
Red Hat Enterprise Linux 5

SystemTap
Beginners Guide

Introduction to SystemTap (for Fedora Core 10)

Don Domingo



SystemTap Beginners Guide

Red Hat Enterprise Linux 5 SystemTap Beginners Guide
Introduction to SystemTap (for Fedora Core 10)
Edition 2.0

Author Don Domingo ddomingo@redhat.com
Copyright © 2009

Copyright © 2009 . This material may only be distributed subject to the terms and conditions set
forth in the Open Publication License, V1.0, (the latest version is presently available at http://
www.opencontent.org/openpub/).

Fedora and the Fedora Infinity Design logo are trademarks or registered trademarks of Red Hat, Inc.,
in the U.S. and other countries.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat Inc. in the United
States and other countries.

All other trademarks and copyrights referred to are the property of their respective owners.

Documentation, as with software itself, may be subject to export control. Read about Fedora Project
export controls at http://fedoraproject.org/wiki/Legal/Export.

This guide provides basic instructions on how to use SystemTap to monitor different subsystems of
Red_Hat_Enterprise_Linux 5 in finer detail. The SystemTap Beginners Guide is recommended for
users who have taken RHCT or have a similar level of expertise in Red_Hat_Enterprise_Linux 5.

mailto:ddomingo@redhat.com
http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/
http://fedoraproject.org/wiki/Legal/Export


iii

Preface                                                                                                                                        v
1. Document Conventions ...................................................................................................  v

1.1. Typographic Conventions ...................................................................................... v
1.2. Pull-quote Conventions ........................................................................................  vi
1.3. Notes and Warnings ...........................................................................................  vii

2. We Need Feedback! .....................................................................................................  viii

1. Introduction                                                                                                                             1
1.1. Documentation Goals ...................................................................................................  1
1.2. SystemTap Capabilities ................................................................................................  1

2. Using SystemTap                                                                                                                    3
2.1. Installation and Setup ...................................................................................................  3

2.1.1. Installing SystemTap .......................................................................................... 3
2.1.2. Installing Required Kernel Information RPMs ....................................................... 3
2.1.3. Initial Testing ..................................................................................................... 5

2.2. Generating Instrumentation for Other Computers ...........................................................  6
2.3. Running SystemTap Scripts .......................................................................................... 8

3. Understanding How SystemTap Works                                                                                 11
3.1. Architecture ................................................................................................................  11
3.2. SystemTap Scripts .....................................................................................................  11

3.2.1. Event ..............................................................................................................  13
3.2.2. Systemtap Handler/Body ..................................................................................  15

3.3. Basic SystemTap Handler Constructs ..........................................................................  18
3.3.1. Variables .........................................................................................................  19
3.3.2. Conditional Statements ....................................................................................  19
3.3.3. Command-Line Arguments ...............................................................................  21

3.4. Associative Arrays ......................................................................................................  21
3.5. Array Operations in SystemTap ................................................................................... 22

3.5.1. Assigning an Associated Value ......................................................................... 22
3.5.2. Reading Values From Arrays ...........................................................................  23
3.5.3. Incrementing Associated Values .......................................................................  23
3.5.4. Processing Multiple Elements in an Array .......................................................... 24
3.5.5. Clearing/Deleting Arrays and Array Elements ....................................................  25
3.5.6. Using Arrays in Conditional Statements ............................................................  26
3.5.7. Computing for Statistical Aggregates ................................................................  28

3.6. Tapsets ...................................................................................................................... 30

4. Useful SystemTap Scripts                                                                                                     31
4.1. Network .....................................................................................................................  31

4.1.1. Network Profiling .............................................................................................  31
4.1.2. Tracing Functions Called in Network Socket Code .............................................  33

4.2. Disk ...........................................................................................................................  34
4.2.1. Summarizing Disk Read/Write Traffic ................................................................  34
4.2.2. Tracking I/O Time For Each File Read or Write .................................................  37
4.2.3. Track Cumulative IO ........................................................................................  40
4.2.4. I/O Monitoring (By Device) ...............................................................................  41
4.2.5. Monitoring Reads and Writes to a File ..............................................................  42
4.2.6. Monitoring Changes to File Attributes ................................................................ 43

4.3. Profiling .....................................................................................................................  44
4.3.1. Counting Function Calls Made .......................................................................... 44
4.3.2. Call Graph Tracing ..........................................................................................  45



SystemTap Beginners Guide

iv

4.3.3. Determining Time Spent in Kernel and User Space ............................................ 47
4.4. Identifying Contended User-Space Locks .....................................................................  49

5. Understanding SystemTap Errors                                                                                         51
5.1. Parse and Semantic Errors .........................................................................................  51
5.2. Run Time Errors and Warnings ...................................................................................  53

6. References                                                                                                                            55

A. Revision History                                                                                                                   57

Index                                                                                                                                          59



v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/


Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and
click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then
click the Copy button. Now switch back to your document and choose Edit > Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.



Notes and Warnings

vii

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
   public static void main(String args[]) 
       throws Exception
   {
      InitialContext iniCtx = new InitialContext();
      Object         ref    = iniCtx.lookup("EchoBean");
      EchoHome       home   = (EchoHome) ref;
      Echo           echo   = home.create();

      System.out.println("Created Echo");

      System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
   }
   
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes
your life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will
apply. Ignoring Important boxes won't cause data loss but may cause irritation and
frustration.



Preface

viii

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Red_Hat_Enterprise_Linux 5.

When submitting a bug report, be sure to mention the manual's identifier:
SystemTap_Beginners_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/


Chapter 1.

1

Introduction
SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the
operating system (particularly, the kernel) in fine detail. It provides information similar to the output of
tools like netstat, ps, top, and iostat; however, SystemTap is designed to provide more filtering
and analysis options for collected information.

For system administrators, SystemTap can be used as a performance monitoring tool for . It is most
useful when other similar tools cannot precisely pinpoint a bottleneck in the system, requiring a deep
analysis of kernel activity. In the same manner, application developers can also use SystemTap to
monitor, in finer detail, how their application behaves within the Linux system.

1.1. Documentation Goals
SystemTap provides the infrastructure to monitor the running Linux kernel for detailed analysis. This
can assist administrators and developers in identifying the underlying cause of a bug or performance
problem.

Without SystemTap, monitoring the activity of a running kernel would require a tedious instrument,
recompile, install, and reboot sequence. SystemTap is designed to eliminate this, allowing users to
gather the same information by simply running user-written SystemTap scripts.

However, SystemTap was initially designed for users with intermediate to advanced knowledge of
the kernel. This makes SystemTap less useful to administrators or developers with limited knowledge
of and experience with the Linux kernel. Moreover, much of the existing SystemTap documentation
is similarly aimed at knowledgeable and experienced users. This makes learning the tool similarly
difficult.

To lower these barriers the SystemTap Beginners Guide was written with the following goals:

• To introduce users to SystemTap, familiarize them with its architecture, and provide setup
instructions for all kernel types.

• To provide pre-written SystemTap scripts for monitoring detailed activity in different components of
the system, along with instructions on how to run them and analyze their output.

1.2. SystemTap Capabilities
SystemTap was originally developed to provide functionality for Red Hat Enterprise Linux 5 similar
to previous Linux probing tools such as dprobes and the Linux Trace Toolkit. SystemTap aims to
supplement the existing suite of Linux monitoring tools by providing users with the infrastructure to
track kernel activity. In addition, SystemTap combines this capability with two things:

• Flexibility: SystemTap's framework allows users to develop simple scripts for investigating and
monitoring a wide variety of kernel functions, system calls, and other events that occur in kernel-
space. With this, SystemTap is not so much a tool as it is a system that allows you to develop your
own kernel-specific forensic and monitoring tools.

• Ease-Of-Use: as mentioned earlier, SystemTap allows users to probe kernel-space events without
having to resort to instrument, recompile, install, and reboot the kernel.

Most of the SystemTap scripts enumerated in Chapter 4, Useful SystemTap Scripts demonstrate
system forensics and monitoring capabilities not natively available with other similar tools (such



Chapter 1. Introduction

2

as top, oprofile, or ps). These scripts are provided to give readers extensive examples of the
application of SystemTap, which in turn will educate them further on the capabilities they can employ
when writing their own SystemTap scripts.

Limitations
The current iteration of SystemTap allows for a multitude of options when probing kernel-space
events. However, SystemTap's ability to probe user-space events is quite limited. At present, the
developmental efforts of the SystemTap community are geared towards improving SystemTap's user-
space probing capabilities.



Chapter 2.

3

Using SystemTap
This chapter instructs users how to install SystemTap, and provides an introduction on how to run
SystemTap scripts.

2.1. Installation and Setup
To deploy SystemTap, you need to install the SystemTap packages along with the corresponding set
of -devel, -debuginfo and -debuginfo-common packages for your kernel. If your system has
multiple kernels installed, and you wish to use SystemTap on more than one kernel kernel, you will
need to install the -devel and -debuginfo packages for each of those kernel versions.

These procedures will be discussed in detail in the following sections.

Important
Many users confuse -debuginfo with -debug. Remember that the deployment of
SystemTap requires the installation of the -debuginfo package of the kernel, not the
-debug version of the kernel.

2.1.1. Installing SystemTap
To deploy Systemtap, you will need to to install the following RPMs:

• systemtap

• systemtap-runtime

Assuming that your system is configured to use Red Hat Network (RHN) or yum is available, these two
rpms can be installed with yum install systemtap systemtap-runtime. Note that before you
can use SystemTap, you will still need to install the required kernel information RPMs.

