
Service Management with systemd

Michal Sekletár
msekleta@redhat.com

October 29, 2017

whoami

Senior Software Engineer @ Red Hat

systemd and udev maintainer

Free/Open source software contributor

2 / 52

Administration

13:30 – Welcome and introduction

13:40 – Lab setup

14:00 – systemd basics

15:00 – Break

15:30 – Service management with systemd (resource management,
journal)

16:50 – Review and final questions

17:00 – End of class

3 / 52

Agenda

Introduction

Main components of systemd

Systemd units and unit files

Dependency model

Service administration with systemd

Managing system resources with systemd

Logging

4 / 52

Lab environment

VM or container with Linux distribution1 running systemd

USB stick containing slides and lab manual

Smoke test – become root and execute following commands,

ls -l /proc/1/exe

systemctl status

systemctl --type=service --state=failed list-units

More detailed setup info is included in lab manual on page 2.

1Examples were tested on Fedora 26
5 / 52

What is systemd?

Implementation of init, PID 1

Service manager

Compatible with SysVinit (modulo Documented incompatibilities)

Open source project that provides basic user-space for Linux
distributions

Growing community of developers and users (we even have the
conference)

6 / 52

https://www.freedesktop.org/wiki/Software/systemd/Incompatibilities/

Components of systemd

systemd init

udevd Dynamic device
management

journald Log aggregator

logind Session tracking

machined VM/container registry

localed DBus API for locale
and language settings

hostnamed Hostname setting

timedated Time synchronization
DBus API

timesyncd Implements sNTP

nspawn Simple container
runtime

networkd Network configuration
service

systemd-sysctl Applies dynamic
kernel configuration

systemd-tmpfiles Creation and
cleanup of files and
directories

7 / 52

Lab exercise – systemd in my distro

Main idea behind this lab exercise is to discover how is systemd
packaged and delivered on your Linux distribution of choice

Note that lab manual was written using Fedora 26, hence you may
need to use different commands to interact with package
management system (apt-get, dpkg, ...)

To follow along please open lab manuals on page 3

8 / 52

Units

systemd is dependency based execution engine

Dependencies are relations

Relations are defined on sets of objects

Objects that systemd manages are called ”units”

9 / 52

Unit types

service

target

socket

mount

automount

swap

device

path

timer

slice

scope

10 / 52

Unit files

systemd’s units abstract system entities (resources)

Units are created from various sources

For example, mount unit may exist because administrator mounted a
filesystem

Most of the time however, units we deal with (services, sockets) exist
because there is config file of the same name

Unit files are simple text files in .ini format

11 / 52

Unit file – example

/usr/lib/systemd/system/cups.service

[Unit]

Description=CUPS Scheduler

Documentation=man:cupsd(8)

After=network.target

[Service]

ExecStart=/usr/sbin/cupsd -l

Type=notify

[Install]

Also=cups.socket cups.path

WantedBy=printer.target

12 / 52

Unit files – Hierarchy of configuration

systemd loads unit files from following directories,

1 /etc/systemd/system – Owned by administrator

2 /run/systemd/system – Runtime configuration, i.e. affects only
single boot

3 /usr/lib/systemd/system – Configuration shipped by the
distribution2

When there are two configuration files with the same name then systemd
will load only one from the directory that is highest in the hierarchy. For
example, configuration in /etc always overrides configuration in /usr.
After changing configuration it is necessary to reload systemd,
systemctl daemon-reload

2/lib/systemd/system on Ubuntu and Debian
13 / 52

Difference between unit and unit file

This aspect of systemd is often confusing to new users

It is important to recognize that there is a difference between units
and unit files

Mostly because SysVinit didn’t track any service state and hence it
didn’t have this concept

14 / 52

Recap of the basics

systemd is a service manager, but also a project that provides other
basic user-space building blocks

Notable components of systemd framework,

systemd
udevd
logind
journald

systemd manages units and unit files

Units abstract system resources

Units may exists due to external events and can be instantiated from
on disk configuration (unit files)

Unit files are simple configuration files in .ini format understood by
systemd

15 / 52

Lab exercise – systemd units

Open lab manual on page 8 and follow instructions.

