btree<P>::erase(iterator begin, iterator end) {
1926 	  int count = distance(begin, end);
1927 	  for (int i = 0; i < count; i++) {
1928 	    begin = erase(begin);
1929 	  }
1930 	  return count;
1931 	}
1932 	
1933 	template <typename P>
1934 	int btree<P>::erase_unique(const key_type &key) {
1935 	  iterator iter = internal_find_unique(key, iterator(root(), 0));
1936 	  if (!iter.node) {
1937 	    // The key doesn't exist in the tree, return nothing done.
1938 	    return 0;
1939 	  }
1940 	  erase(iter);
1941 	  return 1;
1942 	}
1943 	
1944 	template <typename P>
1945 	int btree<P>::erase_multi(const key_type &key) {
1946 	  iterator begin = internal_lower_bound(key, iterator(root(), 0));
1947 	  if (!begin.node) {
1948 	    // The key doesn't exist in the tree, return nothing done.
1949 	    return 0;
1950 	  }
1951 	  // Delete all of the keys between begin and upper_bound(key).
1952 	  iterator end = internal_end(
1953 	      internal_upper_bound(key, iterator(root(), 0)));
1954 	  return erase(begin, end);
1955 	}
1956 	
1957 	template <typename P>
1958 	void btree<P>::clear() {
1959 	  if (root() != NULL) {
(1) Event fun_call_w_exception: Called function throws an exception of type "_ZN5boost16exception_detail10clone_implINS0_19error_info_injectorINSt8ios_base7failureB5cxx11EEEEE". [details]
1960 	    internal_clear(root());
1961 	  }
1962 	  *mutable_root() = NULL;
1963 	}
1964 	
1965 	template <typename P>
1966 	void btree<P>::swap(self_type &x) {
1967 	  std::swap(static_cast<key_compare&>(*this), static_cast<key_compare&>(x));
1968 	  std::swap(root_, x.root_);
1969 	}
1970 	
1971 	template <typename P>
1972 	void btree<P>::verify() const {
1973 	  if (root() != NULL) {
1974 	    ceph_assert(size() == internal_verify(root(), NULL, NULL));
1975 	    ceph_assert(leftmost() == (++const_iterator(root(), -1)).node);
1976 	    ceph_assert(rightmost() == (--const_iterator(root(), root()->count())).node);
1977 	    ceph_assert(leftmost()->leaf());
1978 	    ceph_assert(rightmost()->leaf());
1979 	  } else {
1980 	    ceph_assert(size() == 0);
1981 	    ceph_assert(leftmost() == NULL);
1982 	    ceph_assert(rightmost() == NULL);
1983 	  }
1984 	}
1985 	
1986 	template <typename P>
1987 	void btree<P>::rebalance_or_split(iterator *iter) {
1988 	  node_type *&node = iter->node;
1989 	  int &insert_position = iter->position;
1990 	  ceph_assert(node->count() == node->max_count());
1991 	
1992 	  // First try to make room on the node by rebalancing.
1993 	  node_type *parent = node->parent();
1994 	  if (node != root()) {
1995 	    if (node->position() > 0) {
1996 	      // Try rebalancing with our left sibling.
1997 	      node_type *left = parent->child(node->position() - 1);
1998 	      if (left->count() < left->max_count()) {
1999 	        // We bias rebalancing based on the position being inserted. If we're
2000 	        // inserting at the end of the right node then we bias rebalancing to
2001 	        // fill up the left node.
2002 	        int to_move = (left->max_count() - left->count()) /
2003 	            (1 + (insert_position < left->max_count()));
2004 	        to_move = std::max(1, to_move);
2005 	
2006 	        if (((insert_position - to_move) >= 0) ||
2007 	            ((left->count() + to_move) < left->max_count())) {
2008 	          left->rebalance_right_to_left(node, to_move);
2009 	
2010 	          ceph_assert(node->max_count() - node->count() == to_move);
2011 	          insert_position = insert_position - to_move;
2012 	          if (insert_position < 0) {
2013 	            insert_position = insert_position + left->count() + 1;
2014 	            node = left;
2015 	          }
2016 	
2017 	          ceph_assert(node->count() < node->max_count());
2018 	          return;
2019 	        }
2020 	      }
2021 	    }
2022 	
2023 	    if (node->position() < parent->count()) {
2024 	      // Try rebalancing with our right sibling.
