

Systemd – Easy as 1, 2, 3

Ben Breard, RHCA
Solutions Architect, Red Hat
bbreard@redhat.com

2

Agenda

● Systemd functionality

● Coming to terms

● Learning the basics

● More advanced topics

● Learning the journal

● Available resources

3

Systemd is more than a SysVinit replacement

4

Systemd is a system and service manager

5

Systemd Overview

● Controls “units” rather than just daemons

● Handles dependency between units.

● Tracks processes with service information
● Services are owned by a cgroup.
● Simple to configure “SLAs” based on CPU, Memory,

and IO.
● Properly kill daemons

● Minimal boot times

● Debuggability – no early boot messages are lost

● Easy to learn and backwards compatible.

6

Closer look at Units

7

Systemd - Units

● Naming convention is: name.type
● httpd.service, sshd.socket, or dev-hugepages.mount

● Service – Describe a daemon's type, execution,
environment, and how it's monitored.

● Socket – Endpoint for interprocess communication.
File, network, or Unix sockets.

● Target – Logical grouping of units. Replacement for
runlevels.

● Device – Automatically created by the kernel. Can be
provided to services as dependents.

● Mounts, automounts, swap – Monitor the
mounting/unmounting of file systems.

8

Systemd – Units Continued

● Snapshots – save the state of units – useful for testing

● Timers – Timer-based activation

● Paths – Uses inotify to monitor a path

● Slices – For resource management.
● system.slice – services started by systemd
● user.slice – user processes
● machine.slice – VMs or containers registered with

systemd

9

Systemd – Dependency Resolution

● Example:
● Wait for block device
● Check file system for device
● Mount file system

● nfs-lock.service:
● Requires=rpcbind.service network.target
● After=network.target named.service rpcbind.service
● Before=remote-fs-pre.target

10

That's all greatbut

11

Replace Init scripts!?
Are you crazy?!

12

We're not crazy, I promise

● SysVinit had a good run, but leaves a lot to be desired.

● Often we work around init more than we realize.
● One-node clusters
● Daemon Monitoring with utilities such as monit
● rc.local hacks
● Tweaking symlinks under /etc/rc.d/rcX.d/S* to effect

execution order

● Systemd encourages better standardization across
distributions

● LSB helped in this effort, but.....
● Distribution standards benefit us all.

13

Fine, but isn't this just change for change's sake?

14

Not Really

● Systemd enables much “smarter” and easier to
manage systems.

● PID 1 now handles dependency resolution.
● No more adding things like `sleep 60; service [daemon]

restart` to rc.local
● Services can be configured to autospawn and respawn

● Cgroup integration makes cgroups much easier to
leverage.

● Most of us like Init because it's familiar and well
understood.

● Systemd is simple to learn, and is easier for noobs

15

...but I just got used to Upstart in RHEL6.

16

...well, remember [deprecated technology]

● One of the best things about open source is that the
best technology wins.

● Albeit, it can be frustrating to keep up, but comfort
should not hinder innovation

● Upstart was a huge step forward from SysVinit, and
was a great addition in RHEL 6.

● Upstart added the ability to respawn services and
enabled some parallelization at boot.

● The downside is it failed to handle dependencies, and
left it to the user/maintainer.

● Systemd solves that problem and many others.

17

....but I love System-V init scripts!!!

18

You're in luck!

● systemd maintains 99% backwards compatibility with
initscripts and the exceptions are well documented.

● While we do encourage everyone to convert legacy
scripts to service unit files, it's not a requirement.

● ***hint: we'll show you how to do this in a few minutes.
● Incompatibilities are listed here:

http://www.freedesktop.org/wiki/Software/systemd/Incompatibilities/

● Converting SysV Init Scripts:
http://0pointer.de/blog/projects/systemd-for-admins-3.html

http://www.freedesktop.org/wiki/Software/systemd/Incompatibilities/
http://0pointer.de/blog/projects/systemd-for-admins-3.html

19

Isn't systemd just about fast boot times?
I don't care about that on my servers!

20

You sure about that?

● Lennart Poettering says that “Fast booting isn't the
goal of systemd, it's a result of a well designed
system.”

● As virt/cloud demand continues, the desire for light-
weight, reliable/resilient, and fast images grows.

● A striped down image can boot in ~2 seconds.
● Less CPU cycles burned during the boot process
● Important for highly dense and dynamic environments.
● Even more important for containers.

21

I don't like change.
It makes me
uncomfortable.

-Alf (R.I.P.)

