
UnixWare to Linux Porting Guide

Ulrich Drepper
Red Hat, Inc.

1325 Chesapeake Terrace
Sunnyvale
California

94089
drepper@redhat.com

UnixWare to Linux Porting Guide
by Ulrich Drepper

Copyright© 2001 Red Hat, Inc. All rights reserved.

The information contained in this document is provided for informational purposes only.

DISCLAIMER. NEITHER RED HAT OR OTHER PARTIES MAKE ANY REPRESENTATIONS
OF ANY KIND WITH RESPECT TO PRODUCTS REFERENCED HEREIN, WHETHER SUCH
PRODUCTS ARE THOSE OF RED HAT OR THIRD PARTIES. ANY WARRANTIES WHICH
MAY PERTAIN TO SUCH PRODUCTS ARE PROVIDED ONLY UPON THE PURCHASE OR
LICENSE OF SUCH PRODUCTS, AND NO WARRANTIES, IMPLIED OR EXPRESS, INCLUD-
ING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE, AND NON-INFRINGEMENT, ARE EXPRESSLY DISCLAIMED.
FURTHERMORE, RED HAT EXPRESSLY DISCLAIM ANY WARRANTY ARISING OUT OF
THE INFORMATION CONTAINED HEREIN, INCLUDING WITHOUT LIMITATION, ANY
PRODUCTS, SPECIFICATIONS, OR OTHER MATERIALS REFERENCED HEREIN. RED HAT
DOES NOT WARRANT THAT THIS DOCUMENT IS FREE FROM ERRORS, OR THAT ANY
PRODUCTS OR OTHER TECHNOLOGY DEVELOPED IN CONFORMANCE WITH THIS DOC-
UMENT WILL PERFORM IN THE INTENDED MANNER, OR WILL BE FREE FROM IN-
FRINGEMENT OF THRID PARTY PROPRIETARY RIGHTS, AND RED HAT DISCLAIMS ALL
LIABILITIES THEREFOR .

RED HAT DOES NOT WARRANT THAT ANY PRODUCT REFERENCED HEREIN OR ANY
PRODUCT OR TECHNOLOGY DEVELOPED IN RELIANCE UPON THIS DOCUMENT, IN
WHOLE OR IN PART, WILL BE SUFFICIENT, ACCURATE, RELIABLE, COMPLETE, FREE
FROM DEFECTS OR SAFE FOR ITS INTENDED PURPOSE, NOR THAT THIS DOCUMENT
WILL BE UPDATED OR MAINTAINED, AND HEREBY DISCLAIM ALL LIABILITIES THERE-
FOR. ANY PERSON MAKING, USING OR SELLING SUCH PRODUCT OR TECHNOLOGY
DOES SO AT HIS OR HER OWN RISK.

Licenses may be required. Red Hat and other parties may have patents or pending patent appli-
cations, trademarks, copyrights or other intellectual proprietary rights covering subject matter
contained or described in this document. No license, express, implied, by estoppel or otherwise,
to any intellectual property rights Red Hat or any other party is granted herein. It is your re-
sponsibility to seek licenses for such intellectual property rights from Red Hat and other parties
where appropriate.

Limited License Grant. Red Hat hereby grants you a limited copyright license to download and
copy this document for your use and internal distribution only. You may not distribute this
document externally, in whole or in part, to any other person or entity.

LIMITED LIABILITY. IN NO EVENT SHALL RED HAT AND OTHER PARTIES HAVE ANY
LIABILITY TO YOU OR TO ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST
DATA, LOSS OF USE OR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES, OR FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF YOUR USE OF THIS DOCUMENT OR RELIANCE UPON THE INFORMATION
CONTAINED HEREIN, UNDER ANY CAUSE OF ACTION OR THEORY OF LIABILITY, AND
IRRESPECTIVE OF WHETHER RED HAT HAS ADVANCE NOTICE OF THE POSSIBILITY OF
SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING THE FAIL-
URE OF THE ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

Red Hat Linux is a trademark of Red Hat, Inc.

Unixware is a trademark of Santa Cruz Operation, Inc.

Linux is a trademark of Linus Torvalds.

All other trademarks are the property of their respective owners.

Revision History

Revision 1.0 , 2001-2-25
First published version.

Table of Contents
1. Introduction ...7

11...7
About this Guide ..7

2. Development Tools...9
Language Support..9

21 ...9
An Alternative Way ...9
C Compiler Features ..10

22 ...10
Invoking the Compiler...10
Language Extensions ...20
Linker Invocation..24

3. System Interfaces ..29
Interfaces Missing on Linux..29

31 ...31
Differing Interfaces Between UnixWare and Linux ..33

31 ...33
Limited Implementations ..33

Linux Development Environment Namespace Issues..34
32 ...34
31. ...36

5

6

Chapter 1. Introduction

With the emergence of Linux as a viable computing platform, applications written
for other Unix platforms are being ported to Linux. This guide will help you do this
task. The focus is on porting applications from UnixWare. SCO’s other OS product,
Openserver, is not directly corverd in this document but since it is quite similar to
UnixWare the information given here should be useful as well. UnixWare is available
for the x86 architecture and so is Linux (among other architectures). We will therefore
concentrate on this architecture only. This is not really a restriction since except if
architecture-specific features are used the ported code will run on all architectures
Linux supports.

Generally speaking, porting is quite simple. Because UnixWare is a certified Unix
implementation, it has passed the conformance tests of the Unix copyright holders
(which SCO still is). Linux is also designed with conformance to the Unix standard in
mind. Although Linux has not undergone the conformance testing (due to the costs
involved), chances are that if the programmer used only the set of interfaces covered
by the Unix standard, you can reuse the code without any changes.

The porting problems that you can expect occur in several different areas:

• The tools used on the different platforms are different. As SCO does not develop
tools for Linux, programmers who are using SCO’s tools on UnixWare probably
have to switch their tools when doing the work on Linux. It might be possible to
use the SCO tools to target Linux (since both platforms use the same binary format)
but this might proove to be difficult. The problems one can experience are not only
related to the actual use of the tools but also to the language the tools accept. SCO
might have add extensions to the standard behavior which are not available on
Linux.

• The programming interfaces differ. While both operating systems are designed to
follow standards, differences in the implementations and different states of the im-
plementations are unavoidable. The programming environment is regulated by a
common standard (POSIX.2), but there is still room for differences and extensions.

About this Guide
The following discussion is based on the 7.x series of the Red Hat Linux distribution.
This series features the 2.4 version of the Linux kernel and the 2.2 version of the GNU
C library. Comparisons with older versions of either package are not discussed in this
paper. On the UnixWare side, it is sufficient to discuss the latest version of the OS,
UnixWare 7.

Where useful, we discuss upcoming developments on the Linux side. When deficien-
cies in the Linux system are mentioned, take into account that the development of
Linux proceeds very rapidly and the described deficiencies might already be solved.
If a particular problem has not yet been solved, this need not prevent you from con-
tinuing. Because all of the core operating system is available under an Open Source li-
cense, you can either make appropriate changes yourself or contract out the changes.
Red Hat’s custom engineering services are available for such projects.

