

Programmers Do Not Need To Be Smart

MIPS

Processor Performance

60000

50000

40000

30000

20000

10000

0,
1974 19

RRRRRR :: SAN DIEGO 2007

bMI;I'

88 1992 1996 1999 2000 2002 2003 2005 2006 2007 E;lj

Time

The Big Problem of the next years

Processor Performance

60000

50000

40000

30000

MIPS

20000

10000

O I I I I I I I I I !
1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007

Time

SerComhMPS\\MMUComhMPS

More Problems

Numbers are inflated: realistic vs peak performance
Peak performance only for stream instructions
Assuming full utilization of pipeline

No stalls due to memory / cache

More typical:
Stream operations at 10% of peak

Normal operations at 2% of peak

HAT :: SAN DIEGO :: 2007

Moore's Law and Dumb Programmers

Moore's Law helped programmers so far
Almost all programs got faster with new hardware
No specific reorganization needed

Maybe recompilation for extra boost

But no more:
Performance increases of cores flatten out

Hence dumb program increase increase flattens

HAT :: SAN DIEGO :: 2007

Programmers must get smarter!

What To Do?

Only increase is parallelism can help:
Exploit the pipeline

Data-parallelism

Exploit the hyper-threads, cores, processors

Control-parallelism

But: Parallelism is hard!
Hard to get right
Hard to get fast

Data-Parallelism

Use pipelined instructions
Complex instructions with latency (multiplication)
Stream instructions
Prerequisites:
Data must be available fast enough
Results must be written fast enough
Prefetching must be efficient, cache misses create bubbles
Data layout important
Sequential access in arrays
Random access with large lead times for prefetch

Efficient cache line usage

HAT :: SAN DIEGO :: 2007

Memory Accesses

Consecutive accesses touch
different cache lines

VANV AV VALY

Memory Accesses

Data

No locality

Next @ +— — —»

Next

Data

=>» No prefetching

Next

Data

Tricky and rarely usable software prefetching

Stream Operations

Simple matrix multiplication:

for (i = 0; 1 < N; ++i)
for (j = 0; j < N; ++3) {
double s = 0.0;
for (k = 0; k < N; ++k)
s += mull[i][k] * mul2[k][j];

res[il[]j] = s;

Stream Operations

Matrix Multiplication with stream operations:

for (i= 0; 1 < N; 1 += 8)
for (j = 0; 7 < N; J += 8)
for (k = 0; k < N; k += 8)
for (i2 = 0; 12 < 8; ++1i2)
for (k2 = 0; k2 < 8; ++k2) {
_ ml28d mld = _mm_load_sd(&mull[i+i2][k+k2]);
mld = _mm_unpacklo_pd(mld, mld);
for (j2 = 0; j2 < 8; j2 += 2) {
_ ml28d m2 = _mm_load_pd(&mul2[k+k2][Jj+J21);

_ml128d r2 = _mm_load_pd(&res[i+i2][j+]21]1);

RED HAT :: SAN DIEGO = 2007

_mm_store_pd(&res[i+i2][j+3j2],

_mm_add_pd(_mm_mul_pd(m2,mld), r2));

Best Practices

Create data types for the working set (alignment, etc)
Not only for arithmetic operations:

Logical operations

min/max

Comparison
Rearrange data (temporarily) to array form
Transpose arrays (temporarily)

Process arrays in chunk matching cache line sizes

HAT :: SAN DIEGO :: 2007

Control-Parallelism

Three levels of concurrent execution

Thread Process on
same machine

Process on
grerent machines

Sharing cost

low high
Communication cost
low high
Synchronization cost
oW high
Robustness

Concurrency Levels

Threads:
All share the same address space
No inter-process communication needed
All die together
Can scribble over each other's memory
Processes:
Separate address spaces with connections through shared memory
Completely separate lifetimes

Different address space layout (pointers are problematic)

HAT :: SAN DIEGO :: 2007

Performance:
In Linux scheduling about the same

Synchronization intra-process will be a bit faster

Use Processes if...

Amount of modified shared data is limited
Read-only data can be mapped in multiple-processes with little cost
Fixed size random-access data placed in shared memory
Coordinate access
Atomic updates
Best: data stream
Pipes are fast, even faster in RHELS
vmsplice(), splice(), tee() system calls
Robustness is key

Synchronization possible with robust mutexes HAT 5 SAN DIEGO 5 2007

Use Threads if...

Large amounts of data have to be shared
Not easy to partition data for different processes
Frequent creation/destruction of new concurrent control flow

Equivalent: short-lived concurrency needed

AT :: SAN DIEGO :: 2007

‘SUMMI

Programming Models

Processes are mostly single threaded code
No special no knowledge needed for that
Synchronization only needed for shared resources
Synchronization objects in shared memory
Atomic operations
Threads require more work
Changes and overhead to old code introduced by POSIX.1c
More shared means more synchronization
Many problem lure in new and old code

Pthread model too complex

Need to find something better...

HAT :: SAN DIEGO :: 2007

Parallelism In The Language

Today: OpenMP
No explicit creation of thread
Code can be used without threads
Or: non-threaded code can be parallelized without many changes
Compiler gets told about concurrency
Optimizations can take this into account
More like parallelism as taught
Tomorrow: more parallelism constructs in language (Parallel C)

Alternative: data structure implementations implicitly using parallelism

HAT :: SAN DIEGO :: 2007

OpenMP

Implicit thread creation. Number of threads:

Programmer configurable

User configurable

Dynamic based on hardware and configuration
OpenMP runtime maintains thread pool (amortized startup)
lteratively add more and more directives

Does not collide with other thread use

HAT :: SAN DIEGO :: 2007

OpenMP

Normal C code:

void avg(int n, float a[n], float b[n]) {

int i;
b[0] = (0 + a[0]) / 2;

for (i=1;i<n;++i)

b[i] = (a[i — 1] + a[i]) / 2.0

OpenMP

OpenMP C code:

void avg(int n, float a[n], float b[n]) {

int i;

b[0] = (0 + a[0]) / 2;
#pragma omp parallel for
for (i=1;i<n;++i)

b[i] = (a[i — 1] + a[i]) / 2.0

OpenMP

Normal C code:

int fct(int a, int b) {
intr1, r2, r3;

r1 = fcti(a);

r2 = fct2(b);

N DIEGO :: 2007

r3 = fc3(a, b);

return r1 + r2 + r3;

OpenMP

OpenMP C code:

int fct(int a, int b) {
intrl, r2, r3;
#pragma omp parallel sections
{
#pragma omp section
r1 = fcti(a);

#pragma omp section

r2 = fct2(b);
#pragma omp section RED HAT :: SAN DIEGO = 2007
r3 = fc3(a, b); S u m I;r

}

(=
return r1 + r2 + r3; \l\%}

Future Development

Co-processors are coming back
Intel Geneseo, AMD Torrenza
IBM Cell

Huge performance advantage through specialization:
All purpose CPU: 50-60 GFLOPS
Cell: 210 GFLOPS
NVidia GPU: 500 GFLOPS

Need special programming

Summary

Use data-parallelism to reach peak performance

Encapsulate implementation to allow co-processor use

Use control-parallelism to benefit from future hardware upgrades
Use programming models which

Provide safest, most robust environment for least cost

Helps developers by preventing many bugs

HAT :: SAN DIEGO :: 2007

Questions?

