FS-Cache A Network Filesystem Caching Facility

David Howells
Red Hat UK Ltd
dhowells@redhat.com

Abstract must be shared — and so a cache on a faster
medium can be used to improve general perfor-

. . . mance by reducing the amount of traffic to or
FS-Cache is a kernel facility by which a net- across the slower media.

work filesystem or other service can cache data
locally, trading disk space to gain performanceA
improvements for access to slow networks an%I

m‘eﬂla. tlt can tb(? used byla%:]cs'leaféeguihsgon — for example a laptop might lose contact
le ?SSO(I):gSEitI » for exampte ! ; f b k’with a wireless network, but the working files
an - 't can stpport a variety of bac “might still need to be available. A cache can

en?ts: giffe:cfent types of cache that have Oliffer'help with this by storing the working set of data
ent trade-ofts. and thus permitting disconnected operation (of-

FS-Cache is designed to impose as little over]fline working).

head and as few restrictions as possible on the
client network filesystem using it, whilst still
providing the essential services.

nother reason for using a cache is that the
ower media may be unreliable for some rea-

1.1 Organisation

The presence of a cache indirectly improves _ _ _ _
performance of the network and the server byFS-Cacheis a thin layer (see Figure 1) in the

reducing the need to go to the network. kernel that permits client filesystems (such as
NFS AFS CIFS ISOFS on one side to request

caching services without knowing what sort of

) cache is attached, if any.
1 Overview

o . NFS » CacheFS
The FS-Cachéacility is intended for use with -
network filesystems, permitting them to use Lel T ||
persistent local storage to cache data and meta-| AFS = g -
data, but it may also be used to cache other sorts o
of media such as CDs. 1S09660 [~ CacheFiles

The basic principle is that some media are ef-
fectively slower than others — either because . _
they are physically slower, or because they Figure 1: Cache architecture

1

On the other sidé=S-Cachefarms those re- FS-Cachemakes no use of the mapping
qguests off to the available caches, be theyointer on thenetfsinode as this would force
CacheF$ CacheFiles or whatever (see sec- the filesystems using the cache either to be bi-
tion 4) — or the request is gracefully deniedmodaf in implementation or to always require
if there isn’t an available cache. a cache for operation, with the files completely
downloaded before use — none of which is ac-
FS-Cachepermits caches to be shared betweereptable for filesystems such &S
several different sorts afetfs, though it does
not in any way associate two different views of FS-Cachds built instead around the idea that
the same file obtained by two separate meanslata should be served out of the cache in pages
If a file is read by bottNFSandCIFS for in- as and when requested by thetfsusing it.
stancefwo copies of the file will end up in the That said, thenetfsmay, if it chooses, down-
cache (see section 1.7). load the whole file and install it in the cache be-
fore permitting the file to be used — rejecting
It is possible to have more than one cache availthe file if it won't fit. All ES-Cachewould see
able at one time. In such a case, the availabl% a reservation (See section 14) followed by a

caches have unique tags assigned to them, arRgream of pages to entirely fill out that reserva-
anetfsmay use these to bind a mount to a spetjon.

cific cache.
FurthermorelFS-Cachas built around the prin-
, o ciple that thenetfss pages should belong to
1.2 Operating Principles the netfss inodes, and s&S-Cachereads and
writes data directly to or from those pages.

FS-Cachaloes not itself require thatreetfsfile
be completely loaded into the cache before th
file may be accessed through the cache. This i
because:

It_astly, files in the cache are accessed by se-
a .

quences of keys, where keys are arbitrary blobs
of binary data. Each key in a sequence is used
to perform a lookup in an index to find the next
index to consult or, finally, the file to access.

1. it must be practical to operateithout a

cache;
1.3 Facilities Provided

2. it must be possible to open a remote file

that'slarger than the cache;
FS-Cacheorovides the following facilities:

3. the combined size of all open remote files
— including mapped libraries — must not
be limited to the size of the cache; and 1. More than one cache can be used at once.
Caches can be selected explicitly by use of
4. the user should not be forced to download tags.

an entire file just to do a one-off access of
a small portion of it (such as might be done 2. Caches can be added or removed at any
with thefile program). time.

