
1

How to write, how to execute, and how to use in real life

Ansible Best Practices



2

GENERAL TIPS TO USE ANSIBLE

Create



Treat your Ansible content like code

AUTOMATION IS CODE

3

● Version control your Ansible content

● Iterate

○ Start with a basic playbook and static inventory

○ Refactor and modularize later



Do it with style

CODE NEEDS TO HAVE STYLE GUIDELINES

4

● Create a style guide for consistency:

○ Tagging

○ Whitespace

○ Naming of Tasks, Plays, Variables, and Roles

○ Directory Layouts

● Enforce the style

● Nice example: openshift-ansible Style Guide

example: https://goo.gl/JfWBcW



CODE MUST BE 
ORGANIZED

USE GIT!



6

site.yml                  # master playbook, calling others

webservers.yml            # playbook for webserver tier

deployonce.yml            # separate playbook for single-shot tasks

inventories/

   production/            # different stages via inventory

      hosts               # inventory file for production servers

      group_vars/         

      host_vars/

   london/                # additional, alternative grouping if useful

roles/

    requirements.yml      # includes roles from some other place

    common/               # base line, company wide configuration

    webtier/

Use a clear structure



Start with one Git repository - but when it grows, 
use multiple!

GIT - ONE OR MANY?

7

At the beginning: put everything in one Git repository

In the long term:

● One Git repository per role

● Dedicated repositories for completely separated teams / tasks

New to git? Get your cheat sheet here: https://opensource.com/downloads/cheat-sheet-git



SO, WHAT DO
WE HAVE?



Give inventory nodes human-meaningful names rather than 
IPs or DNS hostnames.

USE READABLE INVENTORY NAMES

9

10.1.2.75
10.1.5.45
10.1.4.5
10.1.0.40

w14301.acme.com
w17802.acme.com
w19203.acme.com
w19304.acme.com

db1 ansible_host=10.1.2.75
db2 ansible_host=10.1.5.45
db3 ansible_host=10.1.4.5
db4 ansible_host=10.1.0.40

web1 ansible_host=w14301.acme.com
web2 ansible_host=w17802.acme.com
web3 ansible_host=w19203.acme.com
web4 ansible_host=w19203.acme.com



Group hosts for easier inventory selection and less 
conditional tasks -- the more the better.

TAKE ADVANTAGE OF GROUPING

10

[db]
db[1:4]

[web]
web[1:4]

[dev]
db1
web1

[testing]
db3
web3

[prod]
db2
web2
db4
web4

[east]
db1
web1
db3
web3

[west]
db2
web2
db4
web4



Use dynamic sources where possible. Either as a single 
source of truth - or let Ansible unify multiple sources.

COMBINE ALL INVENTORY SOURCES

11

● Stay in sync automatically

● Reduce human error

● No lag when changes occur

● Let others manage the inventory



VARIABLES

JUST WORDS, 
RIGHT?



Proper variable names can make plays more readable and 
avoid variable name conflicts

DESCRIBE VARIABLES WITH THEIR NAMES

13

a: 25

data: ab

data2: abc

id: 123

apache_max_keepalive: 25

apache_port: 80

tomcat_port: 8080



Avoid collisions and confusion by adding the role name to a 
variable as a prefix.

PREFIX ROLE VARIABLES

14

apache_max_keepalive: 25

apache_port: 80

tomcat_port: 8080



Know where your variables are

PLACE VARIABLES APPROPRIATELY

15

● Find the appropriate place for your variables based on what, where and 

when they are set or modified

● Separate logic (tasks) from variables and reduce repetitive patterns

● Do not use every possibility to store variables - settle to a defined scheme 

and as few places as possible



MAKE YOUR PLAYBOOK 
READABLE



NO!

USE NATIVE YAML SYNTAX

17

- name: install telegraf
  yum: name=telegraf-{{ telegraf_version }} state=present update_cache=yes enablerepo=telegraf
  notify: restart telegraf

- name: start telegraf
  service: name=telegraf state=started



Yes!

