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Agenda

● Systemd functionality

● Coming to terms

● Learning the basics

● More advanced topics

● Learning the journal

● Available resources
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Systemd is more than a SysVinit replacement
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Systemd is a system and service manager
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Systemd Overview

● Controls “units” rather than just daemons

● Handles dependency between units. 

● Tracks processes with service information
● Services are owned by a cgroup.
● Simple to configure “SLAs” based on CPU, Memory, 

and IO.
● Properly kill daemons

● Minimal boot times

● Debuggability – no early boot messages are lost

● Easy to learn and backwards compatible.
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Closer look at Units
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Systemd - Units

● Naming convention is: name.type
●  httpd.service, sshd.socket, or dev-hugepages.mount

● Service – Describe a daemon's type, execution, 
environment, and how it's monitored.

● Socket – Endpoint for interprocess communication. 
File, network, or Unix sockets.

● Target – Logical grouping of units. Replacement for 
runlevels.

● Device – Automatically created by the kernel. Can be 
provided to services as dependents. 

● Mounts, automounts, swap – Monitor the 
mounting/unmounting of file systems.
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Systemd – Units Continued

● Snapshots – save the state of units – useful for testing

● Timers – Timer-based activation 

● Paths – Uses inotify to monitor a path

● Slices – For resource management. 
● system.slice – services started by systemd
● user.slice – user processes
● machine.slice – VMs or containers registered with 

systemd
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Systemd – Dependency Resolution

●  Example:
●  Wait for block device
●  Check file system for device
●  Mount file system

● nfs-lock.service:
● Requires=rpcbind.service network.target
● After=network.target named.service rpcbind.service
● Before=remote-fs-pre.target
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That's all great .......but
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Replace Init scripts!?
Are you crazy?!
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We're not crazy, I promise

● SysVinit had a good run, but leaves a lot to be desired.

● Often we work around init more than we realize. 
● One-node clusters
● Daemon Monitoring with utilities such as monit
● rc.local hacks
● Tweaking symlinks under /etc/rc.d/rcX.d/S* to effect 

execution order

● Systemd encourages better standardization across 
distributions

● LSB helped in this effort, but.....
● Distribution standards benefit us all.
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Fine, but isn't this just change for change's sake?
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Not Really

● Systemd enables much “smarter” and easier to 
manage systems.

● PID 1 now handles dependency resolution.
● No more adding things like `sleep 60; service [daemon] 

restart` to rc.local
● Services can be configured to autospawn and respawn

● Cgroup integration makes cgroups much easier to 
leverage.

● Most of us like Init because it's familiar and well 
understood. 

● Systemd is simple to learn, and is easier for noobs
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...but I just got used to Upstart in RHEL6. 
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...well, remember [deprecated technology]

● One of the best things about open source is that the 
best technology wins.

● Albeit, it can be frustrating to keep up, but comfort 
should not hinder innovation

● Upstart was a huge step forward from SysVinit, and 
was a great addition in RHEL 6.

● Upstart added the ability to respawn services and 
enabled some parallelization at boot.

● The downside is it failed to handle dependencies, and 
left it to the user/maintainer. 

● Systemd solves that problem and many others.
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....but I love System-V init scripts!!!
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You're in luck!

● systemd maintains 99% backwards compatibility with 
initscripts and the exceptions are well documented.

● While we do encourage everyone to convert legacy 
scripts to service unit files, it's not a requirement. 

● ***hint: we'll show you how to do this in a few minutes.
● Incompatibilities are listed here: 

http://www.freedesktop.org/wiki/Software/systemd/Incompatibilities/

● Converting SysV Init Scripts: 
http://0pointer.de/blog/projects/systemd-for-admins-3.html

http://www.freedesktop.org/wiki/Software/systemd/Incompatibilities/
http://0pointer.de/blog/projects/systemd-for-admins-3.html
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Isn't systemd just about fast boot times? 
I don't care about that on my servers!  



20

You sure about that? 

● Lennart Poettering says that “Fast booting isn't the 
goal of systemd, it's a result of a well designed 
system.”

● As virt/cloud demand continues, the desire for light-
weight, reliable/resilient, and fast images grows.

● A striped down image can boot in ~2 seconds.
● Less CPU cycles burned during the boot process
● Important for highly dense and dynamic environments. 
● Even more important for containers.
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I don't like change.
It makes me 
uncomfortable.

-Alf (R.I.P.)
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Dude, seriously!?

Change is constant. Embrace rather than resist.

