
Introduction to OpenMP
Ulrich Drepper

Consulting Engineer, Red Hat, Inc.

Before we start…

Clarify a few phrases:
● Process

● Scheduled execution unit with its own address space
● Thread

● Scheduled execution unit, sharing address space with
other threads

● Future, (Task)
● Description of work, not scheduled

Forms of Parallelism

Multi-process:
● Unix fork()
● Separate address space: sharing is explicit

● Linux's clone() and unshare() provide finer granularity
● More robust:

● No accidental memory corruption
● No complete tear-down on crash

● Fast Linux Inter-Process Communication (IPC)
● Pipes, message queues, shared memory
● Robust mutexes for crash handling

Forms of Parallelism

Multi-process:
● Exploit multiple machines with few additional changes
● Not well suited for automatically generated parallelism

● Exception: using of MPI

Forms of Parallelism

Multi-threaded:
● Widely available through pthread_create()
● Share everything except register content (implies stack

pointer)
● Accidental corruptions felt by every thread
● Thread crash causes complete tear-down
● Communication costs minimal

● Only synchronization cost
● Limited to single machine

Explicit Parallelism

Processes and threads require explicit handling
● Start explicitly

● How many?
● What to do?

→ Not scalable
● Programmers cannot keep track of more than a handful of

execution paths
● Parametrize explicitly

● Where to run (affinity)?

→ Machine architecture changes and becomes more important
● Programmers cannot adjust each program individually

Parallel Code

Parallel code looks like serial code to tools
● Programmer's responsibility to use synchronization
● Hard to check for all kinds of mistakes

Better model: tell tools about parallelism
● Requires integration into language
● Tools can

● Warn about some incorrect uses
● Use optimal mechanisms without hardcoding in sources

● After adjustment of tools for new machine architecture only
recompilation needed

OpenMP

Language Extension
● C, C++, Fortran
● Compiler gets insight into parallelism
● Same program can work sequentially

● Makes debugging easier
● Allows using older tools on same code

Openly developed specification

Central place for many optimizations
● OpenMP comes with runtime parts
● Specification allows runtime to make decisions about

number and placement of threads

Forms of Structured Parallelism

Independent sections Loops

Parallel Sections

sum = 0;

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

pragma omp parallel sections

{

for (i = 0; i < N; ++i)

pragma omp atomic

sum += count_whatever(some_data1[i]);

pragma omp section

for (i = 0; i < N; ++i)

pragma omp atomic

sum += count_whatever(some_data2[i]);

}

Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

pragma omp parallel sections

{

for (i = 0; i < N; ++i)

pragma omp atomic

sum += count_whatever(some_data1[i]);

pragma omp section

for (i = 0; i < N; ++i)

pragma omp atomic

sum += count_whatever(some_data2[i]);

}

Runtime may
start threads

Implicit barrier

Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

pragma omp parallel sections reduction(+:sum)

{

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

pragma omp section

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

}

Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

pragma omp parallel sections reduction(+:sum)

{

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

pragma omp section

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

}

NEW!

No
Atomic

Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

pragma omp parallel for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

pragma omp parallel for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

pragma omp parallel for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

pragma omp parallel for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

Implicit barrier

Implicit barrier

Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

pragma omp parallel

{

pragma omp for reduction(+:sum) nowait

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

pragma omp for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

}

Parallel Sections

Available in OpenMP v2.5 (RHEL5):
sum = 0;

pragma omp parallel

{

pragma omp for reduction(+:sum) nowait

for (i = 0; i < N; ++i)

sum += count_whatever(some_data1[i]);

pragma omp for reduction(+:sum)

for (i = 0; i < N; ++i)

sum += count_whatever(some_data2[i]);

}

No implicit
barrier

Convenience

#pragma omp parallel for
for (...)

...
short for

#pragma omp parallel
{
pragma omp for

for (...)
...