7

Chapter 1. Introduction

8

Chapter 2. Development Tools

The most notable difference for programmers going from UnixWare to Linux is the
change in the development tools. SCO has developed there own compilers and they
are available in the OS installation. A C++ compiler is not available in the default
installation. The C++ compiler SCO sells is not very standard compliant and no stan-
dard feature it supports should be unavailable in the C++ compiler for Linux (GNU
C++). To the best of our knowledge does SCO not provide compilers for other lan-
guages (like FORTRAN or Java).

Linux developers predominantly use the GNU compiler collection (GCC). The dif-
ference is not necessarily a problem, as the quality of the development tools on the
Linux side is equally high. It is only the use of SCO-specific features which is truly a
problem.

Language Support
Every program that uses only portable language features should not have problems.

C

There should not be any problems at all with compatibility of C programs. The
Linux C development and runtime environment is compatible with all the latest
standards.

C++

As all compilers are catching up with the latest language standards, incompati-
bilities due to compilers being at different stages of the race are unavoidable. The
compilers available on Linux are very well positioned in the conformance race
and changes happen daily. If you require the latest C++ compiler that supports
the most language features, it might be worthwhile getting a support contract
from Red Hat1 for the compiler tools.

FORTRAN

There is no FORTRAN compiler available from SCO. There might be third party
versions available but we have no access to any such compiler. On Linux the
GNU FORTRAN compiler comes with the standard Red Hat Linux distribution,
but it currently supports only FORTRAN77. The more recent variants (FOR-
TRAN90, FORTRAN95) are not supported at all. There are commercial FOR-
TRAN compilers available for Linux, but you will need to purchase one.

Java

On Linux the Java support on Linux is very good. There are several JDK imple-
mentations available for Linux and, with those, you can execute Java bytecode
binaries. Even the performance is comparable. In addition to the option of using
bytecode, it is also possible to use the GNU Java compiler to generate native code
for the IA-32. The resulting executable is many times faster than the interpreted
byte code, even if compiled just-in-time for execution.

An Alternative Way
One way to avoid the troubles with the changing development tools is to use the
GNU compilers on UnixWare. The GNU compilers are available for UnixWare and
can completely replace the compiler SCO provides.

9

Chapter 2. Development Tools

Many companies are taking advantage of this possibility because it allows retarget-
ting the applications even beyond IA-32. The GNU compiler is available for all mod-
ern processors that have at least a 32-bit architecture, whether these are for desktop,
server, or embedded systems. This also includes support for the different operating
systems for those hardware types.

For companies considering porting to Linux, switching to using the GNU compiler
on the known UnixWare platform makes the port much easier. Once the application
can be generated on UnixWare using the new tools, you can then attempt to com-
pile on Linux. This will be easier because only API issues (not language issues) can
impede progress.

C Compiler Features
If applications were never deployed on other platforms, the code will certainly con-
tain some dependency on the platform on which it was developed. In this section
we will discuss the features that are related to the compiler. Information about the
system libraries will be given in a later section.

For the compiler we have to handle two compatibility issues:

Invoking the compiler

The command line options to select different modes differs significantly. Espe-
cially for writing highly optimized code, it is necessary to know some of the
options.

Language Features

Both SCO’s compiler and gcc have extended the C language. gcc does this far
more, but because the direction of porting is from UnixWare to Linux, this is not
an issue.

Invoking the Compiler
In general, there is no standard for the form of command line options of compilers
(except the very limited c89 compiler interface). This leads to wide variations among
the different compilers to a point where almost no option is the same on all platforms.

SCO’s compiler and gcc agree on the form and function for the following options:

Table 2-1. Common C Compiler Options

-c tells the compiler to compile, but not link

-o FILE specify output file

-I DIR add include search directory

-L DIR add library search directory

-l name search and add a library with name libname.a (or .so)

-A name[(token)] define ISO C assertion

-E only preprocessor phase is performed

10

Chapter 2. Development Tools

-C the preprocessor does not discard comments, they are
preserved.
This option is with modern versions of gcc only interesting
if the preprocessed output is used since the preprocessor is
integrated in the compiler and the comments don’t have to
be preserved since there happens no additional parsing.

-D name[=val] define preprocessor macro

-H The compiler prints the absolute pathnames of all files
includes, one per line. The output is written to standard
out. In addition to the file names gcc in some situations gcc
prints some more information about files which would
benefit from multiple include guards.

-P If the -P option is used the preprocessor will not generate
#line directives. The line numbers in the output file will
therefore match the .i file and not the input files.
gcc recognizes the same option. But it is necessary to pass
the -E as well to the compiler. -P alone will not have the
desired effect.

-S the generate code is not assembled and not linked

-U name undefine preprocessor macro

-g tell compiler to emit debugging information. SCO’s
compiler is not capable of optimizing and generating
debug information at the same time and does not optimize
if -g and -O are given. gcc can generate debug information
for optimized code.

-O In both compilers -O instructs the compiler to optimize the
code. gcc knows different levels of optimizations which
can be specified as a numeric argument to the -O option
(such as -O2). gcc also does not have the limitation that -O
is disabled for debugging (-g) or profiling (-ql in SCO’s
compiler) is selected.

-E the compiler performs only the preprocessing and writes
the result to standard output or to the file specified with -o

-p this option instructs the compiler to generate additional
code for profiling purposes. When executed the
application generates some data which can be examined
using the prof program.
This functionality exists also in gcc the only major differ-
ence is that the program is called gprof and the file format
of the profiling data is different. It is generally advised to
use the -profile option on Linux but -p works as well.

-S instructs the compiler to compile, but not assemble, the
code

-w inhibits printing warnings

11

Chapter 2. Development Tools

All the other options the compilers understand are either understood by one side
and have no equivalent or are named differently. In the remainder of this section we
will cover the most important of these options. To ease the transition to Linux, the
list is sorted by the names of the options of SCO’s compiler. Names of the option the
GNU compiler understands are given in parenthesis if their function does not exactly
match that of SCO’s compiler.

Table 2-2. Differing Option of the C Compilers

SCO Option gcc Option Description

-V (-v) The compiler shows version information
for each compilation tool. The gcc
equivalent shows the commandline for
each tool and its version on standard error.
Sometimes the tools the compiler invokes
are not the last in the chain. gcc, for in-
stance, normally invokes a tool named
collect instead of invoking the linker di-
rectly. To see the invocation of the linker
(done by collect), add the -Wl,-v to gcc’s
command line.

-Wphase ,list -W With the -W the user can hand additional
parameters to the compilation tools used.
Both, SCO’s compiler and gcc know this
option. Different are the phase names.
preprocessor

both compilers use p

compiler/optimizer

the SCO compiler differentiates
between compiler and different
phases of the optimization. It uses the
phase names 0, 2, and b for the
compiler, the optimizer, and the basic
block profiler. gcc has no special
option to pass parameters to the
compiler since the parameters for it
do not have to be specially marked

assembler

both compilers recognize the
phase name a for the assembler.

linker

both compilers recognize the
phase name l for the linker.

12

Chapter 2. Development Tools

SCO Option gcc Option Description

-X str -ansi /-std /-
pedantic

The SCO compiler allows to control the
degree of conformance to the ISO C
standard with the -X option. gcc has the
several different options to do similar
things.
The -ansi directs gcc to turn off com-
piler features which are incompatible with
ISO C90. This includes keywords like asm
typeof, and unprotected macros like unix.

