1    	// Internal policy header for unordered_set and unordered_map -*- C++ -*-
2    	
3    	// Copyright (C) 2010-2019 Free Software Foundation, Inc.
4    	//
5    	// This file is part of the GNU ISO C++ Library.  This library is free
6    	// software; you can redistribute it and/or modify it under the
7    	// terms of the GNU General Public License as published by the
8    	// Free Software Foundation; either version 3, or (at your option)
9    	// any later version.
10   	
11   	// This library is distributed in the hope that it will be useful,
12   	// but WITHOUT ANY WARRANTY; without even the implied warranty of
13   	// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   	// GNU General Public License for more details.
15   	
16   	// Under Section 7 of GPL version 3, you are granted additional
17   	// permissions described in the GCC Runtime Library Exception, version
18   	// 3.1, as published by the Free Software Foundation.
19   	
20   	// You should have received a copy of the GNU General Public License and
21   	// a copy of the GCC Runtime Library Exception along with this program;
22   	// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23   	// <http://www.gnu.org/licenses/>.
24   	
25   	/** @file bits/hashtable_policy.h
26   	 *  This is an internal header file, included by other library headers.
27   	 *  Do not attempt to use it directly.
28   	 *  @headername{unordered_map,unordered_set}
29   	 */
30   	
31   	#ifndef _HASHTABLE_POLICY_H
32   	#define _HASHTABLE_POLICY_H 1
33   	
34   	#include <tuple>		// for std::tuple, std::forward_as_tuple
35   	#include <limits>		// for std::numeric_limits
36   	#include <bits/stl_algobase.h>	// for std::min.
37   	
38   	namespace std _GLIBCXX_VISIBILITY(default)
39   	{
40   	_GLIBCXX_BEGIN_NAMESPACE_VERSION
41   	
42   	  template<typename _Key, typename _Value, typename _Alloc,
43   		   typename _ExtractKey, typename _Equal,
44   		   typename _H1, typename _H2, typename _Hash,
45   		   typename _RehashPolicy, typename _Traits>
46   	    class _Hashtable;
47   	
48   	namespace __detail
49   	{
50   	  /**
51   	   *  @defgroup hashtable-detail Base and Implementation Classes
52   	   *  @ingroup unordered_associative_containers
53   	   *  @{
54   	   */
55   	  template<typename _Key, typename _Value,
56   		   typename _ExtractKey, typename _Equal,
57   		   typename _H1, typename _H2, typename _Hash, typename _Traits>
58   	    struct _Hashtable_base;
59   	
60   	  // Helper function: return distance(first, last) for forward
61   	  // iterators, or 0/1 for input iterators.
62   	  template<class _Iterator>
63   	    inline typename std::iterator_traits<_Iterator>::difference_type
64   	    __distance_fw(_Iterator __first, _Iterator __last,
65   			  std::input_iterator_tag)
66   	    { return __first != __last ? 1 : 0; }
67   	
68   	  template<class _Iterator>
69   	    inline typename std::iterator_traits<_Iterator>::difference_type
70   	    __distance_fw(_Iterator __first, _Iterator __last,
71   			  std::forward_iterator_tag)
72   	    { return std::distance(__first, __last); }
73   	
74   	  template<class _Iterator>
75   	    inline typename std::iterator_traits<_Iterator>::difference_type
76   	    __distance_fw(_Iterator __first, _Iterator __last)
77   	    { return __distance_fw(__first, __last,
78   				   std::__iterator_category(__first)); }
79   	
80   	  struct _Identity
81   	  {
82   	    template<typename _Tp>
83   	      _Tp&&
84   	      operator()(_Tp&& __x) const
85   	      { return std::forward<_Tp>(__x); }
86   	  };
87   	
88   	  struct _Select1st
89   	  {
90   	    template<typename _Tp>
91   	      auto
92   	      operator()(_Tp&& __x) const
93   	      -> decltype(std::get<0>(std::forward<_Tp>(__x)))
94   	      { return std::get<0>(std::forward<_Tp>(__x)); }
95   	  };
96   	
97   	  template<typename _NodeAlloc>
98   	    struct _Hashtable_alloc;
99   	
100  	  // Functor recycling a pool of nodes and using allocation once the pool is
101  	  // empty.
102  	  template<typename _NodeAlloc>
103  	    struct _ReuseOrAllocNode
104  	    {
105  	    private:
106  	      using __node_alloc_type = _NodeAlloc;
107  	      using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
108  	      using __node_alloc_traits =
109  		typename __hashtable_alloc::__node_alloc_traits;
110  	      using __node_type = typename __hashtable_alloc::__node_type;
111  	
112  	    public:
113  	      _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
114  		: _M_nodes(__nodes), _M_h(__h) { }
115  	      _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
116  	
117  	      ~_ReuseOrAllocNode()
118  	      { _M_h._M_deallocate_nodes(_M_nodes); }
119  	
120  	      template<typename _Arg>
121  		__node_type*
122  		operator()(_Arg&& __arg) const
123  		{
124  		  if (_M_nodes)
125  		    {
126  		      __node_type* __node = _M_nodes;
127  		      _M_nodes = _M_nodes->_M_next();
128  		      __node->_M_nxt = nullptr;
129  		      auto& __a = _M_h._M_node_allocator();
130  		      __node_alloc_traits::destroy(__a, __node->_M_valptr());
131  		      __try
132  			{
133  			  __node_alloc_traits::construct(__a, __node->_M_valptr(),
134  							 std::forward<_Arg>(__arg));
135  			}
136  		      __catch(...)
137  			{
138  			  _M_h._M_deallocate_node_ptr(__node);
139  			  __throw_exception_again;
140  			}
141  		      return __node;
142  		    }
143  		  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
144  		}
145  	
146  	    private:
147  	      mutable __node_type* _M_nodes;
148  	      __hashtable_alloc& _M_h;
149  	    };
150  	
151  	  // Functor similar to the previous one but without any pool of nodes to
152  	  // recycle.
153  	  template<typename _NodeAlloc>
154  	    struct _AllocNode
155  	    {
156  	    private:
157  	      using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
158  	      using __node_type = typename __hashtable_alloc::__node_type;
159  	
160  	    public:
161  	      _AllocNode(__hashtable_alloc& __h)
162  		: _M_h(__h) { }
163  	
164  	      template<typename _Arg>
165  		__node_type*
166  		operator()(_Arg&& __arg) const
167  		{ return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
168  	
169  	    private:
170  	      __hashtable_alloc& _M_h;
171  	    };
172  	
173  	  // Auxiliary types used for all instantiations of _Hashtable nodes
174  	  // and iterators.
175  	
176  	  /**
177  	   *  struct _Hashtable_traits
178  	   *
179  	   *  Important traits for hash tables.
180  	   *
181  	   *  @tparam _Cache_hash_code  Boolean value. True if the value of
182  	   *  the hash function is stored along with the value. This is a
183  	   *  time-space tradeoff.  Storing it may improve lookup speed by
184  	   *  reducing the number of times we need to call the _Equal
185  	   *  function.
186  	   *
187  	   *  @tparam _Constant_iterators  Boolean value. True if iterator and
188  	   *  const_iterator are both constant iterator types. This is true
189  	   *  for unordered_set and unordered_multiset, false for
190  	   *  unordered_map and unordered_multimap.
191  	   *
192  	   *  @tparam _Unique_keys  Boolean value. True if the return value
193  	   *  of _Hashtable::count(k) is always at most one, false if it may
194  	   *  be an arbitrary number. This is true for unordered_set and
195  	   *  unordered_map, false for unordered_multiset and
196  	   *  unordered_multimap.
197  	   */
198  	  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
199  	    struct _Hashtable_traits
200  	    {
201  	      using __hash_cached = __bool_constant<_Cache_hash_code>;
202  	      using __constant_iterators = __bool_constant<_Constant_iterators>;
203  	      using __unique_keys = __bool_constant<_Unique_keys>;
204  	    };
205  	
206  	  /**
207  	   *  struct _Hash_node_base
208  	   *
209  	   *  Nodes, used to wrap elements stored in the hash table.  A policy
210  	   *  template parameter of class template _Hashtable controls whether
211  	   *  nodes also store a hash code. In some cases (e.g. strings) this
212  	   *  may be a performance win.
213  	   */
214  	  struct _Hash_node_base
215  	  {
216  	    _Hash_node_base* _M_nxt;
217  	
218  	    _Hash_node_base() noexcept : _M_nxt() { }
219  	
220  	    _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
221  	  };
222  	
223  	  /**
224  	   *  struct _Hash_node_value_base
225  	   *
226  	   *  Node type with the value to store.
227  	   */
228  	  template<typename _Value>
229  	    struct _Hash_node_value_base : _Hash_node_base
230  	    {
231  	      typedef _Value value_type;
232  	
233  	      __gnu_cxx::__aligned_buffer<_Value> _M_storage;
234  	
235  	      _Value*
(1) Event noescape: "std::__detail::_Hash_node_value_base<std::pair<pg_t const, pg_stat_t> >::_M_valptr()" does not free or save its parameter "this".
236  	      _M_valptr() noexcept
237  	      { return _M_storage._M_ptr(); }
238  	
239  	      const _Value*
240  	      _M_valptr() const noexcept
241  	      { return _M_storage._M_ptr(); }
242  	
243  	      _Value&
(1) Event noescape: "std::__detail::_Hash_node_value_base<std::pair<pg_t const, pg_stat_t> >::_M_v()" does not free or save its parameter "this".
244  	      _M_v() noexcept
245  	      { return *_M_valptr(); }
246  	
247  	      const _Value&
248  	      _M_v() const noexcept
249  	      { return *_M_valptr(); }
250  	    };
251  	
252  	  /**
253  	   *  Primary template struct _Hash_node.
254  	   */
255  	  template<typename _Value, bool _Cache_hash_code>
256  	    struct _Hash_node;
257  	
258  	  /**
259  	   *  Specialization for nodes with caches, struct _Hash_node.
260  	   *
261  	   *  Base class is __detail::_Hash_node_value_base.
