
FS-Cache: A Network Filesystem Caching Facility

David Howells
Red Hat UK Ltd

dhowells@redhat.com

Abstract

FS-Cache is a kernel facility by which a net-
work filesystem or other service can cache data
locally, trading disk space to gain performance
improvements for access to slow networks and
media. It can be used by any filesystem that
wishes to use it, for example AFS, NFS, CIFS,
and ISOFS. It can support a variety of back-
ends: different types of cache that have differ-
ent trade-offs.

FS-Cache is designed to impose as little over-
head and as few restrictions as possible on the
client network filesystem using it, whilst still
providing the essential services.

The presence of a cache indirectly improves
performance of the network and the server by
reducing the need to go to the network.

1 Overview

TheFS-Cachefacility is intended for use with
network filesystems, permitting them to use
persistent local storage to cache data and meta-
data, but it may also be used to cache other sorts
of media such as CDs.

The basic principle is that some media are ef-
fectively slower than others — either because
they are physically slower, or because they

must be shared — and so a cache on a faster
medium can be used to improve general perfor-
mance by reducing the amount of traffic to or
across the slower media.

Another reason for using a cache is that the
slower media may be unreliable for some rea-
son — for example a laptop might lose contact
with a wireless network, but the working files
might still need to be available. A cache can
help with this by storing the working set of data
and thus permitting disconnected operation (of-
fline working).

1.1 Organisation

FS-Cacheis a thin layer (see Figure 1) in the
kernel that permits client filesystems (such as
NFS, AFS, CIFS, ISOFS) on one side to request
caching services without knowing what sort of
cache is attached, if any.

NFS

AFS

ISO9660

FS−Cache

CacheFS

CacheFiles

Figure 1: Cache architecture

1



On the other sideFS-Cachefarms those re-
quests off to the available caches, be they
CacheFS, CacheFiles, or whatever (see sec-
tion 4) — or the request is gracefully denied
if there isn’t an available cache.

FS-Cachepermits caches to be shared between
several different sorts ofnetfs1, though it does
not in any way associate two different views of
the same file obtained by two separate means.
If a file is read by bothNFSandCIFS, for in-
stance,two copies of the file will end up in the
cache (see section 1.7).

It is possible to have more than one cache avail-
able at one time. In such a case, the available
caches have unique tags assigned to them, and
a netfsmay use these to bind a mount to a spe-
cific cache.

1.2 Operating Principles

FS-Cachedoes not itself require that anetfsfile
be completely loaded into the cache before that
file may be accessed through the cache. This is
because:

1. it must be practical to operatewithout a
cache;

2. it must be possible to open a remote file
that’s larger than the cache;

3. the combined size of all open remote files
— including mapped libraries — must not
be limited to the size of the cache; and

4. the user should not be forced to download
an entire file just to do a one-off access of
a small portion of it (such as might be done
with thefile program).

1Note that the client filesystems will be referred to
generically as thenetfsin this document.

FS-Cachemakes no use of thei_mapping
pointer on thenetfs inode as this would force
the filesystems using the cache either to be bi-
modal2 in implementation or to always require
a cache for operation, with the files completely
downloaded before use — none of which is ac-
ceptable for filesystems such asNFS.

FS-Cacheis built instead around the idea that
data should be served out of the cache in pages
as and when requested by thenetfs using it.
That said, thenetfsmay, if it chooses, down-
load the whole file and install it in the cache be-
fore permitting the file to be used — rejecting
the file if it won’t fit. All FS-Cachewould see
is a reservation (see section 1.4) followed by a
stream of pages to entirely fill out that reserva-
tion.

Furthermore,FS-Cacheis built around the prin-
ciple that thenetfs’s pages should belong to
the netfs’s inodes, and soFS-Cachereads and
writes data directly to or from those pages.

Lastly, files in the cache are accessed by se-
quences of keys, where keys are arbitrary blobs
of binary data. Each key in a sequence is used
to perform a lookup in an index to find the next
index to consult or, finally, the file to access.