The -std option lets the user choose the
standard version the compiler should com-
ply to. Check the gcc documentation for
more information.

The -pedantic option can be used to
have the compiler more strictly enforce the
ISO C rules.

-YI, dir (-nostdinc) The -YI option causes the preprocessor to
use a different default directory to search
for include files. The default directory is
searched last and is normally something
like /usr/include .
There is no exact correspondence with gcc
but it is possible to simulate this. The -
nostdinc option tells gcc to not look in any
of the standard directories. With follow-
ing -I parameters is then possible to spec-
ify exactly where the compiler will look.
There is only one problem: gcc always uses
some special compiler-specific include di-
rectories. These must not be excluded. It is
possible to determine the complete patch
for this directory with

gcc
-print-file-name=include

-YP, dir (-nostdlib) The -YP option changes the default search
path of the linker. The default directories
are those which are searched after all the
directories named by the -L or similar
options.
gcc knows no direct exact equivalent. But
with the -nostdlib option one can disable
the search for libraries in the default direc-
tories and with explicit -L options it is pos-
sible to specify the directories one wants to
be used.

13

Chapter 2. Development Tools

SCO Option gcc Option Description

-YS, dir (-B) The -YS option allows the user to
determine which startup files the linker
should pick up. gcc allows the user to
select the startup files as well but the
option to do this influences other things as
well. If the -B option of gcc is used the
compiler driver searches for all
compiler-related files (the programs for
the individua phases like cc1 or as) and
also the startup files with the prefix given
as the parameter to -B . It is possible to
have multiple -B which allows to have
programs and the startup files in different
locations.
gcc’s -B option is much more similar to
the prefix cc mechanism SCO’s compiler
provides. gcc does not change the behavior
if the program is invoked with a different
name (which is good since this means the
compiler does not get confused when sym-
links are used). For example, the use of

foocc
-Ya,/some/dir

can be emulated when using gcc with

gcc
-B/some/dir/foo

The assembler is searched in the given di-
rectory. The only difference is that all the
other programs (compiler, preprocessor)
and the startup files are expected to have
the foo prefix in the filename as well. If no
such file exists the other directories named
by -B parameters is used and finally the
default.

-Yp, dir (-B) The -Yp option allows the user to specify a
directory where the preprocessor is found.
This can be emulated using gcc’s -B option.
See the description of SCO’s -YS option
above for more information.

-Y0, dir (-B) The -Y0 option allows the user to specify a
directory where the compiler is found. This
can be emulated using gcc’s -B option. See
the description of SCO’s -YS option above
for more information.

14

Chapter 2. Development Tools

SCO Option gcc Option Description

-Y2, dir (-B) The -Y2 option allows the user to specify a
directory where the optimizer is found.
Since the gcc has no separate optimizer
program this option has no equivalent in
gcc..

-Yb, dir (-B) The -Yb option allows the user to specify a
directory where the basic block profiler is
found. Since the gcc has no separate basic
block profiler program this option has no
equivalent in gcc..

-Ya, dir (-B) The -Ya option allows the user to specify a
directory where the assembler is found.
This can be emulated using gcc’s -B option.
See the description of SCO’s -YS option
above for more information.

-Yl, dir (-B) The -Yl option allows the user to specify a
directory where the linker is found. This
can be emulated using gcc’s -B option. See
the description of SCO’s -YS option above
for more information.

-A - (-ansi) If SCO’s compiler sees the parameter -A -
it disables all predefined names which
pollute the namespace. As far as the
preprocessor and namespace is concerned,
the same can be achieved with gcc’s -ansi
option. The two options are not equivalent
since -ansi also influences the language
the recognized language and generated
messages.

-Bstatic -static Tells the compiler to statically link the
application. That is, the link editor will
look only for files named lib*.a .

-Bdynamic (default) Tells the compiler to link the application
dynamically. That is, the compiler will look
first for files named lib*.so and, if no
such file exists, it will look for files named
lib*.a .

-dy /-dn (implicit) The compiler generates a dynamic
executable. That is, the runtime linker is
used to finish generating the executable.
On Linux this happens implicitly. If an
object is linked against any shared object, it
is a dynamic binary. Similarly, of an object
is linked without the use of any shared
object, the program is linked statically and
the runtime linker is not needed.

-G -shared The linker creates a shared object instead of
an executable.

15

Chapter 2. Development Tools

SCO Option gcc Option Description

-KPIC -fPIC Tells the compiler to generate
position-independent code. With gcc the
option is -fPIC . There is also an equivalent
-fpic option but for IA-32 this option
makes no difference at all.

-Kthread -pthread If the -Kthread option is specified SCO’s
compiler defines some macros indicating
the code is used in multi-threaded
applications and links the program with
the thread library.
gcc recognizes the -pthread which has the
same effect except that the application is
linked with -lpthread .

-KthreadT The -KthreadT option enables a special
tracing mode of SCO’s thread library. There
is no equivalent in gcc.

-Kdollar (default) The -Kdollar option instructs the compiler
to allow dollar ($) characters in identifiers.
This is the default in gcc. One would have
to disable the use of dollar characters by
enabling the ISO C compatibility mode.

-Ki386 -mcpu=i386 /
-march=i386

Tunes for the i386 processor. The
equivalent option For gcc is -mcpu=i386 .
The resulting code will run on all x86
processors that are capable of supporting
the mode.
To compile code that is even better opti-
mized for the given architecture (but prob-
ably will not run on older processors), use
the -march=i386 option.

-Ki486 -mcpu=i486 /
-march=i486

Similar to -Ki386 , but for the i486
processor. gcc’s -march=i486 can generate
code which does not run on i386 processor
machines.

-Kpentium -mcpu=i586 /
-march=i586

Similar to -Ki386 , but for the Pentium
processor. gcc’s -march=i586 can generate
code which does not run on i386 and i486
processor machines. It is also possible to
use -mcpu=pentium and -march=pentium if
this is preferred.

-Kpentium_pro -mcpu=i686 /
-march=i686

Similar to -Ki386 , but for PentiumPro
processors. gcc’s -march=i686 can
generate code which does not run on i386,
i486, and i586 processor machines. It is also
possible to use -mcpu=pentiumpro and
-march=pentiumpro if this is preferred.

16

Chapter 2. Development Tools

SCO Option gcc Option Description

-Kblended (default) The -Kblended option causes SCO’s
compiler to generate code which runs well
on all ix86 processors. gcc provides a much
finer granularity of tuning. It is possible to
tune the code for a given revision of the
architecture while keeping the code
portable to all revisions. This can be
achieved using the -mcpu option (see
above). By default the compiler tunes for
the architecture it was compiled for.

-Kieee / -Kno_ieee -mieee-fp /
-mno-ieee-fp /
-ffast-math

The -Kieee option controls whether
floating point operations are executed
exactly according to IEEE 754 rules or
whether the compiler is allowed to
optimize more agressively while relaxing
some of the rules. gcc has the option
-mieee to enforce IEEE 754 compliance. If
strict compliance is not needed using the
-mno-ieee allows the compiler to use
some of the features of the FPU better. If
the -ffast-math option is called the set of
performed optimizations is even larger and
includes replacing some math library
function calls with inlined
implementations using the FPU.