22

Dude, seriously!?

Change is constant. Embrace rather than resist.

...in other words.

23

Resistance is futile!

Captain Jean Luc Picard as Locutus

24

The Basics:
Managing Services

25

Managing Services – Unit files

Via Init:

Init scripts are stored in /etc/init.d & called from /etc/rc*

Via systemd:

Maintainer unit files: /usr/lib/systemd/system

User unit files: /etc/systemd/system

Note unit files under /etc/ will take precedence over /usr

26

Managing Services – Start/Stop

Via Init:

$ service httpd {start,stop,restart,reload}

Via systemctl:

$ systemctl {start,stop,restart,reload} httpd.service

27

Managing Services – Start/Stop

Note that:

● systemctl places the “action” before the service name.

● If a unit isn't specified, .service is assumed.

● systemctl start httpd == systemctl start httpd.service
● Tab completion works great with systemctl

● Install bash-completion

28

Managing Services – Status

Via Init:

$ service httpd status

Via systemctl:

$ systemctl status httpd.service

29

Managing Services – Status

30

Managing Services – Status

● That's a little more helpful than:

31

Managing Services – Status

● List running services:
● systemctl -t service (similar to chkconfig --list)

● View cgroup tree:
● Systemd-cgls

● *tip* systemctl can connect to remote hosts over SSH
using “-H”

32

Managing Services – Enable/Disable

Via Init:

$ chkconfig httpd {on,off}

Via systemctl:

$ systemctl {enable,disable,mask} httpd.service

mask – “This will link these units to /dev/null, making it impossible to start them. This is
a stronger version of disable, since it prohibits all kinds of activation of the unit, including
manual activation. Use this option with care.”

33

Runlevels

34

Runlevels

35

Runlevels == Targets
● “Runlevels” are exposed via target units

● /etc/inittab is no longer used

● Target names are more relevant:

● multi-user.target vs. runlevel3
● graphical.target vs. runlevel5

● Set the default via: `systemctl enable graphical.target --force`

● Change at run-time via: `systemctl isolate [target]`

● Change at boot time by appending:

● systemd.unit=[target]
● Rescue append '1', 's', or systemd.unit=rescue.target
● Emergency append emergency, or systemd.unit=emergency.target

36

Runlevel Names

Runlevel Systemd Target Description

0 poweroff.target, runlevel0.target System halt

1 rescue.target, runlevel1.target Single user mode

3 (2,4) multi-user.target, runlevel3.target Multi-user, non graphical

5 graphical.target, runlevel5.target Multi-user, graphical

6 reboot.target, runlevel6.target System reboot

ls /lib/systemd/system/runlevel*target -l
lrwxrwxrwx. 1 root root 15 Jul 3 21:37 /lib/systemd/system/runlevel0.target -> poweroff.target
lrwxrwxrwx. 1 root root 13 Jul 3 21:37 /lib/systemd/system/runlevel1.target -> rescue.target
lrwxrwxrwx. 1 root root 17 Jul 3 21:37 /lib/systemd/system/runlevel2.target -> multi-user.target
lrwxrwxrwx. 1 root root 17 Jul 3 21:37 /lib/systemd/system/runlevel3.target -> multi-user.target
lrwxrwxrwx. 1 root root 17 Jul 3 21:37 /lib/systemd/system/runlevel4.target -> multi-user.target
lrwxrwxrwx. 1 root root 16 Jul 3 21:37 /lib/systemd/system/runlevel5.target -> graphical.target
lrwxrwxrwx. 1 root root 13 Jul 3 21:37 /lib/systemd/system/runlevel6.target -> reboot.target

37

getty

38

getty

● Append: console=ttyS0

● Will enable first detected serial port

● Simply start additional getty's via:

● systemctl start serial-getty@USB0.service
● Started using template file: /usr/lib/systemd/system/serial-

getty@.service

● To customize serial device configuration:
● cp /usr/lib/systemd/system/serial-getty@.service

/etc/systemd/system/serial-getty@ttyS2.service

● Edit config

● systemctl enable serial-getty@ttyS2.service

● systemctl start serial-getty@ttyS2.service
http://0pointer.de/blog/projects/serial-console.html

mailto:serial-getty@ttyS2.service
http://0pointer.de/blog/projects/serial-console.html

39

Troubleshooting the Boot Process

40

Booting

● Boot process is too fast to watch

● Interactive boot append: systemd.confirm_spawn=1

● /var/log/boot.log – still works the same

● Enable debugging from grub by appending:
● systemd.log_level=debug systemd.log_target=kmsg log_buf_len=1M