1.3 Facilities Provided

FS-Cacheprovides the following facilities:

1. More than one cache can be used at once.
Caches can be selected explicitly by use of
tags.

2. Caches can be added or removed at any
time.

2Bimodality would involve having the filesystem op-
erate very differently in each case

2



3. Thenetfsis provided with an interface that
allows either party to withdraw caching fa-
cilities from a file (required for point 2).
See section 5.

4. The interface to thenetfsreturns as few er-
rors as possible, preferring rather to let the
netfsremain oblivious. This includes I/O
errors within the cache, which are hidden
from thenetfs. See section 5.8.

5. Cookies are used to represent indices, data
files and other objects to thenetfs. See sec-
tions 3 and 5.1.

6. Cache absence is handled gracefully; the
netfsdoesn’t really need to do anything as
theFS-Cachefunctions will just observe a
NULL pointer — a negative cookie — and
return immediately. See section 5.2.

7. Cache objects can be "retired" upon re-
lease. If an object is retired,FS-Cachewill
mark it as obsolete, and the cache backend
will delete the object — data and all —
and recursively retire all that object’s chil-
dren. See section 5.5.

8. Thenetfsis allowed to propose — dynam-
ically — any index hierarchy it desires,
though it must be aware that the index
search function is recursive, stack space is
limited, and indices can only be children
of other indices. See section 3.2.

9. Data I/O is done on a page-by-page basis.
Only pages which have been stored in the
cache may be retrieved. Unstored pages
are passed back to thenetfs for retrieval
from the server. See section 5.7.

10. Data I/O is done directly to and from the
netfs’s pages. Thenetfsindicates that page
A is at index B of the data-file represented
by cookie C, and that it should be read or
written. The cache backend may or may
not start I/O on that page, but if it does, a

netfscallback will be invoked to indicate
completion. The I/O may be either syn-
chronous or asynchronous.

11. A small piece of auxiliary data may be
stored with each object. The format and
usage of this data is entirely up to thenetfs.
The main purpose is for coherency man-
agement.

12. Thenetfsprovides a "match" function for
index searches. In addition to saying
whether or not a match was made, this can
also specify that an entry should be up-
dated or deleted. This should make use of
auxiliary data to maintain coherency. See
section 5.4.

1.4 Disconnected Operation

Disconnected operation (offline working) re-
quires that the set of files required for opera-
tion is fully loaded into the cache, so that the
netfscan provide their contents without having
to resort to the network. Not only that, it must
be possible for the netfs to save changes into
the cache and keep track of them for later syn-
chronisation with the server when the network
is once again available.

FS-Cachedoes not, of itself, provide discon-
nected operation. That facility is left up to
thenetfsto implement — in particular with re-
gard to synchronisation of modifications with
the server.

That said,FS-Cache doesprovide three facili-
ties to make the implementation of such a facil-
ity possible:reservations, pinning andauxil-
iary data.

Reservations permit thenetfsto reserve a chunk
of the cache for a file, so that file can be loaded
or expanded up to the specified limit.

3



Pinning permits thenetfsto prevent a file from
being discarded to make room in the cache for
other files. The offline working set must be
pinned in the cache to make sure itwill be there
when it’s needed. Thenetfswould have to pro-
vide a way for the user to nominate the files to
be saved, since they, and not thenetfs, know
what their working set will be.

Auxiliary data permits thenetfs to keep track
of a certain amount of writeback control infor-
mation in the cache. The amount of primary
auxiliary data is limited, but more can be made
available by adding child objects to a data ob-
ject to hold the extra information.

To implement potential disconnected operation
for a file, thenetfsmust download all the miss-
ing bits of a file and load them into the cache in
advance of the network going away.

Disconnected operation could also be of use
with regard toISOFS: the contents of a CD or
DVD could be loaded into the cache for later
retrieval without the need for the disc to be in
the drive.

1.5 File Attributes

Currently arbitrary file attributes (such asex-
tended attributesor ACLs) can be retained in
the cache in one of two ways: either they can be
stored in the auxiliary data (which is restricted
in size - see section 1.4) or they can be attached
to objects as children of a special object type
(see section 3).

Special objects are data objects of a type that
isn’t one of the two primary types (index and
data). How special objects are used is at the
discretion of thenetfsthat created it, but spe-
cial objects behave otherwise exactly like data
objects.