INote that the client filesystems will be referred to 2Bimodality would involve having the filesystem op-
generically as theetfsin this document. erate very differently in each case

10.

. Thenetfsis provided with an interface that netfscallback will be invoked to indicate

allows either party to withdraw caching fa- completion. The 1/0O may be either syn-
cilities from a file (required for point 2). chronous or asynchronous.

See section 5.
11. A small piece of auxiliary data may be

. The interface to theetfsreturns as few er- stored with each object. The format and

rors as possible, preferring rather to let the usage of this data is entirely up to thetfs

netfsremain oblivious. This includes 1/0 The main purpose is for coherency man-
errors within the cache, which are hidden agement.

from thenetfs See section 5.8.

12. Thenetfsprovides a "match" function for
Cookies are used to represent indices, data jndex searches. In addition to saying
files and other objects to tmetfs See sec- whether or not a match was made, this can
tions 3and 5.1. also specify that an entry should be up-
dated or deleted. This should make use of
auxiliary data to maintain coherency. See
section 5.4.

Cache absence is handled gracefully; the
netfsdoesn't really need to do anything as
theFS-Cachdunctions will just observe a
NULL pointer — a negative cookie — and

return immediately. See section 5.2. 1.4 Disconnected Operation

. Cache objects can be "retired" upon re-

isconnected operation (offline working) re-
uires that the set of files required for opera-
tion is fully loaded into the cache, so that the
netfscan provide their contents without having
to resort to the network. Not only that, it must
Thenetfsis allowed to propose — dynam- be possible for the netfs to save changes into
ically — any index hierarchy it desires, the cqche_ and _keep track of them for later syn-
though it must be aware that the index_chronlsatlon with the server when the network

mark it as obsolete, and the cache backen
will delete the object — data and all —
and recursively retire all that object’s chil-
dren. See section 5.5.

lease. If an objectis retire@#S-Cachewill g

search function is recursive, stack space i$S Once again available.
limited, and indices can only be children

of other indices. See section 3.2. FS-Cachedoes not, of itself, provide discon-

nected operation. That facility is left up to
Data I/0 is done on a page-by-page basighe netfsto implement — in particular with re-
Only pages which have been stored in thegard to synchronisation of modifications with
cache may be retrieved. Unstored page$he server.

are passed back to theetfsfor retrieval
from the server. See section 5.7. That Said,FS-CaChe doeBrOVide three facili-

ties to make the implementation of such a facil-
Data I/O is done directly to and from the jty possible:reservations pinning andauxil-
netfss pages. Thaetfsindicates that page iary data.
A is at index B of the data-file represented
by cookie C, and that it should be read orReservations permit theetfsto reserve a chunk
written. The cache backend may or mayof the cache for a file, so that file can be loaded
not start I/O on that page, but if it does, aor expanded up to the specified limit.

3

Pinning permits thaetfsto prevent a file from cache file attributes - especially with the pos-
being discarded to make room in the cache fosibility of attribute sharing on some backing
other files. The offline working set must be filesystems. This will improve the performance
pinned in the cache to make suravitl be there of attribute-heavy systems such as those that
when it's needed. Theetfswould have to pro- use SE Linux.

vide a way for the user to nominate the files to
be saved, since they, and not thetfs know

what their working set will be. 1.6 Performance Trade-Offs

Auxiliary data permits theetisto keep track The use of a local cache for remote filesystems

of a_cer?alnhamourr]]t of 1vyrr]|teback contfrol Infor- requires some trade-offs be made in terms of
mation in the cache. The amount of primary iant machine performance:

auxiliary data is limited, but more can be made

available by adding child objects to a data ob- _ _

ject to hold the extra information. e File lookup time

This will be INCREASED by checking
the cache before resorting to the net-
work and also by making a note of
a looked-up object in the cache.
This should beDECREASED by local

Disconnected operation could also be of use caching of metadata.
with regard tolSOFS the contents of a CD or
DVD could be loaded into the cache for later

retrieval without the need for the disc to be in ~ This Wwill be INCREASED by check-
the drive. ing the cache before resorting to

the network and by copying the

data obtained back to the cache.