2025 	      node_type *right = parent->child(node->position() + 1);
2026 	      if (right->count() < right->max_count()) {
2027 	        // We bias rebalancing based on the position being inserted. If we're
2028 	        // inserting at the beginning of the left node then we bias rebalancing
2029 	        // to fill up the right node.
2030 	        int to_move = (right->max_count() - right->count()) /
2031 	            (1 + (insert_position > 0));
2032 	        to_move = std::max(1, to_move);
2033 	
2034 	        if ((insert_position <= (node->count() - to_move)) ||
2035 	            ((right->count() + to_move) < right->max_count())) {
2036 	          node->rebalance_left_to_right(right, to_move);
2037 	
2038 	          if (insert_position > node->count()) {
2039 	            insert_position = insert_position - node->count() - 1;
2040 	            node = right;
2041 	          }
2042 	
2043 	          ceph_assert(node->count() < node->max_count());
2044 	          return;
2045 	        }
2046 	      }
2047 	    }
2048 	
2049 	    // Rebalancing failed, make sure there is room on the parent node for a new
2050 	    // value.
2051 	    if (parent->count() == parent->max_count()) {
2052 	      iterator parent_iter(node->parent(), node->position());
2053 	      rebalance_or_split(&parent_iter);
2054 	    }
2055 	  } else {
2056 	    // Rebalancing not possible because this is the root node.
2057 	    if (root()->leaf()) {
2058 	      // The root node is currently a leaf node: create a new root node and set
2059 	      // the current root node as the child of the new root.
2060 	      parent = new_internal_root_node();
2061 	      parent->set_child(0, root());
2062 	      *mutable_root() = parent;
2063 	      ceph_assert(*mutable_rightmost() == parent->child(0));
2064 	    } else {
2065 	      // The root node is an internal node. We do not want to create a new root
2066 	      // node because the root node is special and holds the size of the tree
2067 	      // and a pointer to the rightmost node. So we create a new internal node
2068 	      // and move all of the items on the current root into the new node.
2069 	      parent = new_internal_node(parent);
2070 	      parent->set_child(0, parent);
2071 	      parent->swap(root());
2072 	      node = parent;
2073 	    }
2074 	  }
2075 	
2076 	  // Split the node.
2077 	  node_type *split_node;
2078 	  if (node->leaf()) {
2079 	    split_node = new_leaf_node(parent);
2080 	    node->split(split_node, insert_position);
2081 	    if (rightmost() == node) {
2082 	      *mutable_rightmost() = split_node;
2083 	    }
2084 	  } else {
2085 	    split_node = new_internal_node(parent);
2086 	    node->split(split_node, insert_position);
2087 	  }
2088 	
2089 	  if (insert_position > node->count()) {
2090 	    insert_position = insert_position - node->count() - 1;
2091 	    node = split_node;
2092 	  }
2093 	}
2094 	
2095 	template <typename P>
2096 	void btree<P>::merge_nodes(node_type *left, node_type *right) {
2097 	  left->merge(right);
2098 	  if (right->leaf()) {
2099 	    if (rightmost() == right) {
2100 	      *mutable_rightmost() = left;
2101 	    }
2102 	    delete_leaf_node(right);
2103 	  } else {
2104 	    delete_internal_node(right);
2105 	  }
2106 	}
2107 	
2108 	template <typename P>
2109 	bool btree<P>::try_merge_or_rebalance(iterator *iter) {
2110 	  node_type *parent = iter->node->parent();
2111 	  if (iter->node->position() > 0) {
2112 	    // Try merging with our left sibling.
