

Ansible Automation Mesh

Scaling Automation for the Enterprise

Brad Krumme Senior Specialist Solution Architect

Agenda:

The Challenges of Scaling Automation

Automation Isolation: Execution Environments

Automation Mesh: Solving Enterprise Scalability

Demo

The Challenges of Scaling Automation

Enterprises are scaling globally, automation needs to scale in lock-step

Current execution challenges

Tightly coupled control and execution

Static capacity management

Control and execution planes scaled as a whole unit

Changing capacity requires downtime (outside of Openshift)

Control and execution cluster capacity shared

Managing execution capacity increases in complexity as it grows

Deployment limitations

Execution capacity limited to a single cluster

Closely coupled to the database and requires low latency

Isolated node constraints

One way communication from the controller cluster using SSH Additional hosts needed for remote execution (Jump hosts, SSH proxies) Extremely sensitive to latency Low resilience to connection disruption

Ansible Automation Platform WebUI API RBAC O→→ Workflows Audit Execution </> </> virtualenvs 11111111 **Red Hat**

5

Execution Environments Revisited

Many technologies, different life cycles

How to keep runtime environment, collections and dependencies aligned?

Collections

Dependencies

Runtime

Why Execution Environments?

Issues with Python virtual environments

Ð

Development Environment

Virtual environments (venvs) are not easily portable. The venv on your system likely does not match the production system.

8

Security and Standardization

Venvs are not secure. Some commands run inside the environment, some outside.

Venvs have to be moved between each Tower node in a cluster manually and whenever there's a change.

Maintenance

Collections and modules available to your venv may not be available in production. Maintenance of venvs is difficult and not documented well.

Automation Execution Environments

Components needed for automation, packaged in a cloud-native way

Automation Mesh: Solving Enterprise Scalability

Automation mesh and automation controller Simple, flexible and reliable execution scaling

Dynamic cluster capacity

Cluster capacity scales independently Aims to scale and manage execution capacity without downtime

Decoupled execution and control plane

Deploy execution capacity where it's needed Reduced operational overhead and control footprint

Scale globally

11

Execution plane resilient to latency and connection interruptions Scale across segmented and remote networks Natively build redundant mesh topologies

Improved communications and security

Bi-directional communication between execution nodes Multi-hopped mesh communication capabilities ACLs and digital signing of content

- TLS authentication and encryption
- Centralized management with automation controller

Automation mesh node types Control plane

Hybrid

Default node type for controller nodes Perform controller functions and execute automation

Control

Capacity is dedicated to controller functions Automation execution capability is disabled

Automation mesh node types Execution plane

What is the execution plane and why is it important?

Execution and hop nodes are collectively known as the execution plane Run automation closer to the devices and systems that need it Flexible designs possible across geographies and networks Resilient to high latency and connection disruptions Run automation without direct connection to controller

Execution node

Replaces Isolated Nodes and fulfills same functions Dedicated to run automation on behalf of controller No controller runtime functions executed Job isolation via podman and execution environments

Hop node

Replaces need for jump hosts

Dedicated to route traffic to other execution nodes

Cannot execute automation

Enterprises are scaling globally, automation needs to scale in lock-step

14

Demo

Automation Controller On-Prem

Single Hybrid node with an external managed database External DB so capacity can be added on-prem when needed All API/UI/RBAC/Audit/Logging is done here

Managed Nodes

Red Hat Satellite is used as the inventory source Systems are registered to Red Hat IDM Low-latency network connection from Automation Controller

Automation Mesh Nodes in Amazon EC2

One Hop node to act as a gateway to the execution nodes

One Execution node to run automation jobs

In a security group to allow SSH and Receptor traffic from Automation Controller

Managed Nodes

In a security group which blocks all inbound traffic *except* from the mesh nodes

EC2 is used as the inventory source

High-latency network connection from Automation Controller

[automationcontroller] aap.bk.lab ansible_connection=local

[automationcontroller:vars] peers=aws_hop

[execution_nodes:children] aws_execution_nodes

[aws_execution_nodes] aap-ue2-hop ansible_host=18.224.200.224 node_type=hop peers=aap-ue2-exec aap-ue2-exec ansible_host=18.188.7.139 node_type=execution

[aws_hop] aap-ue2-hop ansible_host=18.224.200.224

[aws_hop:vars] peers=automationcontroller

[instance_group_local:children] automationcontroller

[instance_group_aws] aap-ue2-exec ansible_host=18.188.7.139

[database] aap-db.bk.lab

[all:vars] ansible_user=ansible ansible_ssh_private_key_file="/root/.ssh/ansible" admin_password='**********'

pg_host='aap-db.bk.lab' pg_port='5432'

pg_database='awx' pg_username='awx' pg_password='*********' pg_sslmode='prefer'

17

registry_url='registry.redhat.io' registry_username='******************* registry_password='*******************

Automation Mesh AAP Inventory

- automationcontroller group is for local hybrid or control node(s)
- execution_nodes group is for hop nodes and execution nodes either locally or in a separate network
- "Peers" variable configures which nodes communicate with each other
- instance_group_* groups create instance groups in Automation Controller
- **registry_username** and **registry_password** are *REQUIRED* to configure AAP to download Execution Environments
- **receptor_listener_port** is where the mesh receptor listens on all mesh nodes

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