This should beDECREASED by local

caching of data as a local disk should be

Currently arbitrary file attributes (such as- quicker to read.

tended attributesor ACL9 can be retained in

the cache in one of two ways: either they can be

stored in the auxiliary data (which is restricted This could be DECREASED by doing

in size - see section 1.4) or they can be attached writeback caching using the disk.

to objects as children of a special object type Write-through caching should be more or

(see section 3). less neutral since it's possible to write to
both the network and the disk at once.

To implement potential disconnected operation
for a file, thenetfsmust download all the miss-
ing bits of a file and load them into the cache in
advance of the network going away.

e File read time

1.5 File Attributes

e File write time

Special objects are data objects of a type that

isn’t one of the two primary types (index and e File replacement time

data). How special objects are used is at the This will be INCREASED by having to re-
discretion of thenetfsthat created it, but spe- tire an object or tree of objects from the
cial objects behave otherwise exactly like data ik

objects.

Optimisations may be provided later to per-The performance of the network and the server
mit cache file extended attributes to be used tare also affected, of course, since the use of

4

a local cache should hopefully reduce networlplement, and=S-Cacheshouldn’t even see the
traffic by satisfying from local storage some of direct I/O operations.

the requests that would have otherwise been

committed to the network. This may to Some|f a file is opened for direct file access when
extent counter the increases in file lookup timethere’s data for that file in the cache, the cache

and file read time due to the drag of the cache.object representing that file should be retired
and a new one not created until the file is no

. longer open for direct access.
1.7 Cache Aliasing

As previously mentioned, through the interac-1-9 System Administration

tion of two different methods of retrieving a file
(such as\FSandCIFS), itis possible to end Up ge of theFS-Cachefacility by a netfsdoes

with two or more copies of a remote file stored require anything special on the part of the
locally. This is known asache aliasing system administrator, unless thetfsdesigner

Cache aliasing is generally considered bad fof'!l'S It Forinstance, the in-kemé{FSfilesys-

a number of reasons: it requires extra resource m will use it automatically if it's t_here, whilst
to maintain multiple copies, the copies may pelne NFSfilesystem currently requires an extra

come inconsistent, and the process of mainount option to be passed to enable caching on

taining consistency may cause the data in théhat particular mount.
copies to bounce bac_:k and forth. I_ts generaIIyWhilst the exact details are subject to change, it
up to the user to avoid cache aliasing in such a

s . should not be a problem to use the cache with
situation, though theetfscan help by keeping)
. automounted filesystems as there should be no
the number of aliases down.

need to wrap the mount call or issue a post-

The currentNFS client can also suffer from mountenabler.
cache aliasing with respect to itself. If two
mounts are made of different directories on the
same server, then two superblocks will be cre-2
ated, each with its own set of inodes. Yet some
of the inodes may actually represent the same

file on the server, and would thus be aliasesgome network filesystems that can be used on
Ways to deal with this are being examined. | jnux already have their own caching facilities

. _ builtinto each individually, including¢odaand
FS-Cachedeals with the possibility of cache OpenAFSiIn addition, other operating systems

aliasing t_)y refu5|_ng m_ultlple ac_qwsmons of the have caching facilities, such &siris CacheFS
same object (be it an index object or a data ob-

ject). It is left up to thenetfsto multiplex ob-
jects. 2.1 Coda

Other Caching Schemes

1.8 Direct File Access Codd1] requires a cache. It fully downloads

the target file as part of the open process and
Files opened withO_DIRECT should not go stores it in the cache. Theodafile operations
through the cache. That is up to thetfsto im- then redirect the various I/O operations to the

equivalents on the cache file, andnapping contents are exchanged with pages in the cache
is used to handlenmap() on aCodafile (this files at appropriate times.

is required agCodainodes do not have their

own pages)i_mapping is not required with OpenAF% caching operates using the main
FS-Cache as the cache does I/O directly to thenodel assumed folFS-Cache OpenAF$
netfss pages, and smmap() can just use the however, locates its cache files by invoking
netfsinode’s pages as normal. iget() on the cache superblock with the in-

