
Understanding Application
Memory Performance

Ulrich Drepper
Consulting Engineer, Red Hat

Why Singling Out Memory?
● Speed of Computer Main Memory does not keep up

● Memory cannot get much faster, latency-wise
Energy = Capacity ∙ Voltage2 ∙ Frequency

● Increased competition for memory connection due to many-
core processors

Clock
early 80s 1MHz 1 MHz
today 4GHz 250 cycles

Memory
Access

Effective
Clock

1 cycles
16 Mhz

Why Is Memory Performance Optimization Hard?
● Memory technology not well understood

● There are so many places where memory is accessed

● Effects not local
 Entire program should be understood for best results
 Other processes can have effects, too

● Hardware Complications
 Multi-core
 NUMA

Overview

Processor

Level 2 Cache
Level 1 Cache

Processor

Level 2 Cache
Level 1 Cache

Memory
Controller

Memory Memory Memory Memory

Request

Not here

Nor here
Physical
Address

Send Request

Check here

Determine DIMM(s)

And here

Read
Command

Prepare
Data

Send
Data

Store
Data

Use Data

Important Factors
● Cache Line Utilization
● Memory Page Utilization
● TLB Branch Utilization
● Avoid just-in-time reading:

 Help hardware prefetching
 Use explicit software prefetching

● Parallelism
 Concurrent cache-line use
 Frequent cache-line transfer

● Non-local access

An Example: Matrix Multiplication

 for (size_t i = 0; i < X; ++i)

 for (size_t j = 0; j < Z; ++j)

 for (size_t k = 0; k < Y; ++k)

 res[i][j] += mul1[i][k] * mul2[k][j];

Both matrixes have size 2048x2048
● 8,589,934,592 multiplications and additions
● 3GHz Intel Core2
● Runtime: 678 sec!
● 12,669,520 FLOPS

Measure!

Oprofile: statistical profiling
● Use hardware performance counters (10 sec each)

Event Count Event Count

CPU_CLK_UNHALTED 5,302,632,000 L1D_REPL 183,174,500
INST_RETIRED 435,096,000 L2_LINES_IN.ANY 240,435,000
RESOURCE_STALLS 1,886,790,000 L2_LINES_IN.DEMAND 126,758,500
IFU_MEM_STALL 262,414,500 PAGE_WALKS 154,154,000
ITLB_MISS_RETIRED 28,500 DTLB_MISSES.ANY 118,965,000
L1I_MISSES 253,500 DTLB_MISSES.MISS_LD 131,460,500
L2_IFETCH 20,000 DTLB_MISSES.MISS_ST 24,500
L1D_CACHE_LD 139,074,500 L1D_CACHE_LD 177,222,500
STORE_BLOCK 141,500 L1D_CACHE_ST 122,000

What does each number mean?

Relativity
● Absolute numbers hard to interpret
● Create ratios (appendix B, Intel Optimization Manual)
● Ratios are independent of length of sampling
● No universal levels for ratios:

● Memory-intensive code has more cache misses
● Arithmetic-intensive code with have less, but more

dependencies

Important Ratios
● Clocks per Instruction Retired

CPU_CLK_HALTED/INST_RETIRED

In multi-scalar processors, optimum > 1
● Instruction Fetch Stall

CYCLES_L1I_MEM_STALLED/CPU_CLK_HALTED
Any stall bad. Code should be predictable

● Virtual Table Use
BR_IND_CALL_EXEC/INST_RETIRED

Possible reason for instruction fetch stalls: indirect calls

Important Ratios
● Load Rate:

