
The usbmon: USB monitoring framework

Pete Zaitcev
Red Hat, Inc.

zaitcev@redhat.com

Abstract

For years, Linux developers used printk()
to debug the USB stack, but this approach
has serious limitations. In this paper we dis-
cuss “usbmon,” a recently developed facility to
snoop USB traffic in a more efficient way than
can be done with printk().

From far away, usbmon is a very straightfor-
ward piece of code. It consists of circular
buffers which are filled with records by hooks
into the USB stack and a thin glue to the user
code which fetches these records. The devil,
however, is in details. Also the user mode tools
play a role.

1 Introduction

This paper largely deals with the kernel part
of the USB monitoring infrastructure, which is
properly called "usbmon" (all in lower case).
We describe usbmon’s origins, overall design,
internals, and how it is used, both by C code in
kernel and by human users. To conclude, we
consider if experience with usbmon is applica-
ble to subsystems other than USB.

2 Origins

Although the need to have a robust, simple,
and unobtrusive method of snooping appears
to be self-evident, Linux USB developers were
getting by with layers of macros on top of
printk() for years. Current debugging fa-
cilities are represented by a patchwork of build-
time configuration settings, such as CONFIG_
USB_STORAGE_DEBUG. To make the use of
systems with tracing included more palatable,
usbserial and several other modules offer
"debug" parameter.

Limitations of the this approach became pro-
nounced as more users running preconfigured
kernels appeared. For a developer, it is often
undesirable to make users to rebuild their ker-
nels with CONFIG_USB_STORAGE_DEBUG
enabled. These difficulties could be overcome
by making tracing configurable at runtime, by
a module parameter. Nonetheless, this style of
tracing is still not ideal, for several reasons.
Output to the system console and/or log file
is lossy when a large amount of data is piped
through though the syslog subsystem. Tim-
ing variations introduced by formatted print-
outs skew results, which makes it harder to pin-
point problems when peripherals require delays
in the access pattern. And finally, printk()
calls have to be added all the time to capture
what is important. Often it seems as if the one
key printk() is missing, but once added, it

1

stays in the code forever and serves to obscure
printouts needed at that time.

A facility similar to tcpdump(8) would be a
great help for USB developers. The usbmon
aims to provide one.

David Harding proposed a patch to address this
need back in 2002, but for various reasons that
effort stalled without producing anything suit-
able to be accepted into the Linus’ kernel. The
usbmon picks up where the previous work left
and is available in the mainline kernel starting
with version 2.6.11.

3 Architecture

The USB monitoring or snooping facilities for
Linux consist of the kernel part, or usbmon,
and the user mode part, or user mode tools. To
jump-start the development, usbmon took the
lead while tools lagged.

At highest level of architecture, usbmon is un-
complicated. It consists of circular buffers, fed
by hooks in the USB stack. Every call puts an
event into a buffer. From there, user processes
fetch these events for further processing or pre-
sentation to humans. Events for all devices on
a particular bus are delivered to users together,
separately from other buses. There is no filter-
ing facility of any sort.

At the lower level, a couple of interesting de-
cisions were made regarding the placement of
hooks and the formatting of events when pre-
sented to user programs.

An I/O request in the USB stack is represented
by so-called "URB". A peripheral-specific
driver, such as usb-storage, initializes and sub-
mits URB with a call to the USB stack core.
The core dispatches URB to a Host Controller

Driver, or HCD. When I/O is done, HCD in-
vokes a specified callback to notify the core and
the requesting driver. The usbmon hooks reside
in the core of USB stack, in the submission and
callback paths. Thus, usbmon relies on HCD to
function properly and is only marginally useful
in debugging of HCDs. Such an arrangement
is accepted for two reasons. First, it allows us-
bmon to be unobtrusive and significantly less
buggy itself. Second, the vast majority of bugs
occur outside of HCDs, in in upper level drivers
or peripherals.

The user interface to the usbmon answers to
diverse sets of requirements with priorities
changing over time. Initially, a premium is
placed on ease of implementation and the pos-
sibility to access the information with simple
tools. But in perspective, performance starts to
play a larger role. The first group of require-
ments favors an interface typified by /proc

filesystem, the one of pseudo text files. The
second group pulls toward a binary and ver-
sioned API.