16 / 52

Dependency model in systemd

Dependencies are very important concept to understand in order to
be effective while working with systemd

In the previous part of the tutorial we talked about units and unit
files. Units are objects managed by systemd

Dependencies are associations between them

Each unit type has some default dependencies (unless configured
otherwise)

What types of dependencies there are,

Relational dependencies
Ordering dependencies

17 / 52

Relational dependencies

Wants – a unit should be started alongside with wanted unit

Requires – a unit should be started alongside with required unit and if
start of required unit fails then stop the former unit

BindsTo – lifetime of two units is bound together (stronger than
Requires)

Requisite – requisitioned unit must be started already

PartOf – dependency that propagates stop and restart actions

Conflicts – ”negative” dependency, i.e. conflicting units can’t run at
the same time

18 / 52

Ordering dependencies

Names of relational dependencies sort of suggest ordering, but don’t be
fooled. Ordering between units is undefined unless explicitly specified.
Naturally, systemd provides two types of ordering dependencies,

After

Before

It is important to realize that ordering and relational dependencies are
orthogonal and you can use ordering dependencies without defining any
other relations between units.

19 / 52

Transactions

systemd also implements very minimal transaction logic.

Every request (e.g. start or stop of a unit) is checked using the
transaction logic. Once systemd puts together transactions it will
check it and if possible it will create job objects that represent actions
to be taken upon units. Once these actions are carried out, then
user’s request is complete.

We examine a high-level overview of the transaction logic on the next
slide.

20 / 52

Transactions

1 Create job for the specified unit (anchor)

2 Add recursively jobs for all dependencies

3 Minimize the transaction in a loop
4 1 Get rid of NOP jobs

2 Get rid of jobs not referenced by anchor

5 1 Check for ordering loops in the graph in a loop
2 Break the loop by deleting a job

6 Get rid of jobs not referenced by anchor

7 Merge merge-able jobs

8 Get rid of jobs not referenced by anchor

9 Merge jobs with similar one already in job queue

10 Add the jobs to job queue

21 / 52

Lab exercise – Dependencies and jobs

Useful command for working with jobs and dependencies,

systemctl list-dependencies <SERVICE>

systemctl list-jobs

Open lab manual on page 11 and follow instructions.

22 / 52

Service management – Basics

Start the service
systemctl start httpd.service3

Stop the service
systemctl stop httpd.service

Restart service
systemctl restart httpd.service

Reload service
systemctl reload httpd.service

Send user defined signal to the service
systemctl --signal=SIGUSR1 kill httpd.service

3You don’t actually need to type .service, because service is default unit type
23 / 52

Service management – Configuration file

Main configuration for systemd is read from
/etc/systemd/system.conf

Initially all values are commented out. They represents defaults

You can configure some default timeout values which are then
inherited by all other units

24 / 52

Service management – Managing unit files

Enable service to start after a reboot,
systemctl enable httpd.service

Make service disabled, i.e. systemd won’t attempt to start it after
reboot,
systemctl disable httpd.service

Reset to default unit file state,
systemctl preset httpd.service

List all unit files,
systemctl list-unit-files

Determine current enablement state,
systemctl is-enabled httpd.service

Mask a unit file. Note that masked units can’t be started, even when
they are requested as dependencies,
systemctl mask httpd.service

Notice that operations acting on unit files create or remove symlinks in the
filesystem. To achieve the same end result you could create symlinks on
your own.