...in other words.
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Resistance is futile!

Captain Jean Luc Picard as Locutus
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The Basics:
Managing Services



25

Managing Services – Unit files

Via Init:

Init scripts are stored in /etc/init.d & called from /etc/rc*

Via systemd:

Maintainer unit files: /usr/lib/systemd/system

User unit files: /etc/systemd/system

Note unit files under /etc/ will take precedence over /usr
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Managing Services – Start/Stop

Via Init:

$ service httpd {start,stop,restart,reload} 

Via systemctl:

$ systemctl {start,stop,restart,reload} httpd.service
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Managing Services – Start/Stop

Note that:

● systemctl places the “action” before the service name. 

● If a unit isn't specified, .service is assumed. 

● systemctl start httpd == systemctl start httpd.service
● Tab completion works great with systemctl

● Install bash-completion
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Managing Services – Status

Via Init:

$ service httpd status 

Via systemctl:

$ systemctl status httpd.service
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Managing Services – Status
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Managing Services – Status

● That's a little more helpful than:
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Managing Services – Status

● List running services:
● systemctl -t service (similar to chkconfig --list)

● View cgroup tree:
● Systemd-cgls

● *tip* systemctl can connect to remote hosts over SSH 
using “-H”
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Managing Services – Enable/Disable

Via Init:

$ chkconfig httpd {on,off}

Via systemctl:

$ systemctl {enable,disable,mask} httpd.service

mask – “This will link these units to /dev/null, making it impossible to start them. This is 
a stronger version of disable, since it prohibits all kinds of activation of the unit, including 
manual activation. Use this option with care.”
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Runlevels
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Runlevels



35

Runlevels == Targets
● “Runlevels” are exposed via target units

● /etc/inittab is no longer used

● Target names are more relevant:

● multi-user.target vs. runlevel3
● graphical.target vs. runlevel5

● Set the default via: `systemctl enable graphical.target --force`

● Change at run-time via: `systemctl isolate [target]`

● Change at boot time by appending:

● systemd.unit=[target]
● Rescue append '1', 's', or systemd.unit=rescue.target
● Emergency append emergency, or systemd.unit=emergency.target
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Runlevel Names

Runlevel Systemd Target Description

0 poweroff.target, runlevel0.target System halt

1 rescue.target, runlevel1.target Single user mode

3 (2,4) multi-user.target, runlevel3.target Multi-user, non graphical

5 graphical.target, runlevel5.target Multi-user, graphical

6 reboot.target, runlevel6.target System reboot

ls /lib/systemd/system/runlevel*target -l
lrwxrwxrwx. 1 root root 15 Jul  3 21:37 /lib/systemd/system/runlevel0.target -> poweroff.target
lrwxrwxrwx. 1 root root 13 Jul  3 21:37 /lib/systemd/system/runlevel1.target -> rescue.target
lrwxrwxrwx. 1 root root 17 Jul  3 21:37 /lib/systemd/system/runlevel2.target -> multi-user.target
lrwxrwxrwx. 1 root root 17 Jul  3 21:37 /lib/systemd/system/runlevel3.target -> multi-user.target
lrwxrwxrwx. 1 root root 17 Jul  3 21:37 /lib/systemd/system/runlevel4.target -> multi-user.target
lrwxrwxrwx. 1 root root 16 Jul  3 21:37 /lib/systemd/system/runlevel5.target -> graphical.target
lrwxrwxrwx. 1 root root 13 Jul  3 21:37 /lib/systemd/system/runlevel6.target -> reboot.target
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getty
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getty

● Append: console=ttyS0

● Will enable first detected serial port

● Simply start additional getty's via:

● systemctl start serial-getty@USB0.service
● Started using template file: /usr/lib/systemd/system/serial-

getty@.service

● To customize serial device configuration:
● cp /usr/lib/systemd/system/serial-getty@.service 

/etc/systemd/system/serial-getty@ttyS2.service 

● Edit config

● systemctl enable serial-getty@ttyS2.service

● systemctl start serial-getty@ttyS2.service
http://0pointer.de/blog/projects/serial-console.html

mailto:serial-getty@ttyS2.service
http://0pointer.de/blog/projects/serial-console.html
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Troubleshooting the Boot Process
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Booting

● Boot process is too fast to watch

● Interactive boot append: systemd.confirm_spawn=1

● /var/log/boot.log – still works the same

● Enable debugging from grub by appending:
● systemd.log_level=debug systemd.log_target=kmsg log_buf_len=1M