262  	   */
263  	  template<typename _Value>
264  	    struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
265  	    {
266  	      std::size_t  _M_hash_code;
267  	
268  	      _Hash_node*
269  	      _M_next() const noexcept
270  	      { return static_cast<_Hash_node*>(this->_M_nxt); }
271  	    };
272  	
273  	  /**
274  	   *  Specialization for nodes without caches, struct _Hash_node.
275  	   *
276  	   *  Base class is __detail::_Hash_node_value_base.
277  	   */
278  	  template<typename _Value>
279  	    struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
280  	    {
281  	      _Hash_node*
282  	      _M_next() const noexcept
283  	      { return static_cast<_Hash_node*>(this->_M_nxt); }
284  	    };
285  	
286  	  /// Base class for node iterators.
287  	  template<typename _Value, bool _Cache_hash_code>
288  	    struct _Node_iterator_base
289  	    {
290  	      using __node_type = _Hash_node<_Value, _Cache_hash_code>;
291  	
292  	      __node_type*  _M_cur;
293  	
294  	      _Node_iterator_base(__node_type* __p) noexcept
295  	      : _M_cur(__p) { }
296  	
297  	      void
298  	      _M_incr() noexcept
299  	      { _M_cur = _M_cur->_M_next(); }
300  	    };
301  	
302  	  template<typename _Value, bool _Cache_hash_code>
303  	    inline bool
304  	    operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
305  		       const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
306  	    noexcept
307  	    { return __x._M_cur == __y._M_cur; }
308  	
309  	  template<typename _Value, bool _Cache_hash_code>
310  	    inline bool
311  	    operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
312  		       const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
313  	    noexcept
314  	    { return __x._M_cur != __y._M_cur; }
315  	
316  	  /// Node iterators, used to iterate through all the hashtable.
317  	  template<typename _Value, bool __constant_iterators, bool __cache>
318  	    struct _Node_iterator
319  	    : public _Node_iterator_base<_Value, __cache>
320  	    {
321  	    private:
322  	      using __base_type = _Node_iterator_base<_Value, __cache>;
323  	      using __node_type = typename __base_type::__node_type;
324  	
325  	    public:
326  	      typedef _Value					value_type;
327  	      typedef std::ptrdiff_t				difference_type;
328  	      typedef std::forward_iterator_tag			iterator_category;
329  	
330  	      using pointer = typename std::conditional<__constant_iterators,
331  							const _Value*, _Value*>::type;
332  	
333  	      using reference = typename std::conditional<__constant_iterators,
334  							  const _Value&, _Value&>::type;
335  	
336  	      _Node_iterator() noexcept
337  	      : __base_type(0) { }
338  	
339  	      explicit
340  	      _Node_iterator(__node_type* __p) noexcept
341  	      : __base_type(__p) { }
342  	
343  	      reference
344  	      operator*() const noexcept
345  	      { return this->_M_cur->_M_v(); }
346  	
347  	      pointer
348  	      operator->() const noexcept
349  	      { return this->_M_cur->_M_valptr(); }
350  	
351  	      _Node_iterator&
352  	      operator++() noexcept
353  	      {
354  		this->_M_incr();
355  		return *this;
356  	      }
357  	
358  	      _Node_iterator
359  	      operator++(int) noexcept
360  	      {
361  		_Node_iterator __tmp(*this);
362  		this->_M_incr();
363  		return __tmp;
364  	      }
365  	    };
366  	
367  	  /// Node const_iterators, used to iterate through all the hashtable.
368  	  template<typename _Value, bool __constant_iterators, bool __cache>
369  	    struct _Node_const_iterator
370  	    : public _Node_iterator_base<_Value, __cache>
371  	    {
372  	    private:
373  	      using __base_type = _Node_iterator_base<_Value, __cache>;
374  	      using __node_type = typename __base_type::__node_type;
375  	
376  	    public:
377  	      typedef _Value					value_type;
378  	      typedef std::ptrdiff_t				difference_type;
379  	      typedef std::forward_iterator_tag			iterator_category;
380  	
381  	      typedef const _Value*				pointer;
382  	      typedef const _Value&				reference;
383  	
384  	      _Node_const_iterator() noexcept
385  	      : __base_type(0) { }
386  	
387  	      explicit
388  	      _Node_const_iterator(__node_type* __p) noexcept
389  	      : __base_type(__p) { }
390  	
391  	      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
392  				   __cache>& __x) noexcept
393  	      : __base_type(__x._M_cur) { }
394  	
395  	      reference
396  	      operator*() const noexcept
397  	      { return this->_M_cur->_M_v(); }
398  	
399  	      pointer
400  	      operator->() const noexcept
401  	      { return this->_M_cur->_M_valptr(); }
402  	
403  	      _Node_const_iterator&
404  	      operator++() noexcept
405  	      {
406  		this->_M_incr();
407  		return *this;
408  	      }
409  	
410  	      _Node_const_iterator
411  	      operator++(int) noexcept
412  	      {
413  		_Node_const_iterator __tmp(*this);
414  		this->_M_incr();
415  		return __tmp;
416  	      }
417  	    };
418  	
419  	  // Many of class template _Hashtable's template parameters are policy
420  	  // classes.  These are defaults for the policies.
421  	
422  	  /// Default range hashing function: use division to fold a large number
423  	  /// into the range [0, N).
424  	  struct _Mod_range_hashing
425  	  {
426  	    typedef std::size_t first_argument_type;
427  	    typedef std::size_t second_argument_type;
428  	    typedef std::size_t result_type;
429  	
430  	    result_type
431  	    operator()(first_argument_type __num,
432  		       second_argument_type __den) const noexcept
433  	    { return __num % __den; }
434  	  };
435  	
436  	  /// Default ranged hash function H.  In principle it should be a
437  	  /// function object composed from objects of type H1 and H2 such that
438  	  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
439  	  /// h1 and h2.  So instead we'll just use a tag to tell class template
440  	  /// hashtable to do that composition.
441  	  struct _Default_ranged_hash { };
442  	
443  	  /// Default value for rehash policy.  Bucket size is (usually) the
444  	  /// smallest prime that keeps the load factor small enough.
445  	  struct _Prime_rehash_policy
446  	  {
447  	    using __has_load_factor = std::true_type;
448  	
449  	    _Prime_rehash_policy(float __z = 1.0) noexcept
450  	    : _M_max_load_factor(__z), _M_next_resize(0) { }
451  	
452  	    float
453  	    max_load_factor() const noexcept
454  	    { return _M_max_load_factor; }
455  	
456  	    // Return a bucket size no smaller than n.
457  	    std::size_t
458  	    _M_next_bkt(std::size_t __n) const;
459  	
460  	    // Return a bucket count appropriate for n elements
461  	    std::size_t
462  	    _M_bkt_for_elements(std::size_t __n) const
463  	    { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
464  	
465  	    // __n_bkt is current bucket count, __n_elt is current element count,
466  	    // and __n_ins is number of elements to be inserted.  Do we need to
467  	    // increase bucket count?  If so, return make_pair(true, n), where n
468  	    // is the new bucket count.  If not, return make_pair(false, 0).
469  	    std::pair<bool, std::size_t>
470  	    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
471  			   std::size_t __n_ins) const;
472  	
473  	    typedef std::size_t _State;
474  	
475  	    _State
476  	    _M_state() const
477  	    { return _M_next_resize; }
478  	
479  	    void
480  	    _M_reset() noexcept
481  	    { _M_next_resize = 0; }
482  	
483  	    void
484  	    _M_reset(_State __state)
485  	    { _M_next_resize = __state; }
486  	
487  	    static const std::size_t _S_growth_factor = 2;
488  	
489  	    float		_M_max_load_factor;
490  	    mutable std::size_t	_M_next_resize;
491  	  };
492  	
493  	  /// Range hashing function assuming that second arg is a power of 2.
494  	  struct _Mask_range_hashing
495  	  {
496  	    typedef std::size_t first_argument_type;
497  	    typedef std::size_t second_argument_type;
498  	    typedef std::size_t result_type;
499  	
500  	    result_type
501  	    operator()(first_argument_type __num,
502  		       second_argument_type __den) const noexcept
503  	    { return __num & (__den - 1); }
504  	  };
505  	
506  	  /// Compute closest power of 2 not less than __n
507  	  inline std::size_t
508  	  __clp2(std::size_t __n) noexcept
509  	  {
510  	    // Equivalent to return __n ? std::ceil2(__n) : 0;
511  	    if (__n < 2)
512  	      return __n;
513  	    const unsigned __lz = sizeof(size_t) > sizeof(long)
514  	      ? __builtin_clzll(__n - 1ull)
515  	      : __builtin_clzl(__n - 1ul);
516  	    // Doing two shifts avoids undefined behaviour when __lz == 0.
517  	    return (size_t(1) << (numeric_limits<size_t>::digits - __lz - 1)) << 1;
518  	  }
519  	
520  	  /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
521  	  /// operations.
522  	  struct _Power2_rehash_policy
523  	  {
524  	    using __has_load_factor = std::true_type;
525  	
526  	    _Power2_rehash_policy(float __z = 1.0) noexcept
527  	    : _M_max_load_factor(__z), _M_next_resize(0) { }
528  	
529  	    float
530  	    max_load_factor() const noexcept
531  	    { return _M_max_load_factor; }
532  	
533  	    // Return a bucket size no smaller than n (as long as n is not above the
534  	    // highest power of 2).
535  	    std::size_t
536  	    _M_next_bkt(std::size_t __n) noexcept
537  	    {
538  	      const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
539  	      const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
540  	      std::size_t __res = __clp2(__n);
541  	
542  	      if (__res == __n)
543  		__res <<= 1;
544  	
545  	      if (__res == 0)
546  		__res = __max_bkt;
547  	
548  	      if (__res == __max_bkt)
549  		// Set next resize to the max value so that we never try to rehash again
550  		// as we already reach the biggest possible bucket number.
551  		// Note that it might result in max_load_factor not being respected.
