


Introduction

Discrepancy main CPU and main memory speed

* Intel lists for Pentium M nowadays:
— ~240 cycles to access main memory
* The gap 1s widening

* Faster memory 1s too expensive




The Solution for Now

CPU caches: additional set(s) of memory added
between CPU and main memory

* Designed to not change the programs' semantics

* Controlled by the CPU/chipset

* Can have multiple layers with different speed
(1.e., cost) and size




How Does It Look Like

Main Memory

System Bus

2" Level Cache




Cache Usage Factors

Numerous factors decide cache performance:
* Cache size

* Cacheline handling
— associativity

* Replacement strategy

* Automatic prefetching




Cache Addressing
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Observing the Effects

Test Program to see the effects:

* Walks single linked list

~ Sequential in memory

— Randomly distributed

* Write to list elements

struct 1 {

struct 1 *n;

long pad[NPAD];



Sequential Access (NPAD=0)
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Cycles / List Element

Sequential List Access
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Cycles / List Element

Sequential vs Random Access (NPAD=0)
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Cycles / List Element

Sequential Access (NPAD=1)
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Optimizing tor Caches I

* Use memory sequentially
— For data, use arrays instead of lists

— For instructions, avoid indirect calls

* Chose data structures as small as possible

* Prefetch memory




Sequential Access w/ vs w/out L3
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Cycles / List Element
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More Fun: Multithreading
R

L2 L2

Main Memory

1. CPU Core #1 and #3 read from a memory location; L2 the
relevant L1 contain the data

2. CPU Core #2 writes to the memory location

a) Notify L1 of core #1 that content 1s obsolete

b)Notify L2 and L1 of second proc that content is obsolete



More Fun: Multithreading
R

L2 L2

Main Memory

3. Core #4 writes to the memory location

a) Wait for core #2's cache content to land in main memory

b)Notify core #2's L1 and L2 that content is obsolete




Cycles / List Element

Sequential Increment 128 Byte Elements
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Optimizing for Caches Il

Cacheline ping-pong 1s deadly for performance

* If possible, write always on the same CPU

* Use per-CPU memory; lock thread to specific
CPU

* Avoid placing often independently read and
written-to data in the same cacheline




Questions?




