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Why Singling Out Memory?
● Speed of Computer Main Memory does not keep up

● Memory cannot get much faster, latency-wise
Energy = Capacity ∙ Voltage2 ∙ Frequency

● Increased competition for memory connection due to many-
core processors
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Why Is Memory Performance Optimization Hard?
● Memory technology not well understood

● There are so many places where memory is accessed

● Effects not local
 Entire program should be understood for best results
 Other processes can have effects, too

● Hardware Complications
 Multi-core
 NUMA
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Important Factors
● Cache Line Utilization
● Memory Page Utilization
● TLB Branch Utilization
● Avoid just-in-time reading:

 Help hardware prefetching
 Use explicit software prefetching

● Parallelism
 Concurrent cache-line use
 Frequent cache-line transfer

● Non-local access



An Example: Matrix Multiplication

  for (size_t i = 0; i < X; ++i)

   for (size_t j = 0; j < Z; ++j)

     for (size_t k = 0; k < Y; ++k)

       res[i][j] += mul1[i][k] * mul2[k][j];

Both matrixes have size 2048x2048
● 8,589,934,592 multiplications and additions
● 3GHz Intel Core2
● Runtime: 678 sec!
● 12,669,520 FLOPS



Measure!

Oprofile: statistical profiling
● Use hardware performance counters (10 sec each)

Event Count Event Count

CPU_CLK_UNHALTED 5,302,632,000 L1D_REPL 183,174,500
INST_RETIRED 435,096,000 L2_LINES_IN.ANY 240,435,000
RESOURCE_STALLS 1,886,790,000 L2_LINES_IN.DEMAND 126,758,500
IFU_MEM_STALL 262,414,500 PAGE_WALKS 154,154,000
ITLB_MISS_RETIRED 28,500 DTLB_MISSES.ANY 118,965,000
L1I_MISSES 253,500 DTLB_MISSES.MISS_LD 131,460,500
L2_IFETCH 20,000 DTLB_MISSES.MISS_ST 24,500
L1D_CACHE_LD 139,074,500 L1D_CACHE_LD 177,222,500
STORE_BLOCK 141,500 L1D_CACHE_ST 122,000

What does each number mean?



Relativity
● Absolute numbers hard to interpret
● Create ratios (appendix B, Intel Optimization Manual)
● Ratios are independent of length of sampling
● No universal levels for ratios:

● Memory-intensive code has more cache misses
● Arithmetic-intensive code with have less, but more 

dependencies



Important Ratios
● Clocks per Instruction Retired

CPU_CLK_HALTED/INST_RETIRED

In multi-scalar processors, optimum > 1
● Instruction Fetch Stall

CYCLES_L1I_MEM_STALLED/CPU_CLK_HALTED
Any stall bad.  Code should be predictable

● Virtual Table Use
BR_IND_CALL_EXEC/INST_RETIRED

Possible reason for instruction fetch stalls: indirect calls



Important Ratios
● Load Rate:

L1D_CACHE_LD.MESI/CPU_CLK_UNHALTED
Large number of loads means load/store buffers full all the 

time
● Store Order Block

STORE_BLOCK.ORDER/CPU_CLK_UNHALTED
Ratio of cycles in which instructions are held up because of 

write ordering due to cache misses
● L1 Data Cache Miss Rate

L1D_REPL/INST_RETIRED
How many instructions cause L1 cache misses



Important Ratios
● L2 Cache Miss Rate

L2_LINES_IN/INST_RETIRED
Instructions which cause L2 misses

● TLB Miss Penalty
PAGE_WALKS/CPU_CLK_UNHALTED

Cycles spent waiting for page table walks
● DTLB Miss Rate

DTLB_MISSES/INST_RETIRED
Instructions which cause DTLB misses



Ratios for the Example
● Some of the memory-related ratios:

CPU_CLK_UNHALTED / INST_RETIRED 12.19
RESOURCE_STALLS.RS_FULL / CPU_CLK_UNHALTED 77.36%

IFU_MEM_STALL / CPU_CLK_UNHALTED 8.84%
L1D_CACHE_LD / CPU_CLK_UNHALTED 0.03

L1D_REPL / INST_RETIRED 15.30%
L2_LINES_IN.ANY/ INST_RETIRED 19.20%

L2_LINES_IN.DEMAND / INST_RETIRED 9.60%
PAGE_WALKS/ CPU_CLK_UNHALTED 4.12%

DTLB_MISSES.MISS_LD / INST_RETIRED 9.90%
DTLB_MISSES.MISS_ST / INST_RETIRED 0.00%

L1D_CACHE_LD / INST_RETIRED 14.31%
L1D_CACHE_ST / INST_RETIRED 0.01%



Slightly Revised: Matrix Multiplication

  for (size_t k = 0; k < Y; ++k)

   for (size_t j = 0; j < Z; ++j)

     for (size_t i = 0; i < X; ++i)

       res[i][j] += mul1[i][k] * mul2[k][j];

● Now: 38 sec, 94% faster!