552  		_M_next_resize = std::size_t(-1);
553  	      else
554  		_M_next_resize
555  		  = __builtin_ceil(__res * (long double)_M_max_load_factor);
556  	
557  	      return __res;
558  	    }
559  	
560  	    // Return a bucket count appropriate for n elements
561  	    std::size_t
562  	    _M_bkt_for_elements(std::size_t __n) const noexcept
563  	    { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
564  	
565  	    // __n_bkt is current bucket count, __n_elt is current element count,
566  	    // and __n_ins is number of elements to be inserted.  Do we need to
567  	    // increase bucket count?  If so, return make_pair(true, n), where n
568  	    // is the new bucket count.  If not, return make_pair(false, 0).
569  	    std::pair<bool, std::size_t>
570  	    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
571  			   std::size_t __n_ins) noexcept
572  	    {
573  	      if (__n_elt + __n_ins >= _M_next_resize)
574  		{
575  		  long double __min_bkts = (__n_elt + __n_ins)
576  						/ (long double)_M_max_load_factor;
577  		  if (__min_bkts >= __n_bkt)
578  		    return std::make_pair(true,
579  		      _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
580  							__n_bkt * _S_growth_factor)));
581  	
582  		  _M_next_resize
583  		    = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
584  		  return std::make_pair(false, 0);
585  		}
586  	      else
587  		return std::make_pair(false, 0);
588  	    }
589  	
590  	    typedef std::size_t _State;
591  	
592  	    _State
593  	    _M_state() const noexcept
594  	    { return _M_next_resize; }
595  	
596  	    void
597  	    _M_reset() noexcept
598  	    { _M_next_resize = 0; }
599  	
600  	    void
601  	    _M_reset(_State __state) noexcept
602  	    { _M_next_resize = __state; }
603  	
604  	    static const std::size_t _S_growth_factor = 2;
605  	
606  	    float	_M_max_load_factor;
607  	    std::size_t	_M_next_resize;
608  	  };
609  	
610  	  // Base classes for std::_Hashtable.  We define these base classes
611  	  // because in some cases we want to do different things depending on
612  	  // the value of a policy class.  In some cases the policy class
613  	  // affects which member functions and nested typedefs are defined;
614  	  // we handle that by specializing base class templates.  Several of
615  	  // the base class templates need to access other members of class
616  	  // template _Hashtable, so we use a variant of the "Curiously
617  	  // Recurring Template Pattern" (CRTP) technique.
618  	
619  	  /**
620  	   *  Primary class template _Map_base.
621  	   *
622  	   *  If the hashtable has a value type of the form pair<T1, T2> and a
623  	   *  key extraction policy (_ExtractKey) that returns the first part
624  	   *  of the pair, the hashtable gets a mapped_type typedef.  If it
625  	   *  satisfies those criteria and also has unique keys, then it also
626  	   *  gets an operator[].
627  	   */
628  	  template<typename _Key, typename _Value, typename _Alloc,
629  		   typename _ExtractKey, typename _Equal,
630  		   typename _H1, typename _H2, typename _Hash,
631  		   typename _RehashPolicy, typename _Traits,
632  		   bool _Unique_keys = _Traits::__unique_keys::value>
633  	    struct _Map_base { };
634  	
635  	  /// Partial specialization, __unique_keys set to false.
636  	  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
637  		   typename _H1, typename _H2, typename _Hash,
638  		   typename _RehashPolicy, typename _Traits>
639  	    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
640  			     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
641  	    {
642  	      using mapped_type = typename std::tuple_element<1, _Pair>::type;
643  	    };
644  	
645  	  /// Partial specialization, __unique_keys set to true.
646  	  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
647  		   typename _H1, typename _H2, typename _Hash,
648  		   typename _RehashPolicy, typename _Traits>
649  	    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
650  			     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
651  	    {
652  	    private:
653  	      using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
654  								 _Select1st,
655  								_Equal, _H1, _H2, _Hash,
656  								  _Traits>;
657  	
658  	      using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
659  					     _Select1st, _Equal,
660  					     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
661  	
662  	      using __hash_code = typename __hashtable_base::__hash_code;
663  	      using __node_type = typename __hashtable_base::__node_type;
664  	
665  	    public:
666  	      using key_type = typename __hashtable_base::key_type;
667  	      using iterator = typename __hashtable_base::iterator;
668  	      using mapped_type = typename std::tuple_element<1, _Pair>::type;
669  	
670  	      mapped_type&
671  	      operator[](const key_type& __k);
672  	
673  	      mapped_type&
674  	      operator[](key_type&& __k);
675  	
676  	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
677  	      // DR 761. unordered_map needs an at() member function.
678  	      mapped_type&
679  	      at(const key_type& __k);
680  	
681  	      const mapped_type&
682  	      at(const key_type& __k) const;
683  	    };
684  	
685  	  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
686  		   typename _H1, typename _H2, typename _Hash,
687  		   typename _RehashPolicy, typename _Traits>
688  	    auto
689  	    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
690  		      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
691  	    operator[](const key_type& __k)
692  	    -> mapped_type&
693  	    {
694  	      __hashtable* __h = static_cast<__hashtable*>(this);
695  	      __hash_code __code = __h->_M_hash_code(__k);
696  	      std::size_t __n = __h->_M_bucket_index(__k, __code);
697  	      __node_type* __p = __h->_M_find_node(__n, __k, __code);
698  	
699  	      if (!__p)
700  		{
701  		  __p = __h->_M_allocate_node(std::piecewise_construct,
702  					      std::tuple<const key_type&>(__k),
703  					      std::tuple<>());
704  		  return __h->_M_insert_unique_node(__n, __code, __p)->second;
705  		}
706  	
707  	      return __p->_M_v().second;
708  	    }
709  	
710  	  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
711  		   typename _H1, typename _H2, typename _Hash,
712  		   typename _RehashPolicy, typename _Traits>
713  	    auto
714  	    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
715  		      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
716  	    operator[](key_type&& __k)
717  	    -> mapped_type&
718  	    {
719  	      __hashtable* __h = static_cast<__hashtable*>(this);
720  	      __hash_code __code = __h->_M_hash_code(__k);
721  	      std::size_t __n = __h->_M_bucket_index(__k, __code);
722  	      __node_type* __p = __h->_M_find_node(__n, __k, __code);
723  	
724  	      if (!__p)
725  		{
726  		  __p = __h->_M_allocate_node(std::piecewise_construct,
727  					      std::forward_as_tuple(std::move(__k)),
728  					      std::tuple<>());
729  		  return __h->_M_insert_unique_node(__n, __code, __p)->second;
730  		}
731  	
732  	      return __p->_M_v().second;
733  	    }
734  	
735  	  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
736  		   typename _H1, typename _H2, typename _Hash,
737  		   typename _RehashPolicy, typename _Traits>
738  	    auto
739  	    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
740  		      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
741  	    at(const key_type& __k)
742  	    -> mapped_type&
743  	    {
744  	      __hashtable* __h = static_cast<__hashtable*>(this);
745  	      __hash_code __code = __h->_M_hash_code(__k);
746  	      std::size_t __n = __h->_M_bucket_index(__k, __code);
747  	      __node_type* __p = __h->_M_find_node(__n, __k, __code);
748  	
749  	      if (!__p)
750  		__throw_out_of_range(__N("_Map_base::at"));
751  	      return __p->_M_v().second;
752  	    }
753  	
754  	  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
755  		   typename _H1, typename _H2, typename _Hash,
756  		   typename _RehashPolicy, typename _Traits>
757  	    auto
758  	    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
759  		      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
760  	    at(const key_type& __k) const
761  	    -> const mapped_type&
762  	    {
763  	      const __hashtable* __h = static_cast<const __hashtable*>(this);
764  	      __hash_code __code = __h->_M_hash_code(__k);
765  	      std::size_t __n = __h->_M_bucket_index(__k, __code);
766  	      __node_type* __p = __h->_M_find_node(__n, __k, __code);
767  	
768  	      if (!__p)
769  		__throw_out_of_range(__N("_Map_base::at"));
770  	      return __p->_M_v().second;
771  	    }
772  	
773  	  /**
774  	   *  Primary class template _Insert_base.
775  	   *
776  	   *  Defines @c insert member functions appropriate to all _Hashtables.