● Or send dbug info to a serial console:
systemd.log_level=debug systemd.log_target=console console=ttyS0

● Enable early boot shell (can troubleshoot with
systemctl command)

● systemctl enable debug-shell.service
● systemctl list-jobs http://freedesktop.org/wiki/Software/systemd/Debugging/

http://freedesktop.org/wiki/Software/systemd/Debugging/

41

Booting

● rc.local
● touch /etc/rc.d/rc.local ; chmod +x /etc/rc.d/rc.local

● Don't forget to add #!/bin/bash

● systemd-analyze – stats
● Use blame and/or plot for more details

42

Customizing Service Unit Files

43

Service Unit Files

● Changes under /usr/lib/systemd/system will be
overwritten by rpms

● It is recommended to either:
● copy unit files to /etc/systemd/system/
● or add an include statement to new unit file.

● .include /usr/lib/systemd/system/httpd.service

● /etc service files will take precedence over /usr

● Simply delete the modified service file to revert to
defaults

● systemd-delta – will show what is overridden

44

Service Files – httpd Example

● First edit the new service file:
● vim /etc/systemd/system/httpd.service

● Reload services files: systemctl daemon-reload

● Restart httpd: systemctl restart httpd

 .include /usr/lib/systemd/system/httpd.service

 [Service]
 Restart=always
StartLimitInterval=10
StartLimitBurst=5
StartLimitAction=reboot
Nice=-5
WatchdogSec=1

45

Service Files – httpd Example

● Nice, CPUAffinity, CPUSchedulingPolicy,
CPUSchedulingPriority, LimitCPU,
IOSchedulingPriority, OOMScoreAdjust,
IOSchedulingClass, etc

● For details see:
● man 5 systemd.service
● man 5 systemd.exec

46

Resource Management

47

Control Groups made simple

● Resource Management with cgroups can reduce
application or VM contention and improve throughput

48

Resource Management

● cgroups are configured in /etc/systemd/system.conf

● CPU enabled by default

● Alter DefaultControllers for additional controllers.
● e.g. DefaultControllers=cpu,memory,blkio

● Each service is run in it's own cgroup

● Cgroup settings are per service not process

● View usage via systemd-cgtop

49

Resource Management - CPU

● CPUShares – default is 1024.

● Increase to assign more CPU to a service
● e.g. CPUShares=1600

50

Resource Management - Memory

● Expose MemoryLimit and MemorySoftLimit

● Use K, M, G, T suffixes
● MemoryLimit=1G

51

Resource Management - BlkIO

● BlockIOWeight= assigns an IO weight to a specific
service

● Similar to CPU shares
● Default is 1000
● Range 10 – 1000
● Can be defined per device (or mount point)

● BlockIOReadBandwidth & BlockIOWriteBandwidth
● BlockIOWriteBandwith=/var/log 5M

52

Resource Management – additional attributes

● Not all cgroup attributes are exposed in systemd.

● Additional attributes are available via:
ControlGroupAttribute

● e.g. ControlGroupAttribute=memory.swappiness 70
● Configure runtime (will not persist) via get-cgroup-attr

& set-cgroup-attr
● systemctl get-cgroup-attr httpd.service cpu.shares
● systemctl set-cgroup-attr httpd.service cpu.shares 2048

● Remember to monitor with systemd-cgtop

http://0pointer.de/blog/projects/resources.html

http://0pointer.de/blog/projects/resources.html

53

Converting Init Scripts

54

But first, remember what init scripts look like?

55

/etc/init.d/httpd
. /etc/rc.d/init.d/functions
if [-f /etc/sysconfig/httpd]; then
 . /etc/sysconfig/httpd
fi
HTTPD_LANG=${HTTPD_LANG-"C"}
INITLOG_ARGS=""
apachectl=/usr/sbin/apachectl
httpd=${HTTPD-/usr/sbin/httpd}
prog=httpd
pidfile=${PIDFILE-/var/run/httpd/httpd.pid}
lockfile=${LOCKFILE-/var/lock/subsys/httpd}
RETVAL=0
STOP_TIMEOUT=${STOP_TIMEOUT-10}
start() {
 echo -n $"Starting $prog: "
 LANG=$HTTPD_LANG daemon --pidfile=${pidfile} $httpd $OPTIONS
 RETVAL=$?
 echo
 [$RETVAL = 0] && touch ${lockfile}
 return $RETVAL
}
stop() {
 echo -n $"Stopping $prog: "
 killproc -p ${pidfile} -d ${STOP_TIMEOUT} $httpd
 RETVAL=$?
 echo
 [$RETVAL = 0] && rm -f ${lockfile} ${pidfile}
}