-Kalloca /
-Kno_alloca

(-fno-builtin) The -Kno_alloca option can be used to
prevent the compiler from implementing
the alloca() inline. This is the much more
efficient way to handle this but it might be
useful. gcc has no specific option to disable
the use of alloca() (for the reason
mentioned). Instead alloca() is disabled
together with all other builtin functions if
the -fno-builtin option is used. Another
case is if the -ansi flag is used since
otherwise the namespace rules of ISO C are
violated.

-Kno_frame /
-Kfixed_frame /
-Kframe

-fomit-frame-
pointer /
-momit-leaf-
frame-pointer

These option determine whether the %ebp
register is used as the frame pointer and if
it is used, how this happens. Disabling the
use prevents stack traces from being made
correctly. gcc also allows optimizations to
use %ebp as a regular register and not as
the frame pointer. This mode can be
enabled using the -fomit-frame-pointer
option. If this optimization is wanted but
only if it does not affect the generation of
stack traces the
-momit-leaf-frame-pointer options
should be used since gcc will use the %ebp
register only for leaf functions which
means that stack traces can be generated
just fine.

17

Chapter 2. Development Tools

SCO Option gcc Option Description

-
Kno_args_in_regs /
-Kargs_in_regs

(-
mregparm) =name...

The -Kargs_in_regs option tells SCO’s
compiler to divert from the normal calling
conventions in some cases and call certain
functions in a faster, but incompatible
way. The function parameters are passed
in registers. gcc allows this as well. One
could add the -mregparm option to
determine the registers used to pass
parameters. But unlike SCO’s compiler for
-Kargs_in_regs the gcc option works on
all functions in the compilation unit. This
means that the functions from the
cmopilation unit which are called (also)
from other objects have a different
interface.
What one should do instead is to use the
regparm attribute to mark the functions
one wants to have an optimized interface
explicitly. This allows to avoid changing
the exported interfaces. See the gcc manual
for more information.

-Khost / -Kno_host -fhosted /
-ffreestanding /
-fno-builtin

The ISO C standard differentiates between
hosted and freestanding implementations.
In hosted implementations the compiler
can make several assumptions about
standard functions. They can be inlined, for
instance. gcc has the -fhosted and
-ffreestanding options to inform the
compiler about this but instead they do not
control the treatement of standard
functions in the compiler. For this gcc
provides the options -fno-builtin and
-fbuiltin .

-Kinline /
-Kno_inline

-finline /
-finline-
functions

The -Kinline option instructs the
compiler to inline certain functions. Which
functions are actually inlined is up to the
compiler to decide. gcc’s equivalent option
is -finline-functions . A cost function
decides whether a function is worth being
inlined or not. The cost function can be
influenced by the -finline-limit option.
The programmer also can make decisions
about inlined functions by marking
functions with the inline keyword. If the
-finline option is given (which is the
default when optimizing) the compiler
respects the programmer’s choice and
inlines functions.

18

Chapter 2. Development Tools

SCO Option gcc Option Description

-Kloop_unroll /
-Lno_loop_unroll

-funroll-loops The -Kloop_unroll options tells the
compiler that the optimizations performed
should include loop unrolling
optimizations. The -funroll-loops
options does the same for gcc. gcc has
another option -funroll-all-loops
which, as the name suggests, tells the
compiler to unroll all loops.

-Kschar / -Kuchar -fsigned-char /
-funsigned-char

The use of the -Kschar and -Kuchar
options decide whether the char type is
signed or unsigned. The default is signed.
The same is true for gcc only that the
options are named -fsigned-char and
-funsigned-char .

-Kudk / -Kno_udk These options provide a possibility to
increase compatibility between
OpenServer and UnixWare application. It
is therefore not needed for gcc.

-qp SCO’s compiler treats this option as an
alias of -p .

-ql -ax /
-profile-arcs

The -ql option instructs the compiler to
generate code to profile on basic block
level. With this execution counts for
individual source code lines can be
determined. gcc equivalent option is -ax .
An alternative to -ax is to use
-profile-arcs . This avoids intrumenting
blocks whose count can be deduced from
other information. The resulting
application will run faster and needs less
space. One other advantage (and
difference) between the two compilers is
that gcc allows to instrument optimized
code.

-qf This option tells the compiler to instrument
the generated code for flow-profiling. gcc
has no equivalent option.

-v -Wall If the -v option is given the compiler
performs more test for ISO C compliance.
This is similar to what the lint tool would
do. gcc has lint capabilities built in and
they are enabled with the -Wall option. gcc
can warn about several more problems if
additional -W parameters are given. They
are not considered generally usable enough
to be part of the default set of warnings
enabled with -Wall . See the gcc manual to
learn about all the support -W options.

19

Chapter 2. Development Tools

SCO Option gcc Option Description

-Zp N The options -Zp1 , -Zp2 , and -Zp4 define
the layout of structures. Non-bitfield
elements of the structures are aligned to a N
byte boundary for -Z N if the element is
larger then N bytes. gcc has no command
line option which lets the user control the
layout in this way. But gcc has the aligned
attribute which can be added to every
structure element and so make it possible
to individually define alignment. See the
gcc manual for more information on
attributes and specifically aligned.

Language Extensions
The SCO compiler as well as gcc extend the C language. In the following we are
describing the extensions of the SCO compiler and possible equivalences on the gcc-
side.

Most extensions come in the form of #pragmas . gcc generally does not use #pragmas .
The reason is that the old, pre-ISO C99, form of pragmas cannot be generated in
macros. This changed with the introduction of _Pragma in ISO C99. Anyhow, gcc
uses the keyword __attribute__ which can be used to add information to a definition
or declaration of an object. The __attribute__ keyword is followed by two opening
parenthesis. The reason for this is that it enables you to define a macro

#define __attribute__(ignore)

which can be used if the compiler does not understand attributes. More on the syn-
tax can be found in the following table and the gcc manual. All the keywords (like
__attribute__ and __aligned__) are given in the form with two leading and two trail-
ing underscore characters. They are also available without underscores or with only
two leading underscores. But these names potentially conflict with names in the user
programs or the system. The safest possible solution is to use the names used here.

One has to be careful not to miss a use of #pragma in a converted program since gcc
simply ignores #pragmas it does not know. Only when the -Wall option is used will
it warn about ignored #pragmas .

#pragma weak name[, name]

This #pragma can be used to specify that a symbol is created weak. gcc also
recognizes this #pragma . It is nevertheless advised to use the attribute form:

int a __attribute__ ((__weak__)) = 1;

#pragma int_to_unsigned fct

Marks the function which returns an unsigned value as returning an int. There
is no gcc equivalent.

#pragma pack(n)

This #pragma specifies that the named structure is packed, i.e., laid out without
padding. The gcc way of expressing this is:

20

Chapter 2. Development Tools

struct foo
{

...
} __attribute__ ((__packed__));

This form will pack the structure to the most compact form. But gcc enables you
to express even more. One can force individual structure members to be packed
while other members are aligned in the normal way. The syntax for this is similar
to the following:

struct foo
{

char c;
short int a __attribute__ ((__packed__));
short int b;

};

In this case the member a is not aligned but instead follows immediately the
member a in memory at offset 1. The member b is aligned and follows on offset
4.