777  	   */
778  	  template<typename _Key, typename _Value, typename _Alloc,
779  		   typename _ExtractKey, typename _Equal,
780  		   typename _H1, typename _H2, typename _Hash,
781  		   typename _RehashPolicy, typename _Traits>
782  	    struct _Insert_base
783  	    {
784  	    protected:
785  	      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
786  					     _Equal, _H1, _H2, _Hash,
787  					     _RehashPolicy, _Traits>;
788  	
789  	      using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
790  						       _Equal, _H1, _H2, _Hash,
791  						       _Traits>;
792  	
793  	      using value_type = typename __hashtable_base::value_type;
794  	      using iterator = typename __hashtable_base::iterator;
795  	      using const_iterator =  typename __hashtable_base::const_iterator;
796  	      using size_type = typename __hashtable_base::size_type;
797  	
798  	      using __unique_keys = typename __hashtable_base::__unique_keys;
799  	      using __ireturn_type = typename __hashtable_base::__ireturn_type;
800  	      using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>;
801  	      using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
802  	      using __node_gen_type = _AllocNode<__node_alloc_type>;
803  	
804  	      __hashtable&
805  	      _M_conjure_hashtable()
806  	      { return *(static_cast<__hashtable*>(this)); }
807  	
808  	      template<typename _InputIterator, typename _NodeGetter>
809  		void
810  		_M_insert_range(_InputIterator __first, _InputIterator __last,
811  				const _NodeGetter&, true_type);
812  	
813  	      template<typename _InputIterator, typename _NodeGetter>
814  		void
815  		_M_insert_range(_InputIterator __first, _InputIterator __last,
816  				const _NodeGetter&, false_type);
817  	
818  	    public:
819  	      __ireturn_type
820  	      insert(const value_type& __v)
821  	      {
822  		__hashtable& __h = _M_conjure_hashtable();
823  		__node_gen_type __node_gen(__h);
824  		return __h._M_insert(__v, __node_gen, __unique_keys());
825  	      }
826  	
827  	      iterator
828  	      insert(const_iterator __hint, const value_type& __v)
829  	      {
830  		__hashtable& __h = _M_conjure_hashtable();
831  		__node_gen_type __node_gen(__h);	
832  		return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
833  	      }
834  	
835  	      void
836  	      insert(initializer_list<value_type> __l)
837  	      { this->insert(__l.begin(), __l.end()); }
838  	
839  	      template<typename _InputIterator>
840  		void
841  		insert(_InputIterator __first, _InputIterator __last)
842  		{
843  		  __hashtable& __h = _M_conjure_hashtable();
844  		  __node_gen_type __node_gen(__h);
845  		  return _M_insert_range(__first, __last, __node_gen, __unique_keys());
846  		}
847  	    };
848  	
849  	  template<typename _Key, typename _Value, typename _Alloc,
850  		   typename _ExtractKey, typename _Equal,
851  		   typename _H1, typename _H2, typename _Hash,
852  		   typename _RehashPolicy, typename _Traits>
853  	    template<typename _InputIterator, typename _NodeGetter>
854  	      void
855  	      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
856  			    _RehashPolicy, _Traits>::
857  	      _M_insert_range(_InputIterator __first, _InputIterator __last,
858  			      const _NodeGetter& __node_gen, true_type)
859  	      {
860  		size_type __n_elt = __detail::__distance_fw(__first, __last);
861  		if (__n_elt == 0)
862  		  return;
863  	
864  		__hashtable& __h = _M_conjure_hashtable();
865  		for (; __first != __last; ++__first)
866  		  {
867  		    if (__h._M_insert(*__first, __node_gen, __unique_keys(),
868  				      __n_elt).second)
869  		      __n_elt = 1;
870  		    else if (__n_elt != 1)
871  		      --__n_elt;
872  		  }
873  	      }
874  	
875  	  template<typename _Key, typename _Value, typename _Alloc,
876  		   typename _ExtractKey, typename _Equal,
877  		   typename _H1, typename _H2, typename _Hash,
878  		   typename _RehashPolicy, typename _Traits>
879  	    template<typename _InputIterator, typename _NodeGetter>
880  	      void
881  	      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
882  			    _RehashPolicy, _Traits>::
883  	      _M_insert_range(_InputIterator __first, _InputIterator __last,
884  			      const _NodeGetter& __node_gen, false_type)
885  	      {
886  		using __rehash_type = typename __hashtable::__rehash_type;
887  		using __rehash_state = typename __hashtable::__rehash_state;
888  		using pair_type = std::pair<bool, std::size_t>;
889  	
890  		size_type __n_elt = __detail::__distance_fw(__first, __last);
891  		if (__n_elt == 0)
892  		  return;
893  	
894  		__hashtable& __h = _M_conjure_hashtable();
895  		__rehash_type& __rehash = __h._M_rehash_policy;
896  		const __rehash_state& __saved_state = __rehash._M_state();
897  		pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
898  								__h._M_element_count,
899  								__n_elt);
900  	
901  		if (__do_rehash.first)
902  		  __h._M_rehash(__do_rehash.second, __saved_state);
903  	
904  		for (; __first != __last; ++__first)
905  		  __h._M_insert(*__first, __node_gen, __unique_keys());
906  	      }
907  	
908  	  /**
909  	   *  Primary class template _Insert.
910  	   *
911  	   *  Defines @c insert member functions that depend on _Hashtable policies,
912  	   *  via partial specializations.
913  	   */
914  	  template<typename _Key, typename _Value, typename _Alloc,
915  		   typename _ExtractKey, typename _Equal,
916  		   typename _H1, typename _H2, typename _Hash,
917  		   typename _RehashPolicy, typename _Traits,
918  		   bool _Constant_iterators = _Traits::__constant_iterators::value>
919  	    struct _Insert;
920  	
921  	  /// Specialization.
922  	  template<typename _Key, typename _Value, typename _Alloc,
923  		   typename _ExtractKey, typename _Equal,
924  		   typename _H1, typename _H2, typename _Hash,
925  		   typename _RehashPolicy, typename _Traits>
926  	    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
927  			   _RehashPolicy, _Traits, true>
928  	    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
929  				   _H1, _H2, _Hash, _RehashPolicy, _Traits>
930  	    {
931  	      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
932  						_Equal, _H1, _H2, _Hash,
933  						_RehashPolicy, _Traits>;
934  	
935  	      using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
936  						       _Equal, _H1, _H2, _Hash,
937  						       _Traits>;
938  	
939  	      using value_type = typename __base_type::value_type;
940  	      using iterator = typename __base_type::iterator;
941  	      using const_iterator =  typename __base_type::const_iterator;
942  	
943  	      using __unique_keys = typename __base_type::__unique_keys;
944  	      using __ireturn_type = typename __hashtable_base::__ireturn_type;
945  	      using __hashtable = typename __base_type::__hashtable;
946  	      using __node_gen_type = typename __base_type::__node_gen_type;
947  	
948  	      using __base_type::insert;
949  	
950  	      __ireturn_type
951  	      insert(value_type&& __v)
952  	      {
953  		__hashtable& __h = this->_M_conjure_hashtable();
954  		__node_gen_type __node_gen(__h);
955  		return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
956  	      }
957  	
958  	      iterator
959  	      insert(const_iterator __hint, value_type&& __v)
960  	      {
961  		__hashtable& __h = this->_M_conjure_hashtable();
962  		__node_gen_type __node_gen(__h);
963  		return __h._M_insert(__hint, std::move(__v), __node_gen,
964  				     __unique_keys());
965  	      }
966  	    };
967  	
968  	  /// Specialization.
969  	  template<typename _Key, typename _Value, typename _Alloc,
970  		   typename _ExtractKey, typename _Equal,
971  		   typename _H1, typename _H2, typename _Hash,
972  		   typename _RehashPolicy, typename _Traits>
973  	    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
974  			   _RehashPolicy, _Traits, false>
975  	    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
976  				   _H1, _H2, _Hash, _RehashPolicy, _Traits>
977  	    {
978  	      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
979  					       _Equal, _H1, _H2, _Hash,
980  					       _RehashPolicy, _Traits>;
981  	      using value_type = typename __base_type::value_type;
982  	      using iterator = typename __base_type::iterator;
983  	      using const_iterator =  typename __base_type::const_iterator;
984  	
985  	      using __unique_keys = typename __base_type::__unique_keys;
986  	      using __hashtable = typename __base_type::__hashtable;
987  	      using __ireturn_type = typename __base_type::__ireturn_type;
988  	
989  	      using __base_type::insert;
990  	
991  	      template<typename _Pair>
992  		using __is_cons = std::is_constructible<value_type, _Pair&&>;
993  	
994  	      template<typename _Pair>
995  		using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
996  	
997  	      template<typename _Pair>
998  		using _IFconsp = typename _IFcons<_Pair>::type;
999  	
1000 	      template<typename _Pair, typename = _IFconsp<_Pair>>
1001 		__ireturn_type
1002 		insert(_Pair&& __v)
1003 		{
1004 		  __hashtable& __h = this->_M_conjure_hashtable();
1005 		  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
1006 		}
1007 	
1008 	      template<typename _Pair, typename = _IFconsp<_Pair>>
1009 		iterator
1010 		insert(const_iterator __hint, _Pair&& __v)
1011 		{
1012 		  __hashtable& __h = this->_M_conjure_hashtable();
1013 		  return __h._M_emplace(__hint, __unique_keys(),
1014 					std::forward<_Pair>(__v));
1015 		}
1016 	   };
1017 	
1018 	  template<typename _Policy>
1019 	    using __has_load_factor = typename _Policy::__has_load_factor;
1020 	
1021 	  /**
1022 	   *  Primary class template  _Rehash_base.
1023 	   *
1024 	   *  Give hashtable the max_load_factor functions and reserve iff the
1025 	   *  rehash policy supports it.
1026 	  */
1027 	  template<typename _Key, typename _Value, typename _Alloc,
1028 		   typename _ExtractKey, typename _Equal,
1029 		   typename _H1, typename _H2, typename _Hash,
1030 		   typename _RehashPolicy, typename _Traits,
1031 		   typename =
1032 		     __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>>
1033 	    struct _Rehash_base;
1034 	
1035 	  /// Specialization when rehash policy doesn't provide load factor management.
1036 	  template<typename _Key, typename _Value, typename _Alloc,
1037 		   typename _ExtractKey, typename _Equal,
1038 		   typename _H1, typename _H2, typename _Hash,
1039 		   typename _RehashPolicy, typename _Traits>
1040 	    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1041 			      _H1, _H2, _Hash, _RehashPolicy, _Traits,
1042 			      std::false_type>
1043 	    {
1044 	    };
1045 	
1046 	  /// Specialization when rehash policy provide load factor management.
1047 	  template<typename _Key, typename _Value, typename _Alloc,
1048 		   typename _ExtractKey, typename _Equal,
1049 		   typename _H1, typename _H2, typename _Hash,
1050 		   typename _RehashPolicy, typename _Traits>
1051 	    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1052 				_H1, _H2, _Hash, _RehashPolicy, _Traits,
1053 				std::true_type>
1054 	    {
1055 	      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1056 					     _Equal, _H1, _H2, _Hash,
1057 					     _RehashPolicy, _Traits>;
1058 	
1059 	      float
1060 	      max_load_factor() const noexcept
1061 	      {
1062 		const __hashtable* __this = static_cast<const __hashtable*>(this);
1063 		return __this->__rehash_policy().max_load_factor();
1064 	      }
1065 	
1066 	      void
1067 	      max_load_factor(float __z)
1068 	      {
1069 		__hashtable* __this = static_cast<__hashtable*>(this);
1070 		__this->__rehash_policy(_RehashPolicy(__z));
1071 	      }
1072 	
1073 	      void
1074 	      reserve(std::size_t __n)
1075 	      {
1076 		__hashtable* __this = static_cast<__hashtable*>(this);
1077 		__this->rehash(__builtin_ceil(__n / max_load_factor()));
1078 	      }
1079 	    };
1080 	
1081 	  /**
1082 	   *  Primary class template _Hashtable_ebo_helper.
1083 	   *
1084 	   *  Helper class using EBO when it is not forbidden (the type is not
1085 	   *  final) and when it is worth it (the type is empty.)
