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The Reason

E=C×V 2
×f



More Correctly

E=C×V f 2×f



Use of Transistors

● Increasing frequency is out

● Two uses
● More complex architecture

● Handle existing instructions faster
● More specialized instructions

● Horizontal growth
● More execution cores; or
● Only more execution contexts

Requires Parallelism!



Cost of Too Little Parallelism

● Idealized Amdahl's Law

● Problems
● P too small
● N is steadily growing

● Formula is unrealistic though…

S =
1

1−P  
P
N



A More Realistic Formula

● Extended Amdahl's Law with Overhead

● Parallelization is not free
● Most of the time not even for serial code

● The results are not that bad…

S =
1

1−P  1OS 
P
N

1OP



Even with Overhead P=0.6

● Even with 40% overhead not that much slower

● Speed-up from two threads on
● Eleven threads for 10x slowdown
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Programming Goals

● Two goals: 1. ease parallel programming to increase P

2. reduce O
S
 and O

P

S =
1

1−P  1OS 
P
N

1OP



Getting Parallelism

● Multi-process Pipeline

Process 2Process 1 Process 3

Unix PipelineUnix Pipeline



Problems with Pipelines

● Marshalling needed for transmission

● Protocol standardization required

● Limited buffer sizes
● Lots of scheduling needed

● Program need to be designed for pipeline
● Extending an existing program not easy
● Major code restructuring needed
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Simple Program Structure
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“Easy” Fix
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It seems easy…
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Explicit Multi-Threading

● Ill-conceived solution
● Yes

● Existing code can be reused, easier to set up
● High-bandwidth inter-thread communication
● On some OSes context switching faster

● But:
● Fragile programming model (one thread dies, the process dies)
● Memory handling mistakes have global effects
● Unix model initially not designed for multiple threads



Explicit Multi-Threading

● Ill-conceived solution
● Yes

● Existing code can be reused, easier to set up
● High-bandwidth inter-thread communication
● On some OSes context switching faster

● But:
● Fragile programming model (one thread dies, the process dies)
● Memory handling mistakes have global effects
● Unix model initially not designed for multiple threads

Hard to write correct code!  High Cost!
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Alternative 1: fork and Shared Memory

● All in POSIX:

int fd = shm_open(name, O_RDWR|O_CREAT);

ftruncate(fd, size);

p = mmap(NULL, size, PROT_READ|PROT_WRITE,

         MAP_SHARED, fd, 0);

if (fork() == 0)

   ...



fork and Shared Memory
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Alternative 2: fork and Linux Pipes

● Linux extensions, not POSIX (yet☺)

● Can be zero-copy

● Use if just transferring data without inspection

● splice: transfer from file descriptor to pipe

● tee: transfer between pipes and keep data usable

● vmsplice: transfer from memory to pipe



fork and Linux Pipes
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fork and Linux Pipes
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Alternative 3: Thread Local Storage

● Use thread-local storage
● Very much simplifies use of static variables
● No more false sharing of cache lines

__thread struct foo var;



Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

M
u

te x

Thread Local Storage



Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

Thread Local Storage



Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

Thread Local Storage

Reuse Fragile

Bandwidth Overwrites 

Context Cost Unix model

Ease Program Error Prone



Alternative 4: OpenMP

● Language extension to C, C++, Fortran languages

● Implements many thread functions with very simple 
interface for

● Thread creation (controlled)
● Exclusion
● Thread-local Data
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Alternative 5: Transactional Memory

● Extensions to C and C++ languages

● Can help to avoid using mutexes
● Just source code annotations
● No more deadlocks!!
● Fine-grained locking without the problems

● Slow as pure software solutions
● Hardware support on the horizon
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Trying to Parallelize
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Not What We Want
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Somewhat Better But…
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Conclusion

● Abilities to exploit hardware are there
● Explicit threading only for experts

● But there is a lot of help
● Use processes, not threads; or
● If threads are used combine

● Thread-local storage
● Implicit thread creation

● OpenMP
● Futures

● Transactional memory



Questions?
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