
GNU C Library Version 2.3

Ulrich Drepper
Red Hat, Inc.

drepper@redhat.com

May 2, 2002

Abstract
The next major release of the GNU C library will be 2.3 which marks the
beginning of a new phase of the development of the project. The level of
functionality and standard compliance of other C libraries in the industry was
reached or even surpassed. The main aspects of development today is to fix
holes in the implementations (and standards) and optimization. The paper will
introduce what is done in these two areas.

1 Preface

Version 2.3 of the GNU C Library is the beginning of
a new phase of the development. Up to version 2.2 the
main objective was to catch up with existing standards
and industry practice. Since the implementation was not
yet finished a lot of optimizations were not implemented.

With the next release all this changes. First, additions to
the library go beyond what standards describe. Features
users requested and which are found necessary in other
projects were implemented. Additionally extensive op-
timizations of the runtime environment were performed
and implemented with the result that program execution
can be much faster.

The following text will first introduce the new features
and then describe the various optimizations performed.
Some of the optimization techniques are not only appli-
cable to the C library. They are useful for all ELF shared
libraries.

2 New Features

The number of new features the new release provides is
high again. Not all of them can be explained here in great
detail. We will limit the description of these features to a
general overview. The next section will describe the most
important new features in detail.

2.1 Thread-local Locale Model

The locale model in the ISO C and POSIX standard was
designed in simpler times. Computers were often not
connected or only connected locally which normally meant

that all users of the computers are using is the same lo-
cale. Computers at different sites use different locales but
at any one site there are normally no differences.

This all changed with the advent of globally connected
machines with the help of the Internet. Suddenly one
machine could service clients from all over the world
with widely different requirements on the locales. These
service programs are often written in a way that allows
servicing multiple clients from one process (e.g., using
threads).

To enable such programming it is necessary to allow the
use of more than one locale at the same time in the same
process. This is not possible in the moment. Switching
between global locales usingsetlocale is not practi-
cal since this would have to happen before every single
use of the locale (even for often used functions likeiss-

pace ). In a multi-threaded process thesetlocale call
and the following use must be protected using a critical
region which effectively reduces the process to serialize
the threads for a large part of the time. When no threads
are used the synchronization is easier but the costs are
still prohibitively high. A different solution is needed.

Another source of problems is the need of the ISO C++ li-
brary implementation. The ISO C++ library implements
locales as objects. This is not surprising and by itself
no problem. But it is also required that locale objects
can be constructed based on named POSIX locales. I.e.,
the functionality the C++ standard defines which is also
available in ISO C must be implemented based on the
C locale content. For instance, thetolower member
function of thectype facet of the C++ locale must pro-
duce the same result as a call to thetolower C function.

A partly complete solution for these problems has existed
for quite some time in glibc. The 2.1 version of the GNU
C library introduced the concept of locale objects with



the introduction of the locale t type and the func-
tions newlocale , duplocale , and freelocale .
These functions allow to create locale objects which have
the same functionality as a locale which is selected using
setlocale . To use these functions, special versions of
the functions, which the standard defines to implicitly use
locale information, are needed. To get the same results as
a call to isspace but with locale objects the new func-
tion isspace l must be used. The interface is almost
the same except for an additional argument which is the
reference to the locale object:

extern int isspace l (int, locale t);

Now the advantages of using locale objects should be ob-
vious: it is possible to call isspace l in the same or in
different threads with different locale objects. The func-
tion does not depend on any global state anymore like
isspace did.

There is a price for this, though. The implementation has
to provide a large number of new functions. The number
of functions which depend implicitly on locale settings
is pretty high. Second, the programmer has to rewrite
code to take advantage of the new interfaces. This last
point is valid only when the C interfaces are used directly.
The standard C++ library implementation transparently
uses these interfaces if they are available to provide the
standardized locale functionality. I.e., the availability of
the new interfaces does not require any changes in the
C++ code; it will only exhibit more standard-conforming
execution.

The functions which are available with the locale-object
interface are:

isalnum l isalpha l isascii l

isblank l iscntrl l isdigit l

isgraph l islower l isprint l

ispunct l isspace l isupper l

iswalnum l iswalpha l iswblank l

iswcntrl l iswctype l iswdigit l

iswgraph l iswlower l iswprint l

iswpunct l iswspace l iswupper l

iswxdigit l isxdigit l strtol l

strcasecmp l strcoll l strfmon l

strncasecmp l strtod l strtof l

nl langinfo l strtold l strtoll l

strtoul l strtoull l strxfrm l

toascii l tolower l toupper l

towctrans l towlower l towupper l

wcscasecmp l wcscoll l wcstod l

wcsncasecmp l wcstof l wcstol l

wcstold l wcstoll l wcstoul l

wcstoull l wcsxfrm l wctrans l

wctype l

While this list is already long it is not complete. There are
a lot more functions which use the global locale. It would

be possible to define new versions (even though some-
times the interface would be awkward, considerprintf ).
Using the functions will be a problem since the users have
to rewrite a lot of code.