2.1.2. Installing Required Kernel Information RPMs
SystemTap needs information about the kernel in order to place instrumentation in it (i.e. probe it).
This information also allows SystemTap to generate the code for the instrumentation. This information
is contained in the matching -devel and -debuginfo packages for your kernel. The necessary -
devel and -debuginfo packages for the ordinary "vanilla" kernel are as follows:

• kernel-debuginfo

• kernel-debuginfo-common

• kernel-devel

Likewise, the necessary packages for the PAE kernel would be kernel-PAE-debuginfo, kernel-
PAE-debuginfo-common, and kernel-PAE-devel.

To determine what kernel your system is currently using, use:

uname -r



Chapter 2. Using SystemTap

4

For example, if you wish to use SystemTap on kernel version 2.6.18-53.el5 on an i686 machine,
then you would need to download and install the following RPMs:

• kernel-debuginfo-2.6.18-53.1.13.el5.i686.rpm

• kernel-debuginfo-common-2.6.18-53.1.13.el5.i686.rpm

• kernel-devel-2.6.18-53.1.13.el5.i686.rpm

Important
The version, variant, and architecture of the -devel, -debuginfo and -debuginfo-
common packages must match the kernel you wish to probe with SystemTap exactly.

To help ease your deployment of SystemTap, you can use stapprep.sh. stapprep.sh determines the
kernel information packages you need to install in order to run SystemTap. If you run stapprep.sh
(as an ordinary, non-root user) without any arguments, it will display the kernel information packages
required for the loaded kernel. You can also pass a specific kernel version to stapprep.sh (e.g.
2.6.18-92.el5) if you wish to probe a kernel that is not currently loaded.

Note
Running stapprep.sh as root will display the required kernel packages and install them
as well, provided that yum and yum-utils are configured properly.

stapprep.sh

#! /bin/bash
check_error() { if test $1 != 0; then echo $2; exit $1; fi }

if [ "$#" -lt 1 ]; then
    UNAME=`uname -r` # determine the kernel running on the machine
else
    UNAME=$1 #user passed in uname value
fi
UNAME=`echo $UNAME | sed "s/ //"` #strip out any whitespace
KERNEL="kernel"
for VARIANT in debug kdump PAE xen; do
  TMP=`echo $UNAME | sed s/$VARIANT//`
  if [ "$TMP" != "$UNAME" ]; then
      UNAME=$TMP; KERNEL="kernel-$VARIANT"
  fi
done
KERN_ARCH=`uname -m`
KERN_REV=`echo $UNAME | sed s/.$KERN_ARCH//` # strip arch from uname
CANDIDATES="$KERNEL-$KERN_REV.$KERN_ARCH \
  $KERNEL-devel-$KERN_REV.$KERN_ARCH \



Initial Testing

5

  $KERNEL-debuginfo-$KERN_REV.$KERN_ARCH \
  kernel-debuginfo-common-$KERN_REV.$KERN_ARCH"
NEEDED=`rpm --qf "%{name}-%{version}-%{release}.%{arch}\n" \
    -q $CANDIDATES | grep "is not installed" | awk '{print $2}'`
if [ "$NEEDED" != "" ]; then
    echo -e "Need to install the following packages:\n$NEEDED"
    if [ `id -u` = "0" ]; then #attempt download and install
        DIR=`mktemp -d` || exit 1
        yumdownloader --enablerepo="*debuginfo*" $NEEDED --destdir=$DIR
        check_error $? "problem downloading rpm(s) $NEEDED"
        rpm --force -ivh $DIR/*.rpm
        check_error $? "problem installing rpm(s) $NEEDED"
        rm -r $DIR #cleanup
    fi
fi

If you do not have yum and yum-utils installed (and you are unable to install them), you will have to
manually download and install the required kernel information packages. To generate the URL from
which to download the required packages, use the following script:

fedoradebugurl.sh

#! /bin/bash
echo -n "Enter nvr of kernel-debuginfo (e.g. 2.6.25-14.fc9.x86_64) " ; \
read NVR; \
BASE=`uname -m` ; \
NVR=`echo $NVR | sed s/.$BASE//` ; \
VERSION=`echo $NVR | awk -F- '{print $1}'` ; \
RELEASE=`echo $NVR | awk -F- '{print $2}'` ; \
echo "http://kojipkgs.fedoraproject.org/\
packages/kernel/$VERSION/$RELEASE/$BASE/"

Once you have manually downloaded the required packages to the machine, install the RPMs by
running rpm --force -ivh package_names.

2.1.3. Initial Testing
If you are currently using the kernel you wish to probe with SystemTap, you can immediately test
whether the deployment was successful. If not, you will need to reboot and load the appropriate
kernel.

To start the test, run the command stap -v -e 'probe vfs.read {printf("read
performed\n"); exit()}'. This command simply instructs SystemTap to print read
performed then exit properly once a virtual file system read is detected. If the SystemTap
deployment was successful, you should get output similar to the following:



Chapter 2. Using SystemTap

6

Pass 1: parsed user script and 45 library script(s) in
 340usr/0sys/358real ms.
Pass 2: analyzed script: 1 probe(s), 1 function(s), 0 embed(s), 0
 global(s) in 290usr/260sys/568real ms.
Pass 3: translated to C into "/tmp/stapiArgLX/
stap_e5886fa50499994e6a87aacdc43cd392_399.c" in 490usr/430sys/938real ms.
Pass 4: compiled C into "stap_e5886fa50499994e6a87aacdc43cd392_399.ko" in
 3310usr/430sys/3714real ms.
Pass 5: starting run.
read performed
Pass 5: run completed in 10usr/40sys/73real ms.

The last three lines of the output (i.e. beginning with Pass 5 indicate that SystemTap was able to
successfully create the instrumentation to probe the kernel, run the instrumentation, detect the event
being probed (in this case, a virtual file system read), and execute a valid handler (print text then close
it with no errors).

2.2. Generating Instrumentation for Other Computers
When users run a SystemTap script, SystemTap builds a kernel module out of that script. SystemTap
then loads the module into the kernel, allowing it to extract the specified data directly from the kernel
(refer to SystemTap Session in Section 3.1, “Architecture” for more information).

Normally, however, SystemTap scripts can only be run on systems where SystemTap is deployed
(as in Section 2.1, “Installation and Setup”). This could mean that if you want to run SystemTap on
ten systems, you would need to deploy SystemTap on all those systems. In some cases, this may
be neither feasible nor desired. For instance, corporate policy may prohibit an administrator from
installing RPMs that provide compilers or debug information on specific machines, which will prevent
the deployment of SystemTap.

To work around this, you can resort to cross-instrumentation. Cross-instrumentation is the process of
generating SystemTap instrumentation module from a SystemTap script on one computer to be used
on another computer. This process offers the following benefits:

• The kernel information packages for various machines can be installed on a single host machine.

• Each target machine only needs one RPM to installed to use the generated SystemTap
instrumentation module: systemtap-runtime.

Note
For the sake of simplicity, we will be using the following terms throughout this section:

• instrumentation module — the kernel module built from a SystemTap script; i.e.
the SystemTap module is built on the host system, and will be loaded on the target
kernel of target system.

• host system — the system on which you compile the instrumentation modules (from
SystemTap scripts), to be loaded on target systems.

• target system — the system for which you are building the instrumentation module
(from SystemTap scripts).



Generating Instrumentation for Other Computers

7

• target kernel — the kernel of the target system. This is the kernel on which you wish
to load/run the instrumentation module.

Procedure 2.1. Configuring a Host System and Target Systems
1. Install the systemtap-runtime RPM on each target system.

2. Determine the kernel running on each target system by running uname -r on each target
system.

3. Install SystemTap on the host system. You will be building the instrumentation module for
the target systems on the host system. For instructions on how to install SystemTap, refer to
Section 2.1.1, “Installing SystemTap”.

4. Using the target kernel version determined earlier, install the target kernel and related RPMs on
the host system by the method described in Section 2.1.2, “Installing Required Kernel Information
RPMs”. If multiple target systems use different target kernels, you will need to repeat this step for
each different kernel used on the target systems.

After performing Configuring a Host System and Target Systems, you can now build the
instrumentation module (for any target system) on the host system.

To build the instrumentation module, run the following command on the host system (be sure to
specify the appropriate values):

stap -r kernel_version script -m module_name

Here, kernel_version refers to the version of the target kernel (the output of uname -r on the
target machine), script refers to the script to be converted into an instrumentation module, and
module_name is the desired name of the instrumentation module.

Note
To determine the architecture notation of a running kernel, run uname -m.

Once the the instrumentation module is compiled, copy it to the target system and then load it using:

staprun module_name.ko

For example, to create the instrumentation module simple.ko from a SystemTap script named
simple.stp for the target kernel 2.6.18-92.1.10.el5 (on x86_64 architecture), use the following
command:

stap -r 2.6.18-92.1.10.el5 -e 'probe vfs.read {exit()}' -m simple

This will create a module named simple.ko. To use the instrumentation module simple.ko, copy it
to the target system and run the following command (on the target system):

staprun simple.ko



Chapter 2. Using SystemTap

8

Important
The host system must be the same architecture and running the same distribution of
Linux as the target system in order for the built instrumentation module to work.

2.3. Running SystemTap Scripts
SystemTap scripts are run through the command stap. stap can run SystemTap scripts from
standard input or from file.

Running stap and staprun requires elevated privileges to the system. However, not all users can be
granted root access just to run SystemTap. In some cases, for instance, you may want to allow a non-
privileged user to run SystemTap instrumentation on his machine.

To allow ordinary users to run SystemTap without root access, add them to one of these user groups:

stapdev
Members of this group can use stap to run SystemTap scripts, or staprun to run SystemTap
instrumentation modules.

Running stap involves compiling SystemTap scripts into kernel modules and loading them
into the kernel. This requires elevated privileges to the system, which are granted to stapdev
members. Unfortunately, such privileges also grant effective root access to stapdev members.
As such, you should only grant stapdev group membership to users whom you can trust root
access.

stapusr
Members of this group can only run staprun to run SystemTap instrumentation modules.
In addition, they can only run those modules from /lib/modules/kernel_version/
systemtap/. Note that this directory must be owned only by the root user, and must only be
writable by the root user.