L1D_CACHE_LD.MESI/CPU_CLK_UNHALTED
Large number of loads means load/store buffers full all the

time
● Store Order Block

STORE_BLOCK.ORDER/CPU_CLK_UNHALTED
Ratio of cycles in which instructions are held up because of

write ordering due to cache misses
● L1 Data Cache Miss Rate

L1D_REPL/INST_RETIRED
How many instructions cause L1 cache misses

Important Ratios
● L2 Cache Miss Rate

L2_LINES_IN/INST_RETIRED
Instructions which cause L2 misses

● TLB Miss Penalty
PAGE_WALKS/CPU_CLK_UNHALTED

Cycles spent waiting for page table walks
● DTLB Miss Rate

DTLB_MISSES/INST_RETIRED
Instructions which cause DTLB misses

Ratios for the Example
● Some of the memory-related ratios:

CPU_CLK_UNHALTED / INST_RETIRED 12.19
RESOURCE_STALLS.RS_FULL / CPU_CLK_UNHALTED 77.36%

IFU_MEM_STALL / CPU_CLK_UNHALTED 8.84%
L1D_CACHE_LD / CPU_CLK_UNHALTED 0.03

L1D_REPL / INST_RETIRED 15.30%
L2_LINES_IN.ANY/ INST_RETIRED 19.20%

L2_LINES_IN.DEMAND / INST_RETIRED 9.60%
PAGE_WALKS/ CPU_CLK_UNHALTED 4.12%

DTLB_MISSES.MISS_LD / INST_RETIRED 9.90%
DTLB_MISSES.MISS_ST / INST_RETIRED 0.00%

L1D_CACHE_LD / INST_RETIRED 14.31%
L1D_CACHE_ST / INST_RETIRED 0.01%

Slightly Revised: Matrix Multiplication

 for (size_t k = 0; k < Y; ++k)

 for (size_t j = 0; j < Z; ++j)

 for (size_t i = 0; i < X; ++i)

 res[i][j] += mul1[i][k] * mul2[k][j];

● Now: 38 sec, 94% faster!

Swapped

Visible Improvement

Improvement
CPU_CLK_UNHALTED / INST_RETIRED 1.4 88.56%

RESOURCE_STALLS.RS_FULL / CPU_CLK_UNHALTED 8.87% 88.54%
IFU_MEM_STALL / CPU_CLK_UNHALTED 8.97% -1.47%
L1D_CACHE_LD / CPU_CLK_UNHALTED 0.26 -814.29%

L1D_REPL / INST_RETIRED 15.39% -0.59%
L2_LINES_IN.ANY/ INST_RETIRED 1.32% 93.15%

L2_LINES_IN.DEMAND / INST_RETIRED 0.08% 99.17%
PAGE_WALKS/ CPU_CLK_UNHALTED 0.53% 87.19%

DTLB_MISSES.MISS_LD / INST_RETIRED 0.03% 99.75%
DTLB_MISSES.MISS_ST / INST_RETIRED 0.02% -2200.00%

L1D_CACHE_LD / INST_RETIRED 6.46% 54.88%
L1D_CACHE_ST / INST_RETIRED 0.71% -7010.00%

Improvement
CPU_CLK_UNHALTED / INST_RETIRED 1.32 5.73%

DTLB_MISSES.MISS_LD / INST_RETIRED 0.02% 8.00%
DTLB_MISSES.MISS_ST / INST_RETIRED 0.02% 4.35%

Use Huge Pages
● mount hugetlbfs at /mnt/huge
● Use mmap with file descriptor for file under /mnt/huge

Tiling

Fill in entire cache lines before they are evicted:

 #define SM (64 / sizeof (double))

 for (i = 0; i < X; i += SM)

 for (j = 0; j < Z; j += SM)

 for (k = 0; k < Y; k += SM)

 for (i2 = 0, rres = &RES(i, j), rmul1 = &MUL1(i, k); i2 < SM;

 ++i2, rres += Y, rmul1 += X)

 for (k2 = 0, rmul2 = &MUL2(k, j); k2 < SM; ++k2, rmul2 += Z)

 for (j2 = 0; j2 < SM; ++j2)

 rres[j2] += rmul1[k2] * rmul2[j2];