Instead of going the route of adding even more functions
a completely new approach is used. It is backward com-
patible and requires almost no changes to the user code.
The idea is to replace the concept of the process-global
locale with that of a thread-local locale. A new function
is introduced to select the thread-local locale:

locale t uselocale (locale t newloc)

Yes, no leading underscores. Together with these new
interfaces the already mentioned types and interfaces will
be declared official and the leading underscores will be
removed.

uselocale takes a locale object which was previously
created usingnewlocale or duplocale . The informa-
tion from this locale object will be used by all functions
in the C library which implicitly use locale information.
Note that this doesnot include the* l interfaces men-
tioned above.

Before uselocale is used for the first time (or after
it is called with the parameterLC GLOBALLOCALE) the
thread-local locale is the same as the global locale. The
change of the locale withsetlocale is visible. This
maintains 100% compatibility for all threads which do
not calluselocale .

For the user this new function means that no existing code
has to be rewritten to take advantage of thread-local lo-
cales. For instance, existing code can be used to ser-
vice multiple requests with different locales in separate
threads. Even single-threaded applications can benefit.
Since a call touselocale is cheap (normally perhaps a
dozen assembler instructions long) it is possible to often
switch between different locales to service requests.

With the introduction of thread-local locales the locale
information can finally again be relied on without making
the code non-thread-safe. And it is also now possible to
implement ISO C++ correctly.

2.2 Transliteration in localedef

The data used by the locale runtime functions is gener-
ated with a tool namedlocaledef . The input for this
file consists of a textual description of the locale which
is independent of the character set used, and a textual
representation of the character set for the locale. The
localedef is a compiler which transforms the abstract
locale description using the concrete character encoding
into a format which can easily and efficiently be used at
runtime.



int pthread key create (pthread key t *, void (*) (void *))

int pthread key delete (pthread key t)

int pthread setspecific (pthread key t, const void *)

void *pthread getspecific (pthread key t)

Figure 1: POSIX thread functions to handle thread-local variables

This is how locales were handled since the earliest days
of glibc 2 even if there were some quite drastic internal
changes. This does not mean however that there are no
problems with this.

The biggest problem is writing the locale specification
in a way which always provides the best results while
keeping it usable with different character sets. These two
goals cannot always be achieved at once.

A prominent example in recent times is the handling of
the Euro. The locale specification contains a field which
specifies the national currency symbol. For countries par-
ticipating in the Euro this means ‘¤’. The locales for
these countries before the Euro were predominantly us-
ing the ISO-8859-1 or ISO-8859-2 character sets. These
character sets predate the Euro decision and do not con-
tain this character. To support the world with the Euro
new character sets were created, mainly ISO-8859-15.
This character set could be used to generate, say, the
German localede DE but this would break compatibil-
ity. Existing environments and programs assume that
the de DE locale is encoded using ISO-8859-1 and that
de DE@euro is the locale with Euro support using ISO-
8859-15.

What has this to do with transliteration you ask? How
does one write the source for thede DEandde DE@euro

locales? It is obviously best if the same source is used for
the generation of both locales. To generate the correct
output for thede DE@euro locale the field for the cur-
rency symbol should contain the Euro symbol. But this
cannot work when using ISO-8859-1, can it?

This is where transliteration steps in. Transliteration al-
lows to compensate for missing mappings of characters.
This is not a new concept to glibc: the wide character
to multi-byte mapping functions from ISO C are using
transliteration since glibc 2.2 and the same mechanism
is available iniconv through to use of the//TRANSLIT

suffix to character set names. The information for the
transliteration comes from theLC CTYPEcategory of the
currently selected locale which in turns is generated from
the locale specification.

To support transliteration inlocaledef it was therefore
“only” necessary to use the transliteration information
from the locale specification twice. In our Euro example
this would allowlocaledef to map the Euro character
in the currency symbol string to"EUR" .

With this change the authors of locale specifications have

much more room to optimize even if the locale is used
with different character sets. All that is needed is a suffi-
ciently complete list of transliterations which in any case
if useful and necessary.

2.3 Thread-local Storage Support

Threads have always been an afterthought in C and C++.
The languages were not defined with threads in mind and
appeared before POSIX threads were standardized. The
POSIX thread library which is used on Linux systems is
not the worst design there is. It is reasonably simple to
run multiple threads and with the help of some higher-
level libraries the job is made even easier when C++ is
used.

This is all for the handling of threads but there is more to
multi-threading than this. The weakest point is the han-
dling of thread-local variables. The POSIX standard de-
fines four interfaces (see figure 1).

To use a thread-local variable thepthread key create

function must be used to get a unique key for a thread-
local variable which is valid during this program run.
There is no guarantee that the same key is provided in
other program runs and there is also the chance that the
request for a key failed since the maximum amount of
thread-local variables is already allocated.

Once a key is obtained it is possible to set and retrieve the
thread-local value of this variable. Only values of type
void* are allowed and calls topthread setspecific

and pthread getspecific resp. are necessary to set
and retrieve the value. This call need not and usually is
not very cheap.

For a user this mechanism is very cumbersome. Alloca-
tion and deallocation of the key has to be handled cor-
rectly. The actual use of the variable normally has two
phases due to the possibly high cost of accessing the vari-
able: in one phase the thread-local variable is accessed
and the value is kept in some automatic variable (which
by definition is thread-local). The regular work is then
done using this copy. In practice this is not too much of
a problem since the type of the thread-local variable is
alwaysvoid* .