_ ode number for what it believes to be the cache
All the changes made to@odafile are stored fjle inode number as a parameter.

locally, and the entire file is written back
when a file is either flushed oclose() or

fsync() . 2.3 Sun's CacheFS

All this means thaCodamay not handle a set

of f|’Ies that won't fit in its cache, an@oda \;qqern Solarig3] variants have their own
can't operatewithout a cache. On the other gaqystem caching facilities available for use
hand, once a file has been downloaded, it Opy;it, \FS(CacheF$ The mounting protocol is
erates pretty much at normal disk-file speedsg,ch, that the cache must manually be attached

But imagine running thélle ~ program on a 1, gachNFS mount after the mount has been
file of 100MB in size... Probably all that is re- made.

quired is the first page, b@odawill download

all of it — that's fine if the file is then going £ cachedoes things a little differently: the
to be used; but if not, that's a lot of bandwidth hetqeciares an interest in using caching facil-
wasted. ities when thenetfsis mounted, and the cache
will be automatically attached either immedi-
tely if it's already available, or at the point it
ecomes available.

This does, however, makeodagood for do-
ing disconnected operation: you're guarantee@
to have to hand the entirety of any file you were

working with. .
g It would also be possible to get metfs to

And it does potentially mak€odabad at han- request caching facilities after it has been
dling sparse files, sinc€odamust download mounted, though it might be trickier from an
the whole file, holes and all, unless the Coddmplementation point of view.

server can be made to pass on information

about the gaps in afile.

3 Objects and Indexing
2.2 OpenAFS

OpenAF®] can operate without a cache. It Part of FS-Cachecan be viewed as anbject
downloads target files piecemeal as the apprcstorage interface. The objects it stores come
priate bits of the file are accessed, and placel§ two primary types:index objectsanddata

the bits in the cache if there is one. objects, but otherspecial objecttypes may be
defined on a per-parent-object basis as well.

No use is made of mapping , but instead
OpenAFSnodes own their own pages, and theCache objects have certain properties:

6

e All objects apart from the root index ob- and when the cache is being culled, special ob-
ject — which is inaccessible on theetfs jects are not automatically culled, but they are
side of things — have a parent object. still removed upon request or when their parent

.) object goes away.
e Any object may have as many child ob-

jects as it likes.

3.1 Indices
e The children of an object do not all have

to be of the same type.
Index objects are very restricted objects as they

e Index objects may only be the children of may only be the children of other indices and
other index objects. they may not carry data. However, they may
exist in more than one cache if they don’t have
any non-index children, and they may be bound
to specific caches — which binds all their chil-

« Non-index objects have a file size set be-dren to the same cache.

yond which pages may not be accessed.

¢ Non-index objectémay carry data as well
as children.

Index object instantiation within any particular
e Index objects may not carry data. cache is deferred until an index further down
the branch needs a non-index type child ob-

e Each object has a key that is part of aject instantiating within that cache — at which
keyspace associated with its parent objectpoint the full path will be instantiated in one go,

_ right up to the root index if necessary.
e Child keyspaces from two separate ob-

jects do not overlap — so two objects with |ndices are used to speed up file lookup by split-
equivalent binary blobs as their keys butting up the key to a file into a sequence of log-
with different parent objects amifferent jcal sections, and can also be used to cut down
objects. keys that are too long to use in one lump. In-
dices may also be used define a logical group

* Eat(;h °b1‘?f‘?t mayl_carry at tha”trt:kib of of objects so that the whole group can be inval-
netfsspecific auxiliary metadata that can igated in one go.

be used to manage cache consistency an

coherence. Records for index objects are created in the
virtual index tree in memory whether or not a
cache is available, so that cache binding infor-
mation can be stored for when a cache is finally
made available.

e An object may be pinned in the cache,
preventing it from being culled to make
space.

e A non-index object may have space re-

served in the cache for data, thus guaran: . :
. - 3.2 Virtual Indexing Tree
teeing a minimum amount of page storage.

Note that special objects behave exactly "keFS-Cachemalntalns a V|.rtual |n.dexmg tree in
emory for all the active objects it knows

data objects, except in two cases: when they’r<5n

) about. There's an index object at the root of the
being looked up, the type forms part of the key;tree forFS-Cach& own usé. This is theoot

3Data objects and special objects index.