Another language extension SCO’s compiler provides is the possibility of having as-
sembly code inside the C source files. gcc also provides this functionality but the
syntax is in most cases different and both variants’ implementation have advantages.

The ISO C standard suggests an implementation of a function like language element.
The keyword asm is used in the function name position and the parameter is a string
constant. The content of the string must be a sequence of valid assembly instructions.
Both compilers provide support for this form of asm expressions. But they are not of-
ten useful since it is difficult and unportable at best to access any C non-global objects.
One could write could write code assuming a certain stack layout but just enabling
another optimization or a compiler upgrade can render the code non-functional. This
form is not very useful is general.

For more advanced asm statements it has to be possible to access arbitrary C objects.
The two compilers implement this in very different ways.

SCO’s compiler allows to write so called asm macros. They look like function def-
initions but are preceded by the keyword asm. The function body is a sequence of
patterns and instructions. The patterns are special as they allow the user specify dif-
ferent assembly code sequences depending on the parameters of the macro. SCO’s
documentation explains this in more detail. We focus here on explaining the how the
features of SCO’s compiler can be immitated using gcc.

The syntax of the assembler instructions themselves is the same in both environ-
ments. SCO’s compiler/assembler recognize the instructions in the AT&T form (as
opposed to the Intel form). The GNU utilities on Linux can recognize either form
with the default being te AT&T form as well. This leaves only the so called storage
mode specifications as a compatibility problem. There are seven different forms sup-
ported by SCO’s compiler.

treg parm
ureg parm
reg parm

These three forms match if the parameter parm is in a register. The compiler dis-
tinguishes between C register variables and compiler-selected temporary regis-
ters. Since gcc takes the register keyword only as a hint this difference does not
make sense in gcc.

21

Chapter 2. Development Tools

There is no 100% equivalent way to express what this storage mode specification
form does. There if no way to query the compiler whether a certain value is in a
register. What is possible is to force a value into a register. Consider the following
assembler macro which SCO’s compiler would accept:
asm void iszero(x)
{
% reg x

orl x, x
setz result

% mem x
cmpl $0, x
setz result

}

gcc has no provisions to distinguish between the value being in a register or
being a memory operand. Instead the one or the other has to be chosen. In this
case we can force the value x in a register. The compiler will generate necessary
code to ensure this.
#define iszero(x) \
do { \

asm ("orl %1, %1\n" \
"setz %0" \
: "=m" (result) : "r" (x)); \

} while (0)

This is everything but easy to understand since to do it one has to know a bit
about the gcc internals. The first part of the asm looks familiar: it is a string
containing the actual instructions. The other two parts are separated by colons.
The second part following the first colon specifies so called output parameters.
In this case it is a dummy value which is not actually used but which indicates
that the asm modifies memory. The third part (the input parameters) is the one
of interest here. It says that the value of x is passed in a register. The "r" string
is indicating register, the "m" string in the second part memory (ignore the equal
sign here).

I.e., with a "r" constrain (these strings before the values in the input and output
parameter lists) it is possible to force a value in a register and so the orl instruc-
tion is operating on a register. If the value passed to iszero() is in memory
gcc automatically generates an appropriate instruction to load the value into a
register before the first isntruction of the asm is executed.

mem parm

This storage mode specification is similar to reg et.al. but instead of having the
value in a register it is in memory. gcc cannot exactly duplicate this functionality.
Here as well all we can do is to force the value to be in the place where we expect
it and have gcc move it if necessary. Take the following example which can be
compiled using SCO’s compiler:
asm void mode(val)
{
% reg val

pushl val
fldcw (%esp)
addl $4, %esp

% mem val
fldcw val

}

This can be written with gcc using the "m" contrain for the argument:

22

Chapter 2. Development Tools

#define mode(val) \
asm ("fldcw %0" : : "m" (val))

This construct ensures that the parameter val will be available in memory be-
fore the fldcw instruction and gcc will if necessary store the value in some tem-
porary memory to implement this.

con expr

The con storage mode specification matches compile time constants. Instead of a
simple variable name it is possible to specify a simple expression containing <,
<=, >, >=, ==, !=, % (module), and !% (not module). I.e., the following storage
mode lines distinguish a zero value from nonzero ones.
asm void set(val)
{
% con val==0

xorl %eax,%eax
movl %eax, result

% con val!=0
movl $val, %eax
movl %eax, result

% reg val
movl reg, result

}

(Not a very useful example but you get the idea.) The same functionality is avail-
able in gcc but has to be implemented very differently. The gcc equivalent of the
asm macro above would look like this:
#define set(val) \
do { \

if (__builtin_constant_p (val)) { \
if ((val) == 0) \

asm ("xorl %eax, %eax; movl %eax, result"); \
else \

asm ("movl %0, %eax; movl %eax, result" : : "i" (val));\
} else \

asm ("movl %0, result" : : "r" (val)); \
} while (0)

The magic to make this work is the built in function __builtin_constant_p . It
is no real function. Instead the compiler replaces this call at compile time with a
simple zero or nonzero value. The value is nonzero if the expression given as the
argument to __builtin_constant_p is a constant at compile time. Otherwise
the value is zero. Now it should be obvious why this builtin is used here. The
content of the if branch of the conditional should be obvious as well. Since val
is a compile-time constant the expression (val) == 0 also can be evaluated at
compile time. Therefore the macro expands to exactly one of the three asms.

This leaves only one question open: what happens if the expression passed to
set has side effects? The answer is simple: __builtin_constant_p does not
evaluate the object and so the first if would not cause the side effect to hap-
pen. The second if would evaluate the expression including side effects but the
then-branch is only executed if val is a compile time constant and compile time
constants cannot have side effects (otherwise would val not be a constant). No it
is easy to see that an expression with side effects is executed exactly once which
means the semantics is the same as if set would be a function call.

23

Chapter 2. Development Tools

lab str

This is not a real storage mode specification. Instead it can be used to generate a
unique label which can we used inside

Linker Invocation
Next to the compiler, the linker is the most important tool. It controls the final form
of the program code and can improve the code generation significantly. Both SCO’s
and the GNU linker accept numerous options. We’ll explain in the following list the
most important options of SCO’s linker which are not available with the same name
in the GNU linker and relate them, if possible, to functionality of the GNU linker. It
is also advised that you read the documentation for the GNU linker to find out about
the functionality which is not available in SCO’s linker. Options which are available
in both linkers with the same name and functionality are normally not documented.

Table 2-3. Linker Options

SCO ld Option gld Option Description

-a -static This option enables the default behavior in
the static mode. The linker is creating an
executable and undefined symbols cause
error messages.
GNU ld has the option -static which also en-
ables this behavior.

-b (see comment) If this option is given the linker does not
generate special -fPIC relocations for
accessing for symbols in shared object which
would allow the code to be shared. Instead it
creates faster, direct references which cause
the text section to become non-sharable.
There is no option for the GNU linker to
achieve this. It can be achieved, though, by
not compiling the source code with the op-
tion -fPIC /-fpic .