Below is a list of commonly used stap options:

-v
Makes the output of the SystemTap session more verbose. You can repeat this option (for
example, stap -vvv script.stp) to provide more details on the script's execution. This option
is particularly useful if you encounter any errors in running the script.

For more information about common SystemTap script errors, refer to Chapter 5, Understanding
SystemTap Errors.

-o filename
Sends the standard output to file (filename).

-x process ID
Sets the SystemTap handler function target() to the specified process ID. For more information
about target(), refer to SystemTap Functions.

-c command
Sets the SystemTap handler function target() to the specified command. Note that you must
use the full path to the specified command; for example, instead of specifying cp, use /bin/cp



Running SystemTap Scripts

9

(as in stap script -c /bin/cp). For more information about target(), refer to SystemTap
Functions.

-e 'script'
Use script string rather than a file as input for systemtap translator.

You can also instruct stap to run scripts from standard input using the switch -. To illustrate:

echo "probe timer.s(1) {exit()}" | stap -

Example 2.1. Running Scripts From Standard Input

Example 2.1, “Running Scripts From Standard Input” instructs stap to run the script passed by
echo to standard input. Any stap options you wish to use should be inserted before the - switch; for
instance, to make the example in Example 2.1, “Running Scripts From Standard Input” more verbose,
the command would be:

echo "probe timer.s(1) {exit()}" | stap -v -

For more information about stap, refer to man stap.

To run SystemTap instrumentation (i.e. the kernel module built from SystemTap scripts during a
cross-instrumentation), use staprun instead. For more information about staprun and cross-
instrumentation, refer to Section 2.2, “Generating Instrumentation for Other Computers”.

Note
The stap options -v and -o also work for staprun. For more information about
staprun, refer to man staprun.



10



Chapter 3.

11

Understanding How SystemTap Works
SystemTap allows users to write and reuse simple scripts to deeply examine the activities of a running
Linux system. These scripts can be designed to extract data, filter it, and summarize it quickly (and
safely), enabling the diagnosis of complex performance (or even functional) problems.

The essential idea behind a SystemTap script is to name events, and to give them handlers. When
SystemTap runs the script, SystemTap monitors for the event; once the event occurs, the Linux kernel
then runs the handler as a quick sub-routine, then resumes.

There are several kind of events; entering/exiting a function, timer expiration, session termination, etc.
A handler is a series of script language statements that specify the work to be done whenever the
event occurs. This work normally includes extracting data from the event context, storing them into
internal variables, and printing results.

3.1. Architecture
A SystemTap session begins when you run a SystemTap script. This session occurs in the following
fashion:

Procedure 3.1. SystemTap Session
1. First, SystemTap checks the script against the existing tapset library (normally in /usr/share/

systemtap/tapset/ for any tapsets used. SystemTap will then substitute any located tapsets
with their corresponding definitions in the tapset library.

2. SystemTap then translates the script to C, running the system C compiler to create a kernel
module from it. The tools that perform this step are contained in the systemtap package (refer to
Section 2.1.1, “Installing SystemTap” for more information).

3. SystemTap loads the module, then enables all the probes (events and handlers) in the script. The
staprun in the systemtap-runtime package (refer to Section 2.1.1, “Installing SystemTap” for
more information) provides this functionality.

4. As the events occur, their corresponding handlers are executed.

5. Once the SystemTap session is terminated, the probes are disabled, and the kernel module is
unloaded.

This sequence is driven from a single command-line program: stap. This program is SystemTap's
main front-end tool. For more information about stap, refer to man stap (once SystemTap is
properly installed on your machine).

3.2. SystemTap Scripts
For the most part, SystemTap scripts are the foundation of each SystemTap session. SystemTap
scripts instruct SystemTap on what type of information to collect, and what to do once that information
is collected.

As stated in Chapter 3, Understanding How SystemTap Works, SystemTap scripts are made up of two
components: events and handlers. Once a SystemTap session is underway, SystemTap monitors the
operating system for the specified events and executes the handlers as they occur.



Chapter 3. Understanding How SystemTap Works

12

Note
An event and its corresponding handler is collectively called a probe. A SystemTap
script can have multiple probes.

A probe's handler is commonly referred to as a probe body.

In terms of application development, using events and handlers is similar to instrumenting the code by
inserting diagnostic print statements in a program's sequence of commands. These diagnostic print
statements allow you to view a history of commands executed once the program is run.

SystemTap scripts allow insertion of the instrumentation code without recompilation of the code
and allows more flexibility with regard to handlers. Events serve as the triggers for handlers to run;
handlers can be specified to record specified data and print it in a certain manner.

Format
SystemTap scripts use the file extension .stp, and contains probes written in the following format:

probe event {statements}

SystemTap supports multiple events per probe; multiple events are delimited by a comma (,). If
multiple events are specified in a single probe, SystemTap will execute the handler when any of the
specified events occur.

Each probe has a corresponding statement block. This statement block is enclosed in braces ({ })
and contains the statements to be executed per event. SystemTap executes these statements in
sequence; special separators or terminators are generally not necessary between multiple statements.

Note
Statement blocks in SystemTap scripts follow the same syntax and semantics as the
C programming language. A statement block can be nested within another statement
block.

Systemtap allows you to write functions to factor out code to be used by a number of probes. Thus,
rather than repeatedly writing the same series of statements in multiple probes, you can just place the
instructions in a function, as in:

function function_name(arguments) {statements}
probe event {function_name(arguments)}

The statements in function_name are executed when the probe for event executes. The
arguments are optional values passed into the function.

Important
Section 3.2, “SystemTap Scripts” is designed to introduce readers to the basics of
SystemTap scripts. To understand SystemTap scripts better, it is advisable that you



Event

13

refer to Chapter 4, Useful SystemTap Scripts; each section therein provides a detailed
explanation of the script, its events, handlers, and expected output.

3.2.1. Event
SystemTap events can be broadly classified into two types: synchronous and asynchronous.

Synchronous Events
A synchronous event occurs when any process executes an instruction at a particular location in
kernel code. This gives other events a reference point from which more contextual data may be
available.

Examples of synchronous events include:

syscall.system_call
The entry to the system call system_call. If the exit from a syscall is desired, appending a
.return to the event monitor the exit of the system call instead. For example, to specify the
entry and exit of the system call close, use syscall.close and syscall.close.return
respectively.

vfs.file_operation
The entry to the file_operation event for Virtual File System (VFS). Similar to syscall event,
appending a .return to the event monitors the exit of the file_operation operation.

kernel.function("function")
The entry to the kernel function function. For example, kernel.function("sys_open")
refers to the "event" that occurs when the kernel function sys_open is called by any thread in the
system. To specify the return of the kernel function sys_open, append the return string to the
event statement; i.e. kernel.function("sys_open").return.

When defining probe events, you can use asterisk (*) for wildcards. You can also trace the entry
or exit of a function in a kernel source file. Consider the following example:

probe kernel.function("*@net/socket.c") { }
probe kernel.function("*@net/socket.c").return { }

Example 3.1. wildcards.stp

In the previous example, the first probe's event specifies the entry of ALL functions in the kernel
source file net/socket.c. The second probe specifies the exit of all those functions. Note that in
this example, there are no statements in the handler; as such, no information will be collected or
displayed.

module("module").function("function")
Allows you to probe functions within modules. For example:



Chapter 3. Understanding How SystemTap Works

14

probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }

Example 3.2. moduleprobe.stp

The first probe in Example 3.2, “moduleprobe.stp” points to the entry of all functions for the ext3
module. The second probe points to the exits of all functions for that same module; the use of
the .return suffix is similar to kernel.function(). Note that the probes in Example 3.2,
“moduleprobe.stp” do not contain statements in the probe handlers, and as such will not print any
useful data (as in Example 3.1, “wildcards.stp”).

A system's kernel modules are typically located in /lib/modules/kernel_version, where
kernel_version refers to the currently loaded kernel version. Modules use the filename
extension .ko.

Asynchronous Events
Asynchronous events are not tied to a particular instruction or location in code. This family of probe
points consists mainly of counters, timers, and similar constructs.

Examples of asynchronous events include:

begin
The startup of a SystemTap session; i.e. as soon as the SystemTap script is run.

end
The end of a SystemTap session.

timer events
An event that specifies a handler to be executed periodically. For example:

probe timer.s(4)
{
  printf("hello world\n")
}

Example 3.3. timer-s.stp

Example 3.3, “timer-s.stp” is an example of a probe that prints hello world every 4 seconds.
Note that you can also use the following timer events:

• timer.ms(milliseconds)

• timer.us(microseconds)

• timer.ns(nanoseconds)

• timer.hz(hertz)

• timer.jiffies(jiffies)



Systemtap Handler/Body

15

When used in conjunction with other probes that collect information, timer events allows you to
print out get periodic updates and see how that information changes over time.

Important
SystemTap supports the use of a large collection of probe events. For more information
about supported events, refer to man stapprobes. The SEE ALSO section of man
stapprobes also contains links to other man pages that discuss supported events for
specific subsystems and components.

3.2.2. Systemtap Handler/Body
Consider the following sample script:

probe begin
{
  printf ("hello world\n")
  exit ()
}

Example 3.4. helloworld.stp

In Example 3.4, “helloworld.stp”, the event begin (i.e. the start of the session) triggers the handler
enclosed in { }, which simply prints hello world followed by a new-line, then exits.

