Red Hat’s Technology Roadmap
Red Hat Ceph Storage versions

RHCS 4
- **Q1**
 - Upstream: Nautilus
 - Platform: RHEL 7 & 8 RPM & Container
 - EoL: 1/2023

RHCS 5
- **Q3**
 - Upstream: Octopus
 - Platforms: RHEL 8 container
 - Beta 1: 6/2020

Regular 6 week Z-stream updates

- Vault support
- OSP 16.1 support
Data Reduction

- **2015**
 - RHCS 1.2
 - RGW EC

- **2018**
 - RHCS 3.1
 - RBD EC preview

- **2020 Q1**
 - RHCS 4
 - RBD EC
 - CephFS EC preview

- **2021**
 - Distributed deduplication (Pacific)

- **2017**
 - RHCS 3.0
 - RGW Inline Compression

- **2019**
 - RHCS 3.3
 - Bluestore Compression

- **2020 Q3**
 - RHCS 5
 - CephFS EC

CEPH STORAGE TECHNOLOGY ROADMAP

STRA TEGIC ROADMAP – SUBJECT TO CHANGE
Security

- **2015**
 - RHCS 1.2
 - Dmcrypt

- **2016**
 - RHCS 1.3.2
 - SELinux policies (1.3.2)
 - PIE (2.0)

- **2017**
 - RHCS 3.0
 - RGW inline encryption

- **2018**
 - RHCS 3.2
 - Security Guide

- **2020 Q1**
 - RHCS 4
 - FIPS-140
 - Messenger v2 encryption
 - Namespaces

- **2020 Q3**
 - RHCS 5
 - Support for NVMe self-encrypting drive key management in MON (TP)
 - SSE-KMS Support (Barbican, Vault and KMfP)
 - SSE-S3 support Server Managed data encryption (Tech Preview)
 - S3 STS (IAM identity interop)

- **2021 Q1**
 - RHCS 6
 - S3 WORM (TP)
CephFS

2017
- RHCS 3
 - Support begins

2020 Q1
- OCS 4.2
- RHCS 4
 - Kubernetes and Rook
 - PV RWX
 - CSI driver
 - 10 Developers

2021
- RHCS 6
 - SMB in Tech Preview
 - Scale by user

2018
- Key Customers
 - [chipmaker]
 - Monash

2020 Q3
- OCS 4.6
 - Snapshot clones

2020 Q3
- RHCS 5
 - Scale to 10000 PVs turning
 - NFS
 - Key Customers: (round 2)
 - [chipmaker]
 - [major hardware OEM]
Business Continuity

- **2015**
 - RHCS 1.2
 - RHCS 2.0
 - Cinder
 - RBD Snapshots
 - Stretch clusters

- **2016**
 - RHCS 2.0
 - RBD Mirror
 - RGW Multisite

- **2017**
 - RHCS 3.0
 - RBD Trash
 - Snapshot provisioning

- **2019 Q3**
 - RHCS 3.3
 - Backup ISV certifications

- **2020 Q1**
 - RHCS 4
 - RGW Archive Zone (TP)

- **2020 Q3**
 - RHCS 5
 - OCS 4.6
 - RBD mirror
 - Snapshot mode
 - CephFS snapshot clones
 - Stretch cluster mode

- **2021**
 - CephFS Geo Rep (Pacific)

CEPH STORAGE TECHNOLOGY ROADMAP
Performance & Scale

- **2015**
 - RHCS 1.3
 - "Petabyte release"
 - Bucket sharding
 - Scrubbing window
 - Alloc and cache hinting

- **2016**
 - RHCS 1.3.2
 - First support for DBMS
 - Thread cache tuning
 - 1.8 PB deployed in one hour (1040 OSDs)
 - RHCS 1.3.3
 - 10PB cluster
 - RHCS 2.0
 - 1.8 PB deployed in one hour (1040 OSDs)
 - 10PB cluster

- **2017**
 - RHCS 3.0
 - Consistent IO on rebalance
 - RHCS 3.1
 - First support for DBMS
 - RHCS 3.2
 - RocksDB journaling

- **2018**
 - RHCS 3.3
 - 2X performance
 - 1 billion objects
 - Bluestore
 - Beast.ASIO
 - 12TB drive support

- **2019**
 - RHCS 3.2
 - 2X performance
 - RHCS 3.3
 - 1 billion objects
 - Bluestore
 - Beast.ASIO
 - 12TB drive support

- **2019-20**
 - OCS 4.2
 - Consistent IO on rebalance
 - RHCS 4.0
 - Consistent IO on recovery
 - RHCS 4.2
 - Async Messenger
 - Consistent IO on recovery