2113 	    node_type *left = parent->child(iter->node->position() - 1);
2114 	    if ((1 + left->count() + iter->node->count()) <= left->max_count()) {
2115 	      iter->position += 1 + left->count();
2116 	      merge_nodes(left, iter->node);
2117 	      iter->node = left;
2118 	      return true;
2119 	    }
2120 	  }
2121 	  if (iter->node->position() < parent->count()) {
2122 	    // Try merging with our right sibling.
2123 	    node_type *right = parent->child(iter->node->position() + 1);
2124 	    if ((1 + iter->node->count() + right->count()) <= right->max_count()) {
2125 	      merge_nodes(iter->node, right);
2126 	      return true;
2127 	    }
2128 	    // Try rebalancing with our right sibling. We don't perform rebalancing if
2129 	    // we deleted the first element from iter->node and the node is not
2130 	    // empty. This is a small optimization for the common pattern of deleting
2131 	    // from the front of the tree.
2132 	    if ((right->count() > kMinNodeValues) &&
2133 	        ((iter->node->count() == 0) ||
2134 	         (iter->position > 0))) {
2135 	      int to_move = (right->count() - iter->node->count()) / 2;
2136 	      to_move = std::min(to_move, right->count() - 1);
2137 	      iter->node->rebalance_right_to_left(right, to_move);
2138 	      return false;
2139 	    }
2140 	  }
2141 	  if (iter->node->position() > 0) {
2142 	    // Try rebalancing with our left sibling. We don't perform rebalancing if
2143 	    // we deleted the last element from iter->node and the node is not
2144 	    // empty. This is a small optimization for the common pattern of deleting
2145 	    // from the back of the tree.
2146 	    node_type *left = parent->child(iter->node->position() - 1);
2147 	    if ((left->count() > kMinNodeValues) &&
2148 	        ((iter->node->count() == 0) ||
2149 	         (iter->position < iter->node->count()))) {
2150 	      int to_move = (left->count() - iter->node->count()) / 2;
2151 	      to_move = std::min(to_move, left->count() - 1);
2152 	      left->rebalance_left_to_right(iter->node, to_move);
2153 	      iter->position += to_move;
2154 	      return false;
2155 	    }
2156 	  }
2157 	  return false;
2158 	}
2159 	
2160 	template <typename P>
2161 	void btree<P>::try_shrink() {
2162 	  if (root()->count() > 0) {
2163 	    return;
2164 	  }
2165 	  // Deleted the last item on the root node, shrink the height of the tree.
2166 	  if (root()->leaf()) {
2167 	    ceph_assert(size() == 0);
2168 	    delete_leaf_node(root());
2169 	    *mutable_root() = NULL;
2170 	  } else {
2171 	    node_type *child = root()->child(0);
2172 	    if (child->leaf()) {
2173 	      // The child is a leaf node so simply make it the root node in the tree.
2174 	      child->make_root();
2175 	      delete_internal_root_node();
2176 	      *mutable_root() = child;
2177 	    } else {
2178 	      // The child is an internal node. We want to keep the existing root node
2179 	      // so we move all of the values from the child node into the existing
2180 	      // (empty) root node.
2181 	      child->swap(root());
2182 	      delete_internal_node(child);
2183 	    }
2184 	  }
2185 	}
2186 	
2187 	template <typename P> template <typename IterType>
2188 	inline IterType btree<P>::internal_last(IterType iter) {
2189 	  while (iter.node && iter.position == iter.node->count()) {
2190 	    iter.position = iter.node->position();
2191 	    iter.node = iter.node->parent();
2192 	    if (iter.node->leaf()) {
2193 	      iter.node = NULL;
2194 	    }
2195 	  }
2196 	  return iter;
2197 	}
2198 	
2199 	template <typename P>
2200 	inline typename btree<P>::iterator
2201 	btree<P>::internal_insert(iterator iter, const value_type &v) {
2202 	  if (!iter.node->leaf()) {
2203 	    // We can't insert on an internal node. Instead, we'll insert after the
2204 	    // previous value which is guaranteed to be on a leaf node.