1086 	   */
1087 	  template<int _Nm, typename _Tp,
1088 		   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1089 	    struct _Hashtable_ebo_helper;
1090 	
1091 	  /// Specialization using EBO.
1092 	  template<int _Nm, typename _Tp>
1093 	    struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1094 	    : private _Tp
1095 	    {
1096 	      _Hashtable_ebo_helper() = default;
1097 	
1098 	      template<typename _OtherTp>
1099 		_Hashtable_ebo_helper(_OtherTp&& __tp)
1100 		  : _Tp(std::forward<_OtherTp>(__tp))
1101 		{ }
1102 	
1103 	      static const _Tp&
1104 	      _S_cget(const _Hashtable_ebo_helper& __eboh)
1105 	      { return static_cast<const _Tp&>(__eboh); }
1106 	
1107 	      static _Tp&
1108 	      _S_get(_Hashtable_ebo_helper& __eboh)
1109 	      { return static_cast<_Tp&>(__eboh); }
1110 	    };
1111 	
1112 	  /// Specialization not using EBO.
1113 	  template<int _Nm, typename _Tp>
1114 	    struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1115 	    {
1116 	      _Hashtable_ebo_helper() = default;
1117 	
1118 	      template<typename _OtherTp>
1119 		_Hashtable_ebo_helper(_OtherTp&& __tp)
1120 		  : _M_tp(std::forward<_OtherTp>(__tp))
1121 		{ }
1122 	
1123 	      static const _Tp&
1124 	      _S_cget(const _Hashtable_ebo_helper& __eboh)
1125 	      { return __eboh._M_tp; }
1126 	
1127 	      static _Tp&
1128 	      _S_get(_Hashtable_ebo_helper& __eboh)
1129 	      { return __eboh._M_tp; }
1130 	
1131 	    private:
1132 	      _Tp _M_tp;
1133 	    };
1134 	
1135 	  /**
1136 	   *  Primary class template _Local_iterator_base.
1137 	   *
1138 	   *  Base class for local iterators, used to iterate within a bucket
1139 	   *  but not between buckets.
1140 	   */
1141 	  template<typename _Key, typename _Value, typename _ExtractKey,
1142 		   typename _H1, typename _H2, typename _Hash,
1143 		   bool __cache_hash_code>
1144 	    struct _Local_iterator_base;
1145 	
1146 	  /**
1147 	   *  Primary class template _Hash_code_base.
1148 	   *
1149 	   *  Encapsulates two policy issues that aren't quite orthogonal.
1150 	   *   (1) the difference between using a ranged hash function and using
1151 	   *       the combination of a hash function and a range-hashing function.
1152 	   *       In the former case we don't have such things as hash codes, so
1153 	   *       we have a dummy type as placeholder.
1154 	   *   (2) Whether or not we cache hash codes.  Caching hash codes is
1155 	   *       meaningless if we have a ranged hash function.
1156 	   *
1157 	   *  We also put the key extraction objects here, for convenience.
1158 	   *  Each specialization derives from one or more of the template
1159 	   *  parameters to benefit from Ebo. This is important as this type
1160 	   *  is inherited in some cases by the _Local_iterator_base type used
1161 	   *  to implement local_iterator and const_local_iterator. As with
1162 	   *  any iterator type we prefer to make it as small as possible.
1163 	   *
1164 	   *  Primary template is unused except as a hook for specializations.
1165 	   */
1166 	  template<typename _Key, typename _Value, typename _ExtractKey,
1167 		   typename _H1, typename _H2, typename _Hash,
1168 		   bool __cache_hash_code>
1169 	    struct _Hash_code_base;
1170 	
1171 	  /// Specialization: ranged hash function, no caching hash codes.  H1
1172 	  /// and H2 are provided but ignored.  We define a dummy hash code type.
1173 	  template<typename _Key, typename _Value, typename _ExtractKey,
1174 		   typename _H1, typename _H2, typename _Hash>
1175 	    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1176 	    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1177 	      private _Hashtable_ebo_helper<1, _Hash>
1178 	    {
1179 	    private:
1180 	      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1181 	      using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1182 	
1183 	    protected:
1184 	      typedef void* 					__hash_code;
1185 	      typedef _Hash_node<_Value, false>			__node_type;
1186 	
1187 	      // We need the default constructor for the local iterators and _Hashtable
1188 	      // default constructor.
1189 	      _Hash_code_base() = default;
1190 	
1191 	      _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1192 			      const _Hash& __h)
1193 	      : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1194 	
1195 	      __hash_code
1196 	      _M_hash_code(const _Key& __key) const
1197 	      { return 0; }
1198 	
1199 	      std::size_t
1200 	      _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1201 	      { return _M_ranged_hash()(__k, __n); }
1202 	
1203 	      std::size_t
1204 	      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1205 		noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1206 							   (std::size_t)0)) )
1207 	      { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1208 	
1209 	      void
1210 	      _M_store_code(__node_type*, __hash_code) const
1211 	      { }
1212 	
1213 	      void
1214 	      _M_copy_code(__node_type*, const __node_type*) const
1215 	      { }
1216 	
1217 	      void
1218 	      _M_swap(_Hash_code_base& __x)
1219 	      {
1220 		std::swap(_M_extract(), __x._M_extract());
1221 		std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1222 	      }
1223 	
1224 	      const _ExtractKey&
1225 	      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1226 	
1227 	      _ExtractKey&
1228 	      _M_extract() { return __ebo_extract_key::_S_get(*this); }
1229 	
1230 	      const _Hash&
1231 	      _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1232 	
1233 	      _Hash&
1234 	      _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1235 	    };
1236 	
1237 	  // No specialization for ranged hash function while caching hash codes.
1238 	  // That combination is meaningless, and trying to do it is an error.
1239 	
1240 	  /// Specialization: ranged hash function, cache hash codes.  This
1241 	  /// combination is meaningless, so we provide only a declaration
1242 	  /// and no definition.
1243 	  template<typename _Key, typename _Value, typename _ExtractKey,
1244 		   typename _H1, typename _H2, typename _Hash>
1245 	    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1246 	
1247 	  /// Specialization: hash function and range-hashing function, no
1248 	  /// caching of hash codes.
1249 	  /// Provides typedef and accessor required by C++ 11.
1250 	  template<typename _Key, typename _Value, typename _ExtractKey,
1251 		   typename _H1, typename _H2>
1252 	    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1253 				   _Default_ranged_hash, false>
1254 	    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1255 	      private _Hashtable_ebo_helper<1, _H1>,
1256 	      private _Hashtable_ebo_helper<2, _H2>
1257 	    {
1258 	    private:
1259 	      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1260 	      using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1261 	      using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1262 	
1263 	      // Gives the local iterator implementation access to _M_bucket_index().
1264 	      friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1265 						 _Default_ranged_hash, false>;
1266 	
1267 	    public:
1268 	      typedef _H1 					hasher;
1269 	
1270 	      hasher
1271 	      hash_function() const
1272 	      { return _M_h1(); }
1273 	
1274 	    protected:
1275 	      typedef std::size_t 				__hash_code;
1276 	      typedef _Hash_node<_Value, false>			__node_type;
1277 	
1278 	      // We need the default constructor for the local iterators and _Hashtable
1279 	      // default constructor.
1280 	      _Hash_code_base() = default;
1281 	
1282 	      _Hash_code_base(const _ExtractKey& __ex,
1283 			      const _H1& __h1, const _H2& __h2,
1284 			      const _Default_ranged_hash&)
1285 	      : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1286 	
1287 	      __hash_code
1288 	      _M_hash_code(const _Key& __k) const
1289 	      {
1290 		static_assert(__is_invocable<const _H1&, const _Key&>{},
1291 		    "hash function must be invocable with an argument of key type");
1292 		return _M_h1()(__k);
1293 	      }
1294 	
1295 	      std::size_t
1296 	      _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1297 	      { return _M_h2()(__c, __n); }
1298 	
1299 	      std::size_t
1300 	      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1301 		noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1302 			  && noexcept(declval<const _H2&>()((__hash_code)0,
1303 							    (std::size_t)0)) )
1304 	      { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1305 	
1306 	      void
1307 	      _M_store_code(__node_type*, __hash_code) const
1308 	      { }
1309 	
1310 	      void
1311 	      _M_copy_code(__node_type*, const __node_type*) const
1312 	      { }
1313 	
1314 	      void
1315 	      _M_swap(_Hash_code_base& __x)
1316 	      {
1317 		std::swap(_M_extract(), __x._M_extract());
1318 		std::swap(_M_h1(), __x._M_h1());
1319 		std::swap(_M_h2(), __x._M_h2());
1320 	      }
1321 	
1322 	      const _ExtractKey&
1323 	      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1324 	
1325 	      _ExtractKey&
1326 	      _M_extract() { return __ebo_extract_key::_S_get(*this); }
1327 	
1328 	      const _H1&
1329 	      _M_h1() const { return __ebo_h1::_S_cget(*this); }
1330 	
1331 	      _H1&
1332 	      _M_h1() { return __ebo_h1::_S_get(*this); }
1333 	
1334 	      const _H2&
1335 	      _M_h2() const { return __ebo_h2::_S_cget(*this); }
1336 	
1337 	      _H2&
1338 	      _M_h2() { return __ebo_h2::_S_get(*this); }
1339 	    };
1340 	
1341 	  /// Specialization: hash function and range-hashing function,
1342 	  /// caching hash codes.  H is provided but ignored.  Provides
1343 	  /// typedef and accessor required by C++ 11.
1344 	  template<typename _Key, typename _Value, typename _ExtractKey,
1345 		   typename _H1, typename _H2>
1346 	    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1347 				   _Default_ranged_hash, true>
1348 	    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1349 	      private _Hashtable_ebo_helper<1, _H1>,
1350 	      private _Hashtable_ebo_helper<2, _H2>
1351 	    {
1352 	    private:
1353 	      // Gives the local iterator implementation access to _M_h2().