- **2020**
 - RHCS 4.1
 - 2X performance
 - 1 billion objects
 - OCS 4.5
 - Bluestore v.2
 - RHCS 5
 - New LibRBD cache
 - 10 billion objects
 - 20,000 PVs turning

- **2021**
 - RHCS 6
 - 5,000 PVs turning
 - Async Messenger
 - Consistent IO on recovery
 - OCS 4.2
 - SeaStore (TP)
 - RHCS 6
 - Crimson OSD (TP)

STRATEGIC ROADMAP – SUBJECT TO CHANGE
Object Storage

- Backup ISV Certifications
- Object granular compression & encryption (SSE-C)
- Dynamic bucket index sharding

2017
RHCS 3.0

2019 Q3
RHCS 3.3

2020 Q1
RHCS 4

2020 Q3
RHCS 5

2021

- Bucket notifications
- Vault integration
- STS support
- RGW Archive Zone (TP)

- Server managed encryption (SSE-S3)
- Policy based tiering to public cloud
- Object lock (TP)
- S3 Worm (TP)

- KMIP support for key management (SSE-KMS)
- Multi-site scalability and usability enhancements

- New RGW Web server
- Performance and sizing guide
Ceph’s Community Roadmap
Stable, named release every 9 → 12 months
Backports for 2 releases
Upgrade up to 2 releases at a time
 (e.g., Luminous → Nautilus, Mimic → Octopus)
WHAT'S NEW IN CEPH

OCTOPUS
FIVE THEMES

Usability

Quality

Performance

Multi-site

Ecosystem
ORCHESTRATOR API

- End-to-end management experience
- mgr API to interface with deployment tool
 - Rook (deploy+manage via Kubernetes)
 - cephadm (deploy+manage via ssh)
- Expose provisioning functions to CLI, GUI
 - Create, destroy, start, stop daemons
 - Blink disk lights
- Pave way for cleanup of docs.ceph.com
- Automated upgrades
CEPHADM

● Easy
 ○ Simple ‘bootstrap’ to create new cluster
 ○ Most services provisioned automatically
 ■ Mon, mgr, monitoring for dashboard
 ○ Easy mode for OSDs
 ■ --all-available-devices
 ○ Everything works out-of-the-box

● Minimal dependencies
 ○ Systemd
 ○ Container runtime (podman or docker)
 ○ Python 3
 ○ LVM

● Container based
 ○ Single build artifact
 ○ Works consistently on any host OS
 ○ Easier registry-based experience
 ○ Easily enable disconnected environments

● Robust
 ○ “Declarative” management style
 ○ Automatic or controlled placement of daemons
 ○ Automated upgrades

● Fully replace ceph-ansible, ceph-deploy, puppet-ceph, DeepSea, etc.
Robust management GUI for cluster operations
 - All core Ceph services: object, block, file
 - OSD creation with DriveGroups
 - Filter by host, device properties (size/type/model)
 - Some multisite capabilities
 - Some legacy protocol support (NFS, SMB, iSCSI)

Targets “storage admins” as well as experienced Ceph power users
 - Storage management (creating pools, volumes, etc.)
 - Robust monitoring (high-level, troubleshooting, and diagnostics)
 - Cluster infrastructure management (provisioning hosts, drives, etc.)

Integrations
 - External authentication (SAML, OpenID)
 - Roles
 - External Prometheus for metrics
MISC RADOS USABILITY

- Hands-off defaults
 - PG autoscaler on by default
 - Balancer on by default
- Quality internal health alerts
- Health alert muting
 - TTL on mutes
 - Auth-unmute when alerts change, increase in severity
- Ongoing simplification and cleanup of administration/operations
- ‘ceph tell …’ and ‘ceph daemon …’ unification
 - Consistent and expanded command set via either (over-the-wire or local unix socket)
FIVE THEMES

Usability

Quality

Performance

Multi-site

Ecosystem
• Partial object recovery
 ○ Re-sync only modified portion of large object after small overwrite

• Improved prioritization of PG recovery
 ○ Focus on PGs that are inactive
 ○ Better handling of planning when both primary and replica OSDs need to do work

• Snapshot trimming improvements
 ○ Eliminate metadata in OSD map that (previously) would grow with cluster age
 ○ Simpler code; occasional scrubbing

• Close “read hole”
 ○ Eliminate very rare case where partitioned OSD + client could serve a stale read
TELEMETRY AND CRASH REPORTS

- Opt-in
 - Require re-opt-in if telemetry content expanded
 - Explicitly acknowledge data sharing license
- Telemetry channels
 - **basic** - cluster size, version, etc.
 - **ident** - contact info (off by default)
 - **crash** - anonymized crash metadata
 - **device** - device health (SMART) data
- Dashboard nag to enable
- Public dashboard launch Real Soon Now