25 / 52

Service management – Unit file [Install] section

Let’s consider this example [Install] section,

[Install]

WantedBy=multi-user.target

Also=sysstat-collect.timer

Also=sysstat-summary.timer

Alias=monitoring.service

What happens when we enable such unit file?

systemd will enable sysstat.service in multi-user.target

(runlevel 3)

systemd will also enable sysstat-collect.timer and
sysstat-summary.timer units according to their [Install]
sections

systemd will create alias monitoring.service and we will be able to
use it in our follow-up work with the unit

26 / 52

Service management – Extending unit files

We already understand hierarchical nature of systemd’s configuration

Configuration stored in /usr is overwritten on updates

There are multiple ways how to change or extend distribution supplied
configuration,

One can copy configuration file from /usr/lib/systemd/system to
/etc/systemd/system and edit it there
Or you can use configuration drop-ins. This is actually best practice

In order to create drop-in, you need to do following,
1 Create directory named after service but with .d suffix, e.g.

/etc/systemd/system/mariadb.service.d
2 Create configuration files in the directory. File should have .conf suffix
3 Write part of the configuration that we want to add

Drop-in configuration is shown in status output of the service (we
will examine this in the lab exercise)

Also configuration of systemd itself can be extended using drop-ins.

27 / 52

Service management – Important unit files options

ExecStart – Main service binary

ExecStop – Stop command (must have synchronous behavior)

ExecReload – Governs how to reload service (restart 6= reload)

KillMode – Which processes get killed

Type – Tells systemd how to treat service start-up

Restart – Whether to restart always or only on certain events

PIDFile – Relevant only for forking services. Nevertheless, very
important

RemainAfterExit – Used to implement idem-potency for oneshot
services

StandardInput – Allows you make socket a stdin of the service

28 / 52

Service management – Service types

Type of the service determines when systemd assumes that service is
started and ready to serve clients,

simple – Basic (default) type. Service is considered running
immediately after fork()

oneshot – As name implies this type is used for short running services
(systemd blocks until oneshot finishes)

forking – Traditional UNIX double forking daemons

notify – Service itself informs systemd that it finished startup

dbus – Service considered up once bus name appears on system bus

idle – Similar to simple, but service is started only after all other jobs
were dispatched

29 / 52

Service management – Service types

Figure: Effect of a service type on the service runtime state

30 / 52

Service management – Socket activation

So far we presented ways how to manually start or stop the service.
However, systemd provides multiple other ways how to start or stop
services, most notably socket and timer activation.

The idea behind socket activation is actually very simple. systemd starts
listening on a socket (most commonly IP, but other protocols are
supported as well), and on first connection, it starts the service that is
activated by the socket.

There are two basic types of socket activation,

Service is passed-in already accept()-ed socket file descriptor
(service template must exist)

Or service is passed in listen()-ing file descriptor

First type of socket activation exists to support legacy (x)inetd type of
services.

31 / 52

Service management – Socket activation example

/etc/systemd/system/foobar.socket

[Socket]

accepted socket is passed to the service instance

Accept=true

ListenStream=127.0.0.1:5000

/etc/systemd/system/foobar@.service

[Service]

ExecStart=/bin/bash -c "echo Activated by $REMOTE_ADDR"

32 / 52

Service management – Timer activation

Activation governed by calendar time or elapsed time interval works very
similarly to socket activation. In this case unit activation is triggered by
timer event.

/usr/lib/systemd/system/fstrim.timer

[Timer]

OnStartupSec=10min

OnCalendar=weekly

AccuracySec=1h

Persistent=true

/usr/lib/systemd/system/fstrim.service

[Service]

Type=oneshot

ExecStart=/usr/sbin/fstrim -av

33 / 52

Service management – Targets

Target is a special unit type used for grouping other units

Usually other units are enabled ”into” targets. Meaning that when we
start target all units enabled in that target will be started

Target also serve as main synchronization points during system boot,
i.e. they have ordering dependencies

All units enabled into a target have an implicit Before ordering
dependency on the target (unless explicitly specified otherwise)