● Or send dbug info to a serial console: 
systemd.log_level=debug systemd.log_target=console console=ttyS0

● Enable early boot shell (can troubleshoot with 
systemctl command)

● systemctl enable debug-shell.service
● systemctl list-jobs http://freedesktop.org/wiki/Software/systemd/Debugging/

http://freedesktop.org/wiki/Software/systemd/Debugging/


41

Booting

● rc.local 
● touch /etc/rc.d/rc.local ; chmod +x /etc/rc.d/rc.local

● Don't forget to add #!/bin/bash

● systemd-analyze – stats
● Use blame and/or plot for more details
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Customizing Service Unit Files
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Service Unit Files

● Changes under /usr/lib/systemd/system will be 
overwritten by rpms

● It is recommended to either: 
● copy unit files to /etc/systemd/system/ 
● or add an include statement to new unit file.

● .include /usr/lib/systemd/system/httpd.service

● /etc service files will take precedence over /usr

● Simply delete the modified service file to revert to 
defaults

● systemd-delta – will show what is overridden
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Service Files – httpd Example

● First edit the new service file: 
● vim /etc/systemd/system/httpd.service

● Reload services files: systemctl daemon-reload

● Restart httpd: systemctl restart httpd

 .include /usr/lib/systemd/system/httpd.service

 [Service] 
 Restart=always
StartLimitInterval=10
StartLimitBurst=5
StartLimitAction=reboot
Nice=-5
WatchdogSec=1
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Service Files – httpd Example

● Nice, CPUAffinity, CPUSchedulingPolicy, 
CPUSchedulingPriority, LimitCPU, 
IOSchedulingPriority, OOMScoreAdjust, 
IOSchedulingClass, etc

● For details see:
● man 5 systemd.service
● man 5 systemd.exec
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Resource Management
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Control Groups made simple

● Resource Management with cgroups can reduce 
application or VM contention and improve throughput
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Resource Management

● cgroups are configured in /etc/systemd/system.conf

● CPU enabled by default

● Alter DefaultControllers for additional controllers.
● e.g. DefaultControllers=cpu,memory,blkio 

● Each service is run in it's own cgroup

● Cgroup settings are per service not process

● View usage via systemd-cgtop
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Resource Management - CPU

● CPUShares – default is 1024.

● Increase to assign more CPU to a service 
● e.g. CPUShares=1600
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Resource Management - Memory

● Expose MemoryLimit and MemorySoftLimit

● Use K, M, G, T suffixes
● MemoryLimit=1G
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Resource Management - BlkIO

● BlockIOWeight= assigns an IO weight to a specific 
service

● Similar to CPU shares
● Default is 1000
● Range 10 – 1000
● Can be defined per device (or mount point)

● BlockIOReadBandwidth & BlockIOWriteBandwidth
● BlockIOWriteBandwith=/var/log 5M
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Resource Management – additional attributes

● Not all cgroup attributes are exposed in systemd. 

● Additional attributes are available via: 
ControlGroupAttribute

● e.g. ControlGroupAttribute=memory.swappiness 70
● Configure runtime (will not persist) via get-cgroup-attr 

& set-cgroup-attr
● systemctl get-cgroup-attr httpd.service cpu.shares
● systemctl set-cgroup-attr httpd.service cpu.shares 2048

● Remember to monitor with systemd-cgtop

http://0pointer.de/blog/projects/resources.html

http://0pointer.de/blog/projects/resources.html
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Converting Init Scripts
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But first, remember what init scripts look like?
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/etc/init.d/httpd
. /etc/rc.d/init.d/functions
if [ -f /etc/sysconfig/httpd ]; then
        . /etc/sysconfig/httpd
fi
HTTPD_LANG=${HTTPD_LANG-"C"}
INITLOG_ARGS=""
apachectl=/usr/sbin/apachectl
httpd=${HTTPD-/usr/sbin/httpd}
prog=httpd
pidfile=${PIDFILE-/var/run/httpd/httpd.pid}
lockfile=${LOCKFILE-/var/lock/subsys/httpd}
RETVAL=0
STOP_TIMEOUT=${STOP_TIMEOUT-10}
start() {
        echo -n $"Starting $prog: "
        LANG=$HTTPD_LANG daemon --pidfile=${pidfile} $httpd $OPTIONS
        RETVAL=$?
        echo
        [ $RETVAL = 0 ] && touch ${lockfile}
        return $RETVAL
}
stop() {
        echo -n $"Stopping $prog: "
        killproc -p ${pidfile} -d ${STOP_TIMEOUT} $httpd
        RETVAL=$?
        echo
        [ $RETVAL = 0 ] && rm -f ${lockfile} ${pidfile}
}