Note
SystemTap scripts continue to run until the exit() function executes. If the users
wants to stop the execution of the script, it can interrupted manually with Ctrl+C.

printf ( ) Statements
The printf () statement is one of the simplest functions for printing data. printf () can also be
used to display data using a wide variety of SystemTap functions in the following format:

  printf ("format string\n", arguments)

The format string specifies how arguments should be printed. The format string of Example 3.4,
“helloworld.stp” simply instructs SystemTap to print hello world, and contains no format specifiers.

You can use the format specifiers %s (for strings) and %d (for numbers) in format strings, depending
on your list of arguments. Format strings can have multiple format specifiers, each matching a
corresponding argument; multiple arguments are delimited by a comma (,).



Chapter 3. Understanding How SystemTap Works

16

Note
Semantically, the SystemTap printf function is very similar to its C language
counterpart. The aforementioned syntax and format for SystemTap's printf function
is identical to that of the C-style printf.

To illustrate this, consider the following probe example:

probe syscall.open
{
  printf ("%s(%d) open\n", execname(), pid())
}

Example 3.5. variables-in-printf-statements.stp

Example 3.5, “variables-in-printf-statements.stp” instructs SystemTap to probe all entries to the system
call open; for each event, it prints the current execname() (a string with the executable name) and
pid() (the current process ID number), followed by the word open. A snippet of this probe's output
would look like:

vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open

SystemTap Functions
SystemTap supports a wide variety of functions that can be used as printf () arguments.
Example 3.5, “variables-in-printf-statements.stp” uses the SystemTap functions execname() (name
of the process that called a kernel function/performed a system call) and pid() (current process ID).

The following is a list of commonly-used SystemTap functions:

tid()
The ID of the current thread.

uid()
The ID of the current user.

cpu()
The current CPU number.

gettimeofday_s()
The number of seconds since UNIX epoch (January 1, 1970).



Systemtap Handler/Body

17

ctime()
Convert number of seconds since UNIX epoch to date.

pp()
A string describing the probe point currently being handled.

thread_indent()
This particular function is quite useful, providing you with a way to better organize your print
results. The function takes one argument, an indentation delta, which indicates how many spaces
to add or remove from a thread's "indentation counter". It then returns a string with some generic
trace data along with an appropriate number of indentation spaces.

The generic data included in the returned string includes a timestamp (number of microseconds
since the first call to thread_indent() by the thread), a process name, and the thread ID.
This allows you to identify what functions were called, who called them, and the duration of each
function call.

If call entries and exits immediately precede each other, it is easy to match them. However,
in most cases, after a first function call entry is made several other call entries and exits may
be made before the first call exits. The indentation counter helps you match an entry with its
corresponding exit by indenting the next function call if it is not the exit of the previous one.

Consider the following example on the use of thread_indent():

probe kernel.function("*@net/socket.c") 
{
  printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return 
{
  printf ("%s <- %s\n", thread_indent(-1), probefunc())
}

Example 3.6. thread_indent.stp

Example 3.6, “thread_indent.stp” prints out the thread_indent() and probe functions at each
event in the following format:

0 ftp(7223): -> sys_socketcall
1159 ftp(7223):  -> sys_socket
2173 ftp(7223):   -> __sock_create
2286 ftp(7223):    -> sock_alloc_inode
2737 ftp(7223):    <- sock_alloc_inode
3349 ftp(7223):    -> sock_alloc
3389 ftp(7223):    <- sock_alloc
3417 ftp(7223):   <- __sock_create
4117 ftp(7223):   -> sock_create
4160 ftp(7223):   <- sock_create
4301 ftp(7223):   -> sock_map_fd
4644 ftp(7223):    -> sock_map_file



Chapter 3. Understanding How SystemTap Works

18

4699 ftp(7223):    <- sock_map_file
4715 ftp(7223):   <- sock_map_fd
4732 ftp(7223):  <- sys_socket
4775 ftp(7223): <- sys_socketcall

This sample output contains the following information:

• The time (in microseconds) since the initial thread_ident() call for the thread (included in
the string from thread_ident()).

• The process name (and its corresponding ID) that made the function call (included in the string
from thread_ident()).

• An arrow signifying whether the call was an entry (<-) or an exit (->); the indentations help you
match specific function call entries with their corresponding exits.

• The name of the function called by the process.

name
Identifies the name of a specific system call. This variable can only be used in probes that use the
event syscall.system_call.

target()
Used in conjunction with stap script -x process ID or stap script -c command. If
you want to specify a script to take an argument of a process ID or command, use target() as
the variable in the script to refer to it. For example:

probe syscall.* {
  if (pid() == target())
    printf("%s/n", name)
}

Example 3.7. targetexample.stp

When Example 3.7, “targetexample.stp” is run with the argument -x process ID, it watches all
system calls (as specified by the event syscall.*) and prints out the name of all system calls
made by the specified process.

This has the same effect as specifying if (pid() == process ID) each time you wish to
target a specific process. However, using target() makes it easier for you to re-use the script,
giving you the ability to simply pass a process ID as an argument each time you wish to run the
script (e.g. stap targetexample.stp -x process ID).

For more information about supported SystemTap functions, refer to man stapfuncs.

3.3. Basic SystemTap Handler Constructs
SystemTap supports the use of several basic constructs in handlers. The syntax for most of these
handler constructs are mostly based on C and awk syntax. This section describes several of the most
useful SystemTap handler constructs, which should provide you with enough information to write
simple yet useful SystemTap scripts.



Variables

19

3.3.1. Variables
Variables can be used freely throughout a handler; simply choose a name, assign a value from
a function or expression to it, and use it in an expression. SystemTap automatically identifies
whether a variable should be typed as a string or integer, based on the type of the values
assigned to it. For instance, if you use set the variable foo to gettimeofday_s() (as in foo =
gettimeofday_s()), then foo is typed as an number and can be printed in a printf() with the
integer format specifier (%d).

Note, however, that by default variables are only local to the probe they are used in. This means that
variables are initialized, used and disposed at each probe handler invocation. To share a variable
between probes, declare the variable name using global outside of the probes. Consider the
following example:

global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
  hz=(1000*count_jiffies) / count_ms
  printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",
    count_jiffies, count_ms, hz)
  exit ()
}

Example 3.8. timer-jiffies.stp

Example 3.8, “timer-jiffies.stp” computes the CONFIG_HZ setting of the kernel using timers that count
jiffies and milliseconds, then computing accordingly. The global statement allows the script to use
the variables count_jiffies and count_ms (set in their own respective probes) to be shared with
probe timer.ms(12345).

Note
The ++ notation in Example 3.8, “timer-jiffies.stp” (i.e. count_jiffies ++ and
count_ms ++) is used to increment the value of a variable by 1. In the following probe,
count_jiffies is incremented by 1 every 100 jiffies:

probe timer.jiffies(100) { count_jiffies ++ }

In this instance, SystemTap understands that count_jiffies is an integer. Because
no initial value was assigned to count_jiffies, its initial value is zero by default.

3.3.2. Conditional Statements
In some cases, the output of a SystemTap script may be too big. To address this, you need to further
refine the script's logic in order to delimit the output into something more relevant or useful to your
probe.



Chapter 3. Understanding How SystemTap Works

20

You can do this by using conditionals in handlers. SystemTap accepts the following types of
conditional statements:

If/Else Statements
Format:

if (condition)
  statement1
else
  statement2

The statement1 is executed if the condition expression is non-zero. The statement2 is
executed if the condition expression is zero. The else clause (else statement2)is optional.
Both statement1 and statement2 can be statement blocks.

global countread, countnonread
probe kernel.function("vfs_read"),kernel.function("vfs_write")
{
  if (probefunc()=="vfs_read") 
    countread ++ 
  else 
    countnonread ++
}
probe timer.s(5) { exit() }
probe end 
{
  printf("VFS reads total %d\n VFS writes total %d\n", countread,
 countnonread)
}

Example 3.9. ifelse.stp

Example 3.9, “ifelse.stp” is a script that counts how many virtual file system reads (vfs_read)
and writes (vfs_write) the system performs within a 5-second span. When run, the script
increments the value of the variable countread by 1 if the name of the function it probed
matches vfs_read (as noted by the condition if (probefunc()=="vfs_read")); otherwise,
it increments countnonread (else {countnonread ++}).

While Loops
Format:

while (condition)
  statement

So long as condition is non-zero the block of statements in statement are executed. The
statement is often a statement block and it must change a value so condition will eventually
be zero.



Command-Line Arguments

21

For Loops
Format:

for (initialization; conditional; increment) statement

The for loop is simply shorthand for a while loop. The following is the equivalent while loop:

initialization
while (conditional) {
   statement
   increment
}

Conditional Operators
Aside from == ("is equal to"), you can also use the following operators in your conditional statements:

>=
Greater than or equal to

<=
Less than or equal to

!=
Is not equal to

3.3.3. Command-Line Arguments
You can also allow a SystemTap script to accept simple command-line arguments using a $ or @
immediately followed by the number of the argument on the command line. Use $ if you are expecting
the user to enter an integer as a command-line argument, and @ if you are expecting a string.

probe kernel.function(@1) { }
probe kernel.function(@1).return { }

Example 3.10. commandlineargs.stp

Example 3.10, “commandlineargs.stp” is similar to Example 3.1, “wildcards.stp”, except that it
allows you to pass the kernel function to be probed as a command-line argument (as in stap
commandlineargs.stp kernel function). You can also specify the script to accept multiple
command-line arguments, noting them as @1, @2, and so on, in the order they are entered by the user.

3.4. Associative Arrays
SystemTap also supports the use of associative arrays. While an ordinary variable represents a single
value, associative arrays can represent a collection of values. Simply put, an associative array is a
collection of unique keys; each key in the array has a value associated with it.