34 / 52

Service management – Targets and runlevels

Concept of target units is used to implement runlevels as defined by
SysVinit4

Runlevel systemd target Description

0 poweroff.target System halt
1 rescue.target Single user mode
3 (2,4) multi-user.target Multi-user (non-graphical)
5 graphical.target Multi-user (graphical)
6 reboot.target System reboot

Table: Runlevel to target mapping

4Runlevel 2, 3 and 4 are mapped to same target
35 / 52

Service management – Important target units

Awareness about these targets may come in handy when debugging
bootup5 issues,

local-fs.target – All local file systems are mounted before this target
is reached

swap.target – Swaps are activated before this target

cryptsetup.target – LUKS volumes are decrypted before target is
reached

sysinit.target – Implements minimal system initialization (pulls in
previous targets)

timers.target – Starts all timers

sockets.target – Activates all socket units

paths.target – Triggers all path units

remote-fs.target – Remote filesystems (NFS, gluster, ceph, netdev)
are ordered before this target

basic.target – All important subsystems has been initialized
5Details in man 7 bootup and man 7 systemd.special

36 / 52

Service management – Control groups

Control groups (cgroups) is a Linux subsystem that has two main purposes,

Process tracking

Resource management

Current state of this subsystem is somewhat confusing because we now
have two different versions of cgroups. Depending on your systemd version
and kernel configuration, you are maybe running cgroups-v1 or cgroups-v2
or both. For purposes of this tutorial, I will discuss cgroup-v1, because
cgroup-v2 is not available in any stable distribution.

Good news is that because you are using systemd you generally don’t
need to care.

37 / 52

Service management – Control groups - terminology

Cgroup – associates a set of tasks with a set of parameters for one or
more controllers.

Controller – entity that schedules a resource or applies per-cgroup
limits

Hierarchy – Set of cgroups arranged in a tree, such that every process
is in exactly one of the cgroups

38 / 52

Service management – Control groups

Now we will examine our cgroup configuration in more detail. Let’s
see what controllers are supported on the system,

tail -n+2 /proc/cgroups | awk ’{print $1}’
Each controller is represented to user-space as cgroupfs mount point
with specific options,

mount | grep cgroup

As you can see we have all controller mounted in distinct paths and
hence we have orthogonal hierarchies

We also see one named hierarchy (name=systemd). This hierarchy is
used for process tracking purposes.

39 / 52

Service management – Control groups and systemd

systemd uses cgroups very heavily, however it doesn’t bother user with
rather clunky cgroup interfaces. Instead it provides following high-level
concepts,

Service – Normal service units. Each service has its own cgroup.

Scope – Similarly to services, scope’s processes are also part of the
cgroup. However, scope processes are foreign (not children of
systemd)

Slice – Services and scopes can be further partitioned into slices.

To get an overview of current cgroup hierarchy on your system, you can
run systemd-cgls command.

40 / 52

Service management – Control groups hierarchy

Control group /:

-.slice

user.slice

user-0.slice

session-6.scope

27 login -- root

34 -bash

52 systemd-cgls

53 systemd-cgls

user@0.service

init.scope

28 /usr/lib/systemd/systemd --user

29 (sd-pam)

init.scope

1 /usr/lib/systemd/systemd

system.slice

dbus.service

23 /usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile

systemd-logind.service

22 /usr/lib/systemd/systemd-logind

systemd-resolved.service

21 /usr/lib/systemd/systemd-resolved

systemd-journald.service

15 /usr/lib/systemd/systemd-journald
41 / 52

Service management – Resource management - CPU

CPU controller in cgroup-v1 has multiple configuration options for
controlling how much CPU time is allocated to processes in cgroup.
systemd provides API to adjust,

CPUShares – Conceptually you can think of the CPUShare value as a
weight. In other words, if I give one service some value (no matter
what value actually is) and I give other service twice that, then
second service will have twice as much CPU time if there is CPU
contention on the system.

