1    	// Copyright 2005, Google Inc.
2    	// All rights reserved.
3    	//
4    	// Redistribution and use in source and binary forms, with or without
5    	// modification, are permitted provided that the following conditions are
6    	// met:
7    	//
8    	//     * Redistributions of source code must retain the above copyright
9    	// notice, this list of conditions and the following disclaimer.
10   	//     * Redistributions in binary form must reproduce the above
11   	// copyright notice, this list of conditions and the following disclaimer
12   	// in the documentation and/or other materials provided with the
13   	// distribution.
14   	//     * Neither the name of Google Inc. nor the names of its
15   	// contributors may be used to endorse or promote products derived from
16   	// this software without specific prior written permission.
17   	//
18   	// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19   	// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20   	// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21   	// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22   	// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23   	// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24   	// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25   	// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26   	// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27   	// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28   	// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29   	//
30   	// The Google C++ Testing and Mocking Framework (Google Test)
31   	//
32   	// This header file declares functions and macros used internally by
33   	// Google Test.  They are subject to change without notice.
34   	
35   	// GOOGLETEST_CM0001 DO NOT DELETE
36   	
37   	#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38   	#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39   	
40   	#include "gtest/internal/gtest-port.h"
41   	
42   	#if GTEST_OS_LINUX
43   	# include <stdlib.h>
44   	# include <sys/types.h>
45   	# include <sys/wait.h>
46   	# include <unistd.h>
47   	#endif  // GTEST_OS_LINUX
48   	
49   	#if GTEST_HAS_EXCEPTIONS
50   	# include <stdexcept>
51   	#endif
52   	
53   	#include <ctype.h>
54   	#include <float.h>
55   	#include <string.h>
56   	#include <iomanip>
57   	#include <limits>
58   	#include <map>
59   	#include <set>
60   	#include <string>
61   	#include <type_traits>
62   	#include <vector>
63   	
64   	#include "gtest/gtest-message.h"
65   	#include "gtest/internal/gtest-filepath.h"
66   	#include "gtest/internal/gtest-string.h"
67   	#include "gtest/internal/gtest-type-util.h"
68   	
69   	// Due to C++ preprocessor weirdness, we need double indirection to
70   	// concatenate two tokens when one of them is __LINE__.  Writing
71   	//
72   	//   foo ## __LINE__
73   	//
74   	// will result in the token foo__LINE__, instead of foo followed by
75   	// the current line number.  For more details, see
76   	// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
77   	#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
78   	#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
79   	
80   	// Stringifies its argument.
81   	#define GTEST_STRINGIFY_(name) #name
82   	
83   	namespace proto2 { class Message; }
84   	
85   	namespace testing {
86   	
87   	// Forward declarations.
88   	
89   	class AssertionResult;                 // Result of an assertion.
90   	class Message;                         // Represents a failure message.
91   	class Test;                            // Represents a test.
92   	class TestInfo;                        // Information about a test.
93   	class TestPartResult;                  // Result of a test part.
94   	class UnitTest;                        // A collection of test suites.
95   	
96   	template <typename T>
97   	::std::string PrintToString(const T& value);
98   	
99   	namespace internal {
100  	
101  	struct TraceInfo;                      // Information about a trace point.
102  	class TestInfoImpl;                    // Opaque implementation of TestInfo
103  	class UnitTestImpl;                    // Opaque implementation of UnitTest
104  	
105  	// The text used in failure messages to indicate the start of the
106  	// stack trace.
107  	GTEST_API_ extern const char kStackTraceMarker[];
108  	
109  	// An IgnoredValue object can be implicitly constructed from ANY value.
110  	class IgnoredValue {
111  	  struct Sink {};
112  	 public:
113  	  // This constructor template allows any value to be implicitly
114  	  // converted to IgnoredValue.  The object has no data member and
115  	  // doesn't try to remember anything about the argument.  We
116  	  // deliberately omit the 'explicit' keyword in order to allow the
117  	  // conversion to be implicit.
118  	  // Disable the conversion if T already has a magical conversion operator.
119  	  // Otherwise we get ambiguity.
120  	  template <typename T,
121  	            typename std::enable_if<!std::is_convertible<T, Sink>::value,
122  	                                    int>::type = 0>
123  	  IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
124  	};
125  	
126  	// Appends the user-supplied message to the Google-Test-generated message.
127  	GTEST_API_ std::string AppendUserMessage(
128  	    const std::string& gtest_msg, const Message& user_msg);
129  	
130  	#if GTEST_HAS_EXCEPTIONS
131  	
132  	GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
133  	/* an exported class was derived from a class that was not exported */)
134  	
135  	// This exception is thrown by (and only by) a failed Google Test
136  	// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
137  	// are enabled).  We derive it from std::runtime_error, which is for
138  	// errors presumably detectable only at run time.  Since
139  	// std::runtime_error inherits from std::exception, many testing
140  	// frameworks know how to extract and print the message inside it.
141  	class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
142  	 public:
143  	  explicit GoogleTestFailureException(const TestPartResult& failure);
144  	};
145  	
146  	GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
147  	
148  	#endif  // GTEST_HAS_EXCEPTIONS
149  	
150  	namespace edit_distance {
151  	// Returns the optimal edits to go from 'left' to 'right'.
152  	// All edits cost the same, with replace having lower priority than
153  	// add/remove.
154  	// Simple implementation of the Wagner-Fischer algorithm.
155  	// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
156  	enum EditType { kMatch, kAdd, kRemove, kReplace };
157  	GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
158  	    const std::vector<size_t>& left, const std::vector<size_t>& right);
159  	
160  	// Same as above, but the input is represented as strings.
161  	GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
162  	    const std::vector<std::string>& left,
163  	    const std::vector<std::string>& right);
164  	
165  	// Create a diff of the input strings in Unified diff format.
166  	GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
167  	                                         const std::vector<std::string>& right,
168  	                                         size_t context = 2);
169  	
170  	}  // namespace edit_distance
171  	
172  	// Calculate the diff between 'left' and 'right' and return it in unified diff
173  	// format.
174  	// If not null, stores in 'total_line_count' the total number of lines found
175  	// in left + right.
176  	GTEST_API_ std::string DiffStrings(const std::string& left,
177  	                                   const std::string& right,
178  	                                   size_t* total_line_count);
179  	
180  	// Constructs and returns the message for an equality assertion
181  	// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
182  	//
183  	// The first four parameters are the expressions used in the assertion
184  	// and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
185  	// where foo is 5 and bar is 6, we have:
186  	//
187  	//   expected_expression: "foo"
188  	//   actual_expression:   "bar"
189  	//   expected_value:      "5"
190  	//   actual_value:        "6"
191  	//
192  	// The ignoring_case parameter is true if the assertion is a
193  	// *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
194  	// be inserted into the message.