24

Chapter 2. Development Tools

SCO ld Option gld Option Description

-
Bsymbolic [=list|:filename]

Using symbols in shared objects normally
always result in the runtime linker
performing the relocation, even if the shared
object contains a definition for this symbol.
SCO’s linker allows to specify individual
symbols or lists of symbols which are not
treated this way. Instead the references are
satisfied locally without the dynamic linker
being involved. This has speed advantages
at runtime.
GNU ld has not the same syntax but allows
the same kind of optimization with slightly
different means. The programmer will have
to create a version script and pass it with the
-version-script option to ld. The named
symbol, or even all of them when using wild-
cards, are resolved locally.

-Bbind_now none available The -Bbind_now option instructs the SCO
linker to insert the DT_BIND_NOW tag in
the dynamic section of the binary created.
This causes the runtime linker to disable
lazy relocation and instead perform all
relocations at startup time.
There is no equivalent in the GNU linker.
Users can use the LD_BIND_NOW environ-
ment variable at runtime, though.

-
Bexport [=list|:filename]

-rdynamic The -Bexport and -Bhide options control
the visibility of symbols in dynamically
linked executables and shared objects. By
default the linker exports all symbols from
shared objects and hides all in executables.
The -Bexport and -Bhide options can be
used to selective or generally overwrite
these rules.
GNU ld has the same default behavior. gcc ’s
-rdynamic is equivalent to -Bexport in that
it instructs the linker to export all symbols.
This is only useful when generating executa-
bles. When using version scripts it is possi-
ble to control the hiding and exporting more
exactly on individual symbol level. See the
GNU ld manual for more information.

-
Bhide [=list|:filename]

See the description of -Bexport above.

25

Chapter 2. Development Tools

SCO ld Option gld Option Description

-Bsortbss The -Bsortbss option is available in SCO’s
linker with COFF binary files. There is no
need for that on Linux.

-d yn -d yn With this option it can be decided whether
the generated binary is linked statically (is -d
n is used) or if the binary is using dynamic
linker (if -d y is used). GNU ld understands
the same option.

-e symbol -e symbol This option can be used to determine the
entry point in the object. GNU ld has the
same option.

-f udk not needed The SCO linker allows this option to be used
to select certain binary compatibility features
coming up with their different versions of
Unix (UnixWare and OpenServer). None of
this is interesting for Linux, of course.

-f osr5 not needed Just like -f udk this selects one of SCO’s ABI.
Not needed here.

-f iabi5 not needed Just like -f udk and -f osr5 this selects one
of SCO’s ABI. Not needed here.

-G -shared Generate a shared object. The equivalent for
the GNU linker is -shared .

-h name -h name This option allows to specify the soname
when generating shared objects. GNU ld
understands the same option.

-I name --dynamic-
linker name

Set name as the interpreter in the program
header of an executable. The equivalent
option for the GNU linker is
--dynamic-liner name.

-m (-M) Print a linker map. The -M option prints
something comparable but with a different
format and slightly different content.

-M mapfile -T mapfile The -M option allows the user to specify a
linker map file which the linker will use to
form the output file. The use of this option is
discouraged by SCO but if people still want
to use it they will find in the -T option the
GNU equivalent. But the input file format
will be different and therefore an easy
transition is not possible.

-Qy (ignored) SCO’s linker adds a string identifying the
linker to the comment section of the
generated binary. This option is ignored for
compatibility by the GNU linker. To emulate
the behavior one could create such a string in
the input files (using the #ident directive) or
use the linker script to add it automatically.

26

Chapter 2. Development Tools

SCO ld Option gld Option Description

-s -S /-s This option instructs the linker to strip
symbolic information from the output file.
The GNU linker has a finer grain for this
functionality.
If the -s option is used, the GNU linker strips
all symbols from the file. This is much more
than SCO’s linker does. To get the equivalent
of the -s option, one has to use -S with the
GNU linker, which removes only the debug-
ging information.

-t This option allows you to turn off warnings
about multiply defined symbols that are not
the same size. There is no equivalent in the
GNU linker.

-x The -x option instructs SCO’s linker to
remove all locale symbols and all debugging
information. There is no direct equivalent to
this in GNU ld but stripping with -s goes a
long way in the same directoin.

-z defs --no-
undefined

Undefined symbols at the end of the linking
process will cause a fatal error. This option is
ignored by the GNU linker and the user has
to use the option --no-undefined to achieve
the same results.

-z nodefs When this option is given SCO’s linker
allows undefined symbols when building
shared objects. There is no equivalent optoin
but unless --no-undefined is passed to
GNU ld this is the default mode.

-z text When linking dynamically this option
causes the linker fatally if the resulting
binary would contain any relocations
against a read-only section. There is no
direct equivalent to this in GNU ld but it is
easy enough to check for text relocations
with objdump
objdump -p file | grep TEXTREL

Notes
1. http://www.redhat.com/services/gnupro/gnupro_plus.html

27

Chapter 2. Development Tools

28

Chapter 3. System Interfaces

The system interfaces, as defined by the standard libraries such as libc , libm , and
libpthread , make Linux appears as an almost complete Unix system. There are only
a few function families and individual functions missing and a very small number of
functions have a different, possibly limited behavior.

In this section we will first introduce the functions which are entirely missing on
Linux. We will only cover the standard interfaces and a few very important and
widely used other interfaces.

We will discuss interfaces which are different or have a limited functionality (mostly
on the Linux side). Knowing about this can save a lot of debugging time.

But before we start, a few more words on the standards. UnixWare is a certified Unix
implementation and Linux is also modeled after Unix. The Unix standard is pub-
lished by the OpenGroup. This huge document governs almost all interfaces the stan-
dard libraries provide. This is at least true on the UnixWare side, Linux has several
extension. To enable the Unix interface, the C preprocessor macro _XOPEN_SOURCE
must be defined to the value 500. This selects the interface of the fifth revision of the
Unix standard. Adventurous people can already use the interface of the sixth revision
by setting the symbol _XOPEN_SOURCE to the value 600 (but only on Linux).

The Unix standard is in large parts based on the POSIX standards ISO 9945-1 and
9945-2 (aka IEEE 1003.1 and IEEE 1003.2) with their numerous extensions. This means
that Unix systems also implicitly implement POSIX.

Below POSIX, mainly because of history, further interfaces are available. These are for
BSD and SVID systems. Today none of these last interfaces should be used directly
since they are long obsolete. For programming one should either use the POSIX or
the Unix interface.

One last interface is specified and this is the GNU interface. It includes everything
Unix does and more. The extra interfaces not included in the Unix specification are
not portable and one should know exactly when and why to use them.

Interfaces Missing on Linux
The Linux system interface lacks at the time of this writing some interfaces which are
available on UnixWare. These fall into two categories: non-standard interfaces and
standard interface.

Into the former category falls one entire special and popular library: UnixWare’ non-
POSIX thread library. The file in question is libthread.so (libthread.a) and the
system header is <thread.h >.

The interface of this thread library can to some extent be mapped to functions in the
POSIX thread library (which UnixWare also provides). But there are exceptions. The
first table provided here maps functions where there exists a corresponding interface
in the POSIX thread library of Linux.