Optimisations may be provided later to per-
mit cache file extended attributes to be used to

cache file attributes - especially with the pos-
sibility of attribute sharing on some backing
filesystems. This will improve the performance
of attribute-heavy systems such as those that
use SE Linux.

1.6 Performance Trade-Offs

The use of a local cache for remote filesystems
requires some trade-offs be made in terms of
client machine performance:

• File lookup time

This will be INCREASED by checking
the cache before resorting to the net-
work and also by making a note of
a looked-up object in the cache.
This should be DECREASED by local
caching of metadata.

• File read time

This will be INCREASED by check-
ing the cache before resorting to
the network and by copying the
data obtained back to the cache.
This should be DECREASED by local
caching of data as a local disk should be
quicker to read.

• File write time

This could be DECREASED by doing
writeback caching using the disk.
Write-through caching should be more or
less neutral since it’s possible to write to
both the network and the disk at once.

• File replacement time

This will be INCREASED by having to re-
tire an object or tree of objects from the
disk.

The performance of the network and the server
are also affected, of course, since the use of

4



a local cache should hopefully reduce network
traffic by satisfying from local storage some of
the requests that would have otherwise been
committed to the network. This may to some
extent counter the increases in file lookup time
and file read time due to the drag of the cache.

1.7 Cache Aliasing

As previously mentioned, through the interac-
tion of two different methods of retrieving a file
(such asNFSandCIFS), it is possible to end up
with two or more copies of a remote file stored
locally. This is known ascache aliasing.

Cache aliasing is generally considered bad for
a number of reasons: it requires extra resources
to maintain multiple copies, the copies may be-
come inconsistent, and the process of main-
taining consistency may cause the data in the
copies to bounce back and forth. It’s generally
up to the user to avoid cache aliasing in such a
situation, though thenetfscan help by keeping
the number of aliases down.

The currentNFS client can also suffer from
cache aliasing with respect to itself. If two
mounts are made of different directories on the
same server, then two superblocks will be cre-
ated, each with its own set of inodes. Yet some
of the inodes may actually represent the same
file on the server, and would thus be aliases.
Ways to deal with this are being examined.

FS-Cachedeals with the possibility of cache
aliasing by refusing multiple acquisitions of the
same object (be it an index object or a data ob-
ject). It is left up to thenetfsto multiplex ob-
jects.

1.8 Direct File Access

Files opened withO_DIRECT should not go
through the cache. That is up to thenetfsto im-

plement, andFS-Cacheshouldn’t even see the
direct I/O operations.

If a file is opened for direct file access when
there’s data for that file in the cache, the cache
object representing that file should be retired
and a new one not created until the file is no
longer open for direct access.

1.9 System Administration

Use of theFS-Cachefacility by a netfsdoes
not require anything special on the part of the
system administrator, unless thenetfsdesigner
wills it. For instance, the in-kernelAFSfilesys-
tem will use it automatically if it’s there, whilst
the NFSfilesystem currently requires an extra
mount option to be passed to enable caching on
that particular mount.

Whilst the exact details are subject to change, it
should not be a problem to use the cache with
automounted filesystems as there should be no
need to wrap the mount call or issue a post-
mount enabler.

2 Other Caching Schemes

Some network filesystems that can be used on
Linux already have their own caching facilities
built into each individually, includingCodaand
OpenAFS. In addition, other operating systems
have caching facilities, such asSun’s CacheFS.

2.1 Coda

Coda[1] requires a cache. It fully downloads
the target file as part of the open process and
stores it in the cache. TheCodafile operations
then redirect the various I/O operations to the

5



equivalents on the cache file, andi_mapping
is used to handlemmap() on aCodafile (this
is required asCoda inodes do not have their
own pages).i_mapping is not required with
FS-Cache as the cache does I/O directly to the
netfs’s pages, and sommap() can just use the
netfsinode’s pages as normal.

All the changes made to aCodafile are stored
locally, and the entire file is written back
when a file is either flushed onclose() or
fsync() .