Chapter 3. Understanding How SystemTap Works

22

Since associative arrays are normally processed in multiple probes (as we will demonstrate later), they
are declared as global variables in the SystemTap script. The syntax for accessing an element in an
associative array is similar to that of awk, and is as follows:

array_name[index_expression]

Here, the array_name is any arbitrary name the array uses. The index_expression is used to
refer to a specific unique key in the array. To illustrate, let us try to build an array named foo that
specifies the ages of three people (i.e. the unique keys): tom, dick, and harry. To assign them the
ages (i.e. associated values) of 23, 24, and 25 respectively, we'd use the following array statements:

foo["tom"] = 23
foo["dick"] = 24
foo["harry"] = 25

Example 3.11. Basic Array Statements

You can specify up to 5 index expressons in an array statement, each one delimited by a comma (,).
This is useful if you wish to have a key that contains multiple pieces of information. The following line
from disktop.stp uses 5 elements for the key: process ID, executable name, user ID, parent process
ID, and string "W". It associates the value of devname with that key.

device[pid(),execname(),uid(),ppid(),"W"] = devname

Important
All associate arrays must be declared as global, regardless of whether the associate
array is used in one or multiple probes.

3.5. Array Operations in SystemTap
This section enumerates some of the most commonly used array operations in SystemTap.

3.5.1. Assigning an Associated Value
Use = to set an associated value to indexed unique pairs, as in:

array_name[index_expression] = value

Example 3.11, “Basic Array Statements” shows a very basic example of how to set an
explicit associated value to a unique key. You can also use a handler function as both your
index_expression and value. For example, you can use arrays to set a timestamp as the
associated value to a process name (which you wish to use as your unique key), as in:



Reading Values From Arrays

23

foo[tid()] = gettimeofday_s()

Example 3.12. Associating Timestamps to Process Names

Whenever an event invokes the statement in Example 3.12, “Associating Timestamps to Process
Names”, SystemTap returns the appropriate tid() value (i.e. the ID of a thread, which is then used
as the unique key). At the same time, SystemTap also uses the function gettimeofday_s() to
set the corresponding timestamp as the associated value to the unique key defined by the function
tid(). This creates an array composed of key pairs containing thread IDs and timestamps.

In this same example, if tid() returns a value that is already defined in the array foo, the operator
will discard the original associated value to it, and replace it with the current timestamp from
gettimeofday_s().

3.5.2. Reading Values From Arrays
You can also read values from an array the same way you would read the value of a variable. To do
so, include the array_name[index_expression] statement as an element in a mathematical
expression. For example:

delta = gettimeofday_s() - foo[tid()]

Example 3.13. Using Array Values in Simple Computations

This example assumes that the array foo was built using the construct in Example 3.12, “Associating
Timestamps to Process Names” (from Section 3.5.1, “Assigning an Associated Value”). This sets a
timestamp that will serve as a reference point, to be used in computing for delta.

The construct in Example 3.13, “Using Array Values in Simple Computations” computes a value
for the variable delta by subtracting the associated value of the key tid() from the current
gettimeofday_s(). The construct does this by reading the value of tid() from the array. This
particular construct is useful for determining the time between two events, such as the start and
completion of a read operation.

Note
If the index_expression cannot find the unique key, it returns a value of 0
(for numerical operations, such as Example 3.13, “Using Array Values in Simple
Computations”) or a null/empty string value (for string operations) by default.

3.5.3. Incrementing Associated Values
Use ++ to increment the associated value of a unique key in an array, as in:

array_name[index_expression] ++



Chapter 3. Understanding How SystemTap Works

24

Again, you can also use a handler function for your index_expression. For example, if you wanted
to tally how many times a specific process performed a read to the virtual file system (using the event
vfs.read), you can use the following probe:

probe vfs.read
{
  reads[execname()] ++
}

Example 3.14. vfsreads.stp

In Example 3.14, “vfsreads.stp”, the first time that the probe returns the process name gnome-
terminal (i.e. the first time gnome-terminal performs a VFS read), that process name is set
as the unique key gnome-terminal with an associated value of 1. The next time that the probe
returns the process name gnome-terminal, SystemTap increments the associated value of gnome-
terminal by 1. SystemTap performs this operation for all process names as the probe returns them.

3.5.4. Processing Multiple Elements in an Array
Once you've collected enough information in an array, you will need to retrieve and process all
elements in that array to make it useful. Consider Example 3.14, “vfsreads.stp”: the script collects
information about how many VFS reads each process performs, but does not specify what to do with
it. The obvious means for making Example 3.14, “vfsreads.stp” useful is to print the key pairs in the
array reads, but how?

The best way to process all key pairs in an array (as an iteration) is to use the foreach statement.
Consider the following example:

global reads
probe vfs.read
{ 
  reads[execname()] ++
}
probe timer.s(3)
{
  foreach (count in reads)
    printf("%s : %d \n", count, reads[count])
}

Example 3.15. cumulative-vfsreads.stp

In the second probe of Example 3.15, “cumulative-vfsreads.stp”, the foreach statement uses the
variable count to reference each iteration of a unique key in the array reads. The reads[count]
array statement in the same probe retrieves the associated value of each unique key.

Given what we know about the first probe in Example 3.15, “cumulative-vfsreads.stp”, the script prints
VFS-read statistics every 3 seconds, displaying names of processes that performed a VFS-read along
with a corresponding VFS-read count.



Clearing/Deleting Arrays and Array Elements

25

Now, remember that the foreach statement in Example 3.15, “cumulative-vfsreads.stp” prints all
iterations of process names in the array, and in no particular order. You can instruct the script to
process the iterations in a particular order by using + (ascending) or - (descending). In addition, you
can also limit the number of iterations the script needs to process with the limit value option.

For example, consider the following replacement probe:

probe timer.s(3)
{
  foreach (count in reads- limit 10)
    printf("%s : %d \n", count, reads[count])
}

This foreach statement instructs the script to process the elements in the array reads in descending
order (of associated value). The limit 10 option instructs the foreach to only process the first ten
iterations (i.e. print the first 10, starting with the highest value).

3.5.5. Clearing/Deleting Arrays and Array Elements
Sometimes, you may need to clear the associated values in array elements, or reset an entire array
for re-use in another probe. Example 3.15, “cumulative-vfsreads.stp” in Section 3.5.4, “Processing
Multiple Elements in an Array” allows you to track how the number of VFS reads per process grows
over time, but it does not show you the number of VFS reads each process makes per 3-second
period.

To do that, you will need to clear the values accumulated by the array. You can accomplish this
using the delete operator to delete elements in an array, or an entire array. Consider the following
example:

global reads
probe vfs.read
{ 
  reads[execname()] ++
}
probe timer.s(3)
{
  foreach (count in reads)
    printf("%s : %d \n", count, reads[count])
  delete reads 
}

Example 3.16. noncumulative-vfsreads.stp

In Example 3.16, “noncumulative-vfsreads.stp”, the second probe prints the number of VFS reads
each process made within the probed 3-second period only. The delete reads statement clears the
reads array within the probe.



Chapter 3. Understanding How SystemTap Works

26

Note
You can have multiple array operations within the same probe. Using the examples
from Section 3.5.4, “Processing Multiple Elements in an Array” and Section 3.5.5,
“Clearing/Deleting Arrays and Array Elements” , you can track the number of VFS
reads each process makes per 3-second period and tally the cumulative VFS reads of
those same processes. Consider the following example:

global reads, totalreads

probe vfs.read
{
  reads[execname()] ++
  totalreads[execname()] ++
}

probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads-) 
    printf("%s : %d \n", count, reads[count])
  delete reads
}

probe end
{
  printf("TOTALS\n")
  foreach (total in totalreads-)
    printf("%s : %d \n", total, totalreads[total])
}

In this example, the arrays reads and totalreads track the same information, and
are printed out in a similar fashion. The only difference here is that reads is cleared
every 3-second period, whereas totalreads keeps growing.

3.5.6. Using Arrays in Conditional Statements
You can also use associative arrays in if statements. This is useful if you want to execute a
subroutine once a value in the array matches a certain condition. Consider the following example:



Using Arrays in Conditional Statements

27

global reads
probe vfs.read
{
  reads[execname()] ++
}

probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads-)
    if (reads[count] >= 1024)
      printf("%s : %dkB \n", count, reads[count]/1024)
    else
      printf("%s : %dB \n", count, reads[count])
}

Example 3.17. vfsreads-print-if-1kb.stp

Every three seconds, Example 3.17, “vfsreads-print-if-1kb.stp” prints out a list of all processes, along
with how many times each process performed a VFS read. If the associated value of a process name
is equal or greater than 1024, the if statement in the script converts and prints it out in kB.

Testing for Membership
You can also test whether a specific unique key is a member of an array. Further, membership in an
array can be used in if statements, as in:

if([index_expression] in array_name) statement

To illustrate this, consider the following example:



Chapter 3. Understanding How SystemTap Works

28

global reads

probe vfs.read
{
  reads[execname()] ++
}

probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads+) 
    printf("%s : %d \n", count, reads[count])
  if(["stapio"] in reads) {
    printf("stapio read detected, exiting\n")
    exit()
  }
}

Example 3.18. vfsreads-stop-on-stapio2.stp

The if(["stapio"] in reads) statement instructs the script to print stapio read detected,
exiting once the unique key stapio is added to the array reads.

3.5.7. Computing for Statistical Aggregates
Statistical aggregates are used to collect statistics on numerical values where it is important to
accumulate new data quickly and in large volume (i.e. storing only aggregated stream statistics).
Statistical aggregates can be used in global variables or as elements in an array.

To add value to a statistical aggregate, use the operator <<< value.

global reads 
probe vfs.read
{
  reads[execname()] <<< count
}

Example 3.19. stat-aggregates.stp

In Example 3.19, “stat-aggregates.stp”, the operator <<< count stores the amount returned by
count to to the associated value of the corresponding execname() in the reads array. Remember,
these values are stored; they are not added to the associated values of each unique key, nor are they
used to replace the current associated values. In a manner of speaking, think of it as having each
unique key (execname()) having multiple associated values, accumulating with each probe handler
run.



