

Introduction

Discrepancy main CPU and main memory speed

* Intel lists for Pentium M nowadays:
— ~240 cycles to access main memory
* The gap 1s widening

* Faster memory 1s too expensive

The Solution for Now

CPU caches: additional set(s) of memory added
between CPU and main memory

* Designed to not change the programs' semantics

* Controlled by the CPU/chipset

* Can have multiple layers with different speed
(1.e., cost) and size

How Does It Look Like

Main Memory

System Bus

2" Level Cache

Cache Usage Factors

Numerous factors decide cache performance:
* Cache size

* Cacheline handling
— associativity

* Replacement strategy

* Automatic prefetching

Cache Addressing

Address
(32/64 Bits)

~ VAN —~ J
M Bits H Bits
Cacheline Hash Bucket
Size Address
N-way
Bucket%\é

Observing the Effects

Test Program to see the effects:

* Walks single linked list

~ Sequential in memory

— Randomly distributed

* Write to list elements

struct 1 {

struct 1 *n;

long pad[NPAD];

Sequential Access (NPAD=0)

9.5
J o & % & e & & @
_ 85 = /
-
e 8 e
5 v
D 75
L]
5 7 g
= 65
D 6 |
> 55
> 4.\
4.5 \
4 e | | \ \ \ \ \ \
2A10 2A12 2714 2716 2718 2A20 A2 >A24 5A26 >r28

Working Set Size (Bytes)

Cycles / List Element

Sequential List Access

T/w;y/% —>——>» > >

ZSQM m/

W\@v

R S S S S S, AU AU AU A S,
T T T T 1

2A10 2112

2714 2A16 2A18 2A20 2A22 2A24 2726 2728

Working Set Size (Bytes)

¢ Sjze=8

VvV Size=64 ~ Size=128 » Size=256

Cycles / List Element

Sequential vs Random Access (NPAD=0)

500
450 1
400
350 -

w
o
o

N
Ul
o

N
o
o

—
Ui
o

=
o
o

\

50 v
0% 9 9 Y—o—o—w++4—o—o—o—r4—o—o—o

2010 2A12 2A14 2A16 2718 2420 2A22 2A24 2726 2428
Working Set Size (in bytes)

¢ Sequential ¥ Random

Cycles / List Element

Sequential Access (NPAD=1)

2A10

2712 2714 216 2718 2420 2422 2A24 2A26 2728
Working Set Size (Bytes) |

¢ Follow Y Inc A~ Addnext0

Optimizing tor Caches I

* Use memory sequentially
— For data, use arrays instead of lists

— For instructions, avoid indirect calls

* Chose data structures as small as possible

* Prefetch memory

Sequential Access w/ vs w/out L3

500
450

, [(S A A
400 -

350 5
300

250 ;/
0 -
5

10
>0 = M
M N ? g’;&

2A10 2A12 2814 2016 2A18 2A20 2A22 2M24 2A26 2A28
Working Set Size (Bytes)

N
o
<

—
o

o

Cycles / List Element

RED HAT :: NASHVILLE :: 2006

¢ P4/64/16k/1IM-128b V' P4/64/16k/1M-256b ~ P4/32/?/512k/2M- > P4/32/?/512k/2M- BN
128b 256b i

More Fun: Multithreading
R

L2 L2

Main Memory

1. CPU Core #1 and #3 read from a memory location; L2 the
relevant L1 contain the data

2. CPU Core #2 writes to the memory location

a) Notify L1 of core #1 that content 1s obsolete

b)Notify L2 and L1 of second proc that content is obsolete

More Fun: Multithreading
R

L2 L2

Main Memory

3. Core #4 writes to the memory location

a) Wait for core #2's cache content to land in main memory

b)Notify core #2's L1 and L2 that content is obsolete

Cycles / List Element

Sequential Increment 128 Byte Elements

1000

100

A A

A 5 A A
@/ﬁzf 3333

10

1

2710

2712 2714 2716 2718 2720 2422 2A24 2726 2728
Working Set Size (Bytes) IMT

¢ Nthreads=1 vV Nthreads=2 ~ Nthreads=4

Optimizing for Caches Il

Cacheline ping-pong 1s deadly for performance

* If possible, write always on the same CPU

* Use per-CPU memory; lock thread to specific
CPU

* Avoid placing often independently read and
written-to data in the same cacheline

Questions?

