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Before we start…

Clarify a few phrases:
● Process

● Scheduled execution unit with its own address space
● Thread

● Scheduled execution unit, sharing address space with 
other threads

● Future, (Task)
● Description of work, not scheduled



Forms of Parallelism

Multi-process:
● Unix fork()
● Separate address space: sharing is explicit

● Linux's clone() and unshare() provide finer granularity
● More robust:

● No accidental memory corruption
● No complete tear-down on crash

● Fast Linux Inter-Process Communication (IPC)
● Pipes, message queues, shared memory
● Robust mutexes for crash handling



Forms of Parallelism

Multi-process:
● Exploit multiple machines with few additional changes
● Not well suited for automatically generated parallelism

● Exception: using of MPI



Forms of Parallelism

Multi-threaded:
● Widely available through pthread_create()
● Share everything except register content (implies stack 

pointer)
● Accidental corruptions felt by every thread
● Thread crash causes complete tear-down
● Communication costs minimal

● Only synchronization cost
● Limited to single machine



Explicit Parallelism

Processes and threads require explicit handling
● Start explicitly

● How many?
● What to do?

→ Not scalable
● Programmers cannot keep track of more than a handful of 

execution paths
● Parametrize explicitly

● Where to run (affinity)?

→ Machine architecture changes and becomes more important
● Programmers cannot adjust each program individually



Parallel Code

Parallel code looks like serial code to tools
● Programmer's responsibility to use synchronization
● Hard to check for all kinds of mistakes

Better model: tell tools about parallelism
● Requires integration into language
● Tools can

● Warn about some incorrect uses
● Use optimal mechanisms without hardcoding in sources

● After adjustment of tools for new machine architecture only 
recompilation needed



OpenMP

Language Extension
● C, C++, Fortran
● Compiler gets insight into parallelism
● Same program can work sequentially

● Makes debugging easier
● Allows using older tools on same code

Openly developed specification

Central place for many optimizations
● OpenMP comes with runtime parts
● Specification allows runtime to make decisions about 

number and placement of threads 



Forms of Structured Parallelism

Independent sections Loops



Parallel Sections

sum = 0;

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);



Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

#  pragma omp parallel sections

{

for (i = 0; i < N; ++i)

# pragma omp atomic

sum += count_whatever(some_data1[i]);

#  pragma omp section

for (i = 0; i < N; ++i)

# pragma omp atomic

sum += count_whatever(some_data2[i]);

}



Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

#  pragma omp parallel sections

{

for (i = 0; i < N; ++i)

# pragma omp atomic

sum += count_whatever(some_data1[i]);

#  pragma omp section

for (i = 0; i < N; ++i)

# pragma omp atomic

sum += count_whatever(some_data2[i]);

}

Runtime may
start threads

Implicit barrier



Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

#  pragma omp parallel sections reduction(+:sum)

{

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

#  pragma omp section

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

}



Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

#  pragma omp parallel sections reduction(+:sum)

{

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

#  pragma omp section

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

}

NEW!

No
Atomic



Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

#  pragma omp parallel for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

#  pragma omp parallel for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);



Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

#  pragma omp parallel for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

#  pragma omp parallel for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

Implicit barrier

Implicit barrier



Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

#  pragma omp parallel

{

#  pragma omp for reduction(+:sum) nowait

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

#  pragma omp for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

}



Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

#  pragma omp parallel

{

#  pragma omp for reduction(+:sum) nowait

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

#  pragma omp for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

}

No implicit 
barrier



Convenience

#pragma omp parallel for
for (...)

...
short for

#pragma omp parallel
{
#  pragma omp for

for (...)
...

}
Similarly for parallel sections



Explicit Tasks

Available in OpenMP v3 (RHEL6):
sum = 0;

#  pragma omp parallel

{

#  pragma omp for nowait

for (i = 0; i < N; ++i)

# pragma omp task untied

{

#    pragma omp atomic

sum += count_whatever(some_data1[i]);

}

#  pragma omp for nowait

for (i = 0; i < N; ++i)

# pragma omp task untied

{

#    pragma omp atomic

   sum += count_whatever(some_data2[i]);

}

}



Explicit Tasks

Available in OpenMP v3 (RHEL6):
sum = 0;

#  pragma omp parallel

{

#  pragma omp for nowait

for (i = 0; i < N; ++i)

# pragma omp task untied

{

#    pragma omp atomic

sum += count_whatever(some_data1[i]);

}

#  pragma omp for nowait

for (i = 0; i < N; ++i)

# pragma omp task untied

{

#    pragma omp atomic

   sum += count_whatever(some_data2[i]);

}

}

Implicit barrier, incl all tasks

Any thread can pick up 
task



Exclusion

Producer

struct elem *newp 
= ...;

#pragma critical 
pclock

{
newp->next = first;
first = newp;

}

Consumer

#pragma critical pclock

{
curp = first;
if (curp != NULL)

first = first-
>next;

}

... use curp ...



Only One

Executed by one thread

#pragma omp parallel

{

  fct1();

# pragma omp single 
nowait

  fct2();

  fct3();

}

Executed by master thread

#pragma omp parallel

{

  fct1();

# pragma omp master

  fct2();

  fct3();

}



Only One

Executed by one thread

#pragma omp parallel

{

  fct1();

# pragma omp single 
nowait

  fct2();

  fct3();

}

Executed by master thread

#pragma omp parallel

{

  fct1();

# pragma omp master

  fct2();

  fct3();

}No implied barrier
Also available

for other
constructs



Extending the Range

Nested loops are “natural”

for (i = 1; i < N - 1; ++i)

    for (j = 1; j < M – 1; ++j)

        b[i][j] = (a[i][j-1]+a[i-1][j]+a[i][j]

                   +a[i+1][j]+a[i][j+1]) / 5;



Extending the Range

Nested loops are “natural”

Available in OpenMP v3 (RHEL6):

#pragma omp parallel for collapse(2)

for (i = 1; i < N - 1; ++i)

    for (j = 1; j < M – 1; ++j)

        b[i][j] = (a[i][j-1]+a[i-1][j]+a[i][j]

                   +a[i+1][j]+a[i][j+1]) / 5;



Extending the Range

Nested loops are “natural”

Available in OpenMP v3 (RHEL6):

#pragma omp parallel for collapse(2)

for (i = 1; i < N - 1; ++i)

    for (j = 1; j < M – 1; ++j)

        b[i][j] = (a[i][j-1]+a[i-1][j]+a[i][j]

                   +a[i+1][j]+a[i][j+1]) / 5;

Both loops in one
iteration range



Scheduling

Parallel section has rules for how many threads to create
● Programmer can request number
● User can control through environment variable
● Or: OpenMP runtime can be in complete control

Loop scheduling:
● Reliable assignment of iterations to threads
● Fair distribution
● Or: also under control of the runtime



Outlook

OpenMP compiler & runtime become more intelligent:
● Runtime knows about machine architecture
● Compiler tells runtime about cost and memory behavior of 

the code

→Runtime in good position to make decision
● No adjust of program for new machine needed

Example:
 Tightly coupled tasks, writing to same memory

● Run on one socket or cache domain



Outlook

Example: Large Working Set
● Choose loop iterations to touch different pages, allocate 

pages on different NUMA nodes, set thread affinity
Coordination:

● Many uncoordinated OpenMP programs unnecessarily 
stress machine

● With coordination between all OpenMP processes runtime 
could ensure machine resources are not oversubscribed

Result:
If possible, let runtime decide!



Questions?

drepper@redhat.com | people.redhat.com/drepper
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