This limitation on the type is itself probably the biggest
problem. If anything other than a variable pointer has to
be stored it is necessary to dynamically allocate mem-



ory and store the pointer to this memory block in the
thread-local variable1 For the user this is a pain and a
good place to make mistakes. For the compiler it is some-
thing which it cannot do by itself. One situation where it
would want to use thread-local storage is handle spilling.
In compiler generated code register spills normally hap-
pen to places on the stack. In general the compiler can-
not allocate new global variables and spill into them since
these global variables are shared by all threads. Spilling
on the stack has the problem that the stack size can be
very limited. Therefore the compiler cannot spill arbi-
trary amounts of memory. Some optimizations (such as
pipelining) do need larger amount of memory for which
thread-local variables would have to be allocated. But
this isn’t possible since the compiler cannot generate calls
to the POSIX thread functions.

To solve the problem the ELF ABIs in use on Linux got
extended. In addition to the normal variable sections like
.data and.bss there will be new sections.tdata and
.tbss . These new section contain the initialized and
uninitialized thread-local variables the code is using. Ev-
ery object (application, DSOs) can have its own set of
these sections. To define a variable for these new sec-
tions the new keyword thread is proposed:

thread int foo = 42;

This defines a thread-local variablefoo which is initial-
ized with 42. The type of the variable is not fixed; any
valid C type can be used making this approach much eas-
ier to use than the POSIX thread-local variable handling.
The modification of a thread-local variable in one thread
is not visible in another thread. For every new thread the
variable is initialized with the value42. The value isnot
inherited from the thread with created the new thread.

The compiler side of this extension is not yet reality, as
the thread keyword is not yet implemented. Today
it is possible to imitate the use of thread-local variables
using a fewasm statements. The GNU C library sources
contain some example code.

The other necessary changes, in the linker and in the run-
time environment, are in place. In the C library the af-
fected parts are the dynamic linker which has to set up the
thread-local storage for the initial thread and the thread li-
brary which has to allocate, initialize, and deallocate the
thread-local storage memory for each thread.

All this happens completely transparent to the user. Both
the linker and the runtime environment perform quite a
few optimizations which make the user of thread-local
variable efficient, and writing code one does not have to
worry about thread-local variables which are only used in
a few threads. The allocation is optimized for this. There
is no reason not to use the ELF TLS support.

1OK, it is possible to cast integers to pointers but this is no portable
C code.

2.4 GLIBC PRIVATE Version Name

The single biggest problem of providing backward com-
patibility for new versions of the C library is the use of in-
ternal interfaces. Although constantly reminded that this
is not allowed and even though no prototypes and decla-
rations for the internal objects is given people keep using
them. The fact that the sources for glibc are available
seems to make it possible to rely on the information from
the sources.

What has to be realized is that internal interfaces are just
that: internal. They are not meant to be used by user
programs since the compatibility guarantees do not ex-
tend to them. Internal interfaces can go away if they are
no longer needed or the semantics are changed. All these
kind of changes are disastrous and it is unfortunately pos-
sible to observe the effects after every major release of
glibc.

Programmers until now used the excuse that it is not easy
to recognize internal interfaces. This is of course not true
since the names of all internal interfaces begin with an
underscore character and only very few, well-documented,
and supported interfaces also have names beginning with
an underscore. It is true, though, that recognizing internal
interfaces programmatically needs some effort.

A change in glibc 2.3 provides a solution for this. All in-
ternal interfaces are renamed. The version name, which is
part of the interface name, is changed toGLIBC PRIVATE.
This change will definitely break all programs using in-
ternal interfaces. But this breakage is for a good reason.
Once glibc 2.3 is used in program development (well, for
linking) it is very easy to determine whether an applica-
tion or DSO uses an internal interface:

$ objdump -T program |grep GLIBC PRIVATE

If this command is producing any outputprogram is vi-
olating the rules. Sun Microsystems has developed a tool
(ABIcheck) which performs a test like this. Future ver-
sions of RPM (Red Hat Package Manager) will also help
to iron out the use of internal symbols. When trying to
package an offending binary, RPM will notice the ver-
sion name during the step in which it determines version
dependencies and will make the packaging fail. In case
somebody works around this (or uses an old version of
RPM which does not implement the extra checks) there is
a mechanism to prevent installation of such a package. A
correctly packaged glibc binary will avoid advertising the
availability of theGLIBC PRIVATE version which means
that RPM cannot resolve a requirement for this symbol
for new packages and will therefore refuse to install them.
Note that the glibc package “lies” about the version not
being available. This all means that users have to go to
great length to violate the rules if RPM is used through-
out the development and program deployment.