Swapped



Visible Improvement

Improvement
CPU_CLK_UNHALTED / INST_RETIRED 1.4 88.56%

RESOURCE_STALLS.RS_FULL / CPU_CLK_UNHALTED 8.87% 88.54%
IFU_MEM_STALL / CPU_CLK_UNHALTED 8.97% -1.47%
L1D_CACHE_LD / CPU_CLK_UNHALTED 0.26 -814.29%

L1D_REPL / INST_RETIRED 15.39% -0.59%
L2_LINES_IN.ANY/ INST_RETIRED 1.32% 93.15%

L2_LINES_IN.DEMAND / INST_RETIRED 0.08% 99.17%
PAGE_WALKS/ CPU_CLK_UNHALTED 0.53% 87.19%

DTLB_MISSES.MISS_LD / INST_RETIRED 0.03% 99.75%
DTLB_MISSES.MISS_ST / INST_RETIRED 0.02% -2200.00%

L1D_CACHE_LD / INST_RETIRED 6.46% 54.88%
L1D_CACHE_ST / INST_RETIRED 0.71% -7010.00%



Improvement
CPU_CLK_UNHALTED / INST_RETIRED 1.32 5.73%

DTLB_MISSES.MISS_LD / INST_RETIRED 0.02% 8.00%
DTLB_MISSES.MISS_ST / INST_RETIRED 0.02% 4.35%

Use Huge Pages
● mount hugetlbfs at /mnt/huge
● Use mmap with file descriptor for file under /mnt/huge



Tiling

Fill in entire cache lines before they are evicted:

  #define SM (64 / sizeof (double))

  for (i = 0; i < X; i += SM)

    for (j = 0; j < Z; j += SM)

      for (k = 0; k < Y; k += SM)

        for (i2 = 0, rres = &RES(i, j), rmul1 = &MUL1(i, k); i2 < SM;

             ++i2, rres += Y, rmul1 += X)

          for (k2 = 0, rmul2 = &MUL2(k, j); k2 < SM; ++k2, rmul2 += Z)

            for (j2 = 0; j2 < SM; ++j2)

              rres[j2] += rmul1[k2] * rmul2[j2];



Improvement
CPU_CLK_UNHALTED / INST_RETIRED 1.29 7.67%

RESOURCE_STALLS.RS_FULL / CPU_CLK_UNHALTED 8.87% 0.00%
IFU_MEM_STALL / CPU_CLK_UNHALTED 8.34% 7.02%
L1D_CACHE_LD / CPU_CLK_UNHALTED 0.23 11.72%

L1D_REPL / INST_RETIRED 1.32% 91.44%
L2_LINES_IN.ANY/ INST_RETIRED 0.90% 31.84%

L1D_CACHE_LD / INST_RETIRED 4.58% 29.03%
L1D_CACHE_ST / INST_RETIRED 0.00% 99.44%

Tiling can help significantly



Where is Time Spent?
● It's simple if looking at the code is sufficient

res[i][j] += mul1[i][k] * mul2[k][j];
● Use oprofile and observe location of events
● Select all interesting counters with opcontrol
● opannotate –source

 Show all counters next to each line
● Opannotate –assembly

 Show next to assembler instructions
 Not precise since PEBS is not supported!



Annotated Listing
Function

Total

L1 Cache
Load

L2 Cache
Load

 11058  2.5025   111  0.5398   :{ /* lookup total: 162984 36.8848  8496 41.3129 */

                               :  unsigned long int hash;

                               :  size_t idx;

     2 4.5e-04     0       0   :  hash_entry *table = (hash_entry *) htab->table;

 84957 19.2266  1693  8.2324   :  hash = 1 + hval % htab->size;

                               :  idx = hash;

 11053  2.5014  1138  5.5337   :  if (table[idx].used) {

  6245  1.4133   340  1.6533   :      if (table[idx].used==hval && table[idx].keylen == keylen

                               :          && memcmp (table[idx].key, key, keylen) == 0)

                               :        return idx;

  2397  0.5425  1454  7.0703   :      hash = 1 + hval % (htab->size - 2);

                               :      do {

                               :          if (idx <= hash)

  3568  0.8075   292  1.4199   :            idx = htab->size + idx - hash;

                               :          else

                               :            idx -= hash;

 30993  7.0140  2634 12.8082   :          if (table[idx].used==hval&&table[idx].keylen==keylen



Problems of Parallelism
● False sharing of cache lines:

● Unintentionally use same cache line in different threads
● Happens with global variables
● Should not happen that often with dynamic memory
● Group variables and align them

● Common working set:
● Multiple threads working on same data (good!)
● Produced output placed in same memory location (bad!)
● Use per-thread working area and consolidate in end

● Synchronization:
● Highly contested cache lines for sync primitives



Ratios for Multi-Thread Problems
● Modified Data Sharing Ratio:

EXT_SNOOP/INST_RETIRED
Instructions which cause modified cache line from other core 

to be retrieved
● Locked Operations Impact:

(L1D_CACHE_LOCK_DURATION+20*L1D_CACHE_LOCK) 
/ CPU_CLK_UNHALTED
How many cycles used for atomic operations.  Should be 

near zero



Summary
● There are many layers to memory performance
● Each program has different characteristics
● Statistical profiling can

● Give general overview
● Pinpoint hotspots

● Often program logic has to be significantly rethought



Questions?

drepper@redhat.com | people.redhat.com/drepper



Backup Slides



Common Memory Performance Problems
● Higher-level language semantics for strings

● String implementation cannot guess what is needed
● Programmer should provide estimates to C++ class

● In general: temporary values



C++ Temporaries

vec operator+(vec a, vec b) {

  vec r;

  for (size_t c = 0; c < a.size; ++c)

    r.data[c] = a.data[c] + b.data[c];

  return r;

}

Good style, bad performance



C++ Temporaries Help in C++0x

vec &&operator+(vec &&a, vec &&b) {

  for (size_t c = 0; c < a.size; ++c)

    a.data[c] += b.data[c];

  return a;

}

● && indicates rvalue reference, i.e., reference to temporary
● Can be reused for result instead of new allocation
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