All this means thatCodamay not handle a set
of files that won’t fit in its cache, andCoda
can’t operatewithout a cache. On the other
hand, once a file has been downloaded, it op-
erates pretty much at normal disk-file speeds.
But imagine running thefile program on a
file of 100MB in size... Probably all that is re-
quired is the first page, butCodawill download
all of it — that’s fine if the file is then going
to be used; but if not, that’s a lot of bandwidth
wasted.

This does, however, makeCodagood for do-
ing disconnected operation: you’re guaranteed
to have to hand the entirety of any file you were
working with.

And it does potentially makeCodabad at han-
dling sparse files, sinceCoda must download
the whole file, holes and all, unless the Coda
server can be made to pass on information
about the gaps in a file.

2.2 OpenAFS

OpenAFS[2] can operate without a cache. It
downloads target files piecemeal as the appro-
priate bits of the file are accessed, and places
the bits in the cache if there is one.

No use is made ofi_mapping , but instead
OpenAFSinodes own their own pages, and the

contents are exchanged with pages in the cache
files at appropriate times.

OpenAFS’s caching operates using the main
model assumed forFS-Cache. OpenAFS,
however, locates its cache files by invoking
iget() on the cache superblock with the in-
ode number for what it believes to be the cache
file inode number as a parameter.

2.3 Sun’s CacheFS

Modern Solaris[3] variants have their own
filesystem caching facilities available for use
with NFS(CacheFS). The mounting protocol is
such that the cache must manually be attached
to eachNFS mount after the mount has been
made.

FS-Cachedoes things a little differently: the
netfsdeclares an interest in using caching facil-
ities when thenetfsis mounted, and the cache
will be automatically attached either immedi-
ately if it’s already available, or at the point it
becomes available.

It would also be possible to get anetfs to
request caching facilities after it has been
mounted, though it might be trickier from an
implementation point of view.

3 Objects and Indexing

Part ofFS-Cachecan be viewed as anobject
storage interface. The objects it stores come
in two primary types:index objectsanddata
objects, but otherspecial objecttypes may be
defined on a per-parent-object basis as well.

Cache objects have certain properties:

6



• All objects apart from the root index ob-
ject — which is inaccessible on thenetfs
side of things — have a parent object.

• Any object may have as many child ob-
jects as it likes.

• The children of an object do not all have
to be of the same type.

• Index objects may only be the children of
other index objects.

• Non-index objects3 may carry data as well
as children.

• Non-index objects have a file size set be-
yond which pages may not be accessed.

• Index objects may not carry data.

• Each object has a key that is part of a
keyspace associated with its parent object.

• Child keyspaces from two separate ob-
jects do not overlap — so two objects with
equivalent binary blobs as their keys but
with different parent objects aredifferent
objects.

• Each object may carry a small blob of
netfs-specific auxiliary metadata that can
be used to manage cache consistency and
coherence.

• An object may be pinned in the cache,
preventing it from being culled to make
space.

• A non-index object may have space re-
served in the cache for data, thus guaran-
teeing a minimum amount of page storage.

Note that special objects behave exactly like
data objects, except in two cases: when they’re
being looked up, the type forms part of the key;

3Data objects and special objects

and when the cache is being culled, special ob-
jects are not automatically culled, but they are
still removed upon request or when their parent
object goes away.

3.1 Indices

Index objects are very restricted objects as they
may only be the children of other indices and
they may not carry data. However, they may
exist in more than one cache if they don’t have
any non-index children, and they may be bound
to specific caches — which binds all their chil-
dren to the same cache.

Index object instantiation within any particular
cache is deferred until an index further down
the branch needs a non-index type child ob-
ject instantiating within that cache — at which
point the full path will be instantiated in one go,
right up to the root index if necessary.

Indices are used to speed up file lookup by split-
ting up the key to a file into a sequence of log-
ical sections, and can also be used to cut down
keys that are too long to use in one lump. In-
dices may also be used define a logical group
of objects so that the whole group can be inval-
idated in one go.

Records for index objects are created in the
virtual index tree in memory whether or not a
cache is available, so that cache binding infor-
mation can be stored for when a cache is finally
made available.