- Backend tools to summarize, query, browse telemetry data
- Initial focus on crash reports
 - Identify crash signatures by stack trace (or other key properties)
 - Correlate crashes with ceph version or other properties
- Improved device failure prediction model
 - Predict error rate instead of binary failed/not-failed or life expectancy
 - Evaluating value of some vendor-specific data
RADOS: BLUESTORE

- **RocksDB improvements for metadata storage**
 - Prefetching support during compaction, key iteration, object enumeration
 - Selective use of RangeDelete

- **Improved cache management**
 - Better use of cache memory
 - New inline trimming behavior (big performance bump!)

- **Per-pool omap utilization tracking**
 - To match Nautilus’ per-pool data usage (and compression) stats
MISC PERFORMANCE

RGW

- More async refactoring
 - Efforts started with Beast frontend a few releases ago
 - Goal is end-to-end boost::asio request processing
- Avoid omap where unnecessary
 - FIFO queues for garbage collection
 - Selective use of DeleteRange

RBD

- (lib)rbd cache replacement
 - Simpler IO batching, writearound cache
 - General cleanup of IO path code
 - Significant (2x+) improvement for small IO
 - e.g., ~18kIOPS → 70kIOPS for 4KiB writes
FIVE THEMES

Usability

Quality

Performance

Multi-site

Ecosystem
Today: RBD mirroring provides async replication to another cluster

- Point-in-time ("crash") consistency
- Perfect for disaster recovery
- Managed on per-pool or per-image basis

rbd-nbd runner improvements to drive multiple images from one instance

Vastly-simplified setup procedure

- One command on each cluster; copy+paste string blob

New: snapshot-based mirroring mode

- (Just like CephFS)
- Same rbd-mirror daemon, same overall infrastructure/architecture
- Will work with kernel RBD
 - (RBD mirroring today requires librbd, rbd-nbd, or similar)
Current multi-site supports
 - Federate multiple sites
 - Global bucket/user namespace
 - Async data replication at site/zone granularity

Octopus adds bucket-granularity replication
 - Finer grained control
 - Currently experimental until more testing is in place
NEW WITH CEPH-CSI AND ROOK

- Much investment in ceph-csi
 - RWO and RWX support via RBD and/or CephFS
 - Snapshots, clones, and so on
- Rook
 - Turn-key ceph-csi by default
 - Dynamic bucket provisioning
 - ObjectBucketClaim
 - Run mons or OSDs on top of other PVs
 - Upgrade improvements
 - Wait for healthy between steps
 - Pod disruption budgets
 - Improved configuration experience
WHAT’S COMING IN CEPH PACIFIC
FIVE THEMES

Usability

Quality Performance

Multi-site Ecosystem
ORCHESTRATION

- Cephadm improvements
 - Resource-aware service placement (memory, CPU)
 - Haproxy, NFS, SMB, RGW-NFS support
- Rook integration improvements
 - Provision RGW
 - Load balancer / Service management

- Dashboard integrations
 - Improved OSD workflows to replace failed disks, preview OSD creation, zap old devices
 - Add/configure daemons (mons, mgr,s RGW, NFS, SMB, iSCSI)
 - Initiate and monitor upgrades
MISC USABILITY AND FEATURES

RBD
- Expose snapshots via RGW (object)
- “Instant” clone/recover from external (RGW) image
- Improved rbd-nbd support
 - Expose kernel block device with full librbd feature set
 - Improved integration with ceph-csi for Kubernetes environments

RGW
- Deduplicated storage

CephFS
- ‘fs top’
- NFS and SMB support via orchestrator
FIVE THEMES

- Usability
- Quality
- Performance
- Multi-site
- Ecosystem
STABILITY AND ROBUSTNESS

RADOS

- Enable ‘upmap’ balancer by default
 - More precise than ‘crush-compat’ mode
 - Hands-off by default
 - Improve balancing of ‘primary’ role
- Dynamically adjust recovery priority based on load
- Automatic periodic security key rotation
- Distributed tracing framework
 - For end-to-end performance analysis

CephFS

- MultiMDS metadata scrub support
- MultiMDS metadata balancing improvements
- Multi-filesystem testing and auth management improvements
- Major version upgrade improvements
TELEMETRY

- Work continues on backend analysis of telemetry data
 - Tools for developers to use crash reports identify and prioritize bug fixes

- Adjustments in collected data
 - Adjust what data is collected for Pacific
 - Periodic backport to Octopus (we re-opt-in)
 - e.g., which orchestrator module is in use (if any)