The children of the root index are keyed on the
name of thenetfsthat wishes to use the of-
fered caching services. Whematfsrequests Y
caching services an index object specific to that
service will be created if one does not already
exist (see Figure 2).

Y Y

Asdef Server Server Server

NFS AFS ISOFS Inode Inode Inode

Figure 2: Primary Indices Figure 3: NFS Index Tree

Each of these is th@rimary index for the |
namedetfs, and each can be used by its owner Y
netfsin any way it desiresAFS for example,
would store per-cell indices in its primary in-
dex, using the cell name as the key.

Inode Inode

Y Y
Each primary index is versioned. Should a |xattr| | xattr dir dir | | xattr
netfsrequest a primary index of a version other
than the one stored in the cache, the entire in-
dex subtree rooted at that primary index will Figure 4: NFS Inode Attributes
be scrapped, and a new primary index will be

made.

Note that the in-memory index hierarchy may

Note that the index hierarchy maintained bynot be fully representative of the union of the
a netfswill not normally reflect the directory ©n-disk trees in all the active caches on a sys-
tree that thanetfswill display to the VFS and t€m. FS-Cachemay discard inactive objects
the user. Data objects generally are equivalr0Om memory at any time.

lent to inodes, not directory entries, and so

hardlink and rename maintenance is not norg 3 pata-Containing Objects

mally a problem for the cache.

For instance, with NFS the primary index might Any data object may contain quantities of pages
be used to hold an index per server — keyedf data. These pages are held on behalf of the
by IP address — and each server index used toetfs The pages are accessed by index num-
hold a data object per inode — keyed by NFSber rather than by file position, and the object
filehandle (see Figure 3). can be viewed as having a sparse array of pages

attached to it.
The inode objects could then have child objects

of their own to represent extended attributes oHoles in this array are considered to represent
directory entries (see Figure 4). pages as yet unfetched from thetfs server,

and if FS-Cacheis asked to retrieve one of 5 The NetfsKernel Interface
these, it will return an appropriate error rather

than just returning a block full of zeros. Thenetfskernel interface is documented in:

Special objects may also contain data in exacmf)ocumentation/filesystems/

the same was as data objects can. caching/netfs-api.txt

The in-kernel client support can be obtained by

including:
4 Cache Backends neiiding

linux/fscache.h

The job of actually storing and retrieving data is _
the job of acache backend FS-Cachepasses 9.1 Cookies
the requests from theetfsto the appropriate

cache backend to actually deal with it. The netfsand FS-Cachetalk to each other by

. means ofcookies These are elements of the
Ther(.a are currently two candidate cache backy, . -, indexing tree thaES-Cachemaintains,
ends: but they appear as opaque pointers tortats

They are of type:

CacheFS
* struct fscache_cookie *

e CacheFiles . . . :
A NULL pointer is considered to be a negative

cookie and represents an uncached object.

CacheFSis a quasi-filesystem that permits a . .
block device to be mounted and used as a caché netfsreceives a cookie froS-Cachewvhen

It uses the mount system call to make the cachl registers. This cookie represents the primary
available, and so doesn’t require any special adhdex of thisnetfs A netfscan acquire fur-

tivation interface. The cache can be deactivatef1€r cookies by askingS-Cacheto perform a
simply by unmounting it. lookup in an object represented by a cookie it

already has.

CacheFilesis a cache rooted in a directory in h Kie i ired bvmtt bi
an already mounted filesystem. This is more//Nen a cookie Is acquired byreetts an object

use where an extra block device is hard to comd€finition must be supplied. Object definitions
by, or re-partitioning is undesirable. This uses'® described using the following structure:

the VFS/VM filesystem interfaces to get an-
other filesystem (such d@xt3 to do the reg-
uisite 1/0 on its behalf. This contains the cookie name; the object type;
and operations to retrieve the object key and
Both of these are subject to change in the fUtur%uxiliary data, to validate an object read from

in their implementation details, and neither areyjisk py it auxiliary data, to select a cache, and
fully complete at the time of writing this pa- o managmetfspages.