3.2 Virtual Indexing Tree

FS-Cachemaintains a virtual indexing tree in
memory for all the active objects it knows
about. There’s an index object at the root of the
tree forFS-Cache’s own use. This is theroot
index.

7



The children of the root index are keyed on the
name of thenetfs that wishes to use the of-
fered caching services. When anetfsrequests
caching services an index object specific to that
service will be created if one does not already
exist (see Figure 2).

.fsdef

NFS AFS ISOFS

Figure 2: Primary Indices

Each of these is theprimary index for the
namednetfs, and each can be used by its owner
netfsin any way it desires.AFS, for example,
would store per-cell indices in its primary in-
dex, using the cell name as the key.

Each primary index is versioned. Should a
netfsrequest a primary index of a version other
than the one stored in the cache, the entire in-
dex subtree rooted at that primary index will
be scrapped, and a new primary index will be
made.

Note that the index hierarchy maintained by
a netfswill not normally reflect the directory
tree that thatnetfswill display to the VFS and
the user. Data objects generally are equiva-
lent to inodes, not directory entries, and so
hardlink and rename maintenance is not nor-
mally a problem for the cache.

For instance, with NFS the primary index might
be used to hold an index per server — keyed
by IP address — and each server index used to
hold a data object per inode — keyed by NFS
filehandle (see Figure 3).

The inode objects could then have child objects
of their own to represent extended attributes or
directory entries (see Figure 4).

.fsdef

NFS

Server Server Server

Inode Inode Inode

Figure 3: NFS Index Tree

xattr xattrdirdir

Inode Inode

xattr

Figure 4: NFS Inode Attributes

Note that the in-memory index hierarchy may
not be fully representative of the union of the
on-disk trees in all the active caches on a sys-
tem. FS-Cachemay discard inactive objects
from memory at any time.

3.3 Data-Containing Objects

Any data object may contain quantities of pages
of data. These pages are held on behalf of the
netfs. The pages are accessed by index num-
ber rather than by file position, and the object
can be viewed as having a sparse array of pages
attached to it.

Holes in this array are considered to represent
pages as yet unfetched from thenetfsserver,

8



and if FS-Cacheis asked to retrieve one of
these, it will return an appropriate error rather
than just returning a block full of zeros.

Special objects may also contain data in exactly
the same was as data objects can.

4 Cache Backends

The job of actually storing and retrieving data is
the job of acache backend. FS-Cachepasses
the requests from thenetfs to the appropriate
cache backend to actually deal with it.

There are currently two candidate cache back-
ends:

• CacheFS

• CacheFiles

CacheFS is a quasi-filesystem that permits a
block device to be mounted and used as a cache.
It uses the mount system call to make the cache
available, and so doesn’t require any special ac-
tivation interface. The cache can be deactivated
simply by unmounting it.

CacheFilesis a cache rooted in a directory in
an already mounted filesystem. This is more
use where an extra block device is hard to come
by, or re-partitioning is undesirable. This uses
the VFS/VM filesystem interfaces to get an-
other filesystem (such asExt3) to do the req-
uisite I/O on its behalf.

Both of these are subject to change in the future
in their implementation details, and neither are
fully complete at the time of writing this pa-
per. See section 6 for information on the state
of these components, and section 6.1 for per-
formance data at the time of writing.

5 TheNetfsKernel Interface

Thenetfskernel interface is documented in:

Documentation/filesystems/
caching/netfs-api.txt

The in-kernel client support can be obtained by
including:

linux/fscache.h

5.1 Cookies

The netfsandFS-Cachetalk to each other by
means ofcookies. These are elements of the
virtual indexing tree thatFS-Cachemaintains,
but they appear as opaque pointers to thenetfs.
They are of type:

struct fscache_cookie *

A NULL pointer is considered to be a negative
cookie and represents an uncached object.

A netfsreceives a cookie fromFS-Cachewhen
it registers. This cookie represents the primary
index of this netfs. A netfs can acquire fur-
ther cookies by askingFS-Cacheto perform a
lookup in an object represented by a cookie it
already has.