1354 	      friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1355 						 _Default_ranged_hash, true>;
1356 	
1357 	      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1358 	      using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1359 	      using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1360 	
1361 	    public:
1362 	      typedef _H1 					hasher;
1363 	
1364 	      hasher
1365 	      hash_function() const
1366 	      { return _M_h1(); }
1367 	
1368 	    protected:
1369 	      typedef std::size_t 				__hash_code;
1370 	      typedef _Hash_node<_Value, true>			__node_type;
1371 	
1372 	      // We need the default constructor for _Hashtable default constructor.
1373 	      _Hash_code_base() = default;
1374 	      _Hash_code_base(const _ExtractKey& __ex,
1375 			      const _H1& __h1, const _H2& __h2,
1376 			      const _Default_ranged_hash&)
1377 	      : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1378 	
1379 	      __hash_code
1380 	      _M_hash_code(const _Key& __k) const
1381 	      {
1382 		static_assert(__is_invocable<const _H1&, const _Key&>{},
1383 		    "hash function must be invocable with an argument of key type");
1384 		return _M_h1()(__k);
1385 	      }
1386 	
1387 	      std::size_t
1388 	      _M_bucket_index(const _Key&, __hash_code __c,
1389 			      std::size_t __n) const
1390 	      { return _M_h2()(__c, __n); }
1391 	
1392 	      std::size_t
1393 	      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1394 		noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1395 							 (std::size_t)0)) )
1396 	      { return _M_h2()(__p->_M_hash_code, __n); }
1397 	
1398 	      void
1399 	      _M_store_code(__node_type* __n, __hash_code __c) const
1400 	      { __n->_M_hash_code = __c; }
1401 	
1402 	      void
1403 	      _M_copy_code(__node_type* __to, const __node_type* __from) const
1404 	      { __to->_M_hash_code = __from->_M_hash_code; }
1405 	
1406 	      void
1407 	      _M_swap(_Hash_code_base& __x)
1408 	      {
1409 		std::swap(_M_extract(), __x._M_extract());
1410 		std::swap(_M_h1(), __x._M_h1());
1411 		std::swap(_M_h2(), __x._M_h2());
1412 	      }
1413 	
1414 	      const _ExtractKey&
1415 	      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1416 	
1417 	      _ExtractKey&
1418 	      _M_extract() { return __ebo_extract_key::_S_get(*this); }
1419 	
1420 	      const _H1&
1421 	      _M_h1() const { return __ebo_h1::_S_cget(*this); }
1422 	
1423 	      _H1&
1424 	      _M_h1() { return __ebo_h1::_S_get(*this); }
1425 	
1426 	      const _H2&
1427 	      _M_h2() const { return __ebo_h2::_S_cget(*this); }
1428 	
1429 	      _H2&
1430 	      _M_h2() { return __ebo_h2::_S_get(*this); }
1431 	    };
1432 	
1433 	  /**
1434 	   *  Primary class template _Equal_helper.
1435 	   *
1436 	   */
1437 	  template <typename _Key, typename _Value, typename _ExtractKey,
1438 		    typename _Equal, typename _HashCodeType,
1439 		    bool __cache_hash_code>
1440 	  struct _Equal_helper;
1441 	
1442 	  /// Specialization.
1443 	  template<typename _Key, typename _Value, typename _ExtractKey,
1444 		   typename _Equal, typename _HashCodeType>
1445 	  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1446 	  {
1447 	    static bool
1448 	    _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1449 		      const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1450 	    { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1451 	  };
1452 	
1453 	  /// Specialization.
1454 	  template<typename _Key, typename _Value, typename _ExtractKey,
1455 		   typename _Equal, typename _HashCodeType>
1456 	  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1457 	  {
1458 	    static bool
1459 	    _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1460 		      const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1461 	    { return __eq(__k, __extract(__n->_M_v())); }
1462 	  };
1463 	
1464 	
1465 	  /// Partial specialization used when nodes contain a cached hash code.
1466 	  template<typename _Key, typename _Value, typename _ExtractKey,
1467 		   typename _H1, typename _H2, typename _Hash>
1468 	    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1469 					_H1, _H2, _Hash, true>
1470 	    : private _Hashtable_ebo_helper<0, _H2>
1471 	    {
1472 	    protected:
1473 	      using __base_type = _Hashtable_ebo_helper<0, _H2>;
1474 	      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1475 						       _H1, _H2, _Hash, true>;
1476 	
1477 	      _Local_iterator_base() = default;
1478 	      _Local_iterator_base(const __hash_code_base& __base,
1479 				   _Hash_node<_Value, true>* __p,
1480 				   std::size_t __bkt, std::size_t __bkt_count)
1481 	      : __base_type(__base._M_h2()),
1482 		_M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1483 	
1484 	      void
1485 	      _M_incr()
1486 	      {
1487 		_M_cur = _M_cur->_M_next();
1488 		if (_M_cur)
1489 		  {
1490 		    std::size_t __bkt
1491 		      = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1492 						   _M_bucket_count);
1493 		    if (__bkt != _M_bucket)
1494 		      _M_cur = nullptr;
1495 		  }
1496 	      }
1497 	
1498 	      _Hash_node<_Value, true>*  _M_cur;
1499 	      std::size_t _M_bucket;
1500 	      std::size_t _M_bucket_count;
1501 	
1502 	    public:
1503 	      const void*
1504 	      _M_curr() const { return _M_cur; }  // for equality ops
1505 	
1506 	      std::size_t
1507 	      _M_get_bucket() const { return _M_bucket; }  // for debug mode
1508 	    };
1509 	
1510 	  // Uninitialized storage for a _Hash_code_base.
1511 	  // This type is DefaultConstructible and Assignable even if the
1512 	  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1513 	  // can be DefaultConstructible and Assignable.
1514 	  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1515 	    struct _Hash_code_storage
1516 	    {
1517 	      __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1518 	
1519 	      _Tp*
1520 	      _M_h() { return _M_storage._M_ptr(); }
1521 	
1522 	      const _Tp*
1523 	      _M_h() const { return _M_storage._M_ptr(); }
1524 	    };
1525 	
1526 	  // Empty partial specialization for empty _Hash_code_base types.
1527 	  template<typename _Tp>
1528 	    struct _Hash_code_storage<_Tp, true>
1529 	    {
1530 	      static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1531 	
1532 	      // As _Tp is an empty type there will be no bytes written/read through
1533 	      // the cast pointer, so no strict-aliasing violation.
1534 	      _Tp*
1535 	      _M_h() { return reinterpret_cast<_Tp*>(this); }
1536 	
1537 	      const _Tp*
1538 	      _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1539 	    };
1540 	
1541 	  template<typename _Key, typename _Value, typename _ExtractKey,
1542 		   typename _H1, typename _H2, typename _Hash>
1543 	    using __hash_code_for_local_iter
1544 	      = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1545 						   _H1, _H2, _Hash, false>>;
1546 	
1547 	  // Partial specialization used when hash codes are not cached
1548 	  template<typename _Key, typename _Value, typename _ExtractKey,
1549 		   typename _H1, typename _H2, typename _Hash>
1550 	    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1551 					_H1, _H2, _Hash, false>
1552 	    : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1553 	    {
1554 	    protected:
1555 	      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1556 						       _H1, _H2, _Hash, false>;
1557 	
1558 	      _Local_iterator_base() : _M_bucket_count(-1) { }
1559 	
1560 	      _Local_iterator_base(const __hash_code_base& __base,
1561 				   _Hash_node<_Value, false>* __p,
1562 				   std::size_t __bkt, std::size_t __bkt_count)
1563 	      : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1564 	      { _M_init(__base); }
1565 	
1566 	      ~_Local_iterator_base()
1567 	      {
1568 		if (_M_bucket_count != -1)
1569 		  _M_destroy();
1570 	      }
1571 	
1572 	      _Local_iterator_base(const _Local_iterator_base& __iter)
1573 	      : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1574 	        _M_bucket_count(__iter._M_bucket_count)
1575 	      {
1576 		if (_M_bucket_count != -1)
1577 		  _M_init(*__iter._M_h());
1578 	      }
1579 	
1580 	      _Local_iterator_base&
1581 	      operator=(const _Local_iterator_base& __iter)
1582 	      {
1583 		if (_M_bucket_count != -1)
1584 		  _M_destroy();
1585 		_M_cur = __iter._M_cur;
1586 		_M_bucket = __iter._M_bucket;
1587 		_M_bucket_count = __iter._M_bucket_count;
1588 		if (_M_bucket_count != -1)
1589 		  _M_init(*__iter._M_h());
1590 		return *this;
1591 	      }
1592 	
1593 	      void
1594 	      _M_incr()
1595 	      {
1596 		_M_cur = _M_cur->_M_next();
1597 		if (_M_cur)
1598 		  {
1599 		    std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1600 								      _M_bucket_count);
1601 		    if (__bkt != _M_bucket)
1602 		      _M_cur = nullptr;
1603 		  }
1604 	      }
1605 	
1606 	      _Hash_node<_Value, false>*  _M_cur;
1607 	      std::size_t _M_bucket;
1608 	      std::size_t _M_bucket_count;
1609 	
1610 	      void
1611 	      _M_init(const __hash_code_base& __base)
1612 	      { ::new(this->_M_h()) __hash_code_base(__base); }
1613 	
1614 	      void
1615 	      _M_destroy() { this->_M_h()->~__hash_code_base(); }
1616 	
1617 	    public:
1618 	      const void*
1619 	      _M_curr() const { return _M_cur; }  // for equality ops and debug mode
1620 	
1621 	      std::size_t
1622 	      _M_get_bucket() const { return _M_bucket; }  // for debug mode
1623 	    };
1624 	
1625 	  template<typename _Key, typename _Value, typename _ExtractKey,
1626 		   typename _H1, typename _H2, typename _Hash, bool __cache>
1627 	    inline bool
1628 	    operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1629 						  _H1, _H2, _Hash, __cache>& __x,
1630 		       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1631 						  _H1, _H2, _Hash, __cache>& __y)
1632 	    { return __x._M_curr() == __y._M_curr(); }
1633 	
1634 	  template<typename _Key, typename _Value, typename _ExtractKey,