per. See section 6 for information on the state
of these components, and section 6.1 for perNote that anetfss primary index is defined by
formance data at the time of writing. FS-Cacheand is not subject to change.

struct fscache_object_def

5.2 Negative Cookies When anetfshas finished with the caching fa-
cilities, it should unregister itself by calling:

A negative cookieis a NULL cookie pointer. fscache unregister_netfs()

Negative cookies can be used anywhere that

non-negative cookies can, but with the effectThis is also passed a pointer to thetfsdefini-
that theFS-Cachédieader file wrapper functions tion. It will relinquish the primary index cookie
return an appropriate error as fast as possible.automatically.

Note that attempting to acquire a new cookie

from a negative cookie will simply resultin an- 5.4 Acquiring Cookies
other negative cookie. Attempting to store or
retrieve a page using a negative cookie as th
object specifier will simply result iIENOBUFS
being issued.

S\ netfscan acquire further cookies by passing
a cookie it already has along with an object def-
inition and a private datum to:

FS-Cachewill also issue a negative cookie if
an error such aENOMEMr EIO occurred, a
non-lnde.x object's Pafer?t has'no backing CaCheThe cookie passed in represents the object that
the backing cache is being withdrawn from theWiII be the parent of the new one

system, or the backing cache is stopped due to '

an earlier fatal error. The private datum will be recorded in the
cookie (if one is returned) and passed to the
various callback operations listed in the object
definition.

fscache_acquire_cookie()

5.3 Registering TheNetfs

The cache will invoke those operations in the
cookie definition to retrieve the key and the
auxiliary data, and to validate the auxiliary data
fscache_register_netfs() associated with an object stored on disk.

Before thenetfsmay access any of the caching
facilities, it must register itself by calling:

This is passed a pointer to thetfsdefinition. If the object requested is of non-index type, this
function will search the cache to which the par-

The netfsdefinition doesn’t contain a lot at the ent object is bound to see if the object is already
moment: just thanetfss name and index struc- present. If a match is found, the owningtfs
ture version number, and a pointer to a table ofvill be asked to validate the object. The valida-
pernetfsoperations which is currently empty. tion routine may request that the object be used,

updated or discarded.
After a successful registration, the primary in-

dex pointer in theetfsdefinition will have been If a match is not found, an object will be cre-
filled in with a pointer to the primary index ob- ated if sufficient disk space and memory are
ject of thenetfs available, otherwise a negative cookie will be

returned.
The registration will fail if it runs out of mem-

ory or if there’s anothenetfsof the same name If the parent object is not bound to a cache, then
already registered. a negative cookie will be returned.

10

Cookies may not be acquired twice without be-fscache_update_cookie()

ing relinquished in between. Aetfsmust it- This can be used to demand that the aux-

self deal with potential cookie multiplexing and iliary data attached to an object be updated

aliasing — such as might happen with multiplefrom anetfss own records. The auxiliary data

mounts off the samBIFSserver. may also be updated at other times, but there’s
no guarantee of when.

55 Relinquishing Cookies fscache pln COOkieO

fscache_unpin_cookie()

When anetfsno longer needs the object at- These can be used to request that an ob-

tached to a cookie, it should relinquish theject be pinned in the cache it currently resides
cookie: and to unpin a previously pinned cache.

fscache_relinquish_cookie() fscache_reserve space()

This can be used to reserve a certain amount of
When this is called, the caller may also indi- disk space in the cache for a data object to store
cate that they wish the object to be retired perdata in. The reservation will be extended to
manently — in which case the object and allinclude for any metadata required to store the
its children, its children’s children, etc. will be reserved data. A reservation may be cancelled
deleted from the cache. by reducing the reservation size to zero.

Prior to relinquishing a cookie, aetfsmust The pinning and reservation operations may
have uncacheadll the pages read or allocated iy jssue erroENOBUFSo indicate that an

to that cookie, and all the child objects acquiredypject is unbacked, and errEBNOSPQo indi-

on that cookie must have been themselves relingate that there’s not enough disk space to set

quished. aside some for pinning and reservation.