Table 3-1. UnixWare Thread vs. POSIX Thread Library

UnixWare Thread Library Linux POSIX Thread Library

thr_create() pthread_create()

thr_exit() pthread_exit()

thr_getprio() pthread_getschedparam()

29

Chapter 3. System Interfaces

UnixWare Thread Library Linux POSIX Thread Library

thr_getspecific() pthread_getspecific()

thr_join() pthread_join()

thr_keycreate() pthread_key_create()

thr_keydelete() pthread_key_delete()

thr_kill() pthread_kill()

thr_self() pthread_self()

thr_setprio() pthread_setschedparam()

thr_setspecific() pthread_setspecific()

thr_sigsetmask() pthread_sigmask()

thr_yield() sched_yield()

mutex_destroy() pthread_mutex_destroy()

mutex_init() pthread_mutex_init()

mutex_lock() pthread_mutex_lock()

mutex_trylock() pthread_mutex_trylock()

mutex_unlock() pthread_mutex_unlock()

rmutex_destroy() pthread_mutex_destroy()

rmutex_init() pthread_mutex_init()

rmutex_lock() pthread_mutex_lock()

rmutex_trylock() pthread_mutex_trylock()

rmutex_unlock() pthread_mutex_unlock()

rwlock_destroy() pthread_rwlock_destroy()

rwlock_init() pthread_rwlock_init()

rwlock_rdlock() pthread_rwlock_rdlock()

rwlock_rwrlock() pthread_rwlock_wrlock()

rwlock_tryrdlock() pthread_rwlock_tryrdlock()

rwlock_trywrlock() pthread_rwlock_trywrlock()

rwlock_unlock() pthread_rwlock_unlock()

cond_broadcast() pthread_cond_broadcast()

cond_destroy() pthread_cond_destroy()

cond_init() pthread_cond_init()

cond_signal() pthread_cond_signal()

cond_timedwait() pthread_cond_timedwait()

cond_wait() pthread_cond_wait()

barrier_destroy() pthread_barrierattr_destroy()

30

Chapter 3. System Interfaces

UnixWare Thread Library Linux POSIX Thread Library

barrier_init() pthread_barrier_init()

barrier_wait() pthread_barrier_wait()

_spin_destroy() pthread_spin_destroy

_spin_init() pthread_spin_init

_spin_lock() pthread_spin_lock

_spin_trylock() pthread_spin_trylock

_spin_unlock() pthread_spin_unlock

The difference between the mutex_* and rmutex_* function in SCO’s library is that
the latter are recursive mutexes. In Linux’s POSIX thread library this is handled
by the Unix extensions of POSIX mutexes which allow setting the type to recur-
sive (using pthread_mutexattr_settype() and PTHREAD_MUTEX_RECURSIVE
or through the initializer PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP).

No corresponding interfaces exist for the following functions:

thr_suspend()

The thr_suspend() function is stops the thread specified by a parameter. This
is a big problem since the function cannot take into account mutex and other
synchronization objects the thread is currently allocating. But this can lead to
deadlocks since other, not stopped threads might depend on the synchronization
objects.

For this reason the suspend function was not added to the POSIX standard (and
it also gets removed from specifications such as the Java thread library).

thr_continue()

This interface is used to continue a stopped thread. Since thr_suspend() is re-
jected it is unnecessary for the same reasons to define a thr_continue() equiv-
alent.

thr_main()

This interface can be used to determine whether the current thread is the main
thread or not. There is no equivalent in the POSIX thread library and also not in
Linux’s implementation.

thr_min_stack()

There is no corresponding interface in the Linux threads implementation. But
the Unix standard requires a symbol PTHREAD_STACK_MIN to be defined.

thr_getconcurrency()
thr_setconcurrency()

These interfaces are only necessary for m-on-n implementation (m user level
threads on top of n kernel threads, m >= n). Since the Linux thread library is
currently not designed in this way, this interface serves no purpose. This might
change in future, though.

31

Chapter 3. System Interfaces

thr_get_rr_interval

The thr_get_rr_interval was not accepted in the POSIX standard. Instead
POSIX includes the function sched_get_rr_interval . On Linux for the current
implementation of the thread library the functionality of this function is equiva-
lent with the thr_get_rr_interval function since every thread runs in its own
process. This might change in future, though.

thr_getscheduler
thr_setscheduler

The situation with thr_getscheduler and thr_setscheduler is similar to that
of thr_get_rr_interval . The functions were not adopted into POSIX and there
are the functions sched_getscheduler and sched_setscheduler which in the
moment are equivalent on Linux.

_barrier_spin
_barrier_spin_destroy
_barrier_spin_init

Spinning barriers as handled by these functions are generally a bad idea. The
POSIX standard does not has support for them and therefore the Linux POSIX
thread implementation does not have them either. It is much better and portable
to use the blocking barrier functions.

The situation with the semaphore interfaces is similarly. SCO has its own special
implementation which in parts can be mapped to the POSIX interfaces. Just as for the
thread stuff, SCO provides besides the own interface a POSIX semaphore interface.

One major difference between the UnixWare and the Linux interface is that UnixWare
defines these functions in librt while on Linux they are in libpthread .

Table 3-2. UnixWare Semaphore vs. POSIX semaphore Library

UnixWare Semaphore Library Linux POSIX Semaphore Library

sema_destroy() sem_destroy()

sema_init() sem_init()

sema_post() sem_post()

sema_trywait() sem_trywait()

sema_wait() sem_wait()

Further differences in the interfaces of the thread library result from missing func-
tionality. This will be covered in the next section.

One other big area where there is, to some extent, no equivalent functionality is
STREAMS and TLI (transport layer interface). The STREAMS network interfaces are
not available by default on Linux systems. However, the C library provides the inter-
face but they will always fail unless the kernel extension implementing STREAMS is
available.

If the program to be ported uses STREAMS, probably the best solution is to rewrite
the networking part to use the basic POSIX socket interface. This does not only make
the program use a POSIX interface, it also will improve the portability.

If rewriting is not an option or if a short-term solution is needed, information about
the Linux STREAMS implementation can be found at the Linux STREAMS1 site.

The TLI implementation which is part of the Linux STREAMS implementation may
or may not be compatible with the SysV specification. Red Hat has no experience

32

Chapter 3. System Interfaces

whatsoever with this code and we are not advising to use it.

Differing Interfaces Between UnixWare and Linux
Some of the interfaces available on UnixWare and Linux differ despite having same
name and same purpose. This can happen for three reasons:

• limitations of the implementation (mainly on the Linux side)

• different interpretation of the standard

• extension on top of a standard implementation

In the remainder of this section we will outline a few of the functions falling into
this category. This list will most probably be incomplete. In most cases if a Linux
implementation differs from a UnixWare implementation, the differences were un-
intentional and will be removed when reported. Therefore if you have found a dif-
ference, it was probably not previously known. We will concentrate here mainly of
those differences where functionality is missing because the underlying system does
not support the operation.

Limited Implementations

No Process-Shared Synchronization Objects

The functionality which will probably be missed most when coming from UnixWare
are sharable synchronization objects. This means mutexes, semaphores, and condi-
tional variables which can be shared between different processes (not threads, this of
course works).

Calls to pthread_mutexattr_setpshared , pthread_rwlockattr_setpshared , and
pthread_condattr_setpshared will fail if the second parameter is set to PTHREAD_PROCESS_SHARED.
This functionality is not implemented in the thread library because the kernel imple-
mentation is lacking some features. Once this kernel limitation is lifted the function-
ality is available. Therefore it is not a good idea to completely disable all uses of these
functions for Linux. Instead a check of the return value at runtime should be used to
determine whether the functionality is available or not.