195  	GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
196  	                                     const char* actual_expression,
197  	                                     const std::string& expected_value,
198  	                                     const std::string& actual_value,
199  	                                     bool ignoring_case);
200  	
201  	// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
202  	GTEST_API_ std::string GetBoolAssertionFailureMessage(
203  	    const AssertionResult& assertion_result,
204  	    const char* expression_text,
205  	    const char* actual_predicate_value,
206  	    const char* expected_predicate_value);
207  	
208  	// This template class represents an IEEE floating-point number
209  	// (either single-precision or double-precision, depending on the
210  	// template parameters).
211  	//
212  	// The purpose of this class is to do more sophisticated number
213  	// comparison.  (Due to round-off error, etc, it's very unlikely that
214  	// two floating-points will be equal exactly.  Hence a naive
215  	// comparison by the == operation often doesn't work.)
216  	//
217  	// Format of IEEE floating-point:
218  	//
219  	//   The most-significant bit being the leftmost, an IEEE
220  	//   floating-point looks like
221  	//
222  	//     sign_bit exponent_bits fraction_bits
223  	//
224  	//   Here, sign_bit is a single bit that designates the sign of the
225  	//   number.
226  	//
227  	//   For float, there are 8 exponent bits and 23 fraction bits.
228  	//
229  	//   For double, there are 11 exponent bits and 52 fraction bits.
230  	//
231  	//   More details can be found at
232  	//   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
233  	//
234  	// Template parameter:
235  	//
236  	//   RawType: the raw floating-point type (either float or double)
237  	template <typename RawType>
238  	class FloatingPoint {
239  	 public:
240  	  // Defines the unsigned integer type that has the same size as the
241  	  // floating point number.
242  	  typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
243  	
244  	  // Constants.
245  	
246  	  // # of bits in a number.
247  	  static const size_t kBitCount = 8*sizeof(RawType);
248  	
249  	  // # of fraction bits in a number.
250  	  static const size_t kFractionBitCount =
251  	    std::numeric_limits<RawType>::digits - 1;
252  	
253  	  // # of exponent bits in a number.
254  	  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
255  	
256  	  // The mask for the sign bit.
257  	  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
258  	
259  	  // The mask for the fraction bits.
260  	  static const Bits kFractionBitMask =
261  	    ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
262  	
263  	  // The mask for the exponent bits.
264  	  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
265  	
266  	  // How many ULP's (Units in the Last Place) we want to tolerate when
267  	  // comparing two numbers.  The larger the value, the more error we
268  	  // allow.  A 0 value means that two numbers must be exactly the same
269  	  // to be considered equal.
270  	  //
271  	  // The maximum error of a single floating-point operation is 0.5
272  	  // units in the last place.  On Intel CPU's, all floating-point
273  	  // calculations are done with 80-bit precision, while double has 64
274  	  // bits.  Therefore, 4 should be enough for ordinary use.
275  	  //
276  	  // See the following article for more details on ULP:
277  	  // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
278  	  static const size_t kMaxUlps = 4;
279  	
280  	  // Constructs a FloatingPoint from a raw floating-point number.
281  	  //
282  	  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
283  	  // around may change its bits, although the new value is guaranteed
284  	  // to be also a NAN.  Therefore, don't expect this constructor to
285  	  // preserve the bits in x when x is a NAN.
286  	  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
287  	
288  	  // Static methods
289  	
290  	  // Reinterprets a bit pattern as a floating-point number.
291  	  //
292  	  // This function is needed to test the AlmostEquals() method.
293  	  static RawType ReinterpretBits(const Bits bits) {
294  	    FloatingPoint fp(0);
295  	    fp.u_.bits_ = bits;
296  	    return fp.u_.value_;
297  	  }
298  	
299  	  // Returns the floating-point number that represent positive infinity.
300  	  static RawType Infinity() {
301  	    return ReinterpretBits(kExponentBitMask);
302  	  }
303  	
304  	  // Returns the maximum representable finite floating-point number.
305  	  static RawType Max();
306  	
307  	  // Non-static methods
308  	
309  	  // Returns the bits that represents this number.
310  	  const Bits &bits() const { return u_.bits_; }
311  	
312  	  // Returns the exponent bits of this number.
313  	  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
314  	
315  	  // Returns the fraction bits of this number.
316  	  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
317  	
318  	  // Returns the sign bit of this number.
319  	  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
320  	
321  	  // Returns true if this is NAN (not a number).
322  	  bool is_nan() const {
323  	    // It's a NAN if the exponent bits are all ones and the fraction
324  	    // bits are not entirely zeros.
325  	    return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
326  	  }
327  	
328  	  // Returns true if this number is at most kMaxUlps ULP's away from
329  	  // rhs.  In particular, this function:
330  	  //
331  	  //   - returns false if either number is (or both are) NAN.
332  	  //   - treats really large numbers as almost equal to infinity.
333  	  //   - thinks +0.0 and -0.0 are 0 DLP's apart.
334  	  bool AlmostEquals(const FloatingPoint& rhs) const {
335  	    // The IEEE standard says that any comparison operation involving
336  	    // a NAN must return false.
337  	    if (is_nan() || rhs.is_nan()) return false;
338  	
339  	    return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
340  	        <= kMaxUlps;
341  	  }
342  	
343  	 private:
344  	  // The data type used to store the actual floating-point number.
345  	  union FloatingPointUnion {
346  	    RawType value_;  // The raw floating-point number.
347  	    Bits bits_;      // The bits that represent the number.
348  	  };
349  	
350  	  // Converts an integer from the sign-and-magnitude representation to
351  	  // the biased representation.  More precisely, let N be 2 to the
352  	  // power of (kBitCount - 1), an integer x is represented by the
353  	  // unsigned number x + N.
354  	  //
355  	  // For instance,
356  	  //
357  	  //   -N + 1 (the most negative number representable using
358  	  //          sign-and-magnitude) is represented by 1;
359  	  //   0      is represented by N; and
360  	  //   N - 1  (the biggest number representable using
361  	  //          sign-and-magnitude) is represented by 2N - 1.
362  	  //
363  	  // Read http://en.wikipedia.org/wiki/Signed_number_representations
364  	  // for more details on signed number representations.
365  	  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
366  	    if (kSignBitMask & sam) {
367  	      // sam represents a negative number.
368  	      return ~sam + 1;
369  	    } else {
370  	      // sam represents a positive number.
371  	      return kSignBitMask | sam;
372  	    }
373  	  }
374  	
375  	  // Given two numbers in the sign-and-magnitude representation,
376  	  // returns the distance between them as an unsigned number.