When a cookie is acquired by anetfs, an object
definition must be supplied. Object definitions
are described using the following structure:

struct fscache_object_def

This contains the cookie name; the object type;
and operations to retrieve the object key and
auxiliary data, to validate an object read from
disk by it auxiliary data, to select a cache, and
to managenetfspages.

Note that anetfs’s primary index is defined by
FS-Cache, and is not subject to change.

9



5.2 Negative Cookies

A negative cookieis a NULL cookie pointer.
Negative cookies can be used anywhere that
non-negative cookies can, but with the effect
that theFS-Cacheheader file wrapper functions
return an appropriate error as fast as possible.

Note that attempting to acquire a new cookie
from a negative cookie will simply result in an-
other negative cookie. Attempting to store or
retrieve a page using a negative cookie as the
object specifier will simply result inENOBUFS
being issued.

FS-Cachewill also issue a negative cookie if
an error such asENOMEMor EIO occurred, a
non-index object’s parent has no backing cache,
the backing cache is being withdrawn from the
system, or the backing cache is stopped due to
an earlier fatal error.

5.3 Registering TheNetfs

Before thenetfsmay access any of the caching
facilities, it must register itself by calling:

fscache_register_netfs()

This is passed a pointer to thenetfsdefinition.

Thenetfsdefinition doesn’t contain a lot at the
moment: just thenetfs’s name and index struc-
ture version number, and a pointer to a table of
per-netfsoperations which is currently empty.

After a successful registration, the primary in-
dex pointer in thenetfsdefinition will have been
filled in with a pointer to the primary index ob-
ject of thenetfs.

The registration will fail if it runs out of mem-
ory or if there’s anothernetfsof the same name
already registered.

When anetfshas finished with the caching fa-
cilities, it should unregister itself by calling:

fscache_unregister_netfs()

This is also passed a pointer to thenetfsdefini-
tion. It will relinquish the primary index cookie
automatically.

5.4 Acquiring Cookies

A netfscan acquire further cookies by passing
a cookie it already has along with an object def-
inition and a private datum to:

fscache_acquire_cookie()

The cookie passed in represents the object that
will be the parent of the new one.

The private datum will be recorded in the
cookie (if one is returned) and passed to the
various callback operations listed in the object
definition.

The cache will invoke those operations in the
cookie definition to retrieve the key and the
auxiliary data, and to validate the auxiliary data
associated with an object stored on disk.

If the object requested is of non-index type, this
function will search the cache to which the par-
ent object is bound to see if the object is already
present. If a match is found, the owningnetfs
will be asked to validate the object. The valida-
tion routine may request that the object be used,
updated or discarded.

If a match is not found, an object will be cre-
ated if sufficient disk space and memory are
available, otherwise a negative cookie will be
returned.

If the parent object is not bound to a cache, then
a negative cookie will be returned.

10



Cookies may not be acquired twice without be-
ing relinquished in between. Anetfsmust it-
self deal with potential cookie multiplexing and
aliasing — such as might happen with multiple
mounts off the sameNFSserver.

5.5 Relinquishing Cookies

When anetfs no longer needs the object at-
tached to a cookie, it should relinquish the
cookie:

fscache_relinquish_cookie()

When this is called, the caller may also indi-
cate that they wish the object to be retired per-
manently — in which case the object and all
its children, its children’s children, etc. will be
deleted from the cache.

Prior to relinquishing a cookie, anetfs must
have uncachedall the pages read or allocated
to that cookie, and all the child objects acquired
on that cookie must have been themselves relin-
quished.

The primary index should not be relinquished
directly. This will be taken care of when the
netfsdefinition is unregistered.

5.6 Control Operations

There are a number ofFS-Cacheoperations
that can be used to control the object attached
to a cookie.

fscache_set_i_size()
This is used to set the maximum file size
on a non-index object. ErrorENOBUFSwill be
obtained if an attempt is made to access a page
beyond this size. This is provided to allow the
cache backend to optimise the on-disk cache to
store an object of this size; it does not imply
that any storage will be set aside.

fscache_update_cookie()
This can be used to demand that the aux-
iliary data attached to an object be updated
from anetfs’s own records. The auxiliary data
may also be updated at other times, but there’s
no guarantee of when.

fscache_pin_cookie()
fscache_unpin_cookie()
These can be used to request that an ob-
ject be pinned in the cache it currently resides
and to unpin a previously pinned cache.

fscache_reserve_space()
This can be used to reserve a certain amount of
disk space in the cache for a data object to store
data in. The reservation will be extended to
include for any metadata required to store the
reserved data. A reservation may be cancelled
by reducing the reservation size to zero.