2.5 Newregex

Besides the thread library implementation the biggest ob-
stacle to compliance with the POSIX standard was the
regular expression matcher implementation. The imple-
mentation in glibc 2.2 is very old and nobody really un-
derstands it anymore. One of the last extensions was
the addition of support for multi-byte characters which
finally made the code unmaintainable. In addition the
implementation fails a number of tests in the test suite
and has some restrictive limitation which are reported as
bugs.

glibc 2.3 will feature a complete rewrite, contributed by
Isamu Hasegawa from IBM Japan. The new implementa-
tion has no ties whatsoever to the old implementation ex-
cept that it tries to provide the same interface (i.e., the ex-
tensions over POSIX the old implementation has are still
supported). The new implementation had basic POSIX
compliance as the primary goal. The extensions did not
influence the design which helped to keep down the com-
plexity.

Something which did influence the design was the multi-
byte character support. Instead of adding it afterward as it
happened with the old implementation good support for
internationalization is built-in from the beginning. An-
other design decision was to use an optimization which
currently is performed outsideregex : the use of deter-
ministic finite automata (DFA). A large part of the ex-
pressions which people useregex for do not need all
the expressive power of regular expressions. In these
cases a DFA is sufficient. It is easy to recognize expres-
sions which fall into this category. The benefit of mak-
ing this distinction is that the handling of DFAs isa lot
cheaper. Packages like GNU grep performed this opti-
mization themselves for years since the oldregex im-
plementation did not do it automatically.

The new implementation is believed to be fully compliant
with POSIX. All required features, including full support
for [: :] (character classes),[. .] (collating sym-
bols), and[= =] (equivalent classes), are available. This
is believed to be the first implementation which has all
the pieces inregex and the system’s locale implementa-
tion.

While performance of the implementation is already good
there is certainly room for improvements. The code which
will be released with glibc 2.3 will definitely change in
future. Optimizations which are (currently) not included
are those which optimize the expression before they are
compiled inregcomp .

The work onregex never really has to stop. There are
countless possibilities for optimizations and if the state of
the old implementation was the deterrent for work in this
area the reason is gone now.

2.6 Miscellaneous New Features

A usual a new major release features a plethora of mi-
nor additions. The set oficonv modules is still grow-
ing. The list of newly support character sets includes
IBM1163, IBM1164, EUC-JISX, and SHIFTJISX0213.
At the same time the existing modules are extended to
handle Unicode 3.2 which once again introduces a num-
ber of new characters. This revision of Unicode is espe-
cially important for East-Asian languages since the map-
ping from character sets used in that area and Unicode
was improved.

3 Optimizations

Now that the functionality of the C library is almost com-
plete work on optimizations can start. Earlier versions
were also optimized to some extent. True to good soft-
ware engineering practices premature optimizations on a
larger scale were avoided, though.

The following sections describe three kinds of optimiza-
tions: optimizations in the runtime (dynamic linking pro-
cess), in the generation of the DSOs, and in interfaces
of the library. The third kind is good to know since it
might help making good programming decisions. The
first kind is very noticeable since every program benefits.
The second kind is of interest to everybody who writes
code which consists of DSOs.

3.1 Pre-Linking

Regardless of how big a program is there always is a min-
imum price to pay for the execution: the program has to
be loaded and the runtime environment has to be initial-
ized. Large programs might need many different DSOs
and these have to be located and prepared for use. The
bare minimum set of DSOs consist of the dynamic linker
and the C library.

The dynamic linker was optimized significantly for the
2.2 release of glibc. The time spent in the dynamic linker
before the transfer of control to the user code for the same
application was reduced by 20% or more since glibc 2.1,
but there is only that much what can be done here. The
majority of time is spent in either the kernel (for loading
the code) or for relocating the DSOs. Relocation is the
process by which the dynamic linker prepares the appli-
cation and the DSOs for its load position and the load
position of the DSOs they depend on.

The work done in the kernel is already cut to the mini-
mum. The different segments have to be mapped appro-
priately which requires normally threemmapsystem calls
in addition to onemprotect , fstat , andread system



call. Some operating systems implement a system call
which perform all this work in one but it is highly ques-
tionable whether the gain is noticeable enough to justify
the added complexity.

The only area with possibility for improvements left is
the relocation process. The glibc 2.2 implementation per-
formed as good as possible with the ELF files generated
by the available tools. All DSOs and the dependencies on
them require relocation since the load address of the DSO
is not known in advance. The possibility to place DSOs
at arbitrary addresses in the address space is the major ad-
vantage ELF DSOs have over a.out shared libraries which
have a fixed load address. To save on the relocation pro-
cessing it would be necessary to introduce preferred load
addresses for the DSOs and pre-linking them for these
addresses. The important part is that the load address is
only preferredand not required. If for some reason the
address space the DSO would require when loaded at the
preferred address is already used, it must be possible to
load the DSO at another address. This way we get the
best of both worlds: the speed of the old a.out shared li-
braries due to skipping the relocation and the flexibility
of ELF DSOs since the load address is only a hint.

To implement the pre-linking a great deal of work and
planning is necessary. On machines with 32-bit address
space it is not possible to pick for each DSO on the sys-
tem a separate load address. From the theoretical 4GB
of address space only a fraction can be used for mapping
DSOs and this should be happening in a way which does
not hinder the allocation of large amounts of dynamic
memory. Therefore the allocation of preferred load ad-
dresses should look at the actual use of the DSOs and
determine which of them are not used together in a pro-
gram and therefore can have the same preferred load ad-
dress. This operation (and the others to prepare a pro-
gram or DSO for pre-linking) are performed by a pro-
gram which looks at all files on the systems and works
on all applications and DSOs. The code is available at
ftp://people.redhat.com/jakub/prelink/.