2205 	    --iter;
2206 	    ++iter.position;
2207 	  }
2208 	  if (iter.node->count() == iter.node->max_count()) {
2209 	    // Make room in the leaf for the new item.
2210 	    if (iter.node->max_count() < kNodeValues) {
2211 	      // Insertion into the root where the root is smaller that the full node
2212 	      // size. Simply grow the size of the root node.
2213 	      ceph_assert(iter.node == root());
2214 	      iter.node = new_leaf_root_node(
2215 	          std::min<int>(kNodeValues, 2 * iter.node->max_count()));
2216 	      iter.node->swap(root());
2217 	      delete_leaf_node(root());
2218 	      *mutable_root() = iter.node;
2219 	    } else {
2220 	      rebalance_or_split(&iter);
2221 	      ++*mutable_size();
2222 	    }
2223 	  } else if (!root()->leaf()) {
2224 	    ++*mutable_size();
2225 	  }
2226 	  iter.node->insert_value(iter.position, v);
2227 	  return iter;
2228 	}
2229 	
2230 	template <typename P> template <typename IterType>
2231 	inline std::pair<IterType, int> btree<P>::internal_locate(
2232 	    const key_type &key, IterType iter) const {
2233 	  return internal_locate_type::dispatch(key, *this, iter);
2234 	}
2235 	
2236 	template <typename P> template <typename IterType>
2237 	inline std::pair<IterType, int> btree<P>::internal_locate_plain_compare(
2238 	    const key_type &key, IterType iter) const {
2239 	  for (;;) {
2240 	    iter.position = iter.node->lower_bound(key, key_comp());
2241 	    if (iter.node->leaf()) {
2242 	      break;
2243 	    }
2244 	    iter.node = iter.node->child(iter.position);
2245 	  }
2246 	  return std::make_pair(iter, 0);
2247 	}
2248 	
2249 	template <typename P> template <typename IterType>
2250 	inline std::pair<IterType, int> btree<P>::internal_locate_compare_to(
2251 	    const key_type &key, IterType iter) const {
2252 	  for (;;) {
2253 	    int res = iter.node->lower_bound(key, key_comp());
2254 	    iter.position = res & kMatchMask;
2255 	    if (res & kExactMatch) {
2256 	      return std::make_pair(iter, static_cast<int>(kExactMatch));
2257 	    }
2258 	    if (iter.node->leaf()) {
2259 	      break;
2260 	    }
2261 	    iter.node = iter.node->child(iter.position);
2262 	  }
2263 	  return std::make_pair(iter, -kExactMatch);
2264 	}
2265 	
2266 	template <typename P> template <typename IterType>
2267 	IterType btree<P>::internal_lower_bound(
2268 	    const key_type &key, IterType iter) const {
2269 	  if (iter.node) {
2270 	    for (;;) {
2271 	      iter.position =
2272 	          iter.node->lower_bound(key, key_comp()) & kMatchMask;
2273 	      if (iter.node->leaf()) {
2274 	        break;
2275 	      }
2276 	      iter.node = iter.node->child(iter.position);
2277 	    }
2278 	    iter = internal_last(iter);
2279 	  }
2280 	  return iter;
2281 	}
2282 	
2283 	template <typename P> template <typename IterType>
2284 	IterType btree<P>::internal_upper_bound(
2285 	    const key_type &key, IterType iter) const {
2286 	  if (iter.node) {
2287 	    for (;;) {
2288 	      iter.position = iter.node->upper_bound(key, key_comp());
2289 	      if (iter.node->leaf()) {
2290 	        break;
2291 	      }
2292 	      iter.node = iter.node->child(iter.position);
2293 	    }
2294 	    iter = internal_last(iter);
2295 	  }
2296 	  return iter;
2297 	}
2298 	
2299 	template <typename P> template <typename IterType>