From RHEL 6.4; comments removed

56

Init – httpd continued
reload() {
 echo -n $"Reloading $prog: "
 if ! LANG=$HTTPD_LANG $httpd $OPTIONS -t >&/dev/null; then
 RETVAL=6
 echo $"not reloading due to configuration syntax error"
 failure $"not reloading $httpd due to configuration syntax error"
 else
 LSB=1 killproc -p ${pidfile} $httpd -HUP
 RETVAL=$?
 if [$RETVAL -eq 7]; then
 failure $"httpd shutdown"
 fi
 fi
 echo
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 status)
 status -p ${pidfile} $httpd
 RETVAL=$?
 ;;

57

Init – httpd continued
 restart)
 stop
 start
 ;;
 condrestart|try-restart)
 if status -p ${pidfile} $httpd >&/dev/null; then
 stop
 start
 fi
 ;;
 force-reload|reload)
 reload
 ;;
 graceful|help|configtest|fullstatus)
 $apachectl $@
 RETVAL=$?
 ;;
 *)
 echo $"Usage: $prog {start|stop|restart|condrestart|try-restart|force-reload|reload|status|fullstatus|graceful|help|
configtest}"
 RETVAL=2
esac
exit $RETVAL

58

Contrast that with a systemd unit file syntax

59

Unit file layout – httpd.service

[Unit]
Description=The Apache HTTP Server
After=network.target remote-fs.target nss-lookup.target

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/httpd
ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
ExecStop=/usr/sbin/httpd $OPTIONS -k graceful-stop

KillSignal=SIGCONT
PrivateTmp=true

[Install]
WantedBy=multi-user.target

*Comments were removed for readability

60

Unit file layout – Custom application

[Unit]
Description=Something generic
After=syslog.target network.target

[Service]
ExecStart=/usr/sbin/[myapp] -D
Type=forking
PIDFile=/var/run/myapp.pid

[Install]
WantedBy=multi-user.target

61

Unit file layout – Test your unit file

● Copy the unit file
● cp myapp.service /etc/systemd/system/

● Alert systemd of the changes:
● systemctl daemon-reload

● Start service
● systemctl start myapp.service

● View status
● systemctl status myapp.service

http://0pointer.de/blog/projects/systemd-for-admins-3.html

http://0pointer.de/blog/projects/systemd-for-admins-3.html

62

The Journal

63

Journal

● Indexed

● Formatted
● Errors in red
● Warnings in bold

● Security

● Reliability

● Intelligently rotated

64

Journal

● Does not replace rsyslog in RHEL 7
● rsyslog is enabled by default

● Use rsyslog for traditional logging w/ enterprise
features

● The journal is not persistent by default.

● Collects event metadata

● Stored in key-value pairs
● man page: systemd.journal-fields(7)

● journalctl - utility for to viewing the journal.
● Simple (or complex) filtering
● Interleave units, binaries, etc

65

Using the Journal

● journalctl

66

Using the Journal

● Enable persistence: `mkdir /var/log/journal`

● View from boot: `journalctl -b`

● Tail -f and -n work as expected:
● journalctl -f ; journalctl -n 50

● Filter by priority: `journalctl -p [level]`
0 emerg

1 alert

2 crit

3 err

4 warning

5 notice

6 debug

67

Using the Journal

● Other useful filters:
● --since=yesterday or YYYY-MM-DD (HH:MM:SS)
● --until=YYYY-MM-DD
● -u [unit]
● Pass binary e.g. /usr/sbin/dnsmasq

● View journal fields
● journalctl [tab] [tab] ←bash-completion rocks!!

● Entire journal
● journal -o verbose (useful for grep)

68

Systemd Resources

● RHEL 7 documentation placeholder:
https://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

● Systemd project page:
http://www.freedesktop.org/wiki/Software/systemd/

● Lennart Poettering's systemd blog entries: (read them all)
http://0pointer.de/blog/projects/systemd-for-admins-1.html

● Red Hat System Administration II & III (RH134/RH254)

● FAQ

● Tips & Tricks

https://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://www.freedesktop.org/wiki/Software/systemd/FrequentlyAskedQuestions
http://www.freedesktop.org/wiki/Software/systemd/TipsAndTricks

69

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