The second problem to solve is how to correct the pre-
linking in case the preferred load address is not available.
The solution for this requires knowledge of the internals
of the ELF format which cannot be provided here in de-
tail. The short answer is that for architectures which are
using RELA relocations in binaries nothing special has
to be done. All the information is contained in the relo-
cation records. Architectures which use REL relocations
are missing information which is needed in some situa-
tions. For them the tool, which performs the pre-linking,
replaces the relocation section with one which is using
the RELA format. This increases the code slightly size
but is not avoidable and the relocation sections are read-
only which means the physical memory can therefore be
shared by all processes.

The third problem is how to preserve the ELF seman-

tics of symbols being looked up in scope order. This
is the biggest problem of all. This again requires inti-
mate knowledge of ELF internals but it is worth at least
some explaining since the issue is very important. All
loaded DSOs (except those loaded usingdlopen with-
out RTLD GLOBAL) and the main application are put in
a list which is used to search for any symbol. The first
definition seen while traversing the list is used. This
way definitions later in the list are normally not seen at
all. The consequence for the problem at hand is that the
name resolution is always relative to the actual applica-
tion. I.e., if a DSO needs a symbol which it defines itself
the prelink tool will match the dependency with the
self-definition. When used in a program a definition from
another object might be used if that object is found earlier
in the lookup path. The solution consists of an addition
to the ELF format: conflict lists. These conflict lists are
added to applications only (since they define the lookup
scopes). Each entry in the conflict list describes one re-
locations against a symbol from any of the loaded DSOs
which requires special care because the symbol lookup
differs from whatprelink determined when handling
the DSO. These lists are normally short and much faster
to handle than the complete relocation of the application
and the DSO. The programmer can avoid creating con-
flicts by writing DSOs correctly. Some of the techniques
which help doing this are described in the next section.

Those familiar with the ELF symbol resolution might
now notice one more problem: pre-loading. Do not use
LD PRELOADor /etc/ld.so.preload ! Pre-loading in-
troduces the same problems which required conflict list
to correct. This time no such conflict list is available
since the problems are created at runtime. Therefore pre-
loading will disable pre-linking altogether. This normally
should not be a problem since pre-loading never was ad-
vertised as a solution for any problem but instead only as
a hack to temporarily work around problems or to help
debugging. Unfortunately not everybody listened to this
and some programs used pre-loading as part of their nor-
mal mode of operation. These programs will continue to
work but they will not experience any speed-up.

To summarize, pre-linking saves time at startup by re-
placing the relocation of the application and all DSOs
with the processing of the conflict list. Not only is this
less work, it also means that potentially a lot more mem-
ory pages can be left unchanged and don’t have to be
copied-on-write because of relocations.

3.2 Writing Position-Independent Code

Other work related to speeding up startup but also to speed
up normal operation include changing the code to be more
position-independent. Many optimizations in this area
were made in the previous revisions (such as converting
arrays of string pointers to simple strings). For glibc 2.3 a
couple of important additional optimizations were made.

ftp://people.redhat.com/jakub/prelink/


static int local;
extern int in dso attribute ((visibility ("hidden")));
extern int elsewhere;
int add (void) {

return local + in dso + elsewhere;
}

Figure 2: Variable Visibility Example

Some of them were just made possible by improvements
in the tools. All of them are generally applicable to all
DSOs so that spending some time on explaining them is
well spent.

The costs associated with using ELF fall into two cat-
egories: startup costs, as already mentioned in the last
section, and runtime costs. The use of pre-linking helps
to reduce the costs of the relocations which have to be
performed but is of course better to avoid relocations in
the first place. Along with eliminating relocations we get
the benefit of improving the generated code. This stems
mainly from the fact that all modifications of the code
segment at runtime must be avoided to enable sharing the
code with other processes.

To avoid relocation it is necessary to know what is caus-
ing them. Almost all code, when compiled, creates relo-
cations but we are here only interested in those which are
carried forward into the DSO. All the others are handled
by the static linker and therefore have no runtime penalty.
We will now go into the details how all this affects vari-
ables. Functions are handled in the next section.2

When generating code the compiler has to generate code
to cope with any possible situation the generated code
might be placed in. The general code can deal with situ-
ations where the location of a variable is not known un-
til runtime. In this case it could be found in a different
DSO or the application. Therefore it is necessary to use
indirect addressing: the dynamic linker determines the
address and stores it in the data segment from where the
compiler-generated code loads it and finally dereferences
it. The use of direct addressing would require to change
the code segment which is out of question.

The problem with generating code optimal for the situ-
ation is that the compiler is not the only party involved.
The compiler may have to count in the possibility that a
variable is defined in some other DSO, the linker knows
the truth. Via command line options or more likely via
version maps the user can instruct the linker to not export
certain symbols. This also means that the reference for
a symbol which is defined in the same object always re-
solves locally. In this case the generic runtime relocation
to lookup a named object is transformed into a relative

2Some architecture, mainly embedded ones, limit the range of jump
instructions enough to make it impossible for the compiler to generate
code using these instructions. In these cases functions are handled like
variables and what is said in this section applies.

relocation.