377  	  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
378  	                                                     const Bits &sam2) {
379  	    const Bits biased1 = SignAndMagnitudeToBiased(sam1);
380  	    const Bits biased2 = SignAndMagnitudeToBiased(sam2);
381  	    return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
382  	  }
383  	
384  	  FloatingPointUnion u_;
385  	};
386  	
387  	// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
388  	// macro defined by <windows.h>.
389  	template <>
390  	inline float FloatingPoint<float>::Max() { return FLT_MAX; }
391  	template <>
392  	inline double FloatingPoint<double>::Max() { return DBL_MAX; }
393  	
394  	// Typedefs the instances of the FloatingPoint template class that we
395  	// care to use.
396  	typedef FloatingPoint<float> Float;
397  	typedef FloatingPoint<double> Double;
398  	
399  	// In order to catch the mistake of putting tests that use different
400  	// test fixture classes in the same test suite, we need to assign
401  	// unique IDs to fixture classes and compare them.  The TypeId type is
402  	// used to hold such IDs.  The user should treat TypeId as an opaque
403  	// type: the only operation allowed on TypeId values is to compare
404  	// them for equality using the == operator.
405  	typedef const void* TypeId;
406  	
407  	template <typename T>
408  	class TypeIdHelper {
409  	 public:
410  	  // dummy_ must not have a const type.  Otherwise an overly eager
411  	  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
412  	  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
413  	  static bool dummy_;
414  	};
415  	
416  	template <typename T>
417  	bool TypeIdHelper<T>::dummy_ = false;
418  	
419  	// GetTypeId<T>() returns the ID of type T.  Different values will be
420  	// returned for different types.  Calling the function twice with the
421  	// same type argument is guaranteed to return the same ID.
422  	template <typename T>
423  	TypeId GetTypeId() {
424  	  // The compiler is required to allocate a different
425  	  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
426  	  // the template.  Therefore, the address of dummy_ is guaranteed to
427  	  // be unique.
428  	  return &(TypeIdHelper<T>::dummy_);
429  	}
430  	
431  	// Returns the type ID of ::testing::Test.  Always call this instead
432  	// of GetTypeId< ::testing::Test>() to get the type ID of
433  	// ::testing::Test, as the latter may give the wrong result due to a
434  	// suspected linker bug when compiling Google Test as a Mac OS X
435  	// framework.
436  	GTEST_API_ TypeId GetTestTypeId();
437  	
438  	// Defines the abstract factory interface that creates instances
439  	// of a Test object.
440  	class TestFactoryBase {
441  	 public:
442  	  virtual ~TestFactoryBase() {}
443  	
444  	  // Creates a test instance to run. The instance is both created and destroyed
445  	  // within TestInfoImpl::Run()
446  	  virtual Test* CreateTest() = 0;
447  	
448  	 protected:
449  	  TestFactoryBase() {}
450  	
451  	 private:
452  	  GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
453  	};
454  	
455  	// This class provides implementation of TeastFactoryBase interface.
456  	// It is used in TEST and TEST_F macros.
457  	template <class TestClass>
458  	class TestFactoryImpl : public TestFactoryBase {
459  	 public:
460  	  Test* CreateTest() override { return new TestClass; }
461  	};
462  	
463  	#if GTEST_OS_WINDOWS
464  	
465  	// Predicate-formatters for implementing the HRESULT checking macros
466  	// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
467  	// We pass a long instead of HRESULT to avoid causing an
468  	// include dependency for the HRESULT type.
469  	GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
470  	                                            long hr);  // NOLINT
471  	GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
472  	                                            long hr);  // NOLINT
473  	
474  	#endif  // GTEST_OS_WINDOWS
475  	
476  	// Types of SetUpTestSuite() and TearDownTestSuite() functions.
477  	using SetUpTestSuiteFunc = void (*)();
478  	using TearDownTestSuiteFunc = void (*)();
479  	
480  	struct CodeLocation {
481  	  CodeLocation(const std::string& a_file, int a_line)
482  	      : file(a_file), line(a_line) {}
483  	
484  	  std::string file;
485  	  int line;
486  	};
487  	
488  	//  Helper to identify which setup function for TestCase / TestSuite to call.
489  	//  Only one function is allowed, either TestCase or TestSute but not both.
490  	
491  	// Utility functions to help SuiteApiResolver
492  	using SetUpTearDownSuiteFuncType = void (*)();
493  	
494  	inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
495  	    SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
496  	  return a == def ? nullptr : a;
497  	}
498  	
499  	template <typename T>
500  	//  Note that SuiteApiResolver inherits from T because
501  	//  SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
502  	//  SuiteApiResolver can access them.
503  	struct SuiteApiResolver : T {
504  	  // testing::Test is only forward declared at this point. So we make it a
505  	  // dependend class for the compiler to be OK with it.
506  	  using Test =
507  	      typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
508  	
509  	  static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
510  	                                                        int line_num) {
511  	    SetUpTearDownSuiteFuncType test_case_fp =
512  	        GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
513  	    SetUpTearDownSuiteFuncType test_suite_fp =
514  	        GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
515  	
516  	    GTEST_CHECK_(!test_case_fp || !test_suite_fp)
517  	        << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
518  	           "make sure there is only one present at "
519  	        << filename << ":" << line_num;
520  	
521  	    return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
522  	  }
523  	
524  	  static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
525  	                                                           int line_num) {
526  	    SetUpTearDownSuiteFuncType test_case_fp =
527  	        GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
528  	    SetUpTearDownSuiteFuncType test_suite_fp =
529  	        GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
530  	
531  	    GTEST_CHECK_(!test_case_fp || !test_suite_fp)
532  	        << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
533  	           " please make sure there is only one present at"
534  	        << filename << ":" << line_num;
535  	
536  	    return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
537  	  }
538  	};
539  	
540  	// Creates a new TestInfo object and registers it with Google Test;
541  	// returns the created object.
542  	//
543  	// Arguments:
544  	//
545  	//   test_suite_name:   name of the test suite
546  	//   name:             name of the test
547  	//   type_param        the name of the test's type parameter, or NULL if
548  	//                     this is not a typed or a type-parameterized test.
549  	//   value_param       text representation of the test's value parameter,
550  	//                     or NULL if this is not a type-parameterized test.
551  	//   code_location:    code location where the test is defined
552  	//   fixture_class_id: ID of the test fixture class
553  	//   set_up_tc:        pointer to the function that sets up the test suite
554  	//   tear_down_tc:     pointer to the function that tears down the test suite
555  	//   factory:          pointer to the factory that creates a test object.
556  	//                     The newly created TestInfo instance will assume
557  	//                     ownership of the factory object.