The primary index should not be relinquished
directly. This will be taken care of when the
netfsdefinition is unregistered.

Both reservation and pinning persist beyond the
cookie being released unless the cookie or one
of its ancestors in the tree is also retired.

5.6 Control Operations _
5.7 Data Operations

There are a number d¥S-Cacheoperations _
that can be used to control the object attachedhere are a number dfS-Cacheoperations

to a cookie. that can be used to store data in the object at-
o tached to a cookie and then to retrieve it again.
fscache_set_i_size() Note thatFS-Cachemust be informed of the

This is used to set the maximum file sizemaximum data size of a non-index object be-
on a non-index object. Err@ENOBUFSvillbe fore an attempt is made to access pages in that
obtained if an attempt is made to access a pagsbject.

beyond this size. This is provided to allow the

cache backend to optimise the on-disk cache téscache_alloc_page()

store an object of this size; it does not implyThis is used to indicate to the cache that
that any storage will be set aside. a netfs page will be committed to the cache

11

at some point, and that any previous content©ut-of-memory errors are normally passed

may be discarded without being read. back to thenetfs, which is then expected to deal
with them appropriately, possibly by aborting
fscache_read_or_alloc_page() the operation it was trying to do.

This is used to request the cache attempt
to read the specified page from disk, and/O errors in a cache are more complex to deal
otherwise allocate space for it if not present aswith. If an I/O error happens in a cache, then

it will be fetched shortly from the server. the cache will be stopped. No more cache trans-
actions will take place, and all further attempts
fscache_read_or_alloc_pages() to do cache 1/0 will be gracefully failed.

This is used to read or allocate several pages in

one go. This is intended to be used from thef the I/0 error happens during cookie acqui-
readpages address space operation. sition, then a negative cookie will be returned,
and all caching operations based on that cookie

fsc.ache_write_page() will simply give further negative cookies or
This is used to store a netfs page t0 aENOBUES

previously read or allocated cache page.

If the 1/O error happens during the reading of
pages from the cache, then if any pages as yet
unprocessed will be returned to the caller if the
“%cache reader function is still in progress; and
%y pages already committed to the I/O process
will either complete normally, or will have their
callbacks invoked with an error indication. In
the latter case, theetfsshould fetch the page
O1‘rom the server again.

fscache_uncache_page()
fscache_uncache_pagevec()

These are used to release the referen
put on a cache page or a set of cache pages
a read or allocate operation.

The allocate, read, and write operations will is-
sue erroENOBUF$ the cookie given is nega-
tive or if there’s no space on disk in the cache t
honour the operation. The read operation will
issue erroENODATAf asked to retrieve data it
doesn’t have but that it can reserve space for.

If the 1/O error happens during the writing of
pages to the cache, then either the fscache write
will fail with ENOBUFSr the callback will be

The read and write operations may completénVOked with an error. In either case, it. can.be
asynchronously, and will make use of the Sup_assumed that the page is not safely written into
plied callback in all cases where 1/0 is startedn® cache.

to indicate to thenetfsthe success or failure of

the operation. If a read operation failed on 8 9 Data Invalidation And Truncation

page, then thaetfswill need to go back to the

server.

FS-Cachedoes not provide data invalidation
58 Error Handling and truncation operations per-se. Instead the

object should be retired (by relinquishing it

with the retirement option set) and acquired
FS-Cachehandles many errors as it can inter-anew. Merely shrinking the maximum file size
nally and never lets theetfssee them, prefer- down is not sufficient, especially as represen-
ring to translate them into negative cookies ortations of extended attributes and suchlike may
ENOBUF&s appropriate to the context. not be expunged by truncation.

12

6 Current State 6.1 Current Performance

The FS-Cachdacility and its associated cache

g?nceki?(\jvsri t?r?g]eut;f)iltrrlézrrﬁcﬁ'igeargojnc?(tertzee-some idea of the perfor.mano@acheFlleSNas
lopment at I’?ed Hat at this time. The statesb.enChmarked OfEEXI3 with 1K and 4K block

V? (;p ndividual) foll ~sizes and on alsGacheFSThe two caches and

ofthe individual components are as follows: the block device raw tests were run on the same

partition on the client’s disk.