In case the variable is known to be in the same DSO as
the code referencing it, the situation gets simpler. At link-
time the offset of the variable from any point in the data
segment is known. The global offset table, pointed to by
what is generally called the “PIC register”, is also in the
data segment. From this follows that with the help of the
PIC register the compiler is able to generate code which
directly accesses the variable in question. This code is
not only simpler since it can compute the address directly
(and not via a memory load), the data segment also gets
smaller since the memory the dynamic linker stores the
computed address in can be saved.

We can learn two things from this. The first is something
which should already be known to everybody: if possible,
all non-automatic variables should be defined with file-
locale scope. I.e., in C programs they should be defined
with static . This will tell the compiler that the variable
is in the same object as the code using it which allows
it to generate the simplified code to directly access the
variable using the PIC register.

The second thing learned is that the standard C language
is missing the power to express the fact that a variable
is not declared asstatic but still can be assumed to be
local to the object referencing it. A global variable can
either bestatic or not. The GNU C compiler knows,
beginning with version 3.1 but also in later 2.96 versions,
thevisibility variable attributes. These attributes are
derived from the visibility classes for symbols as defined
in the generic ELF ABI. A concrete example should make
this clearer.

The code in figure 2 features one variable of each of the
three classes mentioned above. It is assumed that this
code is part of a DSO.local is a variable declared with
file scope and is therefore addressed using the PIC reg-
ister. The variableelsewhere is declared as a global
variable. Nothing is known about the possible position
in the final program so the compiler has to assume the
worst. An entry in the data segment has to be allocated
and the dynamic linker has to be instructed to determine
the address at program start time. The most interesting
and new case is the variablein dso . It is declared with
the visibility attributehidden . This is translated to the
assembler pseudo-op.hidden for the definition which
will tell the linker to not export the symbol. Since this
attribute is also visible to the compiler it can avoid gener-



ation the generic code and can instead generate the same
code as for the access tolocal .

What should be learned from this section is that the com-
piler should be given as much information as possible so
that it can generate the best possible code. This requires
some efforts on the programmer’s side but they are worth
it. The next section provides another example for this
rule.

3.3 Avoid Calling Exported Functions

The final optimization for the ELF handling in glibc deals
with function calls. The problem for them is different
from that of variables. The code the compiler has to gen-
erate is the same regardless of whether the called function
is in the same object or not.3 The linker is responsible
for generating the needed code. If the function called is
possibly not in the same object a procedure linkage table
(PLT) entry has to be created. This code also take care of
loading the new PIC register value if the calling conven-
tions of the architecture require the caller to do this.

If the called function is in the same object the jump can
normally be performed using PC-relative addressing. Al-
most all processors support such an addressing mode.
The range of such a jump instruction might be limited
(especially on embedded technology processors, see the
footnote in the previous section). In this case the com-
piler might have to generate more generic code. In any
case there will be no relocations to be handled at runtime
since the linker has all the information it needs.

We see now the difference between handling variables
and functions. To handle variables optimally the com-
piler needs more information than can be expressed in
standard C. For functions the generated code is always
the same and the optimizations are performed in the linker.

But there is something the programmer can do to gener-
ate better code. This is nothing the linker can do on its
own since the semantics of the code changes. As with the
variable handling the optimization is to avoid using run-
time relocations to lookup symbols which are referenced
in the same object they are defined in. If the symbol in
question is exported from the DSO the dynamic linker
looks for a definition along the lookup path defined for
the application. There can be more than one definition
and it is not clear that at link-time which is used.

This can be changed if the programmer is sure that it is
always the local definition that is wanted. This is the case
more often than not. What has to happen is that the defi-
nition which is used is not exported. The originally used
symbol still is exported (because it is part of the DSO’s
ABI) but a newly created alias need not. This is espe-

3This is at least true for the supported architectures.

cially true for the C library. Functions likememcpy are
used internal but they also must be exported. There is no
reason to not use the internal definition since the seman-
tics of the function must always be the same.

Along these lines glibc 2.3 contains a large amount of
changes which cause the libc implementation to avoid us-
ing exported interfaces. Not all functions are treated this
way: malloc and friends are often intentionally over-
loaded. For the rest, the changes made consist of the
addition of another alias for the function and all callers
are changed to use this alias. The name is normally con-
structed by adding the suffixinternal . These aliases
are then declared with the visibility attributehidden and
arenot mentioned in the version scripts. This causes the
functions not to be exported and therefore the linker can
construct the necessary code which does not require run-
time relocations. Note that thehidden attribute is only
of importance for platforms which treat functions like
variables.

The result of this optimization is that

• no PLT entry is created for the function,

• the dynamic linker does not have to handle the PLT
entry at startup, and

• that direct jumps are used instead of the indirect
jumps caused by using the PLT (which can mean
quite big gains on architectures with deep pipelines).

3.4 Object File Reordering

Object file reordering is one of the features which will
probably not be enabled by default since the results are
mixed. Support will be there however and users are en-
couraged to experiment with it so it should be introduced
here.