558  	GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
559  	    const char* test_suite_name, const char* name, const char* type_param,
560  	    const char* value_param, CodeLocation code_location,
561  	    TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
562  	    TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
563  	
564  	// If *pstr starts with the given prefix, modifies *pstr to be right
565  	// past the prefix and returns true; otherwise leaves *pstr unchanged
566  	// and returns false.  None of pstr, *pstr, and prefix can be NULL.
567  	GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
568  	
569  	#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
570  	
571  	GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
572  	/* class A needs to have dll-interface to be used by clients of class B */)
573  	
574  	// State of the definition of a type-parameterized test suite.
575  	class GTEST_API_ TypedTestSuitePState {
576  	 public:
577  	  TypedTestSuitePState() : registered_(false) {}
578  	
579  	  // Adds the given test name to defined_test_names_ and return true
580  	  // if the test suite hasn't been registered; otherwise aborts the
581  	  // program.
582  	  bool AddTestName(const char* file, int line, const char* case_name,
583  	                   const char* test_name) {
584  	    if (registered_) {
585  	      fprintf(stderr,
586  	              "%s Test %s must be defined before "
587  	              "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
588  	              FormatFileLocation(file, line).c_str(), test_name, case_name);
589  	      fflush(stderr);
590  	      posix::Abort();
591  	    }
592  	    registered_tests_.insert(
593  	        ::std::make_pair(test_name, CodeLocation(file, line)));
594  	    return true;
595  	  }
596  	
597  	  bool TestExists(const std::string& test_name) const {
598  	    return registered_tests_.count(test_name) > 0;
599  	  }
600  	
601  	  const CodeLocation& GetCodeLocation(const std::string& test_name) const {
602  	    RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
603  	    GTEST_CHECK_(it != registered_tests_.end());
604  	    return it->second;
605  	  }
606  	
607  	  // Verifies that registered_tests match the test names in
608  	  // defined_test_names_; returns registered_tests if successful, or
609  	  // aborts the program otherwise.
610  	  const char* VerifyRegisteredTestNames(
611  	      const char* file, int line, const char* registered_tests);
612  	
613  	 private:
614  	  typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
615  	
616  	  bool registered_;
617  	  RegisteredTestsMap registered_tests_;
618  	};
619  	
620  	//  Legacy API is deprecated but still available
621  	#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
622  	using TypedTestCasePState = TypedTestSuitePState;
623  	#endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
624  	
625  	GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
626  	
627  	// Skips to the first non-space char after the first comma in 'str';
628  	// returns NULL if no comma is found in 'str'.
629  	inline const char* SkipComma(const char* str) {
630  	  const char* comma = strchr(str, ',');
631  	  if (comma == nullptr) {
632  	    return nullptr;
633  	  }
634  	  while (IsSpace(*(++comma))) {}
635  	  return comma;
636  	}
637  	
638  	// Returns the prefix of 'str' before the first comma in it; returns
639  	// the entire string if it contains no comma.
640  	inline std::string GetPrefixUntilComma(const char* str) {
641  	  const char* comma = strchr(str, ',');
642  	  return comma == nullptr ? str : std::string(str, comma);
643  	}
644  	
645  	// Splits a given string on a given delimiter, populating a given
646  	// vector with the fields.
647  	void SplitString(const ::std::string& str, char delimiter,
648  	                 ::std::vector< ::std::string>* dest);
649  	
650  	// The default argument to the template below for the case when the user does
651  	// not provide a name generator.
652  	struct DefaultNameGenerator {
653  	  template <typename T>
654  	  static std::string GetName(int i) {
655  	    return StreamableToString(i);
656  	  }
657  	};
658  	
659  	template <typename Provided = DefaultNameGenerator>
660  	struct NameGeneratorSelector {
661  	  typedef Provided type;
662  	};
663  	
664  	template <typename NameGenerator>
665  	void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {}
666  	
667  	template <typename NameGenerator, typename Types>
668  	void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
669  	  result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
670  	  GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
671  	                                          i + 1);
672  	}
673  	
674  	template <typename NameGenerator, typename Types>
675  	std::vector<std::string> GenerateNames() {
676  	  std::vector<std::string> result;
677  	  GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
678  	  return result;
679  	}
680  	
681  	// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
682  	// registers a list of type-parameterized tests with Google Test.  The
683  	// return value is insignificant - we just need to return something
684  	// such that we can call this function in a namespace scope.
685  	//
686  	// Implementation note: The GTEST_TEMPLATE_ macro declares a template
687  	// template parameter.  It's defined in gtest-type-util.h.
688  	template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
689  	class TypeParameterizedTest {
690  	 public:
691  	  // 'index' is the index of the test in the type list 'Types'
692  	  // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
693  	  // Types).  Valid values for 'index' are [0, N - 1] where N is the
694  	  // length of Types.
695  	  static bool Register(const char* prefix, const CodeLocation& code_location,
696  	                       const char* case_name, const char* test_names, int index,
697  	                       const std::vector<std::string>& type_names =
698  	                           GenerateNames<DefaultNameGenerator, Types>()) {
699  	    typedef typename Types::Head Type;
700  	    typedef Fixture<Type> FixtureClass;
701  	    typedef typename GTEST_BIND_(TestSel, Type) TestClass;
702  	
703  	    // First, registers the first type-parameterized test in the type
704  	    // list.
705  	    MakeAndRegisterTestInfo(
706  	        (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
707  	         "/" + type_names[static_cast<size_t>(index)])
708  	            .c_str(),
709  	        StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
710  	        GetTypeName<Type>().c_str(),
711  	        nullptr,  // No value parameter.
712  	        code_location, GetTypeId<FixtureClass>(),
713  	        SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
714  	            code_location.file.c_str(), code_location.line),
715  	        SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
716  	            code_location.file.c_str(), code_location.line),
717  	        new TestFactoryImpl<TestClass>);
718  	
719  	    // Next, recurses (at compile time) with the tail of the type list.
720  	    return TypeParameterizedTest<Fixture, TestSel,
721  	                                 typename Types::Tail>::Register(prefix,
722  	                                                                 code_location,
723  	                                                                 case_name,
724  	                                                                 test_names,
725  	                                                                 index + 1,
726  	                                                                 type_names);
727  	  }
728  	};
729  	
730  	// The base case for the compile time recursion.
731  	template <GTEST_TEMPLATE_ Fixture, class TestSel>
732  	class TypeParameterizedTest<Fixture, TestSel, Types0> {
733  	 public:
734  	  static bool Register(const char* /*prefix*/, const CodeLocation&,
735  	                       const char* /*case_name*/, const char* /*test_names*/,
736  	                       int /*index*/,
737  	                       const std::vector<std::string>& =
738  	                           std::vector<std::string>() /*type_names*/) {
739  	    return true;
740  	  }
741  	};
742  	
743  	// TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
744  	// registers *all combinations* of 'Tests' and 'Types' with Google
745  	// Test.  The return value is insignificant - we just need to return
746  	// something such that we can call this function in a namespace scope.