The caches have been tested WitRSto get

e FS-Cache _ . . .
At this time FS-Cacheis stable. New The client test machine contains a pair of
features may be added, but none ar00MHz PentiumPro CPUs, 128MB of mem-

ory, an Ethernet Pro 100 NIC, and a Fuijitsu
MPG3204AT 20GB 5400rpm hard disk drive
e CacheFS running in MDMA2 mode.
CacheFSis currently stalled. Although
the performance numbers obtained aréelhe server machine contains an Athlon64-
initially good, after a cache has beenFX51 with 5GB of RAM, an Ethernet Pro 100
used for a while read-back performanceNIC, and a pair of RAID1'd WDC WD2000JD
degrades badly due to fragmentation.7200rpm SATA hard disk drives running in
There are ways planned to ameliorate thisUDMA6 mode.
but they require implementation.

planned.

. The client is connected through a pair of

* CacheF!Ies 100Mbps switches to the server, and the NFS
CacheFiles has been prototyped and ;,nnection was NFS3 over TCP. Before doing
is under development at the momenty,qp, et the files on the server were pulled
n pr_eference toCacheFSas it _doesnt into the server’s pagecache by copying them to
require a separate block device to be/dev/null . Each test was run several times,

made available, bUt_ can instead run on ar?ebooting the client between iterations. The
already mounted filesystem. Currently|q oot number for each case was taken.
only Ext3is being used with it.

e NFS Reading a 100MB file:
TheNFSinterface is sufficiently complete
to give read/write access through the Cache| CachefFiles CacheFS
cache. It does, however, suffer from local_State | IKExt3 4K Ext3
cache aliasing problems that need sorting None | 26s 26s 26s
out. Cold 44s 35s 27s

Warm 19s 14s 11s
e AFS

The AFS interfaces is complete as far Reading 100MB of raw data from the same
as the in-kernelAFS filesystem is cur- block device used to host the caches can be
rently able to goAFSdoesnotsuffer from done in 11s.

cache aliasing locally, but the filesystem

itself does not yet have write support. And reading a 200MB file:

13

Cache CacheFiles CacheFS http://people.redhat.com/
state | 1K Ext3 4K Ext3 ~dhowells/cachefs/
None 46s 46s 46s
Cold 79s 62s 47s and:

Warm 37s 29s 23s

http://people.redhat.com/~steved/

Reading 200MB of raw data from the samecachefs/
block device used to host the caches can b

. S?he FS-Cache patches add documentation into the
done in 22s.

kernel sources here;:

A_S can be seen, a freshly pr_epar@dcheFS Documentation/filesystems/caching/
gives excellent performance figures, but these

numbers don’t show the degradation over time

for large files.

o References
The performance oCacheFileswill degrade

over time as the backing filesystem does, if it [1] Information abouCodacan be found at:
does — hutCacheFiles biggest problem is
that it currently has to bounce the data between
the netfspages and the backing filesystems’s [2] Information aboutDpenAFSan be found at:
pages. This means it doeda of page-sized
memory to memory copies. It also has to use
bmapto probe for holes when retrieving pages, [3] Information aboutSuris CacheFSacility can
something that can be improved by implement- be found in their online documentation:
ing hole detection in the backing filesystem. http://docs.sun.com/

http://www.coda.cs.cmu.edu/

http://www.openafs.org/

. . Solaris 9 12/02 System Administrator Col-
The performance afacheFilescould possibly lection » System A?/dministration Guide: Ba-

be improved b_y us_lng direct /O as well — that sic Administration » Chapter 40 Using The
way the backing filesystem really would read CacheFs File System (Tasks)

and write directly from/to thenetfss pages.
That would obviate the need for backing pages
and would reduce the large memory copies.

http://docs.sun.com/app/docs/
doc/816-4552/6mao03121?a=view

Note that CacheFilesis still being imple-
mented, so these numbers are very preliminary.

7 Further Information

There’s a mailing list available foFS-Cache
specific discussions:
mailto:linux-cachefs@redhat.com

Patches may be obtained from:

14