This same problem exists for standard interfaces which are not yet supported by
UnixWare (like pthread_barrierattr_setpshared()).

The only exception is the implementation of the spinlocks. The second parameter of
pthread_spin_init can be set to PTHREAD_PROCESS_SHARED and the function
will not fail.

Signal in Threaded Application

The Linux POSIX thread implementation is using individual processes for each thread.
These are not completely separated processes but instead since they have to shared
things like virtual memory, file descriptors and the like.

However, the kernel does not really know the difference between threads and pro-
cesses. Therefore it does not handle the delivery signals correctly. There is no single
process ID (each thread has its own which is another difference from the POSIX stan-
dard) and the kernel is delivering the signal to that thread.

33

Chapter 3. System Interfaces

There is currently no easy way out of this. Programs which depend on signal delivery
will still work but all the signals are received by exactly the thread with the process
ID that was used.

This is the status at the time of this writing. It might be that this problem is already
worked around since it is a quite high-priority problem and will be worked on when
possible.

Unless absolutely necessary to implement a short-term solution no program should
depend on this non-standard behavior. Future implementations which will hopefully
be ABI compatible will implement the right behavior and programs assuming the
current non-standard behavior will break.

Linux Development Environment Namespace Issues
Great care has been taken to ensure the namespace of the development environment
is clean and compliant with the individual standards. This means that only the func-
tions specified by the standards are made available when the appropriate feature-
select macro for the standard is selected, and extended interfaces are only enabled
when explicitly requested.

The available and useful feature select macros are those in the following table. They
have to be defined (as C preprocessor macros) before including the first system header.
The best way to do this is to add, e.g., -D_GNU_SOURCE to the commandline of the
compiler.

_ISOC99_SOURCE

This macro selects makes all the functionality of the ISO C99 standard available.

Note: The GNU C library includes all ISO C99 functionality. This introduces two
kinds of problems: a) traditionally used interfaces might be reused (example: the nan
function, there was a nan symbol on some implementation denoting the NaN value);
b) silent changes in the implementation. The latter is especially bad but unavoidable.
One often hit problem is the change in strtod et.al to allow the hexadecimal floating-
point number notation which suddenly lets strtod accept expressions it would not
have before.

_POSIX_SOURCE

Signals that POSIX.1 functions should be used. This is not very useful and _POSIX_C_SOURCE
should be used instead.

_POSIX_C_SOURCE

This macro should be set to a value representing the date of the revision of the
POSIX version one wants to use. Currently the last officially supported ver-
sion is identified by the value 199506L. To select this revision one should add
-D_POSIX_C_SOURCE=199506Lto the command line.

There are more revisions of the standard coming along and it will become neces-
sary to set the macro to higher values. But the work of the standards committee
is not yet finished. See the description of _XOPEN_SOURCEfor more information.

34

Chapter 3. System Interfaces

_XOPEN_SOURCE

This macro can be used to select between the interfaces of the various revisions
of the X/Open Portability Guides (XPG) and the Single Unix Specification. The
GNU C library implements only the XPG4 and Single Unix Specification inter-
faces.

Normally everybody wants to set this macro to the value 500 which selects the
Single Unix interface. But it is also possible to set this macro to 600. This will
select the interfaces for the next revision of this specification. This is especially
interesting since the next revision of this specification will be unified with the
POSIX standard. I.e., the value 600 will select also all the new POSIX interfaces.
Some of these new interfaces are critical for high-performance applications and
therefore this option is useful even though the specification is not yet finished.

_LARGEFILE_SOURCE64
_FILE_OFFSET_BITS= m

These macros enable the interfaces agreed on by all Unix vendors at the Large
File Summit. They exist to enable 32-bit systems, which traditionally use types
which limit them to files of sizes up to 2GB, to support large files. There are two
modes in which this can happen.

The first mode it to define _LARGEFILE_SOURCE64which makes an additional set
of functions and data types available. The new data types are ino64_t, off64_t,
blkcnt64_t, fsblkcnt64_t, fsfilcnt64_t, and all composed types which contain at
least one element with of the basic forms of the former types (e.g., struct stat
contains an element of type off_t and therefore exists a type struct stat64).

The naming of the functions to use with these types follows the same scheme.
There exists a lseek64() function which takes and returned off64_t values. There
also is a open64 functions which opens a file ready for these large file operations.

The second mode does not require cleanly written applications to be rewrit-
ten. Define -D_FILE_OFFSET_BITS=64 on the compiler command line enables
a mode in which the *64() functions and appropriate types completely replace
the old interfaces. I.e., off_t is suddenly a 64-bit type and lseek() takes and
returns such a value.

For more information about this extension, read the Large File Summit docu-
ment which is available, for instance, as part of the Single Unix Specification.

_GNU_SOURCE

If this macro is defined, all of the previously mentioned interface plus several
GNU-specific are made available. This provides the most convenient program-
ming environment but programs are becoming less portable. Therefore care should
be taken when writing applications which are expected to run on other systems
as well.

To ensure programs are not accidentally using interfaces which they should not use,
it is important to select the appropriate feature select macro and then use the -Wall
option to catch all occurrences of functions without prototypes. All such cases (unless
they are error in the user code) point to possible problems since a symbol or function
outside the selected interface is used.

35

Chapter 3. System Interfaces

At link time the GNU C library already tries to make sure that internal interfaces
cannot be used. This is done by not exporting these interfaces and therefore not pro-
viding the linker to bind the application to these symbols. There are two problems:

1. Not all interfaces can be hidden. Some interfaces are needed by other shared
objects implementing the system libraries (such as the thread library). This does
not mean that these interfaces can be used. Since all system libraries are released
in synch this means that the internal, but exported, interfaces can change since
the necessary changes can be performed in all system libraries.

The general rule is that user programs must not use any of the interfaces whose
name is in the system namespace. This means, all symbols with a leading un-
derscore character must be used. There are only a very few exceptions:

_tolower()
_toupper()

Traditional Unix interface that, on older systems, is faster than tolower()
and toupper() resp. There is no reason to use this interface on modern
systems.

_exit()
_Exit()

The variation of the exit() interface is needed in some special situations.
The second form is the one chosen for the same functionality by the ISO
committee.

_setjmp()
_longjmp()

These are the old 4.3BSD compatible names for the modern sigsetjmp()
and siglongjmp() interfaces where the second parameter is nonzero.

No other symbol starting with an underscore character should be used directly
by the application.

2. Linking statically will not show the same behavior since the symbol export re-
strictions only work with shared objects. Every single symbol of the libc is
available when linking statically. This is not a problem since all dependencies
are added to the application (and therefore changes in the libc implementation
are not effecting the application) but one of course has all the disadvantages of
static linking.

Notes
1. http://www.gcom.com/LiS/

36

	Table of Contents
	Chapter 1. Introduction
	About this Guide

	Chapter 2. Development Tools
	Language Support
	An Alternative Way
	C Compiler Features
	Invoking the Compiler
	Language Extensions
	Linker Invocation

	Chapter 3. System Interfaces
	Interfaces Missing on Linux
	Differing Interfaces Between UnixWare and Linux
	Limited Implementations
	No Process-Shared Synchronization Objects
	Signal in Threaded Application

	Linux Development Environment Namespace Issues