747  	template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
748  	class TypeParameterizedTestSuite {
749  	 public:
750  	  static bool Register(const char* prefix, CodeLocation code_location,
751  	                       const TypedTestSuitePState* state, const char* case_name,
752  	                       const char* test_names,
753  	                       const std::vector<std::string>& type_names =
754  	                           GenerateNames<DefaultNameGenerator, Types>()) {
755  	    std::string test_name = StripTrailingSpaces(
756  	        GetPrefixUntilComma(test_names));
757  	    if (!state->TestExists(test_name)) {
758  	      fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
759  	              case_name, test_name.c_str(),
760  	              FormatFileLocation(code_location.file.c_str(),
761  	                                 code_location.line).c_str());
762  	      fflush(stderr);
763  	      posix::Abort();
764  	    }
765  	    const CodeLocation& test_location = state->GetCodeLocation(test_name);
766  	
767  	    typedef typename Tests::Head Head;
768  	
769  	    // First, register the first test in 'Test' for each type in 'Types'.
770  	    TypeParameterizedTest<Fixture, Head, Types>::Register(
771  	        prefix, test_location, case_name, test_names, 0, type_names);
772  	
773  	    // Next, recurses (at compile time) with the tail of the test list.
774  	    return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
775  	                                      Types>::Register(prefix, code_location,
776  	                                                       state, case_name,
777  	                                                       SkipComma(test_names),
778  	                                                       type_names);
779  	  }
780  	};
781  	
782  	// The base case for the compile time recursion.
783  	template <GTEST_TEMPLATE_ Fixture, typename Types>
784  	class TypeParameterizedTestSuite<Fixture, Templates0, Types> {
785  	 public:
786  	  static bool Register(const char* /*prefix*/, const CodeLocation&,
787  	                       const TypedTestSuitePState* /*state*/,
788  	                       const char* /*case_name*/, const char* /*test_names*/,
789  	                       const std::vector<std::string>& =
790  	                           std::vector<std::string>() /*type_names*/) {
791  	    return true;
792  	  }
793  	};
794  	
795  	#endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
796  	
797  	// Returns the current OS stack trace as an std::string.
798  	//
799  	// The maximum number of stack frames to be included is specified by
800  	// the gtest_stack_trace_depth flag.  The skip_count parameter
801  	// specifies the number of top frames to be skipped, which doesn't
802  	// count against the number of frames to be included.
803  	//
804  	// For example, if Foo() calls Bar(), which in turn calls
805  	// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
806  	// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
807  	GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
808  	    UnitTest* unit_test, int skip_count);
809  	
810  	// Helpers for suppressing warnings on unreachable code or constant
811  	// condition.
812  	
813  	// Always returns true.
814  	GTEST_API_ bool AlwaysTrue();
815  	
816  	// Always returns false.
(1) Event fun_call_w_exception: Called function throws an exception of type "testing::internal::<unnamed>::ClassUniqueToAlwaysTrue". [details]
817  	inline bool AlwaysFalse() { return !AlwaysTrue(); }
818  	
819  	// Helper for suppressing false warning from Clang on a const char*
820  	// variable declared in a conditional expression always being NULL in
821  	// the else branch.
822  	struct GTEST_API_ ConstCharPtr {
823  	  ConstCharPtr(const char* str) : value(str) {}
824  	  operator bool() const { return true; }
825  	  const char* value;
826  	};
827  	
828  	// A simple Linear Congruential Generator for generating random
829  	// numbers with a uniform distribution.  Unlike rand() and srand(), it
830  	// doesn't use global state (and therefore can't interfere with user
831  	// code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
832  	// but it's good enough for our purposes.
833  	class GTEST_API_ Random {
834  	 public:
835  	  static const UInt32 kMaxRange = 1u << 31;
836  	
837  	  explicit Random(UInt32 seed) : state_(seed) {}
838  	
839  	  void Reseed(UInt32 seed) { state_ = seed; }
840  	
841  	  // Generates a random number from [0, range).  Crashes if 'range' is
842  	  // 0 or greater than kMaxRange.
843  	  UInt32 Generate(UInt32 range);
844  	
845  	 private:
846  	  UInt32 state_;
847  	  GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
848  	};
849  	
850  	// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
851  	// compiler error if T1 and T2 are different types.
852  	template <typename T1, typename T2>
853  	struct CompileAssertTypesEqual;
854  	
855  	template <typename T>
856  	struct CompileAssertTypesEqual<T, T> {
857  	};
858  	
859  	// Removes the reference from a type if it is a reference type,
860  	// otherwise leaves it unchanged.  This is the same as
861  	// tr1::remove_reference, which is not widely available yet.
862  	template <typename T>
863  	struct RemoveReference { typedef T type; };  // NOLINT
864  	template <typename T>
865  	struct RemoveReference<T&> { typedef T type; };  // NOLINT
866  	
867  	// A handy wrapper around RemoveReference that works when the argument
868  	// T depends on template parameters.
869  	#define GTEST_REMOVE_REFERENCE_(T) \
870  	    typename ::testing::internal::RemoveReference<T>::type
871  	
872  	// Removes const from a type if it is a const type, otherwise leaves
873  	// it unchanged.  This is the same as tr1::remove_const, which is not
874  	// widely available yet.
875  	template <typename T>
876  	struct RemoveConst { typedef T type; };  // NOLINT
877  	template <typename T>
878  	struct RemoveConst<const T> { typedef T type; };  // NOLINT
879  	
880  	// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
881  	// definition to fail to remove the const in 'const int[3]' and 'const
882  	// char[3][4]'.  The following specialization works around the bug.
883  	template <typename T, size_t N>
884  	struct RemoveConst<const T[N]> {
885  	  typedef typename RemoveConst<T>::type type[N];
886  	};
887  	
888  	// A handy wrapper around RemoveConst that works when the argument
889  	// T depends on template parameters.
890  	#define GTEST_REMOVE_CONST_(T) \
891  	    typename ::testing::internal::RemoveConst<T>::type
892  	
893  	// Turns const U&, U&, const U, and U all into U.
894  	#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
895  	    GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
896  	
897  	// IsAProtocolMessage<T>::value is a compile-time bool constant that's
898  	// true if T is type proto2::Message or a subclass of it.