The problem to solve is CPU cache locality. Modern pro-
cessors have a cache hierarchy. Normally code that is ex-
ecuted has to be transfered to the cache, mostly even to
the first-level cache. Transfer from the main memory to
the highest cache level is the most expensive operation
and should be avoided if possible. This can be achieved
by not using too many cache lines and memory pages
during execution.

The compiler takes care of following these rules when
generating code for functions. Optimized code is cache
line-aligned, infrequently used basic blocks are moved
out of the main stream of operation. Seldomly a func-
tion is self-contained, though: it calls other functions and
library interfaces.

These inter-function dependencies are what object file re-
ordering is trying to address. Functions, which are often



used together should be grouped in a way which allows
the most efficient use of virtual memory and CPU caches.
This kind of relationship can only be determined reliably
by observing program runs. A static analysis of depen-
dencies does not provide a clear image since many func-
tion uses will be infrequent (such as a call tofprintf in
case of an error).

Note that we leave “grouped” intentionally vague here.
It can mean a lot of different things. It’s not necessarily
the case that the code for the function is as close as pos-
sible together in memory. This is not how virtual mem-
ory systems and CPU caches work. Often it is important
to look at cache associativity to determine whether the
called function is throwing the cache lines for the call-
ing function out of the cache. These are all details which
might become important at some point. At present there
is no support for this.

In the explanation we mentioned so far functions and
their dependencies. This makes a difference since we
cannot reorder individual functions since glibc is not built
with gcc’s -ffunction-sections option. This isn’t
necessary anyway since the glibc sources pretty strictly
follow the one-function-per-file rule. If there is more than
one function in one file they are closely related and nor-
mally cannot be used without one another. Reordering
happens on object file basis.

Without reordering the layout of the DSO is determined
by the order in which the object files are added to the
libc pic.a archive. This in turn is determined by the
order in which make visits the various subdirectories of
the glibc sources and below that level, by the order the
various files are mentioned in the Makefiles. The result-
ing order is mostly random. The reordering phase steps
in after thelibc pic.a file is created and reorders the
file in the archive. The reordered archive is then used to
construct the DSO; this process accepts the input in the
order the object files are in the archive.

Initially the reordering instructions are simple. They just
mention files which are to be placed together. How this
is determined is left to the user. A default ordering file
will be provided but the user can replace it. Later more
sophisticated methods will be implemented. It’ll be nec-
essary to look at the cache lines, at cache associativity.
The reordering process will require adding dummy files
which align the next file, e.g., to avoid crossing cache
lines. These optimizations will be very CPU-specific and
will require a great deal of experimentation. Participation
is welcome.

3.5 Stream I/O with mmap

The FILE stream interface is often used out of conve-
nience. The programmer does not have to worry about
not making too many file operations since the implemen-

tation tries to optimize this by using buffers and filling
them in larger chunks. The file operations work on these
buffers and request refilling them if the end if reached.
This means quite a few tests of boundary conditions in
addition to the copying.

People looking for the highest performance will therefore
prefer to not use theFILE interface since the general-
purpose buffering might introduce to higher than neces-
sary costs. They rather invest in code which does the
reading or writing itself, perhaps with the use ofmmap.

The status quo can be changed, though. There is no rea-
son for theFILE implementation to not be optimized to
usemmapitself. It is only a matter of complexity of the
implementation. For streams which are writable complex
relations between using the file descriptor, flushing the
stream, and reading/writing the stream make the use of
mmapquite costly. Maybe too costly for the gains. For a
subset of the problem such an implementation is feasible,
though.

glibc 2.3 will introduce code which avoids using buffers
and reading a file in chunks bymmaping the whole file
if the FILE stream is read-only. The benefits should be
obvious. First, no buffer management is necessary. The
functions which are handling buffer underflow are simple
no-ops. They always signal end-of-file. The actual buffer
operations, such asfgetc , do not require any call to an
expensive function unless the end of the file is reached.
The whole code (if theunlocked variants are used) is
inlined and therefore very fast.

The second benefit is that the file content does not have
to be copied around. The kernel provides access to the
file content using themmaped buffers and the stream im-
plementation directly uses these buffers. The file content
is loaded when it is actually used, i.e., read. Jumping
between different locations in the file is a simple pointer
operation.

For 32-bit architectures we might run into some prob-
lems, though. The 32-bit address space is not really large,
especially when the reserved bits are taken out. Therefore
the implementation restricts themmapmethod to files up
to a certain sizes. Larger files are handled as before. On
64-bit architectures such a limitation does not seem to be
necessary.

The results of this operation are quite noticeable. Ini-
tial test showed an improvement in the file operations of
10%. Since now the file operations are almost as fast
as they can be (they are mostly only pointer operations)
it should be not necessary anymore to write specialized
code to read files. The read-only stream operation should
operate now almost at the highest speed made possible
by the kernel.



3.6 Reduce Number Of Locale Files

The locale implementation in glibc 2.2 features locales
with 12 categories. Every loaded locale requires 12 files
to be mapped or loaded into memory. This represents
a significant number of kernel operations and takes an
noticeable amount of time. The loading of the locale data
requires between 5% and 7% of the total startup time.

