

Simplifying Parallel Programming

Ulrich Drepper
Consulting Engineer, Red Hat
2010-6-25

The Problem

The Problem

The Problem

The Problem

The Problem

The Problem

The Reason

E=C×V 2
×f

More Correctly

E=C×V f 2×f

Use of Transistors

● Increasing frequency is out

● Two uses
● More complex architecture

● Handle existing instructions faster
● More specialized instructions

● Horizontal growth
● More execution cores; or
● Only more execution contexts

Requires Parallelism!

Cost of Too Little Parallelism

● Idealized Amdahl's Law

● Problems
● P too small
● N is steadily growing

● Formula is unrealistic though…

S =
1

1−P  
P
N

A More Realistic Formula

● Extended Amdahl's Law with Overhead

● Parallelization is not free
● Most of the time not even for serial code

● The results are not that bad…

S =
1

1−P  1OS 
P
N

1OP

Even with Overhead P=0.6

● Even with 40% overhead not that much slower

● Speed-up from two threads on
● Eleven threads for 10x slowdown

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

0%
20%
40%
90%
1000%

Programming Goals

● Two goals: 1. ease parallel programming to increase P

2. reduce O
S
 and O

P

S =
1

1−P  1OS 
P
N

1OP

Getting Parallelism

● Multi-process Pipeline

Process 2Process 1 Process 3

Unix PipelineUnix Pipeline

Problems with Pipelines

● Marshalling needed for transmission

● Protocol standardization required

● Limited buffer sizes
● Lots of scheduling needed

● Program need to be designed for pipeline
● Extending an existing program not easy
● Major code restructuring needed

Problems with Pipelines

● Marshalling needed for transmission

● Protocol standardization required

● Limited buffer sizes
● Lots of scheduling needed

● Program need to be designed for pipeline
● Extending an existing program not easy
● Major code restructuring needed

Simple Program Structure

Dataset 1

Dataset 2

Dataset 3

Function 1

Function 2

Process

Common
Data 1

Common
Data 2

“Easy” Fix

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

“Easy” Fix

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

? ?

It seems easy…

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

M
u

te x

It seems easy…

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

M
u

te x

Mutexes are hard
 to use right

Mutexes are hard
 to use right!!!

Explicit Multi-Threading

● Ill-conceived solution
● Yes

● Existing code can be reused, easier to set up
● High-bandwidth inter-thread communication
● On some OSes context switching faster

● But:
● Fragile programming model (one thread dies, the process dies)
● Memory handling mistakes have global effects
● Unix model initially not designed for multiple threads

Explicit Multi-Threading

● Ill-conceived solution
● Yes

● Existing code can be reused, easier to set up
● High-bandwidth inter-thread communication
● On some OSes context switching faster

● But:
● Fragile programming model (one thread dies, the process dies)
● Memory handling mistakes have global effects
● Unix model initially not designed for multiple threads

Hard to write correct code! High Cost!

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

M
u

te x

Measures

Reuse Fragile

Bandwidth Overwrites

Context Cost Unix model

Ease Program Error Prone

Alternative 1: fork and Shared Memory

● All in POSIX:

int fd = shm_open(name, O_RDWR|O_CREAT);

ftruncate(fd, size);

p = mmap(NULL, size, PROT_READ|PROT_WRITE,

 MAP_SHARED, fd, 0);

if (fork() == 0)

 ...

fork and Shared Memory

Dataset 1

Dataset 2

Dataset 3

Process 1

Process 2

State
Data

State
Data

M
u

te x

fork and Shared Memory

Dataset 1

Dataset 2

Dataset 3

Process 1

Process 2

State
Data

State
Data

M
u

te
x

fork and Shared Memory

Dataset 1

Dataset 2

Dataset 3

Process 1

Process 2

State
Data

State
Data

M
u

te
x

Reuse Fragile

Bandwidth Overwrites

Context Cost Unix model

Ease Program Error Prone

Alternative 2: fork and Linux Pipes

● Linux extensions, not POSIX (yet☺)

● Can be zero-copy

● Use if just transferring data without inspection

● splice: transfer from file descriptor to pipe

● tee: transfer between pipes and keep data usable

● vmsplice: transfer from memory to pipe

fork and Linux Pipes

Dataset 1

Dataset 3

Process 1

Process 2

State
Data

State
Data

Pipe

fork and Linux Pipes

Dataset 1

Dataset 3

Process 1

Process 2

State
Data

State
Data

Pipe

Reuse Fragile

Bandwidth Overwrites

Context Cost Unix model

Ease Program Error Prone

Alternative 3: Thread Local Storage

● Use thread-local storage
● Very much simplifies use of static variables
● No more false sharing of cache lines

__thread struct foo var;

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

M
u

te x

Thread Local Storage

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

Thread Local Storage

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

Thread Local Storage

Reuse Fragile

Bandwidth Overwrites

Context Cost Unix model

Ease Program Error Prone

Alternative 4: OpenMP

● Language extension to C, C++, Fortran languages

● Implements many thread functions with very simple
interface for

● Thread creation (controlled)
● Exclusion
● Thread-local Data

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

M
u

te x

OpenMP

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

OpenMP

A
n

n
o

t a
tio

n

A
n

n
o

tatio
n

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

OpenMP

A
n

n
o

t a
tio

n

A
n

n
o

tatio
n

Reuse Fragile

Bandwidth Overwrites

Context Cost Unix model

Ease Program Error Prone

Alternative 5: Transactional Memory

● Extensions to C and C++ languages

● Can help to avoid using mutexes
● Just source code annotations
● No more deadlocks!!
● Fine-grained locking without the problems

● Slow as pure software solutions
● Hardware support on the horizon

Transaction System

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Transaction System

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Deduct Shares from Person 1

Transaction System

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Deduct Shares from Person 1

Add Shares to Person 2

Transaction System

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Deduct Shares from Person 1

Add Shares to Person 2

Add to Person 1 Account

Transaction System

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Deduct Shares from Person 1

Add Shares to Person 2

Subtract from Person 2 Account Add to Person 1 Account

Trying to Parallelize

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Trying to Parallelize

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N
Lock Domain

Not What We Want

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

350

R
un

tim
e

[s
ec

o
nd

s]

R
un

tim
e

[s
ec

o
nd

s]

Single Core i7 Opteron NUMA
#threads #threads

Trying to Parallelize

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Trying to Parallelize

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N
Lock Domain

Somewhat Better But…
R

un
tim

e
[s

ec
o

nd
s]

R
un

tim
e

[s
ec

o
nd

s]

Single Core i7 Opteron NUMA

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

350

#threads #threads

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

M
u

te x

M
u

te x

Transactional Memory

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

Transactional Memory

Annotation

Annotation

Dataset 1

Dataset 2

Dataset 3

Thread 1

Thread 2

Process

Common
Data 1

Common
Data 2

Transactional Memory

Annotation

Annotation

Reuse Fragile

Bandwidth Overwrites

Context Cost Unix model

Ease Program Error Prone

Conclusion

● Abilities to exploit hardware are there
● Explicit threading only for experts

● But there is a lot of help
● Use processes, not threads; or
● If threads are used combine

● Thread-local storage
● Implicit thread creation

● OpenMP
● Futures

● Transactional memory

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