Computing for Statistical Aggregates

29

Note
In the context of Example 3.19, “stat-aggregates.stp”, count returns the amount of
data written by the returned execname() to the virtual file system.

To extract data collected by statistical aggregates, use the syntax format @extractor(variable/
array index expression). extractor can be any of the following integer extractors:

count
Returns the number of all values stored into the variable/array index expression. Given the sample
probe in Example 3.19, “stat-aggregates.stp”, the expression @count(writes[execname()])
will return how many values are stored in each unique key in array writes.

sum
Returns the sum of all values stored into the variable/array index expression. Again, given sample
probe in Example 3.19, “stat-aggregates.stp”, the expression @sum(writes[execname()]) will
return the total of all values stored in each unique key in array writes.

min
Returns the smallest among all the values stored in the variable/array index expression.

max
Returns the largest among all the values stored in the variable/array index expression.

avg
Returns the average of all values stored in the variable/array index expression.

When using statistical aggregates, you can also build array constructs that use multiple index
expressions (to a maximum of 5). This is helpful in capturing additional contextual information during a
probe. For example:

global reads
probe vfs.read
{
  reads[execname(),pid()] <<< 1
}
probe timer.s(3)
{
  foreach([var1,var2] in reads)
    printf("%s (%d) : %d \n", var1, var2, @count(reads[var1,var2]))
}

Example 3.20. Multiple Array Indexes

In Example 3.20, “Multiple Array Indexes”, the first probe tracks how many times each process
performs a VFS read. What makes this different from earlier examples is that this array associates a
performed read to both a process name and its corresponding process ID.

The second probe in Example 3.20, “Multiple Array Indexes” demonstrates how to process and print
the information collected by the array reads. Note how the foreach statement uses the same



Chapter 3. Understanding How SystemTap Works

30

number of variables (i.e. var1 and var2) contained in the first instance of the array reads from the
first probe.

3.6. Tapsets
Tapsets are scripts that form a library of pre-written probes and functions to be used in SystemTap
scripts. When a user runs a SystemTap script, SystemTap checks the script's probe events and
handlers against the tapset library; SystemTap then loads the corresponding probes and functions
before translating the script to C (refer to Section 3.1, “Architecture” for information on what transpires
in a SystemTap session).

Like SystemTap scripts, tapsets use the filename extension .stp. The standard library of tapsets
is located in /usr/share/systemtap/tapset/ by default. However, unlike SystemTap scripts,
tapsets are not meant for direct execution; rather, they constitute the library from which other scripts
can pull definitions.

Simply put, the tapset library is an abstraction layer designed to make it easier for users to define
events and functions. In a manner of speaking, tapsets provide useful aliases for functions that users
may want to specify as an event; knowing the proper alias to use is, for the most part, easier than
remembering specific kernel functions that might vary between kernel versions.

Several handlers and functions in Section 3.2.1, “Event” and SystemTap Functions are defined in
tapsets. For example, thread_indent() is defined in indent.stp.



Chapter 4.

31

Useful SystemTap Scripts
This chapter enumerates several SystemTap scripts you can use to monitor and investigate
different subsystems. All of these scripts are available at /usr/share/systemtap/testsuite/
systemtap.examples/ once you install the systemtap-testsuite RPM.

4.1. Network
The following sections showcase scripts that trace network-related functions and build a profile of
network activity.

4.1.1. Network Profiling
This section describes how to profile network activity. nettop.stp provides a glimpse into how much
network traffic each process is generating on a machine.

nettop.stp

#! /usr/bin/env stap

global ifxmit, ifrecv

probe netdev.transmit
{
  ifxmit[pid(), dev_name, execname(), uid()] <<< length
}

probe netdev.receive
{
  ifrecv[pid(), dev_name, execname(), uid()] <<< length
}

function print_activity()
{
  printf("%5s %5s %-7s %7s %7s %7s %7s %-15s\n",
         "PID", "UID", "DEV", "XMIT_PK", "RECV_PK",
         "XMIT_KB", "RECV_KB", "COMMAND")

  foreach ([pid, dev, exec, uid] in ifrecv-) {
    n_xmit = @count(ifxmit[pid, dev, exec, uid])
    n_recv = @count(ifrecv[pid, dev, exec, uid])
    printf("%5d %5d %-7s %7d %7d %7d %7d %-15s\n",
           pid, uid, dev, n_xmit, n_recv,
           n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0,
           n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0,
           exec)
  }

  print("\n")



Chapter 4. Useful SystemTap Scripts

32

  delete ifxmit
  delete ifrecv
}

probe timer.ms(5000), end, error
{
  print_activity()
}

Note that function print_activity() uses the following expressions:

n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0
n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0

These expressions are if/else conditionals. The first statement is simply a more concise way of writing
the following psuedo code:

if n_recv != 0 then
  @sum(ifrecv[pid, dev, exec, uid])/1024
else
  0

nettop.stp tracks which processes are generating network traffic on the system, and provides the
following information about each process:

• PID — the ID of the listed process.

• UID — user ID. A user ID of 0 refers to the root user.

• DEV — which ethernet device the process used to send / receive data (e.g. eth0, eth1)

• XMIT_PK — number of packets transmitted by the process

• RECV_PK — number of packets received by the process

• XMIT_KB — amount of data sent by the process, in kilobytes

• RECV_KB — amount of data received by the service, in kilobytes

nettop.stp provides network profile sampling every 5 seconds. You can change this setting by editing
probe timer.ms(5000) accordingly. Example 4.1, “nettop.stp Sample Output” contains an excerpt
of the output from nettop.stp over a 20-second period:



Tracing Functions Called in Network Socket Code

33

[...]
  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        
    0     0 eth0          0       5       0       0 swapper        
11178     0 eth0          2       0       0       0 synergyc       

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        
 2886     4 eth0         79       0       5       0 cups-polld     
11362     0 eth0          0      61       0       5 firefox        
    0     0 eth0          3      32       0       3 swapper        
 2886     4 lo            4       4       0       0 cups-polld     
11178     0 eth0          3       0       0       0 synergyc       

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        
    0     0 eth0          0       6       0       0 swapper        
 2886     4 lo            2       2       0       0 cups-polld     
11178     0 eth0          3       0       0       0 synergyc       
 3611     0 eth0          0       1       0       0 Xorg           

  PID   UID DEV     XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND        
    0     0 eth0          3      42       0       2 swapper        
11178     0 eth0         43       1       3       0 synergyc       
11362     0 eth0          0       7       0       0 firefox        
 3897     0 eth0          0       1       0       0 multiload-apple
[...]

Example 4.1. nettop.stp Sample Output

4.1.2. Tracing Functions Called in Network Socket Code
This section describes how to trace functions called from the kernel's net/socket.c file. This task
helps you identify, in finer detail, how each process interacts with the network at the kernel level.

socket-trace.stp

#! /usr/bin/env stap

probe kernel.function("*@net/socket.c").call {
  printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return {
  printf ("%s <- %s\n", thread_indent(-1), probefunc())
}

socket-trace.stp is identical to Example 3.6, “thread_indent.stp”, which was earlier used in SystemTap
Functions to illustrate how thread_indent() works.



Chapter 4. Useful SystemTap Scripts

34

[...]
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 gnome-terminal(11106): -> sock_poll
5 gnome-terminal(11106): <- sock_poll
0 scim-bridge(3883): -> sock_poll
3 scim-bridge(3883): <- sock_poll
0 scim-bridge(3883): -> sys_socketcall
4 scim-bridge(3883):  -> sys_recv
8 scim-bridge(3883):   -> sys_recvfrom
12 scim-bridge(3883):-> sock_from_file
16 scim-bridge(3883):<- sock_from_file
20 scim-bridge(3883):-> sock_recvmsg
24 scim-bridge(3883):<- sock_recvmsg
28 scim-bridge(3883):   <- sys_recvfrom
31 scim-bridge(3883):  <- sys_recv
35 scim-bridge(3883): <- sys_socketcall
[...]

Example 4.2. socket-trace.stp Sample Output

Example 4.2, “socket-trace.stp Sample Output” contains a 3-second excerpt of the output for socket-
trace.stp. For more information about the output of this script as provided by thread_indent(),
refer to SystemTap Functions Example 3.6, “thread_indent.stp”.