USE KEY:VALUE PAIRS

18

- name: install telegraf
  yum:
    name: “telegraf-{{ telegraf_version }}”
    state: present
    update_cache: yes
    enablerepo: telegraf
  notify: restart telegraf

- name: start telegraf
  service:
    name: telegraf
    state: started



Exhibit A

DO NOT OMIT THE TASK NAME

19

- hosts: web

  tasks:

    - yum:
        name: httpd
        state: latest

    - service:
        name: httpd
        state: started
        enabled: yes

PLAY [web] 
********************************

TASK [setup] 
********************************
ok: [web1]

TASK [yum] 
********************************
ok: [web1]

TASK [service] 
********************************
ok: [web1]



Exhibit B

USE TASK NAMES

20

- hosts: web
  name: installs and starts apache

  tasks:
    - name: install apache packages
      yum:
        name: httpd
        state: latest

    - name: starts apache service
      service:
        name: httpd
        state: started
        enabled: yes

PLAY [install and starts apache] 
********************************

TASK [setup] 
********************************
ok: [web1]

TASK [install apache packages] 
********************************
ok: [web1]

TASK [starts apache service] 
********************************
ok: [web1]



POWERFUL
BLOCKS



Blocks can help in organizing code, but also enable rollbacks 
or output data for critical changes.

USE BLOCK SYNTAX

22

- block:
    copy:
      src: critical.conf
      dest: /etc/critical/crit.conf
    service:
      name: critical
      state: restarted
  rescue:
   command: shutdown -h now



23

EXECUTING THE ANSIBLE COMMANDS

Run



PROPER
LAUNCHING



Don’t just start services -- use smoke tests

CHECK IMMEDIATELY WHAT WAS DONE

25

- name: check for proper response
  wait_for:
    port: 80
    timeout: 300
    state: present
    search_regex: “Hello World”



Ansible provides multiple switches for command line 
interaction and troubleshooting.

TROUBLESHOOT ON EXECUTION

26

-vvvv
--step
--check
--diff
--start-at-task



Ansible has switches to show you what will be done

ANALYZE WHAT YOUR ARE RUNNING

27

Use the power of included options:
--list-tasks
--list-tags
--list-hosts
--syntax-check



If there is a need to launch something without an inventory - 
just do it!

QUICKLY LAUNCH WITHOUT INVENTORY

28

● For single tasks - note the comma:

ansible all -i neon.qxyz.de, -m service -a 

"name=redhat state=present"

● For playbooks - again, note the comma:

ansible-playbook -i neon.qxyz.de, site.yml



THE RIGHT 
TOOLS



Try to avoid the command module - always seek out a 
module first

USE NATIVE MODULES WHERE POSSIBLE

30

- name: add user
  command: useradd appuser

- name: install apache
  command: yum install httpd

- name: start apache
  shell: |
    service httpd start && chkconfig 
httpd on

   - name: add user
     user:
       name: appuser
       state: present
   
   - name: install apache
     yum:
       name: httpd
       state: latest

   - name: start apache
     service:
       name: httpd
       state: started
       enabled: yes



If managed files are not marked, they might be overwritten 
accidentally

MARK MANAGED FILES

31

● Label template output files as being generated by Ansible

● Use the ansible_managed** variable with the comment filter

{{ ansible_managed | comment }}



COLLECTIONS 
AND GALAXIES



Roles enable you to encapsulate your operations.

USE ROLES WHERE POSSIBLE

33

● Like playbooks -- keep roles purpose and function focused

● Store roles each in a dedicated Git repository

● Include roles via roles/requirements.yml file, import via 

ansible-galaxy tool

● Limit role dependencies



Get collections from Galaxy, but be careful and adopt them 
to your needs

USE GALAXY - WITH CARE

34

● Collections can contain roles, and other other code like modules 

as well

● Galaxy provides thousands of roles and collections

● Quality varies drastically

● Take them with a grain of salt

● Pick trusted or well known authors



ACCESS RIGHTS



Root access is harder to track than sudo - use sudo 
wherever possible

USE BECOME, DON’T BE A ROOT

36

● Don’t run as root

● For login and security reasons often request non-root access

● Use become method - so Ansible scripts are executed via sudo 

(sudo is easy to track)

● Best: create an Ansible only user

● Don’t try to limit sudo rights to certain commands - Ansible does 

not work that way!



DEBUG YOUR 
PROBLEM



Check logging on target machine

HAVE A LOOK AT THE NODE LEVEL

38

ansible-node sshd[2395]: pam_unix(sshd:session): session
  opened for user bob by (uid=0)
ansible-node ansible-yum[2399]: Invoked with name=['httpd']
  list=None install_repoquery=True conf_file=None
  disable_gpg_check=False state=absent disablerepo=None
  update_cache=False enablerepo=None exclude=None



How to keep the code executed on the target machine

IN WORST CASE, DEBUG ACTUAL CODE

39

Look into the logging of your target machine

  $ ANSIBLE_KEEP_REMOTE_FILES=1 ansible target-node -m yum
    -a "name=httpd state=absent"

Execute with:

  $ /bin/sh -c 'sudo -u $SUDO_USER /bin/sh -c
    "/usr/bin/python /home/bob/.ansible/tmp/..."