Instead of forcing a choice between text and bi-
nary interfaces, usbmon adopts a neutral solu-
tion. Its data structures are set up to facilitate
several distinct types of consumers of events
(called "readers"). Various reader classes can
provide text and binary interfaces. At this time,
only text-based interface class is implemented.

Every instance of a reader has its own circular
buffer. When hooks are called, they broadcast
events to readers. Readers replicate events into
all buffers which are active for a given bus. To
be sure, this entails an extra overhead of data
copying. However, the complication of hav-
ing all aliasing properly tracked and resolved
turned out to be insurmountable in the time
frame desired, and the performance impact was
found manageable.

2

struct mon_bus {
struct list_head bus_link;

spinlock_t lock;

struct dentry ∗dent_s; /∗ Debugging file ∗/
struct dentry ∗dent_t; /∗ Text interface file ∗/
struct usb_bus ∗u_bus;
/∗ Ref ∗/
int nreaders; /∗ Under mon_lock AND mbus->lock ∗/
struct list_head r_list; /∗ Chain of readers (usually one) ∗/
struct kref ref; /∗ Under mon_lock ∗/
/∗ Stats ∗/
unsigned int cnt_text_lost;

};

struct mon_reader { /∗ An instance of a process which opened a file ∗/
struct list_head r_link;

struct mon_bus ∗m_bus;
void ∗r_data;
void (∗rnf_submit)(void ∗data, struct urb ∗urb);
void (∗rnf_complete)(void ∗data, struct urb ∗urb);

};

Figure 1: The bus and readers.

4 Implementation

The usbmon is implemented as a Linux ker-
nel module, which can be loaded and unloaded
at will. This arrangement is not intrinsic to
the design; it is intended to serve as a con-
venience to developers only. Hooks and ad-
ditional data fields remain built into the USB
stack core at all times as long as usbmon is
configured on. In a proprietary OS, usbmon
would have to be implemented in a different
way. It is entirely possible to make the usb-
mon an add-on that stacks on top of HCDs by
manipulating existing function pointers. Such
an implementation would make usbmon effec-
tively non-existing when not actively monitor-
ing. However, this approach introduces a sig-
nificant complexity of tracking of active URBs
which had their function pointers replaced, and
brings only a marginal advantage for an open-

source OS. In present, when usbmon is not run-
ning, it adds 8 bytes of memory use per bus
(on a 32-bit system) and an additional if()
statement in submit and callback paths. This
was deemed an acceptable price for the lack of
tracking.

The key data structure that keeps usbmon to-
gether is struct mon_bus (See Figure 1).
One of them is allocated for every USB bus
present. It holds a list of readers attached to
the bus, pointer to the corresponding bus struc-
ture, statistic counters, reference count, and a
spinlock. The manner in which circular buffers
are arranged is encapsulated entirely within a
reader.

The locking model is straightforward. All
hooks execute with the bus spinlock taken, so
readers do not do any extra locking. The only
time instances of struct mon_bus may in-

3

fluence each other is when buses are added or
removed. Data words touched at that time, such
as linked list entries, are covered with a global
semaphore "mon_lock".

The reference count is needed because buses
are added and removed while user processes ac-
cess devices. Captured events may remain in
buffers after a bus was removed. The count is
implemented with a predefined kernel facility
called "kref". The mon_lock is used to sup-
port kref as required by API.

5 Interfaces

The usbmon provides two principal interfaces:
the one into the USB core and the other facing
the user processes.

The USB core interface is conventional for an
internal Linux kernel API. It consists of regis-
tration and deregistration routines provided by
the core, operations table that is passed to the
core upon registration, and inline functions for
hooks called by the core. It all comes down to
the code shown in Figure 2.

As was mentioned previously, only one type of
interface to user processes exists at present: text
interface. It is implemented with the help of a
pseudo filesystem called "debugfs" and con-
sists of a few pseudo files, same group per every
USB bus in the system. Text records are pro-
duced for every event, to be read from pseudo
files. Their format is discussed below.

6 Use (user mode)

A common way to access usbmon without any
special tools is as following:

mount -t debugfs none /sys/kernel/debug
modprobe usbmon
cat /sys/kernel/debug/usbmon/3t
dfa105cc 1578069602 C Ii:001:01 0 1 D
dfa105cc 1578069644 S Ii:001:01 -115 2 D
d6bda284 1578069665 S Ci:001:00 -115 4 <
d6bda284 1578069672 C Ci:001:00 0 4 = 01010100
........