4.2. Disk
The following sections showcase scripts that monitor disk and I/O activity.

4.2.1. Summarizing Disk Read/Write Traffic
This section describes how to identify which processes are performing the heaviest disk reads/writes
to the system.

disktop.stp

#!/usr/bin/env stap 
#
# Copyright (C) 2007 Oracle Corp.
#
# Get the status of reading/writing disk every 5 seconds,
# output top ten entries 
#
# This is free software,GNU General Public License (GPL);
# either version 2, or (at your option) any later version.
#



Summarizing Disk Read/Write Traffic

35

# Usage:
#  ./disktop.stp
#

global io_stat,device
global read_bytes,write_bytes

probe vfs.read.return {
  if ($return>0) {
    if (devname!="N/A") {/*skip read from cache*/
      io_stat[pid(),execname(),uid(),ppid(),"R"] += $return
      device[pid(),execname(),uid(),ppid(),"R"] = devname
      read_bytes += $return
    }
  }
}

probe vfs.write.return {
  if ($return>0) {
    if (devname!="N/A") { /*skip update cache*/
      io_stat[pid(),execname(),uid(),ppid(),"W"] += $return
      device[pid(),execname(),uid(),ppid(),"W"] = devname
      write_bytes += $return
    }
  }
}

probe timer.ms(5000) {
  /* skip non-read/write disk */
  if (read_bytes+write_bytes) {

    printf("\n%-25s, %-8s%4dKb/sec, %-7s%6dKb, %-7s%6dKb\n\n",
           ctime(gettimeofday_s()),
           "Average:", ((read_bytes+write_bytes)/1024)/5,
           "Read:",read_bytes/1024,
           "Write:",write_bytes/1024)

    /* print header */
    printf("%8s %8s %8s %25s %8s %4s %12s\n",
           "UID","PID","PPID","CMD","DEVICE","T","BYTES")
  }
  /* print top ten I/O */
  foreach ([process,cmd,userid,parent,action] in io_stat- limit 10)
    printf("%8d %8d %8d %25s %8s %4s %12d\n",
           userid,process,parent,cmd,
           device[process,cmd,userid,parent,action],
           action,io_stat[process,cmd,userid,parent,action])

  /* clear data */
  delete io_stat
  delete device



Chapter 4. Useful SystemTap Scripts

36

  read_bytes = 0
  write_bytes = 0  
}

probe end{
  delete io_stat
  delete device
  delete read_bytes
  delete write_bytes
}

disktop.stp outputs the top ten processes responsible for the heaviest reads/writes to disk.
Example 4.3, “disktop.stp Sample Output” displays a sample output for this script, and includes the
following data per listed process:

• UID — user ID. A user ID of 0 refers to the root user.

• PID — the ID of the listed process.

• PPID — the process ID of the listed process's parent process.

• CMD — the name of the listed process.

• DEVICE — which storage device the listed process is reading from or writing to.

• T — the type of action performed by the listed process; W refers to write, while R refers to read.

• BYTES — the amount of data read to or written from disk.

The time and date in the output of disktop.stp is returned by the functions ctime() and
gettimeofday_s(). ctime() derives calendar time in terms of seconds passed since the Unix
epoch (January 1, 1970). gettimeofday_s() counts the actual number of seconds since Unix
epoch, which gives a fairly accurate human-readable timestamp for the output.

In this script, the $return is a local variable that stores the actual number of bytes each process
reads or writes from the virtual file system. $return can only be used in return probes (e.g.
vfs.read.return and vfs.read.return).



Tracking I/O Time For Each File Read or Write

37

[...]
Mon Sep 29 03:38:28 2008 , Average:  19Kb/sec, Read: 7Kb, Write: 89Kb

UID      PID     PPID                       CMD   DEVICE    T    BYTES
0    26319    26294                   firefox     sda5    W        90229
0     2758     2757           pam_timestamp_c     sda5    R         8064
0     2885        1                     cupsd     sda5    W         1678

Mon Sep 29 03:38:38 2008 , Average:   1Kb/sec, Read: 7Kb, Write: 1Kb

UID      PID     PPID                       CMD   DEVICE    T    BYTES
0     2758     2757           pam_timestamp_c     sda5    R         8064
0     2885        1                     cupsd     sda5    W         1678

Example 4.3. disktop.stp Sample Output

4.2.2. Tracking I/O Time For Each File Read or Write
This section describes how to monitor the amount of time it takes for each process to read from or
write to any file. This is useful if you wish to determine what files are slow to load on a given system.

iotime.stp

global start
global entry_io
global fd_io
global time_io

function timestamp:long() {
  return gettimeofday_us() - start
}

function proc:string() {
  return sprintf("%d (%s)", pid(), execname())
}

probe begin {
 start = gettimeofday_us()
}

global filenames
global filehandles
global fileread
global filewrite

probe syscall.open {
  filenames[pid()] = user_string($filename)
} 



Chapter 4. Useful SystemTap Scripts

38

probe syscall.open.return {
  if ($return != -1) {
    filehandles[pid(), $return] = filenames[pid()]
    fileread[pid(), $return] = 0
    filewrite[pid(), $return] = 0
  } else {
    printf("%d %s access %s fail\n", timestamp(), proc(),
 filenames[pid()])
  }
  delete filenames[pid()]
}

probe syscall.read {
  if ($count > 0) {
    fileread[pid(), $fd] += $count
  }
  t = gettimeofday_us(); p = pid()
  entry_io[p] = t
  fd_io[p] = $fd
}

probe syscall.read.return {
  t = gettimeofday_us(); p = pid()
  fd = fd_io[p]
  time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.write {
  if ($count > 0) {
    filewrite[pid(), $fd] += $count
  }
  t = gettimeofday_us(); p = pid()
  entry_io[p] = t
  fd_io[p] = $fd
}

probe syscall.write.return {
  t = gettimeofday_us(); p = pid()
  fd = fd_io[p]
  time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.close {
  if (filehandles[pid(), $fd] != "") {
    printf("%d %s access %s read: %d write: %d\n",  timestamp(), proc(),
           filehandles[pid(), $fd], fileread[pid(), $fd],
 filewrite[pid(), $fd])
    if (@count(time_io[pid(), $fd]))
      printf("%d %s iotime %s time: %d\n",  timestamp(), proc(),
             filehandles[pid(), $fd], @sum(time_io[pid(), $fd]))



Tracking I/O Time For Each File Read or Write

39

   }
  delete fileread[pid(), $fd]
  delete filewrite[pid(), $fd]
  delete filehandles[pid(), $fd]
  delete fd_io[pid()]
  delete entry_io[pid()]
  delete time_io[pid(),$fd]
}

iotime.stp tracks each time a system call opens, closes, reads from, and writes to a file. For each file
any system call accesses, iotime.stp counts the number of microseconds it takes for any reads or
writes to finish and tracks the amount of data (in bytes) read from or written to the file.

iotime.stp also uses the local variable $count to track the amount of data (in bytes) that any
system call attempts to read or write. Note that $return (as used in disktop.stp from Section 4.2.1,
“Summarizing Disk Read/Write Traffic”) stores the actual amount of data read/written. $count can
only be used on probes that track data reads or writes (e.g. syscall.read and syscall.write).

[...]
825946 3364 (NetworkManager) access /sys/class/net/eth0/carrier read:
 8190 write: 0
825955 3364 (NetworkManager) iotime /sys/class/net/eth0/carrier time: 9
[...]
117061 2460 (pcscd) access /dev/bus/usb/003/001 read: 43 write: 0
117065 2460 (pcscd) iotime /dev/bus/usb/003/001 time: 7
[...]
3973737 2886 (sendmail) access /proc/loadavg read: 4096 write: 0
3973744 2886 (sendmail) iotime /proc/loadavg time: 11
[...]

Example 4.4. iotime.stp Sample Output

Example 4.4, “iotime.stp Sample Output” prints out the following data:

• A timestamp, in microseconds

• Process ID and process name

• An access or iotime flag

• The file accessed

If a process was able to read or write any data, a pair of access and iotime lines should appear
together. The access line's timestamp refer to the time that a given process started accessing a file;
at the end of the line, it will show the amount of data read/written (in bytes). The iotime line will show
the amount of time (in microseconds) that the process took in order to perform the read or write.

If an access line is not followed by an iotime line, it simply means that the process did not read or
write any data.



Chapter 4. Useful SystemTap Scripts

40

4.2.3. Track Cumulative IO
This section describes how to track the cumulative amount of I/O to the system.

traceio.stp

#! /usr/bin/env stap
# traceio.stp
# Copyright (C) 2007 Red Hat, Inc., Eugene Teo <eteo@redhat.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 2 as
# published by the Free Software Foundation.
#

global reads, writes, total_io

probe vfs.read.return {
  reads[execname()] += $return
}

probe vfs.write.return {
  writes[execname()] += $return
}

probe timer.s(1) {
  foreach (p in reads)
    total_io[p] += reads[p]
  foreach (p in writes)
    total_io[p] += writes[p]
  foreach(p in total_io- limit 10)
    printf("%15s r: %8d KiB w: %8d KiB\n",
           p, reads[p]/1024,
           writes[p]/1024)
  printf("\n")
  # Note we don't zero out reads, writes and total_io,
  # so the values are cumulative since the script started.
}

traceio.stp prints the top ten executables generating I/O traffic over time. In addition, it also tracks the
cumulative amount of I/O reads and writes done by those ten executables. This information is tracked
and printed out in 1-second intervals, and in descending order.

Note that traceio.stp also uses the local variable $return, which is also used by disktop.stp from
Section 4.2.1, “Summarizing Disk Read/Write Traffic”.



I/O Monitoring (By Device)

41

[...]
           Xorg r:   583401 KiB w:        0 KiB
       floaters r:       96 KiB w:     7130 KiB
multiload-apple r:      538 KiB w:      537 KiB
           sshd r:       71 KiB w:       72 KiB
pam_timestamp_c r:      138 KiB w:        0 KiB
        staprun r:       51 KiB w:       51 KiB
          snmpd r:       46 KiB w:        0 KiB
          pcscd r:       28 KiB w:        0 KiB
     irqbalance r:       27 KiB w:        4 KiB
          cupsd r:        4 KiB w:       18 KiB

           Xorg r:   588140 KiB w:        0 KiB
       floaters r:       97 KiB w:     7143 KiB
multiload-apple r:      543 KiB w:      542 KiB
           sshd r:       72 KiB w:       72 KiB
pam_timestamp_c r:      138 KiB w:        0 KiB
        staprun r:       51 KiB w:       51 KiB
          snmpd r:       46 KiB w:        0 KiB
          pcscd r:       28 KiB w:        0 KiB
     irqbalance r:       27 KiB w:        4 KiB
          cupsd r:        4 KiB w:       18 KiB

Example 4.5. traceio.stp Sample Output

4.2.4. I/O Monitoring (By Device)
This section describes how to monitor I/O activity on a specific device.

traceio2.stp

#! /usr/bin/env stap

global device_of_interest, dev

probe begin {
  /* The following is not the most efficient way to do this.
      One could directly put the result of usrdev2kerndev()
      into device_of_interest.  However, want to test out
      the other device functions */
  dev = usrdev2kerndev($1)
  device_of_interest = MKDEV(MAJOR(dev), MINOR(dev))
}

probe vfs.write, vfs.read
{
  if (dev == device_of_interest)
    printf ("%s(%d) %s 0x%x\n",



Chapter 4. Useful SystemTap Scripts

42

            execname(), pid(), probefunc(), dev)
}

traceio2.stp takes 1 argument: the whole device number. To get this number, use stat -c "0x%D"
directory, where directory is located in the device you wish to monitor.