899  	template <typename T>
900  	struct IsAProtocolMessage
901  	    : public bool_constant<
902  	  std::is_convertible<const T*, const ::proto2::Message*>::value> {
903  	};
904  	
905  	// When the compiler sees expression IsContainerTest<C>(0), if C is an
906  	// STL-style container class, the first overload of IsContainerTest
907  	// will be viable (since both C::iterator* and C::const_iterator* are
908  	// valid types and NULL can be implicitly converted to them).  It will
909  	// be picked over the second overload as 'int' is a perfect match for
910  	// the type of argument 0.  If C::iterator or C::const_iterator is not
911  	// a valid type, the first overload is not viable, and the second
912  	// overload will be picked.  Therefore, we can determine whether C is
913  	// a container class by checking the type of IsContainerTest<C>(0).
914  	// The value of the expression is insignificant.
915  	//
916  	// In C++11 mode we check the existence of a const_iterator and that an
917  	// iterator is properly implemented for the container.
918  	//
919  	// For pre-C++11 that we look for both C::iterator and C::const_iterator.
920  	// The reason is that C++ injects the name of a class as a member of the
921  	// class itself (e.g. you can refer to class iterator as either
922  	// 'iterator' or 'iterator::iterator').  If we look for C::iterator
923  	// only, for example, we would mistakenly think that a class named
924  	// iterator is an STL container.
925  	//
926  	// Also note that the simpler approach of overloading
927  	// IsContainerTest(typename C::const_iterator*) and
928  	// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
929  	typedef int IsContainer;
930  	template <class C,
931  	          class Iterator = decltype(::std::declval<const C&>().begin()),
932  	          class = decltype(::std::declval<const C&>().end()),
933  	          class = decltype(++::std::declval<Iterator&>()),
934  	          class = decltype(*::std::declval<Iterator>()),
935  	          class = typename C::const_iterator>
936  	IsContainer IsContainerTest(int /* dummy */) {
937  	  return 0;
938  	}
939  	
940  	typedef char IsNotContainer;
941  	template <class C>
942  	IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
943  	
944  	// Trait to detect whether a type T is a hash table.
945  	// The heuristic used is that the type contains an inner type `hasher` and does
946  	// not contain an inner type `reverse_iterator`.
947  	// If the container is iterable in reverse, then order might actually matter.
948  	template <typename T>
949  	struct IsHashTable {
950  	 private:
951  	  template <typename U>
952  	  static char test(typename U::hasher*, typename U::reverse_iterator*);
953  	  template <typename U>
954  	  static int test(typename U::hasher*, ...);
955  	  template <typename U>
956  	  static char test(...);
957  	
958  	 public:
959  	  static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
960  	};
961  	
962  	template <typename T>
963  	const bool IsHashTable<T>::value;
964  	
965  	template <typename C,
966  	          bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
967  	struct IsRecursiveContainerImpl;
968  	
969  	template <typename C>
970  	struct IsRecursiveContainerImpl<C, false> : public false_type {};
971  	
972  	// Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
973  	// obey the same inconsistencies as the IsContainerTest, namely check if
974  	// something is a container is relying on only const_iterator in C++11 and
975  	// is relying on both const_iterator and iterator otherwise
976  	template <typename C>
977  	struct IsRecursiveContainerImpl<C, true> {
978  	  using value_type = decltype(*std::declval<typename C::const_iterator>());
979  	  using type =
980  	      is_same<typename std::remove_const<
981  	                  typename std::remove_reference<value_type>::type>::type,
982  	              C>;
983  	};
984  	
985  	// IsRecursiveContainer<Type> is a unary compile-time predicate that
986  	// evaluates whether C is a recursive container type. A recursive container
987  	// type is a container type whose value_type is equal to the container type
988  	// itself. An example for a recursive container type is
989  	// boost::filesystem::path, whose iterator has a value_type that is equal to
990  	// boost::filesystem::path.
991  	template <typename C>
992  	struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
993  	
994  	// EnableIf<condition>::type is void when 'Cond' is true, and
995  	// undefined when 'Cond' is false.  To use SFINAE to make a function
996  	// overload only apply when a particular expression is true, add
997  	// "typename EnableIf<expression>::type* = 0" as the last parameter.
998  	template<bool> struct EnableIf;
999  	template<> struct EnableIf<true> { typedef void type; };  // NOLINT
1000 	
1001 	// Utilities for native arrays.
1002 	
1003 	// ArrayEq() compares two k-dimensional native arrays using the
1004 	// elements' operator==, where k can be any integer >= 0.  When k is
1005 	// 0, ArrayEq() degenerates into comparing a single pair of values.
1006 	
1007 	template <typename T, typename U>
1008 	bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1009 	
1010 	// This generic version is used when k is 0.
1011 	template <typename T, typename U>
1012 	inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1013 	
1014 	// This overload is used when k >= 1.
1015 	template <typename T, typename U, size_t N>
1016 	inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1017 	  return internal::ArrayEq(lhs, N, rhs);
1018 	}
1019 	
1020 	// This helper reduces code bloat.  If we instead put its logic inside
1021 	// the previous ArrayEq() function, arrays with different sizes would
1022 	// lead to different copies of the template code.
1023 	template <typename T, typename U>
1024 	bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1025 	  for (size_t i = 0; i != size; i++) {
1026 	    if (!internal::ArrayEq(lhs[i], rhs[i]))
1027 	      return false;
1028 	  }
1029 	  return true;
1030 	}
1031 	
1032 	// Finds the first element in the iterator range [begin, end) that
1033 	// equals elem.  Element may be a native array type itself.
1034 	template <typename Iter, typename Element>
1035 	Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1036 	  for (Iter it = begin; it != end; ++it) {
1037 	    if (internal::ArrayEq(*it, elem))
1038 	      return it;
1039 	  }
1040 	  return end;
1041 	}
1042 	
1043 	// CopyArray() copies a k-dimensional native array using the elements'
1044 	// operator=, where k can be any integer >= 0.  When k is 0,
1045 	// CopyArray() degenerates into copying a single value.
1046 	
1047 	template <typename T, typename U>
1048 	void CopyArray(const T* from, size_t size, U* to);
1049 	
1050 	// This generic version is used when k is 0.
1051 	template <typename T, typename U>
1052 	inline void CopyArray(const T& from, U* to) { *to = from; }
1053 	
1054 	// This overload is used when k >= 1.
1055 	template <typename T, typename U, size_t N>
1056 	inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1057 	  internal::CopyArray(from, N, *to);
1058 	}
1059 	
1060 	// This helper reduces code bloat.  If we instead put its logic inside
1061 	// the previous CopyArray() function, arrays with different sizes
1062 	// would lead to different copies of the template code.
1063 	template <typename T, typename U>
1064 	void CopyArray(const T* from, size_t size, U* to) {
1065 	  for (size_t i = 0; i != size; i++) {
1066 	    internal::CopyArray(from[i], to + i);
1067 	  }
1068 	}
1069 	
1070 	// The relation between an NativeArray object (see below) and the
1071 	// native array it represents.