CPUQuota – Absolute value of CPU usage in percent.

Note that default value of CPUShares for every service is 1024.

All cgroup and security related options must appear in [Service] section of
the unit file.

42 / 52

Service management – Resource management - Memory

Partitioning available memory with systemd and cgroup-v1 memory
controller is rather simple. Only one option is available,

MemoryLimit – Hard limit for memory usage. You can use K, M, G,
T suffixes. E.g. MemoryLimit=1G

After you exhaust your memory limit then service is very likely to get killed
by OOM killer. To prevent that you need to adjust OOMScoreAdjust
value as well.

43 / 52

Service management – Resource management - Block I/O

Block I/O controller in cgroup-v1 allows for quite fine grained tuning.
systemd provides following options for configuring this subsystem,

BlockIOWeight – Assigns an IO weight to a specific service (requires
CFQ)

BlockIODeviceWeight – Can be defined per device (or mount
point). Default value is 1000.

BlockIOReadBandwidth, BlockIOWriteBandwidth – Absolute per
device (or mount point) bandwidth. E.g.
BlockIOWriteBandwith=/var/log 5M

44 / 52

Service management – Securing your services

systemd provides a lot of options that help you further constrain and
secure services running on your system. In most cases the only thing you
need to do is to enable given feature in a unit file.

PrivateTmp – Service has its own /tmp and /var/tmp

PrivateNetwork – Completely isolate service from network access
(network namespace with only loopback)

SELinuxContex – Run service binary with explicit SELinux context

ProtectHome – /home, /root and /run/user will appear empty

ProtectSystem – Directories /usr and /boot are mounted read-only
(if ”full” also /etc is ro)

ReadOnlyDirectories – Service will have read-only access the listed
directories

InaccessibleDirectories – Listed directories will appear empty and
will have 0000 access mode

45 / 52

Service management – Securing your services

PrivateDevices – Service gets its own /dev with only basic device
nodes, e.g /dev/null. CAP MKNOD capability is disabled.

LimitNPROC – Defines maximum number of processes that comprise
the service

CapabilityBoundingSet – You can specify which capabilities will
service retain

NoNewPrivileges – Ensures that service can never gain new privileges

SystemCallFilter – You can whitelist or blacklist allowed system call
(use sec-comp)

RootDirectory – Runs the service in chroot()-ed environment

46 / 52

Lab exercise – Service management

Open lab manual on page 14 and follow instructions.

47 / 52

systemd-journald

As previously mentioned systemd is very tightly integrated with journald
logging service. Journald brings a lot of innovation and advantages over
traditional syslog.

Structured logs

Log meta-data

Rich filtering capabilities

Indexed

Security

Reliability (logs from early boot to late shutdown)

Intelligently rotated (based on available disk space)

Journald can be configured to store logs,

Persistently

In memory (available until system reboots)

Main configuration file is stored in /etc/systemd/journald.conf
48 / 52

systemd-journald - Log aggregation

Journald is a central place where all system logs eventually end up. It
gathers and stores data from various sources,

/dev/log – standard syslog() socket

/run/systemd/journal/socket – socket used by native journald
clients (i.e. those using sd-journal)

/dev/kmsg – journald also stores kernel log messages

NETLINK AUDIT – optionally journal can also store audit logs

The advantage of putting all logs in a central place is a presentation to
end user. We can conveniently display log messages from all sources
interleaved together, ordered by time.

49 / 52

Lab exercise – journald

Open lab manual on page 18 and follow instructions.

50 / 52

Resources

Upstream web page

Upstream issue tracker

How to debug systemd issues

Red Hat documentation

51 / 52

https://www.freedesktop.org/wiki/Software/systemd/
https://www.github.com/systemd/systemd/issues
https://freedesktop.org/wiki/Software/systemd/Debugging/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/chap-Managing_Services_with_systemd.html

Thank you!

Please remember to complete your tutorial evaluation.

52 / 52