Debugging tasks can clutter the output, apply some 
housekeeping

USE THE DEBUG MODULE

40

- name: Output debug message
  debug:
    msg: "This always displays"

- name: Output debug message
  debug:
    msg: "This only displays with ansible-playbook -vv+"
    verbosity: 2



41

GET TOWER TO ADOPT ANSIBLE IN YOUR DATA CENTER

Scale



Simple: Use Tower.

TOWER FUNCTIONS

42

● Tower was developed with Ansible in mind

● Extends the limits of Ansible to meet enterprise 

needs:

Scalability, API, RBAC, audits, etc.



Tower has inbuilt help

TOWER FUNCTIONS

43

● Tower provides in-program help via questionmark 

bubbles

● Can include examples or links to further docs



BRANCHES, ANYONE?



Tower can import a repository multiple times with different 
branches

TAKE ADVANTAGE OF GIT BRANCHES

45

● Use feature or staging branches in your Git

● Import them all separately, address them 

separately

● Useful for testing of new features but also to 

move changes through stages



MANY, MANY ROLES



Tower automatically imports Roles during Project update

TOWER & ROLES

47

● Do not copy roles into your playbook repository, just create a 

roles/requirements.yml

● Tower will automatically import the roles during Project 

installation

● Mix roles from various sources

● Fix version in roles/requirements.yml to have auditable 

environment!



WHAT ARE WE 
TALKING TO?



Use dynamic & smart inventories

TOWER FUNCTIONS

49

● Combine multiple inventory types

● Let Tower take care of syncing and caching

● Use smart inventories to group nodes



DOING GOOD JOBS



Tower job templates provide multiple options - use them 
wisely

USE THE POWER OF JOB TEMPLATES

51

● Keep jobs simple, focussed - as playbooks or roles

● Add labels to them to better filter

● For idempotent jobs, create “check” templates as 

well - and let them run over night

● Combine with notifications - and get feedback 

when a “check” failed



1+1+1 = 1



Multiple playbooks can be combined into one workflow

USE WORKFLOWS FOR COMPLEX TASKS

53

● Simple jobs, complex workflows

● React to problems via workflow

● Combine playbooks of different 

teams, different repositories

● Re-sync inventories during the play



DO ASK PROPER QUESTIONS



Use surveys to get variable values

TOWER FUNCTIONS

55

● Use good, meaningful variable names

● Provide a default choice

● Multiple choice > free text

● If answer not required - do you really need it at 

all?
QUICK TIP
Try right clicking on the icon and using 
“Replace Image” to insert your own icons.



A POWERFUL 
TEAM



Tower provides tenants, teams, and users - use them for separation

USE TOWER TEAMS, SEPARATIONS

57

● Provide automation to others without 

exposing credentials

● Let others only see what they really 

need

● Use personal view instead of full Tower 

interface



ONE KEY TO RULE 
THEM ALL ...



Tower credentials should only be used by Tower - not by 
others

USE TOWER SPECIFIC ACCESS CREDENTIALS

59

● Set up a separate user and password/key for 

Tower

● That way, automation can easily be identified 

on target machines

● The key/password can be ridiculously 

complicated secure

● Store key/password in a safe for emergencies



NOTIFY YOURSELF!



Tower can send notifications if a job succeeds, fails or 
always - as mail, IRC, web hook, and so on

LET TOWER SEND NOTIFICATIONS TO YOU

61

● Let Tower notify you and your team if something breaks

● Send mails/web-hooks automatically to a ticket systems and 

monitoring if there is a serious problem



LOGS, ANYONE?



Send all logs from Tower to central logging

CONNECT TOWER TO CENTRAL LOGGING

63

● Splunk, Loggly, ELK, REST

● Send results from Ansible runs 

- but also from Tower changes



ALWAYS KEEP 
THE LIGHTS ON



Tower can be easily set up HA - and for restricted networks, 
deploy isolated nodes

USE HA, DEPLOY ISOLATED NODES

65

● Make Tower HA - it is easy! (Well, except the 

DB part maybe….)

● For distant or restricted networks, use 

isolated nodes



CONNECT YOUR 
AUTOMATION



Information across all clusters for an enterprise:

● Job Status graph
● Top Job Templates
● Top Modules

Analytics dashboard



● Ansible Tower Cluster is down
● Node (within a cluster) is down
● Last time data was updated
● Near license count

Health notifications



Organizational 
statistics Filter by Organization

Job Status by Organization

Usage by Organization

Job Runs by Organization



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you

70