- Drive failure prediction
 - Building improved models for predictive drive failures
 - Expanding data set via Ceph collector, standalone collector, and other data sources
FIVE THEMES

Usability
Quality
Multi-site
Performance
Ecosystem
CephFS

- Async unlink and create
 - Avoid client-MDS round-trip
 - `rm -r, tar xf, etc`
 - Support in both libcephfs and kernel
- Ceph-fuse performance
 - Take advantage of recent libfuse changes

RGW

- Data sync optimizations, sync fairness
- Sync metadata improvements
 - omap -> cls_fifo
 - Bucket index, metadata+data logs
- Ongoing async refactoring of RGW
 - Based on boost::asio
• **Sharded RocksDB**
 ○ Improve compaction performance
 ○ Reduce disk space requirements

• **In-memory cache improvements**

• **SMR**
 ○ Support for host-managed SMR HDDs
 ○ Targeting cold-stored workloads (e.g., RGW) only
Why
● Not just about how many IOPS we do...
● More about IOPS per CPU core
● Current Ceph is based on traditional multi-threaded programming model
● Context switching is too expensive when storage is almost as fast as memory
● New hardware devices coming
 ○ DIMM form-factor persistent memory
 ○ ZNS - zone-based SSDs

What
● Rewrite IO path in using Seastar
 ○ Preallocate cores
 ○ One thread per core
 ○ Explicitly shard all data structures and work over cores
 ○ No locks and no blocking
 ○ Message passing between cores
 ○ Polling for IO
● DPDK, SPDK
 ○ Kernel bypass for network and storage IO
● Goal: Working prototype for Pacific
FIVE THEMES

Usability
Quality
Performance
Multi-site
Ecosystem
CEPHFS MULTI-SITE REPLICATION

- Automate periodic snapshot + sync to remote cluster
 - Arbitrary source tree, destination in remote cluster
 - Sync snapshots via rsync
 - May support non-CephFS targets

- Discussing more sophisticated models
 - Bidirectional, loosely/eventually consistent sync
 - Simple conflict resolution behavior?
- Nodes scale up (faster, bigger)

- Clusters scale out
 - Bigger clusters within a site

- Organizations scale globally
 - Multiple sites, data centers
 - Multiple public and private clouds
 - Multiple units within an organization

- Universal, global connectivity
 - Access your data from anywhere

- API consistency
 - Write apps to a single object API (e.g., S3) regardless of which site, cloud it is deployed on

- Disaster recovery
 - Replicate object data across sites
 - Synchronously or asynchronously
 - Failover application and reattach
 - Active/passive and active/active

- Migration
 - Migrate data set between sites, tiers
 - While it is being used

- Edge scenarios (caching and buffering)
 - Cache remote bucket locally
 - Buffer new data locally
- Project Zipper
 - Internal abstractions to allow alternate storage backends (e.g., storage data in external object store)
 - Policy layer based on LUA
 - Initial target: tiering to cloud (e.g., S3)
- Dynamic reshard vs multisite support
FIVE THEMES

Usability

Quality

Performance

Multi-site

Ecosystem
- **External cluster support**
 - Provision storage volumes from an existing external Ceph cluster
 - Rook manages ceph-csi and provides the same CRDs for storage pools, object stores, volumes, etc.

- **Rook: RBD mirroring**
 - Manage RBD mirroring via CRDs
 - Investment in better rbd-nbd support to provide RBD mirroring in Kubernetes
 - New, simpler snapshot-based mirroring

- **Rook: RGW multisite**
 - Federation of multiple clusters into single namespace
 - Site-granularity replication
Windows
- Windows port for RBD is underway
- Lightweight kernel pass-through to librbd
- CephFS to follow (based on Dokan)

Performance testing hardware
- Intel test cluster: *officianalis*
- AMD / Samsung / Mellanox cluster
- High-end ARM-based system?

ARM (aarch64)
- Loads of new build and test hardware arriving in the lab
- CI and release builds for aarch64

IBM Z
- Collaboration with IBM Z team
- Build and test
WE INTEGRATE WITH CLOUD ECOSYSTEMS

openstack®
kubernetes
KVM
ROOK
Ceph is open source software!
- Mostly LGPL2.1/LGPL3

We collaborate via
- GitHub: https://github.com/ceph/ceph
- https://tracker.ceph.com/
- E-mail: dev@ceph.io
- #ceph-devel on irc.oftc.net

We meet a lot over video chat
- See schedule at http://ceph.io/contribute

We publish ready-to-use packages
- CentOS 7, Ubuntu 18.04

We work with downstream distributions
- Debian, SUSE, Ubuntu, Red Hat
Thank you