To avoid these costs glibc 2.3 introduces a locale archive.
This is a single file which contains all the locale data the
system has. It is still possible to have separate locale
files in appropriate directories but this source is only sec-
ondary, it will looked for only if a locale cannot be found
in the archive.

The benefit of the archive is that only one file has to be
mapped into memory. It does not have to be mapped in
total, only the necessary bits need to be available. Since
the data for several of the categories is very small it is
possible to have all the data available by mapping only a
single page of memory. So in total we save eleven calls to
open andclose and severalmmapcalls. The latter also
results in a reduced used of virtual memory for locale
data.

The locale archives are created usinglocaledef . In-
stead of creating the individual files the program is mod-
ified to be able to write to the locale archive directly. It is
also possible to add already generated locale data to the
archive. While doing this identical copies of data locale
files are recognized. This happens quite frequently for
some of the locale categories. Recognition is made easy
by keeping checksums of all the files in the archive.

The modification of the archive is a pretty complicated
issue. Since it might be and probably is in use while be-
ing modified or extended changing existing data is not
allowed. Also, the administrative data structures must be
laid out in a way which allow efficient use at runtime.
Fast runtime access means that the administrative data
structures should be mapped into memory usingmmap.
This in turn requires that the data structures do not change
in size.localedef therefore allocates all data structures
larger than necessary in the moment. This resizing re-
quires creating a completely new file to not disturb pro-
grams which use the current version of the locale archive.
The resizing is automatically taken care of but if one re-
generated a lot of locales it is important to regenerate all
of the locale archive from scratch every once in a while.
This way all the accumulated garbage in the archive gets
disposed off.

This optimization, while speeding-up the program start,
is becoming more important with the thread-local locale
model mentioned before since the mapped files do also
consume file descriptors, lowering the number that is avail-
able to the program.

3.7 Newmalloc

Themalloc implementation in glibc 2.2 was already good.
It features good multi-threaded performance due to the
use of multiple arenas which can be used simultaneously
by different threads. The implementation had some prob-
lems, though, when it comes to fragmentation and to the
handling of boundary cases.

The new implementation in glibc 2.3 comes from the
same source. It is based on Doug Lea’s latest creation and
once again was modified by Wolfram Gloger for glibc.
It again features arenas for the use in different threads.
Locking is now in parts done using spinlocks instead of
the heavier POSIX mutexes. The details about the imple-
mentation can be learned from the source code which has
extensive documentation.

Overall the new implementation should have about the
same speed as the old implementation. But it features
a much better handling of fragmentation. Even after a
large number of allocations and de-allocations the mem-
ory consumption should not increase unduly because mem-
ory blocks with odd sizes are requested. Applications
like Mozilla will show a much reduced total memory con-
sumption.

Drastic examples of improvements are programs which
free a lot of the memory which was allocated. It was
possible (and not too uncommon) to find code spending
an unproportional amount of time in calls tofree . The
allocation itself is hardly measurable. The new imple-
mentation does away with this. In one specific test case
the speed improvement exceeded 10,000%.

There have been some slight performance decreases been
measured for normal operations but these are really in-
significant. Given the avoidance of extremely bad per-
forming cases and especially the reduced fragmentation
this is a worthwhile trade-off.

References

Thread-aware Locale Model, Ulrich Drepper, Red Hat, Inc., 2001,
http://people.redhat.com/drepper/tllocale.ps.bz2

ELF Handling For Thread-Local Storage, Ulrich Drepper, Red Hat,
Inc., 2002,
http://people.redhat.com/drepper/tls.pdf

malloc.c sources in glibc, Wolfram Gloger and Doug Lea, glibc
CVS archive athttp://sources.redhat.com

ISO DTR 14652, Proposed transliteration support for POSIX locales,
http://std.dkuug.dk/jtc1/sc22/wg20/docs/
n822-dtr14652.pdf

Sun Microsystem’s ABI Checker,
http://abicheck.sourceforge.net/

http://people.redhat.com/drepper/tllocale.ps.bz2
http://people.redhat.com/drepper/tls.pdf
http://sources.redhat.com/cgi-bin/cvsweb.cgi/~checkout~/libc/malloc/malloc.c?rev=1.92&content-type=text/plain&cvsroot=glibc
http://sources.redhat.com/cgi-bin/cvsweb.cgi/~checkout~/libc/malloc/malloc.c?rev=1.92&content-type=text/plain&cvsroot=glibc
http://std.dkuug.dk/jtc1/sc22/wg20/docs/n822-dtr14652.pdf
http://std.dkuug.dk/jtc1/sc22/wg20/docs/n822-dtr14652.pdf
http://abicheck.sourceforge.net/

	1 Preface
	2 New Features
	2.1 Thread-local Locale Model
	2.2 Transliteration in localedef
	2.3 Thread-local Storage Support
	2.4 GLIBC_PRIVATE Version Name
	2.5 New regex
	2.6 Miscellaneous New Features

	3 Optimizations
	3.1 Pre-Linking
	3.2 Writing Position-Independent Code
	3.3 Avoid Calling Exported Functions
	3.4 Object File Reordering
	3.5 Stream I/O with mmap
	3.6 Reduce Number Of Locale Files
	3.7 New malloc