The number 3 in the file name is the number of
the USB bus as reported by /proc/bus/usb/
devices.

Each record copied by cat starts with a tag that
is used to correlate various events happening to
the same URB. The tag is simply a kernel ad-
dress of the URB. Next words are: a timestamp
in milliseconds, event type, a joint word for the
type of transfer, device number, and endpoint
number, I/O status, data size, data marker and
a varying number of data words. More precise
documentation exists within the kernel source
code, in file Documentation/usb/usbmon.

txt.

This format is terse, but it can be read by hu-
mans in a pinch. It is also useful for postings to
mailing lists, Bugzilla attachments, and other
similar forms of data exchange.

Tools to ease dealing with usbmon are being
developed. Only one such tool exists today:
the USBMon (written with upper case letters),
originally written by David Harding. It is a tool
with a graphical interface.

7 Lessons

When compared to tcpdump(8) or Ethereal(1),
usbmon today is rudimentary. Despite that, in
the short time it has existed, usbmon helped
the author to quickly pinpoint several bugs that
otherwise would take many kernel rebuilds and
gaining an understanding of unfamiliar system

4

struct usb_mon_operations {
void (∗urb_submit)(struct usb_bus ∗bus, struct urb ∗urb);
void (∗urb_submit_error)(struct usb_bus ∗bus, struct urb ∗urb, int err);

void (∗urb_complete)(struct usb_bus ∗bus, struct urb ∗urb);
void (∗bus_add)(struct usb_bus ∗bus);
void (∗bus_remove)(struct usb_bus ∗bus);

};

extern struct usb_mon_operations ∗mon_ops;

static inline void usbmon_urb_submit(struct usb_bus ∗bus, struct urb ∗urb)
{

if (bus→monitored)

(∗mon_ops→urb_submit)(bus, urb);

}

static inline void usbmon_notify_bus_remove(struct usb_bus ∗bus)
{

if (mon_ops)

(∗mon_ops→bus_remove)(bus);

}

int usb_mon_register(struct usb_mon_operations ∗ops);
void usb_mon_deregister(void);

Figure 2: The interface to the USB core.

log messages. Having any sort of usable uni-
fied tracing is helpful when developers have to
work with an explicitly programmed message
passing bus.

A large part of usbmon’s utility comes from
being always enabled, which requires its over-
head to be undetectable when inactive and low
enough not to change the system’s behaviour
when active. So it probably is unreasonable to
implement an equivalent of usbmon for PCI:
performance overhead may be too great; the
level of messages is too low; there are no stan-
dard protocols to be parsed by upper level tools.
But developers of subsystems such as SCSI or
Infiniband are likely to benefit from introduc-
tion of "scsimon" or "infinimon" into their set

of tools.

8 Future Work

The usbmon and user mode tools have a long
way to go before they can be as developed
as tcpdump(8) is today. Below we list issues
which are prominent now.

• When USB buses are added and removed,
tools have to be notified, which is not done
at present. As a workaround, tools res-
can file /proc/bus/usb/devices peri-
odically. A solution may be something as

5

simple as select(2) working on a special
file.

• Users often observe records which should
carry data, but do not. For example:

c07835cc 1579486375 S Co:002:00 -115 0
d2ac6054 1579521858 S Ii:002:02 -115 4 D

In the first case, setup packet of a control
transfer is not captured, and in the second
case, data part of an interrupt transfer is
missing. The ’D’ marker means that, ac-
cording to the flags in the URB, the data
was not mapped into the kernel space, and
was only available for the DMA. The code
to handle these cases has yet to be devel-
oped.

• The raw text data is difficult to interpret
for people. So, it is desirable to decode
the output to higher level protocols: SCSI
commands, HID reports, hub control mes-
sages. This task belongs to the tools such
as USBMon.

• Some tool developers express preferences
for a binary and versioned API to compli-
ment the existing text-based interface to
usbmon. These requests need to be ad-
dressed.

References

Van Jacobson et al. tcpdump(8), the manual.
In tcpdump version 3.8.2, 2004.

Greg Kroah-Hartman. kobjects and krefs. In
Proceedings of the Linux Symposium (former
OLS) 2004.

6