1635 		   typename _H1, typename _H2, typename _Hash, bool __cache>
1636 	    inline bool
1637 	    operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1638 						  _H1, _H2, _Hash, __cache>& __x,
1639 		       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1640 						  _H1, _H2, _Hash, __cache>& __y)
1641 	    { return __x._M_curr() != __y._M_curr(); }
1642 	
1643 	  /// local iterators
1644 	  template<typename _Key, typename _Value, typename _ExtractKey,
1645 		   typename _H1, typename _H2, typename _Hash,
1646 		   bool __constant_iterators, bool __cache>
1647 	    struct _Local_iterator
1648 	    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1649 					  _H1, _H2, _Hash, __cache>
1650 	    {
1651 	    private:
1652 	      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1653 						       _H1, _H2, _Hash, __cache>;
1654 	      using __hash_code_base = typename __base_type::__hash_code_base;
1655 	    public:
1656 	      typedef _Value					value_type;
1657 	      typedef typename std::conditional<__constant_iterators,
1658 						const _Value*, _Value*>::type
1659 							       pointer;
1660 	      typedef typename std::conditional<__constant_iterators,
1661 						const _Value&, _Value&>::type
1662 							       reference;
1663 	      typedef std::ptrdiff_t				difference_type;
1664 	      typedef std::forward_iterator_tag			iterator_category;
1665 	
1666 	      _Local_iterator() = default;
1667 	
1668 	      _Local_iterator(const __hash_code_base& __base,
1669 			      _Hash_node<_Value, __cache>* __p,
1670 			      std::size_t __bkt, std::size_t __bkt_count)
1671 		: __base_type(__base, __p, __bkt, __bkt_count)
1672 	      { }
1673 	
1674 	      reference
1675 	      operator*() const
1676 	      { return this->_M_cur->_M_v(); }
1677 	
1678 	      pointer
1679 	      operator->() const
1680 	      { return this->_M_cur->_M_valptr(); }
1681 	
1682 	      _Local_iterator&
1683 	      operator++()
1684 	      {
1685 		this->_M_incr();
1686 		return *this;
1687 	      }
1688 	
1689 	      _Local_iterator
1690 	      operator++(int)
1691 	      {
1692 		_Local_iterator __tmp(*this);
1693 		this->_M_incr();
1694 		return __tmp;
1695 	      }
1696 	    };
1697 	
1698 	  /// local const_iterators
1699 	  template<typename _Key, typename _Value, typename _ExtractKey,
1700 		   typename _H1, typename _H2, typename _Hash,
1701 		   bool __constant_iterators, bool __cache>
1702 	    struct _Local_const_iterator
1703 	    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1704 					  _H1, _H2, _Hash, __cache>
1705 	    {
1706 	    private:
1707 	      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1708 						       _H1, _H2, _Hash, __cache>;
1709 	      using __hash_code_base = typename __base_type::__hash_code_base;
1710 	
1711 	    public:
1712 	      typedef _Value					value_type;
1713 	      typedef const _Value*				pointer;
1714 	      typedef const _Value&				reference;
1715 	      typedef std::ptrdiff_t				difference_type;
1716 	      typedef std::forward_iterator_tag			iterator_category;
1717 	
1718 	      _Local_const_iterator() = default;
1719 	
1720 	      _Local_const_iterator(const __hash_code_base& __base,
1721 				    _Hash_node<_Value, __cache>* __p,
1722 				    std::size_t __bkt, std::size_t __bkt_count)
1723 		: __base_type(__base, __p, __bkt, __bkt_count)
1724 	      { }
1725 	
1726 	      _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1727 							  _H1, _H2, _Hash,
1728 							  __constant_iterators,
1729 							  __cache>& __x)
1730 		: __base_type(__x)
1731 	      { }
1732 	
1733 	      reference
1734 	      operator*() const
1735 	      { return this->_M_cur->_M_v(); }
1736 	
1737 	      pointer
1738 	      operator->() const
1739 	      { return this->_M_cur->_M_valptr(); }
1740 	
1741 	      _Local_const_iterator&
1742 	      operator++()
1743 	      {
1744 		this->_M_incr();
1745 		return *this;
1746 	      }
1747 	
1748 	      _Local_const_iterator
1749 	      operator++(int)
1750 	      {
1751 		_Local_const_iterator __tmp(*this);
1752 		this->_M_incr();
1753 		return __tmp;
1754 	      }
1755 	    };
1756 	
1757 	  /**
1758 	   *  Primary class template _Hashtable_base.
1759 	   *
1760 	   *  Helper class adding management of _Equal functor to
1761 	   *  _Hash_code_base type.
1762 	   *
1763 	   *  Base class templates are:
1764 	   *    - __detail::_Hash_code_base
1765 	   *    - __detail::_Hashtable_ebo_helper
1766 	   */
1767 	  template<typename _Key, typename _Value,
1768 		   typename _ExtractKey, typename _Equal,
1769 		   typename _H1, typename _H2, typename _Hash, typename _Traits>
1770 	  struct _Hashtable_base
1771 	  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1772 				   _Traits::__hash_cached::value>,
1773 	    private _Hashtable_ebo_helper<0, _Equal>
1774 	  {
1775 	  public:
1776 	    typedef _Key					key_type;
1777 	    typedef _Value					value_type;
1778 	    typedef _Equal					key_equal;
1779 	    typedef std::size_t					size_type;
1780 	    typedef std::ptrdiff_t				difference_type;
1781 	
1782 	    using __traits_type = _Traits;
1783 	    using __hash_cached = typename __traits_type::__hash_cached;
1784 	    using __constant_iterators = typename __traits_type::__constant_iterators;
1785 	    using __unique_keys = typename __traits_type::__unique_keys;
1786 	
1787 	    using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1788 						     _H1, _H2, _Hash,
1789 						     __hash_cached::value>;
1790 	
1791 	    using __hash_code = typename __hash_code_base::__hash_code;
1792 	    using __node_type = typename __hash_code_base::__node_type;
1793 	
1794 	    using iterator = __detail::_Node_iterator<value_type,
1795 						      __constant_iterators::value,
1796 						      __hash_cached::value>;
1797 	
1798 	    using const_iterator = __detail::_Node_const_iterator<value_type,
1799 							   __constant_iterators::value,
1800 							   __hash_cached::value>;
1801 	
1802 	    using local_iterator = __detail::_Local_iterator<key_type, value_type,
1803 							  _ExtractKey, _H1, _H2, _Hash,
1804 							  __constant_iterators::value,
1805 							     __hash_cached::value>;
1806 	
1807 	    using const_local_iterator = __detail::_Local_const_iterator<key_type,
1808 									 value_type,
1809 						_ExtractKey, _H1, _H2, _Hash,
1810 						__constant_iterators::value,
1811 						__hash_cached::value>;
1812 	
1813 	    using __ireturn_type = typename std::conditional<__unique_keys::value,
1814 							     std::pair<iterator, bool>,
1815 							     iterator>::type;
1816 	  private:
1817 	    using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1818 	    using _EqualHelper =  _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1819 						__hash_code, __hash_cached::value>;
1820 	
1821 	  protected:
1822 	    _Hashtable_base() = default;
1823 	    _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1824 			    const _Hash& __hash, const _Equal& __eq)
1825 	    : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1826 	    { }
1827 	
1828 	    bool
1829 	    _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1830 	    {
1831 	      static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1832 		  "key equality predicate must be invocable with two arguments of "
1833 		  "key type");
1834 	      return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1835 					     __k, __c, __n);
1836 	    }
1837 	
1838 	    void
1839 	    _M_swap(_Hashtable_base& __x)
1840 	    {
1841 	      __hash_code_base::_M_swap(__x);
1842 	      std::swap(_M_eq(), __x._M_eq());
1843 	    }
1844 	
1845 	    const _Equal&
1846 	    _M_eq() const { return _EqualEBO::_S_cget(*this); }
1847 	
1848 	    _Equal&
1849 	    _M_eq() { return _EqualEBO::_S_get(*this); }
1850 	  };
1851 	
1852 	  /**
1853 	   *  struct _Equality_base.
1854 	   *
1855 	   *  Common types and functions for class _Equality.
1856 	   */
1857 	  struct _Equality_base
1858 	  {
1859 	  protected:
1860 	    template<typename _Uiterator>
1861 	      static bool
1862 	      _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1863 	  };
1864 	
1865 	  // See std::is_permutation in N3068.
1866 	  template<typename _Uiterator>
1867 	    bool
1868 	    _Equality_base::
1869 	    _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1870 			      _Uiterator __first2)
1871 	    {
1872 	      for (; __first1 != __last1; ++__first1, ++__first2)
1873 		if (!(*__first1 == *__first2))
1874 		  break;
1875 	
1876 	      if (__first1 == __last1)
1877 		return true;
1878 	
1879 	      _Uiterator __last2 = __first2;
1880 	      std::advance(__last2, std::distance(__first1, __last1));
1881 	
1882 	      for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1883 		{
1884 		  _Uiterator __tmp =  __first1;
1885 		  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1886 		    ++__tmp;
1887 	
1888 		  // We've seen this one before.
1889 		  if (__tmp != __it1)
1890 		    continue;
1891 	
1892 		  std::ptrdiff_t __n2 = 0;
1893 		  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1894 		    if (*__tmp == *__it1)
1895 		      ++__n2;
1896 	
1897 		  if (!__n2)
1898 		    return false;
1899 	
1900 		  std::ptrdiff_t __n1 = 0;
1901 		  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1902 		    if (*__tmp == *__it1)
1903 		      ++__n1;
1904 	
1905 		  if (__n1 != __n2)
1906 		    return false;
1907 		}
1908 	      return true;
1909 	    }
1910 	
1911 	  /**
1912 	   *  Primary class template  _Equality.
1913 	   *
1914 	   *  This is for implementing equality comparison for unordered
1915 	   *  containers, per N3068, by John Lakos and Pablo Halpern.
1916 	   *  Algorithmically, we follow closely the reference implementations
1917 	   *  therein.
1918 	   */
1919 	  template<typename _Key, typename _Value, typename _Alloc,
1920 		   typename _ExtractKey, typename _Equal,
1921 		   typename _H1, typename _H2, typename _Hash,
1922 		   typename _RehashPolicy, typename _Traits,
1923 		   bool _Unique_keys = _Traits::__unique_keys::value>
1924 	    struct _Equality;
1925 	
1926 	  /// Specialization.