1072 	// We use 2 different structs to allow non-copyable types to be used, as long
1073 	// as RelationToSourceReference() is passed.
1074 	struct RelationToSourceReference {};
1075 	struct RelationToSourceCopy {};
1076 	
1077 	// Adapts a native array to a read-only STL-style container.  Instead
1078 	// of the complete STL container concept, this adaptor only implements
1079 	// members useful for Google Mock's container matchers.  New members
1080 	// should be added as needed.  To simplify the implementation, we only
1081 	// support Element being a raw type (i.e. having no top-level const or
1082 	// reference modifier).  It's the client's responsibility to satisfy
1083 	// this requirement.  Element can be an array type itself (hence
1084 	// multi-dimensional arrays are supported).
1085 	template <typename Element>
1086 	class NativeArray {
1087 	 public:
1088 	  // STL-style container typedefs.
1089 	  typedef Element value_type;
1090 	  typedef Element* iterator;
1091 	  typedef const Element* const_iterator;
1092 	
1093 	  // Constructs from a native array. References the source.
1094 	  NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1095 	    InitRef(array, count);
1096 	  }
1097 	
1098 	  // Constructs from a native array. Copies the source.
1099 	  NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1100 	    InitCopy(array, count);
1101 	  }
1102 	
1103 	  // Copy constructor.
1104 	  NativeArray(const NativeArray& rhs) {
1105 	    (this->*rhs.clone_)(rhs.array_, rhs.size_);
1106 	  }
1107 	
1108 	  ~NativeArray() {
1109 	    if (clone_ != &NativeArray::InitRef)
1110 	      delete[] array_;
1111 	  }
1112 	
1113 	  // STL-style container methods.
1114 	  size_t size() const { return size_; }
1115 	  const_iterator begin() const { return array_; }
1116 	  const_iterator end() const { return array_ + size_; }
1117 	  bool operator==(const NativeArray& rhs) const {
1118 	    return size() == rhs.size() &&
1119 	        ArrayEq(begin(), size(), rhs.begin());
1120 	  }
1121 	
1122 	 private:
1123 	  enum {
1124 	    kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1125 	        Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value
1126 	  };
1127 	
1128 	  // Initializes this object with a copy of the input.
1129 	  void InitCopy(const Element* array, size_t a_size) {
1130 	    Element* const copy = new Element[a_size];
1131 	    CopyArray(array, a_size, copy);
1132 	    array_ = copy;
1133 	    size_ = a_size;
1134 	    clone_ = &NativeArray::InitCopy;
1135 	  }
1136 	
1137 	  // Initializes this object with a reference of the input.
1138 	  void InitRef(const Element* array, size_t a_size) {
1139 	    array_ = array;
1140 	    size_ = a_size;
1141 	    clone_ = &NativeArray::InitRef;
1142 	  }
1143 	
1144 	  const Element* array_;
1145 	  size_t size_;
1146 	  void (NativeArray::*clone_)(const Element*, size_t);
1147 	
1148 	  GTEST_DISALLOW_ASSIGN_(NativeArray);
1149 	};
1150 	
1151 	// Backport of std::index_sequence.
1152 	template <size_t... Is>
1153 	struct IndexSequence {
1154 	  using type = IndexSequence;
1155 	};
1156 	
1157 	// Double the IndexSequence, and one if plus_one is true.
1158 	template <bool plus_one, typename T, size_t sizeofT>
1159 	struct DoubleSequence;
1160 	template <size_t... I, size_t sizeofT>
1161 	struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1162 	  using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1163 	};
1164 	template <size_t... I, size_t sizeofT>
1165 	struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1166 	  using type = IndexSequence<I..., (sizeofT + I)...>;
1167 	};
1168 	
1169 	// Backport of std::make_index_sequence.
1170 	// It uses O(ln(N)) instantiation depth.
1171 	template <size_t N>
1172 	struct MakeIndexSequence
1173 	    : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type,
1174 	                     N / 2>::type {};
1175 	
1176 	template <>
1177 	struct MakeIndexSequence<0> : IndexSequence<> {};
1178 	
1179 	// FIXME: This implementation of ElemFromList is O(1) in instantiation depth,
1180 	// but it is O(N^2) in total instantiations. Not sure if this is the best
1181 	// tradeoff, as it will make it somewhat slow to compile.
1182 	template <typename T, size_t, size_t>
1183 	struct ElemFromListImpl {};
1184 	
1185 	template <typename T, size_t I>
1186 	struct ElemFromListImpl<T, I, I> {
1187 	  using type = T;
1188 	};
1189 	
1190 	// Get the Nth element from T...
1191 	// It uses O(1) instantiation depth.
1192 	template <size_t N, typename I, typename... T>
1193 	struct ElemFromList;
1194 	
1195 	template <size_t N, size_t... I, typename... T>
1196 	struct ElemFromList<N, IndexSequence<I...>, T...>
1197 	    : ElemFromListImpl<T, N, I>... {};
1198 	
1199 	template <typename... T>
1200 	class FlatTuple;
1201 	
1202 	template <typename Derived, size_t I>
1203 	struct FlatTupleElemBase;
1204 	
1205 	template <typename... T, size_t I>
1206 	struct FlatTupleElemBase<FlatTuple<T...>, I> {
1207 	  using value_type =
1208 	      typename ElemFromList<I, typename MakeIndexSequence<sizeof...(T)>::type,
1209 	                            T...>::type;
1210 	  FlatTupleElemBase() = default;
1211 	  explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {}
1212 	  value_type value;
1213 	};
1214 	
1215 	template <typename Derived, typename Idx>
1216 	struct FlatTupleBase;
1217 	
1218 	template <size_t... Idx, typename... T>
1219 	struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1220 	    : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1221 	  using Indices = IndexSequence<Idx...>;
1222 	  FlatTupleBase() = default;
1223 	  explicit FlatTupleBase(T... t)
1224 	      : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {}
1225 	};
1226 	
1227 	// Analog to std::tuple but with different tradeoffs.
1228 	// This class minimizes the template instantiation depth, thus allowing more
1229 	// elements that std::tuple would. std::tuple has been seen to require an
1230 	// instantiation depth of more than 10x the number of elements in some
1231 	// implementations.
1232 	// FlatTuple and ElemFromList are not recursive and have a fixed depth
1233 	// regardless of T...
1234 	// MakeIndexSequence, on the other hand, it is recursive but with an
1235 	// instantiation depth of O(ln(N)).