2300 	IterType btree<P>::internal_find_unique(
2301 	    const key_type &key, IterType iter) const {
2302 	  if (iter.node) {
2303 	    std::pair<IterType, int> res = internal_locate(key, iter);
2304 	    if (res.second == kExactMatch) {
2305 	      return res.first;
2306 	    }
2307 	    if (!res.second) {
2308 	      iter = internal_last(res.first);
2309 	      if (iter.node && !compare_keys(key, iter.key())) {
2310 	        return iter;
2311 	      }
2312 	    }
2313 	  }
2314 	  return IterType(NULL, 0);
2315 	}
2316 	
2317 	template <typename P> template <typename IterType>
2318 	IterType btree<P>::internal_find_multi(
2319 	    const key_type &key, IterType iter) const {
2320 	  if (iter.node) {
2321 	    iter = internal_lower_bound(key, iter);
2322 	    if (iter.node) {
2323 	      iter = internal_last(iter);
2324 	      if (iter.node && !compare_keys(key, iter.key())) {
2325 	        return iter;
2326 	      }
2327 	    }
2328 	  }
2329 	  return IterType(NULL, 0);
2330 	}
2331 	
2332 	template <typename P>
2333 	void btree<P>::internal_clear(node_type *node) {
2334 	  if (!node->leaf()) {
2335 	    for (int i = 0; i <= node->count(); ++i) {
2336 	      internal_clear(node->child(i));
2337 	    }
2338 	    if (node == root()) {
2339 	      delete_internal_root_node();
2340 	    } else {
(1) Event fun_call_w_exception: Called function throws an exception of type "_ZN5boost16exception_detail10clone_implINS0_19error_info_injectorINSt8ios_base7failureB5cxx11EEEEE". [details]
2341 	      delete_internal_node(node);
2342 	    }
2343 	  } else {
2344 	    delete_leaf_node(node);
2345 	  }
2346 	}
2347 	
2348 	template <typename P>
2349 	void btree<P>::internal_dump(
2350 	    std::ostream &os, const node_type *node, int level) const {
2351 	  for (int i = 0; i < node->count(); ++i) {
2352 	    if (!node->leaf()) {
2353 	      internal_dump(os, node->child(i), level + 1);
2354 	    }
2355 	    for (int j = 0; j < level; ++j) {
2356 	      os << "  ";
2357 	    }
2358 	    os << node->key(i) << " [" << level << "]\n";
2359 	  }
2360 	  if (!node->leaf()) {
2361 	    internal_dump(os, node->child(node->count()), level + 1);
2362 	  }
2363 	}
2364 	
2365 	template <typename P>
2366 	int btree<P>::internal_verify(
2367 	    const node_type *node, const key_type *lo, const key_type *hi) const {
2368 	  ceph_assert(node->count() > 0);
2369 	  ceph_assert(node->count() <= node->max_count());
2370 	  if (lo) {
2371 	    ceph_assert(!compare_keys(node->key(0), *lo));
2372 	  }
2373 	  if (hi) {
2374 	    ceph_assert(!compare_keys(*hi, node->key(node->count() - 1)));
2375 	  }
2376 	  for (int i = 1; i < node->count(); ++i) {
2377 	    ceph_assert(!compare_keys(node->key(i), node->key(i - 1)));
2378 	  }
2379 	  int count = node->count();
2380 	  if (!node->leaf()) {
2381 	    for (int i = 0; i <= node->count(); ++i) {
2382 	      ceph_assert(node->child(i) != NULL);
2383 	      ceph_assert(node->child(i)->parent() == node);
2384 	      ceph_assert(node->child(i)->position() == i);
2385 	      count += internal_verify(
2386 	          node->child(i),
2387 	          (i == 0) ? lo : &node->key(i - 1),
2388 	          (i == node->count()) ? hi : &node->key(i));
2389 	    }
2390 	  }
2391 	  return count;
2392 	}
2393 	
2394 	} // namespace btree
2395 	
2396 	#endif  // UTIL_BTREE_BTREE_H__
2397