< redhat

Introduction to Systemtap

Ulrich Drepper
Consulting Engineer

’_ redhat

What is the Problem?

Examine live systems
No preparation
Reversible operation
Easy writing of code to perform examination
Ability to run one piece of code after the other

’_ redhat

What was Available?

oprofile
Test for reachability
Statistical profiling
Kernel debugger
Disruptive
Only examination and state manipulation
kprobes
Infrastructure for kernel code to inject code into functions
Injected code usually in kernel modules

’_ redhat

Sun made the leap

dtrace
Inject code into kernel and userlevel code
Code written in easy-to-learn scripting language
Sun loves byte interpreters:
Scripts translated into byte code
Documented insertion points

’_ redhat

... but there are limitations

Byte code interpreter much slower than native code
Limits amount of work scripts can do without impacting system
Complicated piece of code itself
Fixed insertion points
You can do exactly what Sun thinks you should be able to do
No generic monitoring
Cannot access arbitrary variables

’_ redhat

A Different Approach: Systemtap

More powerful scripting language
Arbitrary insertion points
Use all variables in the code
Compiled code instead of byte code
Lowlevel language with extensible collection of library functions
Build on top of kprobes (and now other, similar technology)

’_ redhat

Systemtap Workflow

v

parse

2
elaborate |

]

probe script

4

—
probe-set library

translate to C, compile

4

44bj£| object

load module, start probe

A 4

extract output, unload

]

probe output

Q redhat

Specifying Probes

Basic syntax:
probe name {
body

Possibilities for name
start and end for initializers and finalizers respectively
kernel. function (“name”) for beginning of function name
kernel. function (“name”) .return for end of function name
statement () at given address
module (“name”) . name recursively in loadable module name
timer .ms (value) for interval timer with given interval length

‘. redhat

Specifying Probes

Possibilities for body
if (expr) body else body
while (expr) body
for (A; B; C) body
break, continue, return
Variables, associative arrays
foreach (var in) body to iterate over array content
Target variables $var

Access to system values like tid (), pid (), uid (), execname (),
get_cycles (), and many more

‘. redhat

Specifying Probes

Global variables
global

Printing
print, sprint to print single values
printf, sprint£ to print formatted

Statistics
var <<< value adds value to the statistic set var
Extractors

@count, @sum, @min, @max, @avg
ASCII Art printing
@hist_1linear, @hist_log

’_ redhat

First Example

Notify when entering and leaving function to open a file:

global assoc
probe kernel. function("do_sys_open") {
assoc[tid()] = user_string($filename)
printf ("enter %s for %s\n", probefunc(),
assoc[tid()1])
}
probe kernel. function("do_sys_open'") .return ({
printf ("leave %s for %s\n", probefunc(),
assoc[tid()])

‘. redhat

Problem With This Approach

The programmer needs to know too many details!

Names of functions in kernel sources
Worse: name of function parameters
Collecting parameter list for printing tiresome
Same for return value

’_ redhat

Enter: Tapscripts

Written by the people who ought to know the details
Distributed along with systemtap for generic kernel functions
Can be distributed with kernel modules
Separate collections by people with domain knowledge
All collections complement each other
Remove requirement for detailed knowledge
Summarize activities

‘. redhat

First Example (revisited)

Notify when entering and leaving function to open a file:

global assoc
probe syscall.open {
assoc[tid()] = argstr
printf ("enter %s for %s\n", probefunc(),
assoc[tid()])

}
probe syscall.open.return {

printf ("leave %s for %s\n", probefunc(),
assoc[tid()])

’_ redhat

How It's Done

The definition from the standard tapset library:

probe syscall.open =
kernel. function ("sys_open") ?,
kernel. function ("compat_sys_open") ?,

kernel. function("sys32_open") ?

name = "open"
filename = user_string($filename)
flags = $flags
mode = $mode
if (flags & 64)
argstr = sprintf("%s, %s, %#0", user_string quoted($filename),
_sys_open_flag str(flags), Smode)
else
argstr = sprintf("%s, %s", user_string quoted($filename),

_sys_open_flag str(flags))

Q redhat

Probes to Abstract and Refine

Extended probe syntax

probe name = name [?], name [?], [...] {
body

and

probe name += name [?], name [?], [...] {
body

‘. redhat

Make it more usable

Probes can be big
Just as everywhere else: code should be reused
Functions
function [:type] (arg1, arg2, [...1) {
body

}
Large collection of functions in standard runtime

Data extraction (e.g., struct timeval)

Diagnostic message (e.g., backtrace, register content)

Value handling (e.g., byte order conversion)

Access kernel data structures (e.g., tid (), extract IP address from socket)

See man stapfuncs

‘. redhat

Allow Library to be Generic

Kernel details differ
Between different versions
Between different architectures
Minimal preprocessor support
%(kernel v >= "2.6.10" %7

code

oP

code

o°
-’

’_ redhat

Only for Gurus

Possible to insert C code
Syntax similar to normal functions
Only allowed if -g flag added to command line of stap

function add one(val) %{

THIS-> retvalue THIS->val + 1;

%}

function add one_ str(val) %{
strlcpy (THIS->__ retvalue, THIS->val, MAXSTRINGLEN);
strlcat (THIS->_ retvalue, "one", MAXSTRINGLEN) ;

5}

’_ redhat

Available High-Level Tapscripts

|/O: scheduler, system call, AlO
Network device handling
NFS, RPC
SCSI
Process handling
Memory handling (page faults etc)
Signals
Use man stapprobe

’_ redhat

Using stap

stap options

-V increase verbosity to diagnose problems

-g Guru mode

-p NUM stop after pass NUM (parse, elaborate, translate, compile, run)
-I DIR look for additional .stp scripts

-r REL cross-compile for kernel version REL

-0 FILE send output into FILE

-x PID sets target () to PID

-c CMD start CMD and terminate when it exits

’_ redhat

Tips for Writing Tapscripts

Kernel memory is precious, especially on life systems
Data structures like arrays can grow
Transport of output to userlevel not free
relayfs can handle traffic
Per-cpu buffers
But: delays in reader process might stall everything

Need to find a balance between keeping data in kernel and sending to userlevel
Caching data for seconds/minutes, then sending summary
For instance, probe timer.ms (5000) { ...; delete array }
Sending binary data which needs to be post-processed

‘. redhat

Question?

http://sources.redhat.com/systemtap/

http://sources.redhat.com/systemtap/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