The pinning and reservation operations may
both issue errorENOBUFSto indicate that an
object is unbacked, and errorENOSPCto indi-
cate that there’s not enough disk space to set
aside some for pinning and reservation.

Both reservation and pinning persist beyond the
cookie being released unless the cookie or one
of its ancestors in the tree is also retired.

5.7 Data Operations

There are a number ofFS-Cacheoperations
that can be used to store data in the object at-
tached to a cookie and then to retrieve it again.
Note thatFS-Cachemust be informed of the
maximum data size of a non-index object be-
fore an attempt is made to access pages in that
object.

fscache_alloc_page()
This is used to indicate to the cache that
a netfs page will be committed to the cache

11



at some point, and that any previous contents
may be discarded without being read.

fscache_read_or_alloc_page()
This is used to request the cache attempt
to read the specified page from disk, and
otherwise allocate space for it if not present as
it will be fetched shortly from the server.

fscache_read_or_alloc_pages()
This is used to read or allocate several pages in
one go. This is intended to be used from the
readpages address space operation.

fscache_write_page()
This is used to store a netfs page to a
previously read or allocated cache page.

fscache_uncache_page()
fscache_uncache_pagevec()
These are used to release the reference
put on a cache page or a set of cache pages by
a read or allocate operation.

The allocate, read, and write operations will is-
sue errorENOBUFSif the cookie given is nega-
tive or if there’s no space on disk in the cache to
honour the operation. The read operation will
issue errorENODATAif asked to retrieve data it
doesn’t have but that it can reserve space for.

The read and write operations may complete
asynchronously, and will make use of the sup-
plied callback in all cases where I/O is started
to indicate to thenetfsthe success or failure of
the operation. If a read operation failed on a
page, then thenetfswill need to go back to the
server.

5.8 Error Handling

FS-Cachehandles many errors as it can inter-
nally and never lets thenetfssee them, prefer-
ring to translate them into negative cookies or
ENOBUFSas appropriate to the context.

Out-of-memory errors are normally passed
back to thenetfs, which is then expected to deal
with them appropriately, possibly by aborting
the operation it was trying to do.

I/O errors in a cache are more complex to deal
with. If an I/O error happens in a cache, then
the cache will be stopped. No more cache trans-
actions will take place, and all further attempts
to do cache I/O will be gracefully failed.

If the I/O error happens during cookie acqui-
sition, then a negative cookie will be returned,
and all caching operations based on that cookie
will simply give further negative cookies or
ENOBUFS.

If the I/O error happens during the reading of
pages from the cache, then if any pages as yet
unprocessed will be returned to the caller if the
fscache reader function is still in progress; and
any pages already committed to the I/O process
will either complete normally, or will have their
callbacks invoked with an error indication. In
the latter case, thenetfsshould fetch the page
from the server again.

If the I/O error happens during the writing of
pages to the cache, then either the fscache write
will fail with ENOBUFSor the callback will be
invoked with an error. In either case, it can be
assumed that the page is not safely written into
the cache.

5.9 Data Invalidation And Truncation

FS-Cachedoes not provide data invalidation
and truncation operations per-se. Instead the
object should be retired (by relinquishing it
with the retirement option set) and acquired
anew. Merely shrinking the maximum file size
down is not sufficient, especially as represen-
tations of extended attributes and suchlike may
not be expunged by truncation.

12



6 Current State

TheFS-Cachefacility and its associated cache
backends andnetfs interfaces are not, at the
time of writing, upstream. They are under de-
velopment at Red Hat at this time. The states
of the individual components are as follows:

• FS-Cache
At this time FS-Cacheis stable. New
features may be added, but none are
planned.