Improvement
CPU_CLK_UNHALTED / INST_RETIRED 1.29 7.67%

RESOURCE_STALLS.RS_FULL / CPU_CLK_UNHALTED 8.87% 0.00%
IFU_MEM_STALL / CPU_CLK_UNHALTED 8.34% 7.02%
L1D_CACHE_LD / CPU_CLK_UNHALTED 0.23 11.72%

L1D_REPL / INST_RETIRED 1.32% 91.44%
L2_LINES_IN.ANY/ INST_RETIRED 0.90% 31.84%

L1D_CACHE_LD / INST_RETIRED 4.58% 29.03%
L1D_CACHE_ST / INST_RETIRED 0.00% 99.44%

Tiling can help significantly

Where is Time Spent?
● It's simple if looking at the code is sufficient

res[i][j] += mul1[i][k] * mul2[k][j];
● Use oprofile and observe location of events
● Select all interesting counters with opcontrol
● opannotate –source

 Show all counters next to each line
● Opannotate –assembly

 Show next to assembler instructions
 Not precise since PEBS is not supported!

Annotated Listing
Function

Total

L1 Cache
Load

L2 Cache
Load

 11058 2.5025 111 0.5398 :{ /* lookup total: 162984 36.8848 8496 41.3129 */

 : unsigned long int hash;

 : size_t idx;

 2 4.5e-04 0 0 : hash_entry *table = (hash_entry *) htab->table;

 84957 19.2266 1693 8.2324 : hash = 1 + hval % htab->size;

 : idx = hash;

 11053 2.5014 1138 5.5337 : if (table[idx].used) {

 6245 1.4133 340 1.6533 : if (table[idx].used==hval && table[idx].keylen == keylen

 : && memcmp (table[idx].key, key, keylen) == 0)

 : return idx;

 2397 0.5425 1454 7.0703 : hash = 1 + hval % (htab->size - 2);

 : do {

 : if (idx <= hash)

 3568 0.8075 292 1.4199 : idx = htab->size + idx - hash;

 : else

 : idx -= hash;

 30993 7.0140 2634 12.8082 : if (table[idx].used==hval&&table[idx].keylen==keylen

Problems of Parallelism
● False sharing of cache lines:

● Unintentionally use same cache line in different threads
● Happens with global variables
● Should not happen that often with dynamic memory
● Group variables and align them

● Common working set:
● Multiple threads working on same data (good!)
● Produced output placed in same memory location (bad!)
● Use per-thread working area and consolidate in end

● Synchronization:
● Highly contested cache lines for sync primitives

Ratios for Multi-Thread Problems
● Modified Data Sharing Ratio:

EXT_SNOOP/INST_RETIRED
Instructions which cause modified cache line from other core

to be retrieved
● Locked Operations Impact:

(L1D_CACHE_LOCK_DURATION+20*L1D_CACHE_LOCK)
/ CPU_CLK_UNHALTED
How many cycles used for atomic operations. Should be

near zero

Summary
● There are many layers to memory performance
● Each program has different characteristics
● Statistical profiling can

● Give general overview
● Pinpoint hotspots

● Often program logic has to be significantly rethought

Questions?

drepper@redhat.com | people.redhat.com/drepper

Backup Slides

Common Memory Performance Problems
● Higher-level language semantics for strings

● String implementation cannot guess what is needed
● Programmer should provide estimates to C++ class

● In general: temporary values

C++ Temporaries

vec operator+(vec a, vec b) {

 vec r;

 for (size_t c = 0; c < a.size; ++c)

 r.data[c] = a.data[c] + b.data[c];

 return r;

}

Good style, bad performance

C++ Temporaries Help in C++0x

vec &&operator+(vec &&a, vec &&b) {

 for (size_t c = 0; c < a.size; ++c)

 a.data[c] += b.data[c];

 return a;

}

● && indicates rvalue reference, i.e., reference to temporary
● Can be reused for result instead of new allocation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