1236 	template <typename... T>
1237 	class FlatTuple
1238 	    : private FlatTupleBase<FlatTuple<T...>,
1239 	                            typename MakeIndexSequence<sizeof...(T)>::type> {
1240 	  using Indices = typename FlatTuple::FlatTupleBase::Indices;
1241 	
1242 	 public:
1243 	  FlatTuple() = default;
1244 	  explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {}
1245 	
1246 	  template <size_t I>
1247 	  const typename ElemFromList<I, Indices, T...>::type& Get() const {
1248 	    return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value;
1249 	  }
1250 	
1251 	  template <size_t I>
1252 	  typename ElemFromList<I, Indices, T...>::type& Get() {
1253 	    return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value;
1254 	  }
1255 	};
1256 	
1257 	// Utility functions to be called with static_assert to induce deprecation
1258 	// warnings.
1259 	GTEST_INTERNAL_DEPRECATED(
1260 	    "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1261 	    "INSTANTIATE_TEST_SUITE_P")
1262 	constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1263 	
1264 	GTEST_INTERNAL_DEPRECATED(
1265 	    "TYPED_TEST_CASE_P is deprecated, please use "
1266 	    "TYPED_TEST_SUITE_P")
1267 	constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1268 	
1269 	GTEST_INTERNAL_DEPRECATED(
1270 	    "TYPED_TEST_CASE is deprecated, please use "
1271 	    "TYPED_TEST_SUITE")
1272 	constexpr bool TypedTestCaseIsDeprecated() { return true; }
1273 	
1274 	GTEST_INTERNAL_DEPRECATED(
1275 	    "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1276 	    "REGISTER_TYPED_TEST_SUITE_P")
1277 	constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1278 	
1279 	GTEST_INTERNAL_DEPRECATED(
1280 	    "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1281 	    "INSTANTIATE_TYPED_TEST_SUITE_P")
1282 	constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1283 	
1284 	}  // namespace internal
1285 	}  // namespace testing
1286 	
1287 	#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1288 	  ::testing::internal::AssertHelper(result_type, file, line, message) \
1289 	    = ::testing::Message()
1290 	
1291 	#define GTEST_MESSAGE_(message, result_type) \
1292 	  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1293 	
1294 	#define GTEST_FATAL_FAILURE_(message) \
1295 	  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1296 	
1297 	#define GTEST_NONFATAL_FAILURE_(message) \
1298 	  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1299 	
1300 	#define GTEST_SUCCESS_(message) \
1301 	  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1302 	
1303 	#define GTEST_SKIP_(message) \
1304 	  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1305 	
1306 	// Suppress MSVC warning 4072 (unreachable code) for the code following
1307 	// statement if it returns or throws (or doesn't return or throw in some
1308 	// situations).
1309 	#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1310 	  if (::testing::internal::AlwaysTrue()) { statement; }
1311 	
1312 	#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1313 	  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1314 	  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1315 	    bool gtest_caught_expected = false; \
1316 	    try { \
1317 	      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1318 	    } \
1319 	    catch (expected_exception const&) { \
1320 	      gtest_caught_expected = true; \
1321 	    } \
1322 	    catch (...) { \
1323 	      gtest_msg.value = \
1324 	          "Expected: " #statement " throws an exception of type " \
1325 	          #expected_exception ".\n  Actual: it throws a different type."; \
1326 	      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1327 	    } \
1328 	    if (!gtest_caught_expected) { \
1329 	      gtest_msg.value = \
1330 	          "Expected: " #statement " throws an exception of type " \
1331 	          #expected_exception ".\n  Actual: it throws nothing."; \
1332 	      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1333 	    } \
1334 	  } else \
1335 	    GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1336 	      fail(gtest_msg.value)
1337 	
1338 	#define GTEST_TEST_NO_THROW_(statement, fail) \
1339 	  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1340 	  if (::testing::internal::AlwaysTrue()) { \
1341 	    try { \
1342 	      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1343 	    } \
1344 	    catch (...) { \
1345 	      goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1346 	    } \
1347 	  } else \
1348 	    GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1349 	      fail("Expected: " #statement " doesn't throw an exception.\n" \
1350 	           "  Actual: it throws.")
1351 	
1352 	#define GTEST_TEST_ANY_THROW_(statement, fail) \
1353 	  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1354 	  if (::testing::internal::AlwaysTrue()) { \
1355 	    bool gtest_caught_any = false; \
1356 	    try { \
1357 	      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1358 	    } \
1359 	    catch (...) { \
1360 	      gtest_caught_any = true; \
1361 	    } \
1362 	    if (!gtest_caught_any) { \
1363 	      goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1364 	    } \
1365 	  } else \
1366 	    GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1367 	      fail("Expected: " #statement " throws an exception.\n" \
1368 	           "  Actual: it doesn't.")
1369 	
1370 	
1371 	// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1372 	// either a boolean expression or an AssertionResult. text is a textual
1373 	// represenation of expression as it was passed into the EXPECT_TRUE.
1374 	#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1375 	  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1376 	  if (const ::testing::AssertionResult gtest_ar_ = \
1377 	      ::testing::AssertionResult(expression)) \
1378 	    ; \
1379 	  else \
1380 	    fail(::testing::internal::GetBoolAssertionFailureMessage(\
1381 	        gtest_ar_, text, #actual, #expected).c_str())
1382 	
1383 	#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1384 	  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1385 	  if (::testing::internal::AlwaysTrue()) { \
1386 	    ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1387 	    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1388 	    if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1389 	      goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1390 	    } \
1391 	  } else \
1392 	    GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1393 	      fail("Expected: " #statement " doesn't generate new fatal " \
1394 	           "failures in the current thread.\n" \
1395 	           "  Actual: it does.")
1396 	
1397 	// Expands to the name of the class that implements the given test.
1398 	#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1399 	  test_suite_name##_##test_name##_Test
1400 	
1401 	// Helper macro for defining tests.
1402 	#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
1403 	  class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
1404 	      : public parent_class {                                                 \
1405 	   public:                                                                    \
1406 	    GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {}                   \
1407 	                                                                              \
1408 	   private:                                                                   \
1409 	    virtual void TestBody();                                                  \
1410 	    static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
1411 	    GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
1412 	                                                           test_name));       \
1413 	  };                                                                          \
1414 	                                                                              \
1415 	  ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
1416 	                                                    test_name)::test_info_ =  \
1417 	      ::testing::internal::MakeAndRegisterTestInfo(                           \
1418 	          #test_suite_name, #test_name, nullptr, nullptr,                     \
1419 	          ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1420 	          ::testing::internal::SuiteApiResolver<                              \
1421 	              parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),         \
1422 	          ::testing::internal::SuiteApiResolver<                              \
1423 	              parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),      \
1424 	          new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
1425 	              test_suite_name, test_name)>);                                  \
1426 	  void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1427 	
1428 	#endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1429