}
Similarly for parallel sections

Explicit Tasks

Available in OpenMP v3 (RHEL6):
sum = 0;

pragma omp parallel

{

pragma omp for nowait

for (i = 0; i < N; ++i)

pragma omp task untied

{

pragma omp atomic

sum += count_whatever(some_data1[i]);

}

pragma omp for nowait

for (i = 0; i < N; ++i)

pragma omp task untied

{

pragma omp atomic

 sum += count_whatever(some_data2[i]);

}

}

Explicit Tasks

Available in OpenMP v3 (RHEL6):
sum = 0;

pragma omp parallel

{

pragma omp for nowait

for (i = 0; i < N; ++i)

pragma omp task untied

{

pragma omp atomic

sum += count_whatever(some_data1[i]);

}

pragma omp for nowait

for (i = 0; i < N; ++i)

pragma omp task untied

{

pragma omp atomic

 sum += count_whatever(some_data2[i]);

}

}

Implicit barrier, incl all tasks

Any thread can pick up
task

Exclusion

Producer

struct elem *newp
= ...;

#pragma critical
pclock

{
newp->next = first;
first = newp;

}

Consumer

#pragma critical pclock

{
curp = first;
if (curp != NULL)

first = first-
>next;

}

... use curp ...

Only One

Executed by one thread

#pragma omp parallel

{

 fct1();

pragma omp single
nowait

 fct2();

 fct3();

}

Executed by master thread

#pragma omp parallel

{

 fct1();

pragma omp master

 fct2();

 fct3();

}

Only One

Executed by one thread

#pragma omp parallel

{

 fct1();

pragma omp single
nowait

 fct2();

 fct3();

}

Executed by master thread

#pragma omp parallel

{

 fct1();

pragma omp master

 fct2();

 fct3();

}No implied barrier
Also available

for other
constructs

Extending the Range

Nested loops are “natural”

for (i = 1; i < N - 1; ++i)

 for (j = 1; j < M – 1; ++j)

 b[i][j] = (a[i][j-1]+a[i-1][j]+a[i][j]

 +a[i+1][j]+a[i][j+1]) / 5;

Extending the Range

Nested loops are “natural”

Available in OpenMP v3 (RHEL6):

#pragma omp parallel for collapse(2)

for (i = 1; i < N - 1; ++i)

 for (j = 1; j < M – 1; ++j)

 b[i][j] = (a[i][j-1]+a[i-1][j]+a[i][j]

 +a[i+1][j]+a[i][j+1]) / 5;

Extending the Range

Nested loops are “natural”

Available in OpenMP v3 (RHEL6):

#pragma omp parallel for collapse(2)

for (i = 1; i < N - 1; ++i)

 for (j = 1; j < M – 1; ++j)

 b[i][j] = (a[i][j-1]+a[i-1][j]+a[i][j]

 +a[i+1][j]+a[i][j+1]) / 5;

Both loops in one
iteration range

Scheduling

Parallel section has rules for how many threads to create
● Programmer can request number
● User can control through environment variable
● Or: OpenMP runtime can be in complete control

Loop scheduling:
● Reliable assignment of iterations to threads
● Fair distribution
● Or: also under control of the runtime

Outlook

OpenMP compiler & runtime become more intelligent:
● Runtime knows about machine architecture
● Compiler tells runtime about cost and memory behavior of

the code

→Runtime in good position to make decision
● No adjust of program for new machine needed

Example:
 Tightly coupled tasks, writing to same memory

● Run on one socket or cache domain

Outlook

Example: Large Working Set
● Choose loop iterations to touch different pages, allocate

pages on different NUMA nodes, set thread affinity
Coordination:

● Many uncoordinated OpenMP programs unnecessarily
stress machine

● With coordination between all OpenMP processes runtime
could ensure machine resources are not oversubscribed

Result:
If possible, let runtime decide!

Questions?

drepper@redhat.com | people.redhat.com/drepper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