From RHEL 6.4; comments removed
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Init – httpd continued
reload() {
    echo -n $"Reloading $prog: "
    if ! LANG=$HTTPD_LANG $httpd $OPTIONS -t >&/dev/null; then
        RETVAL=6
        echo $"not reloading due to configuration syntax error"
        failure $"not reloading $httpd due to configuration syntax error"
    else
        LSB=1 killproc -p ${pidfile} $httpd -HUP
        RETVAL=$?
        if [ $RETVAL -eq 7 ]; then
            failure $"httpd shutdown"
        fi
    fi
    echo
}

case "$1" in
  start)
        start
        ;;
  stop)
        stop
        ;;
  status)
        status -p ${pidfile} $httpd
        RETVAL=$?
        ;;
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Init – httpd continued
 restart)
        stop
        start
        ;;
  condrestart|try-restart)
        if status -p ${pidfile} $httpd >&/dev/null; then
                stop
                start
        fi
        ;;
  force-reload|reload)
        reload
        ;;
  graceful|help|configtest|fullstatus)
        $apachectl $@
        RETVAL=$?
        ;;
  *)
        echo $"Usage: $prog {start|stop|restart|condrestart|try-restart|force-reload|reload|status|fullstatus|graceful|help|
configtest}"
        RETVAL=2
esac
exit $RETVAL
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Contrast that with a systemd unit file syntax
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Unit file layout – httpd.service

[Unit]
Description=The Apache HTTP Server
After=network.target remote-fs.target nss-lookup.target

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/httpd
ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
ExecStop=/usr/sbin/httpd $OPTIONS -k graceful-stop

KillSignal=SIGCONT
PrivateTmp=true

[Install]
WantedBy=multi-user.target

*Comments were removed for readability
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Unit file layout – Custom application

[Unit]
Description=Something generic
After=syslog.target network.target

[Service]
ExecStart=/usr/sbin/[myapp] -D
Type=forking
PIDFile=/var/run/myapp.pid

[Install]
WantedBy=multi-user.target
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Unit file layout – Test your unit file

● Copy the unit file 
● cp myapp.service /etc/systemd/system/

● Alert systemd of the changes:
● systemctl daemon-reload

● Start service
● systemctl start myapp.service

● View status
● systemctl status myapp.service

http://0pointer.de/blog/projects/systemd-for-admins-3.html

http://0pointer.de/blog/projects/systemd-for-admins-3.html
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The Journal



63

Journal

● Indexed

● Formatted
● Errors in red
● Warnings in bold

● Security

● Reliability

● Intelligently rotated
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Journal

● Does not replace rsyslog in RHEL 7
● rsyslog is enabled by default

● Use rsyslog for traditional logging w/ enterprise 
features

● The journal is not persistent by default.

● Collects event metadata

● Stored in key-value pairs 
● man page: systemd.journal-fields(7)

● journalctl - utility for to viewing the journal. 
● Simple (or complex) filtering
● Interleave units, binaries, etc
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Using the Journal

● journalctl
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Using the Journal

● Enable persistence: `mkdir /var/log/journal`

● View from boot: `journalctl -b`

● Tail -f and -n work as expected: 
● journalctl -f ; journalctl -n 50

● Filter by priority: `journalctl -p [level]`
0 emerg

1 alert

2 crit

3 err

4 warning

5 notice

6 debug
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Using the Journal

● Other useful filters:
● --since=yesterday or YYYY-MM-DD (HH:MM:SS)
● --until=YYYY-MM-DD
● -u [unit]
● Pass binary e.g. /usr/sbin/dnsmasq

● View journal fields
● journalctl [tab] [tab] ←bash-completion rocks!!

● Entire journal
● journal -o verbose (useful for grep)
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Systemd Resources

● RHEL 7 documentation placeholder: 
https://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

● Systemd project page: 
http://www.freedesktop.org/wiki/Software/systemd/

● Lennart Poettering's systemd blog entries: (read them all) 
http://0pointer.de/blog/projects/systemd-for-admins-1.html

● Red Hat System Administration II & III (RH134/RH254)

● FAQ

● Tips & Tricks

https://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://www.freedesktop.org/wiki/Software/systemd/FrequentlyAskedQuestions
http://www.freedesktop.org/wiki/Software/systemd/TipsAndTricks
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