• CacheFS
CacheFSis currently stalled. Although
the performance numbers obtained are
initially good, after a cache has been
used for a while read-back performance
degrades badly due to fragmentation.
There are ways planned to ameliorate this,
but they require implementation.

• CacheFiles
CacheFiles has been prototyped and
is under development at the moment
in preference toCacheFSas it doesn’t
require a separate block device to be
made available, but can instead run on an
already mounted filesystem. Currently
only Ext3 is being used with it.

• NFS
TheNFSinterface is sufficiently complete
to give read/write access through the
cache. It does, however, suffer from local
cache aliasing problems that need sorting
out.

• AFS
The AFS interfaces is complete as far
as the in-kernelAFS filesystem is cur-
rently able to go.AFSdoesnotsuffer from
cache aliasing locally, but the filesystem
itself does not yet have write support.

6.1 Current Performance

The caches have been tested withNFS to get
some idea of the performance.CacheFileswas
benchmarked onExt3 with 1K and 4K block
sizes and on alsoCacheFS. The two caches and
the block device raw tests were run on the same
partition on the client’s disk.

The client test machine contains a pair of
200MHz PentiumPro CPUs, 128MB of mem-
ory, an Ethernet Pro 100 NIC, and a Fujitsu
MPG3204AT 20GB 5400rpm hard disk drive
running in MDMA2 mode.

The server machine contains an Athlon64-
FX51 with 5GB of RAM, an Ethernet Pro 100
NIC, and a pair of RAID1’d WDC WD2000JD
7200rpm SATA hard disk drives running in
UDMA6 mode.

The client is connected through a pair of
100Mbps switches to the server, and the NFS
connection was NFS3 over TCP. Before doing
each test the files on the server were pulled
into the server’s pagecache by copying them to
/dev/null . Each test was run several times,
rebooting the client between iterations. The
lowest number for each case was taken.

Reading a 100MB file:

Cache CacheFiles CacheFS
state 1K Ext3 4K Ext3
None 26s 26s 26s
Cold 44s 35s 27s
Warm 19s 14s 11s

Reading 100MB of raw data from the same
block device used to host the caches can be
done in 11s.

And reading a 200MB file:

13



Cache CacheFiles CacheFS
state 1K Ext3 4K Ext3
None 46s 46s 46s
Cold 79s 62s 47s
Warm 37s 29s 23s

Reading 200MB of raw data from the same
block device used to host the caches can be
done in 22s.

As can be seen, a freshly preparedCacheFS
gives excellent performance figures, but these
numbers don’t show the degradation over time
for large files.

The performance ofCacheFileswill degrade
over time as the backing filesystem does, if it
does — butCacheFiles’s biggest problem is
that it currently has to bounce the data between
the netfspages and the backing filesystems’s
pages. This means it does alot of page-sized
memory to memory copies. It also has to use
bmap to probe for holes when retrieving pages,
something that can be improved by implement-
ing hole detection in the backing filesystem.

The performance ofCacheFilescould possibly
be improved by using direct I/O as well — that
way the backing filesystem really would read
and write directly from/to thenetfs’s pages.
That would obviate the need for backing pages
and would reduce the large memory copies.

Note that CacheFiles is still being imple-
mented, so these numbers are very preliminary.

7 Further Information

There’s a mailing list available forFS-Cache
specific discussions:

mailto:linux-cachefs@redhat.com

Patches may be obtained from:

http://people.redhat.com/
~dhowells/cachefs/

and:

http://people.redhat.com/~steved/
cachefs/

The FS-Cache patches add documentation into the
kernel sources here:

Documentation/filesystems/caching/

References

[1] Information aboutCodacan be found at:

http://www.coda.cs.cmu.edu/

[2] Information aboutOpenAFScan be found at:

http://www.openafs.org/

[3] Information aboutSun’s CacheFSfacility can
be found in their online documentation:

http://docs.sun.com/

Solaris 9 12/02 System Administrator Col-
lection » System Administration Guide: Ba-
sic Administration » Chapter 40 Using The
CacheFS File System (Tasks)

http://docs.sun.com/app/docs/
doc/816-4552/6maoo3121?a=view

14