1927 	  template<typename _Key, typename _Value, typename _Alloc,
1928 		   typename _ExtractKey, typename _Equal,
1929 		   typename _H1, typename _H2, typename _Hash,
1930 		   typename _RehashPolicy, typename _Traits>
1931 	    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1932 			     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1933 	    {
1934 	      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1935 					     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1936 	
1937 	      bool
1938 	      _M_equal(const __hashtable&) const;
1939 	    };
1940 	
1941 	  template<typename _Key, typename _Value, typename _Alloc,
1942 		   typename _ExtractKey, typename _Equal,
1943 		   typename _H1, typename _H2, typename _Hash,
1944 		   typename _RehashPolicy, typename _Traits>
1945 	    bool
1946 	    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1947 		      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1948 	    _M_equal(const __hashtable& __other) const
1949 	    {
1950 	      const __hashtable* __this = static_cast<const __hashtable*>(this);
1951 	
1952 	      if (__this->size() != __other.size())
1953 		return false;
1954 	
1955 	      for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1956 		{
1957 		  const auto __ity = __other.find(_ExtractKey()(*__itx));
1958 		  if (__ity == __other.end() || !bool(*__ity == *__itx))
1959 		    return false;
1960 		}
1961 	      return true;
1962 	    }
1963 	
1964 	  /// Specialization.
1965 	  template<typename _Key, typename _Value, typename _Alloc,
1966 		   typename _ExtractKey, typename _Equal,
1967 		   typename _H1, typename _H2, typename _Hash,
1968 		   typename _RehashPolicy, typename _Traits>
1969 	    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1970 			     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1971 	    : public _Equality_base
1972 	    {
1973 	      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1974 					     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1975 	
1976 	      bool
1977 	      _M_equal(const __hashtable&) const;
1978 	    };
1979 	
1980 	  template<typename _Key, typename _Value, typename _Alloc,
1981 		   typename _ExtractKey, typename _Equal,
1982 		   typename _H1, typename _H2, typename _Hash,
1983 		   typename _RehashPolicy, typename _Traits>
1984 	    bool
1985 	    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1986 		      _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1987 	    _M_equal(const __hashtable& __other) const
1988 	    {
1989 	      const __hashtable* __this = static_cast<const __hashtable*>(this);
1990 	
1991 	      if (__this->size() != __other.size())
1992 		return false;
1993 	
1994 	      for (auto __itx = __this->begin(); __itx != __this->end();)
1995 		{
1996 		  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1997 		  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1998 	
1999 		  if (std::distance(__xrange.first, __xrange.second)
2000 		      != std::distance(__yrange.first, __yrange.second))
2001 		    return false;
2002 	
2003 		  if (!_S_is_permutation(__xrange.first, __xrange.second,
2004 					 __yrange.first))
2005 		    return false;
2006 	
2007 		  __itx = __xrange.second;
2008 		}
2009 	      return true;
2010 	    }
2011 	
2012 	  /**
2013 	   * This type deals with all allocation and keeps an allocator instance through
2014 	   * inheritance to benefit from EBO when possible.
2015 	   */
2016 	  template<typename _NodeAlloc>
2017 	    struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
2018 	    {
2019 	    private:
2020 	      using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
2021 	    public:
2022 	      using __node_type = typename _NodeAlloc::value_type;
2023 	      using __node_alloc_type = _NodeAlloc;
2024 	      // Use __gnu_cxx to benefit from _S_always_equal and al.
2025 	      using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
2026 	
2027 	      using __value_alloc_traits = typename __node_alloc_traits::template
2028 		rebind_traits<typename __node_type::value_type>;
2029 	
2030 	      using __node_base = __detail::_Hash_node_base;
2031 	      using __bucket_type = __node_base*;      
2032 	      using __bucket_alloc_type =
2033 		__alloc_rebind<__node_alloc_type, __bucket_type>;
2034 	      using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
2035 	
2036 	      _Hashtable_alloc() = default;
2037 	      _Hashtable_alloc(const _Hashtable_alloc&) = default;
2038 	      _Hashtable_alloc(_Hashtable_alloc&&) = default;
2039 	
2040 	      template<typename _Alloc>
2041 		_Hashtable_alloc(_Alloc&& __a)
2042 		  : __ebo_node_alloc(std::forward<_Alloc>(__a))
2043 		{ }
2044 	
2045 	      __node_alloc_type&
2046 	      _M_node_allocator()
2047 	      { return __ebo_node_alloc::_S_get(*this); }
2048 	
2049 	      const __node_alloc_type&
2050 	      _M_node_allocator() const
2051 	      { return __ebo_node_alloc::_S_cget(*this); }
2052 	
2053 	      template<typename... _Args>
2054 		__node_type*
2055 		_M_allocate_node(_Args&&... __args);
2056 	
2057 	      void
2058 	      _M_deallocate_node(__node_type* __n);
2059 	
2060 	      void
2061 	      _M_deallocate_node_ptr(__node_type* __n);
2062 	
2063 	      // Deallocate the linked list of nodes pointed to by __n
2064 	      void
2065 	      _M_deallocate_nodes(__node_type* __n);
2066 	
2067 	      __bucket_type*
2068 	      _M_allocate_buckets(std::size_t __n);
2069 	
2070 	      void
2071 	      _M_deallocate_buckets(__bucket_type*, std::size_t __n);
2072 	    };
2073 	
2074 	  // Definitions of class template _Hashtable_alloc's out-of-line member
2075 	  // functions.
2076 	  template<typename _NodeAlloc>
2077 	    template<typename... _Args>
2078 	      typename _Hashtable_alloc<_NodeAlloc>::__node_type*
2079 	      _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
2080 	      {
(1) Event alloc_fn: Storage is returned from allocation function "allocate". [details]
(2) Event assign: Assigning: "__nptr" = "std::allocator_traits<mempool::pool_allocator<(mempool::pool_index_t)17, std::__detail::_Hash_node<std::pair<pg_t const, pg_stat_t>, true> > >::allocate(this->_M_node_allocator(), 1UL)".
Also see events: [identity_transfer][noescape][assign][identity_transfer][noescape][noescape][return_alloc]
2081 		auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
(3) Event identity_transfer: Passing "__nptr" as argument 1 to function "__to_address", which returns that argument. [details]
(4) Event noescape: Resource "__nptr" is not freed or pointed-to in function "__to_address". [details]
(5) Event assign: Assigning: "__n" = "std::__to_address(__nptr)".
Also see events: [alloc_fn][assign][identity_transfer][noescape][noescape][return_alloc]
2082 		__node_type* __n = std::__to_address(__nptr);
2083 		__try
2084 		  {
(6) Event identity_transfer: Passing "(void *)__n" as argument 2 to function "operator new", which returns that argument. [Note: The source code implementation of the function has been overridden by a builtin model.]
(7) Event noescape: Resource "(void *)__n" is not freed or pointed-to in function "operator new". [Note: The source code implementation of the function has been overridden by a builtin model.]
Also see events: [alloc_fn][assign][identity_transfer][noescape][assign][noescape][return_alloc]
2085 		    ::new ((void*)__n) __node_type;
(8) Event noescape: Resource "__n" is not freed or pointed-to in function "_M_valptr". [details]
Also see events: [alloc_fn][assign][identity_transfer][noescape][assign][identity_transfer][noescape][return_alloc]
2086 		    __node_alloc_traits::construct(_M_node_allocator(),
2087 						   __n->_M_valptr(),
2088 						   std::forward<_Args>(__args)...);
(9) Event return_alloc: Returning allocated memory "__n".
Also see events: [alloc_fn][assign][identity_transfer][noescape][assign][identity_transfer][noescape][noescape]
2089 		    return __n;
2090 		  }
2091 		__catch(...)
2092 		  {
2093 		    __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
2094 		    __throw_exception_again;
2095 		  }
2096 	      }
2097 	
2098 	  template<typename _NodeAlloc>
2099 	    void
(1) Event noescape: "std::__detail::_Hashtable_alloc<mempool::pool_allocator<(mempool::pool_index_t)17, std::__detail::_Hash_node<std::pair<pg_t const, pg_stat_t>, true> > >::_M_deallocate_node(std::__detail::_Hashtable_alloc<mempool::pool_allocator<(mempool::pool_index_t)17, std::__detail::_Hash_node<std::pair<pg_t const, pg_stat_t>, true> > >::__node_type *)" does not free or save its parameter "__n".
2100 	    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
2101 	    {
2102 	      __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
2103 	      _M_deallocate_node_ptr(__n);
2104 	    }
2105 	
2106 	  template<typename _NodeAlloc>
2107 	    void
2108 	    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_type* __n)
2109 	    {
2110 	      typedef typename __node_alloc_traits::pointer _Ptr;
2111 	      auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
2112 	      __n->~__node_type();
2113 	      __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
2114 	    }
2115 	
2116 	  template<typename _NodeAlloc>
2117 	    void
2118 	    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
2119 	    {
2120 	      while (__n)
2121 		{
2122 		  __node_type* __tmp = __n;
2123 		  __n = __n->_M_next();
2124 		  _M_deallocate_node(__tmp);
2125 		}
2126 	    }
2127 	
2128 	  template<typename _NodeAlloc>
2129 	    typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
2130 	    _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
2131 	    {
2132 	      __bucket_alloc_type __alloc(_M_node_allocator());
2133 	
2134 	      auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
2135 	      __bucket_type* __p = std::__to_address(__ptr);
2136 	      __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2137 	      return __p;
2138 	    }
2139 	
2140 	  template<typename _NodeAlloc>
2141 	    void
2142 	    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2143 								std::size_t __n)
2144 	    {
2145 	      typedef typename __bucket_alloc_traits::pointer _Ptr;
2146 	      auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2147 	      __bucket_alloc_type __alloc(_M_node_allocator());
2148 	      __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2149 	    }
2150 	
2151 	 //@} hashtable-detail
2152 	} // namespace __detail
2153 	_GLIBCXX_END_NAMESPACE_VERSION
2154 	} // namespace std
2155 	
2156 	#endif // _HASHTABLE_POLICY_H
2157