The usrdev2kerndev() function converts the whole device number into the format understood by
the kernel. The output produced by usrdev2kerndev() is used in conjunction with the MKDEV(),
MINOR(), and MAJOR() functions to determine the major and minor numbers of a specific device.

The output of traceio2.stp includes the name and ID of any process performing a read/write, the
function it is performing (i.e. vfs_read or vfs_write), and the kernel device number.

The following example is an excerpt from the full output of stap traceio2.stp 0x805, where
0x805 is the whole device number of /home. /home resides in /dev/sda5, which is the device we
wish to monitor.

[...]
synergyc(3722) vfs_read 0x800005
synergyc(3722) vfs_read 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
[...]

Example 4.6. traceio2.stp Sample Output

4.2.5. Monitoring Reads and Writes to a File
This section describes how to monitor reads from and writes to a file in real time.

inodewatch-simple.stp

probe vfs.write, vfs.read 
{ 
  dev_nr = $file->f_dentry->d_inode->i_sb->s_dev 
  inode_nr = $file->f_dentry->d_inode->i_ino 
  if (dev_nr == ($1 << 20 | $2) # major/minor device 
      && inode_nr == $3) 
    printf ("%s(%d) %s 0x%x/%u\n", 
      execname(), pid(), probefunc(), dev_nr, inode_nr) 
} 

inodewatch-simple.stp takes the following information about the file as arguments on the command
line:

• The file's major device number.



Monitoring Changes to File Attributes

43

• The file's minor device number.

• The file's inode number.

To get this information, use stat -c '%D %i' filename, where filename is an absolute path.

For instance: if you wish to monitor /etc/crontab, run stat -c '%D %i' /etc/crontab first.
This gives the following output:

805 1078319

805 is the base-16 (hexadecimal) device number. The lower two digits are the minor device number
and the upper digits are the major number. 1078319 is the inode number. To start monitoring /etc/
crontab, run stap inodewatch.stp 0x8 0x05 1078319 (The 0x prefixes indicate base-16
values.

The output of this command contains the name and ID of any process performing a read/write, the
function it is performing (i.e. vfs_read or vfs_write), the device number (in hex format), and the
inode number. Example 4.7, “inodewatch-simple.stp Sample Output” contains the output of stap
inodewatch.stp 0x8 0x05 1078319 (when cat /etc/crontab is executed while the script is
running) :

cat(16437) vfs_read 0x800005/1078319
cat(16437) vfs_read 0x800005/1078319

Example 4.7. inodewatch-simple.stp Sample Output

4.2.6. Monitoring Changes to File Attributes
This section describes how to monitor if any processes are changing the attributes of a targeted file, in
real time.

inodewatch2-simple.stp

global ATTR_MODE = 1 
 
probe kernel.function("inode_setattr") { 
  dev_nr = $inode->i_sb->s_dev 
  inode_nr = $inode->i_ino 
 
  if (dev_nr == ($1 << 20 | $2) # major/minor device 
      && inode_nr == $3 
      && $attr->ia_valid & ATTR_MODE) 
    printf ("%s(%d) %s 0x%x/%u %o %d\n", 
      execname(), pid(), probefunc(), dev_nr, inode_nr, $attr->ia_mode,
 uid()) 
} 



Chapter 4. Useful SystemTap Scripts

44

Like inodewatch-simple.stp from Section 4.2.5, “Monitoring Reads and Writes to a File”, inodewatch2-
simple.stp takes the targeted file's device number (in integer format) and inode number as
arguments. For more information on how to retrieve this information, refer to Section 4.2.5, “Monitoring
Reads and Writes to a File”.

The output for inodewatch2-simple.stp is similar to that of inodewatch-simple.stp, except that
inodewatch2-simple.stp also contains the attribute changes to the monitored file, as well as the ID
of the user responsible (uid()). Example 4.8, “inodewatch2-simple.stp Sample Output” contains
shows the output of inodewatch2-simple.stp while monitoring /home/joe/bigfile when user joe
executes chmod 777 /home/joe/bigfile and chmod 666 /home/joe/bigfile.

chmod(17448) inode_setattr 0x800005/6011835 100777 500
chmod(17449) inode_setattr 0x800005/6011835 100666 500

Example 4.8. inodewatch2-simple.stp Sample Output

4.3. Profiling
The following sections showcase scripts that profile kernel activity by monitoring function calls.

4.3.1. Counting Function Calls Made
This section describes how to identify how many times the system called a specific kernel function in a
30-second sample. Depending on your use of wildcards, you can also use this script to target multiple
kernel functions.

functioncallcount.stp

#! /usr/bin/env stap
# The following line command will probe all the functions
# in kernel's memory management code:
#
# stap  functioncallcount.stp "*@mm/*.c"

probe kernel.function(@1) {  # probe functions listed on commandline
  called[probefunc()] <<< 1  # add a count efficiently
}

global called

probe end {
  foreach (fn in called-)  # Sort by call count (in decreasing order)
  #       (fn+ in called)  # Sort by function name
    printf("%s %d\n", fn, @count(called[fn]))
  exit()



Call Graph Tracing

45

}

functioncallcount.stp takes the targeted kernel function as an argument. The argument supports
wildcards, which enables you to target multiple kernel functions up to a certain extent.

You can increase the sample time by editing the timer in the second probe (timer.ms()). The output
of functioncallcount.stp contains the name of the function called and how many times it was called
during the sample time (in alphabetical order). Example 4.9, “functioncallcount.stp Sample Output”
contains an excerpt from the output of stap countcalls.stp "*@mm/*.c":

[...]
__vma_link 97
__vma_link_file 66
__vma_link_list 97
__vma_link_rb 97
__xchg 103
add_page_to_active_list 102
add_page_to_inactive_list 19
add_to_page_cache 19
add_to_page_cache_lru 7
all_vm_events 6
alloc_pages_node 4630
alloc_slabmgmt 67
anon_vma_alloc 62
anon_vma_free 62
anon_vma_lock 66
anon_vma_prepare 98
anon_vma_unlink 97
anon_vma_unlock 66
arch_get_unmapped_area_topdown 94
arch_get_unmapped_exec_area 3
arch_unmap_area_topdown 97
atomic_add 2
atomic_add_negative 97
atomic_dec_and_test 5153
atomic_inc 470
atomic_inc_and_test 1
[...]

Example 4.9. functioncallcount.stp Sample Output

4.3.2. Call Graph Tracing
This section describes how to trace incoming and outgoing function calls.

para-callgraph-simple.stp



Chapter 4. Useful SystemTap Scripts

46

function trace(entry_p) { 
  if(tid() in trace) 
    printf("%s%s%s\n",thread_indent(entry_p), 
           (entry_p>0?"->":"<-"), 
           probefunc()) 
} 
 
global trace 
probe kernel.function(@1).call { 
  if (execname() == "stapio") next # skip our own helper process 
  trace[tid()] = 1 
  trace(1) 
} 
probe kernel.function(@1).return { 
  trace(-1) 
  delete trace[tid()] 
} 
 
probe kernel.function(@2).call { trace(1) } 
probe kernel.function(@2).return { trace(-1) } 
function trace(entry_p) { 
  if(tid() in trace) 
    printf("%s%s%s\n",thread_indent(entry_p), 
           (entry_p>0?"->":"<-"), 
           probefunc()) 
} 
 
global trace 
probe kernel.function(@1).call { 
  if (execname() == "stapio") next # skip our own helper process 
  trace[tid()] = 1 
  trace(1) 
} 
probe kernel.function(@1).return { 
  trace(-1) 
  delete trace[tid()] 
} 
 
probe kernel.function(@2).call { trace(1) } 
probe kernel.function(@2).return { trace(-1) } 

para-callgraph-simple.stp takes two command-line arguments:

• A trigger function (@1), which enables or disables tracing on a per-thread basis. Tracing in each
thread will continue as long as the trigger function has not exited yet.

• The kernel function/s whose entry/exit call you'd like to trace (@2).

para-callgraph-simple.stp uses thread_indent(); as such, its output contains the timestamp,
process name, and thread ID of @2 (i.e. the probe function you are tracing). For more information
about thread_indent(), refer to its entry in SystemTap Functions.



Determining Time Spent in Kernel and User Space

47

The following example contains an excerpt from the output for stap para-callgraph.stp
sys_read '*@fs/*.c':

[...]
     0 klogd(1391):->sys_read
    14 klogd(1391): ->fget_light
    22 klogd(1391): <-fget_light
    27 klogd(1391): ->vfs_read
    35 klogd(1391):  ->rw_verify_area
    43 klogd(1391):  <-rw_verify_area
    49 klogd(1391):  ->kmsg_read
     0 sendmail(1696):->sys_read
    17 sendmail(1696): ->fget_light
    26 sendmail(1696): <-fget_light
    34 sendmail(1696): ->vfs_read
    44 sendmail(1696):  ->rw_verify_area
    52 sendmail(1696):  <-rw_verify_area
    58 sendmail(1696):  ->proc_file_read
    70 sendmail(1696):   ->loadavg_read_proc
    84 sendmail(1696):    ->proc_calc_metrics
    92 sendmail(1696):    <-proc_calc_metrics
    95 sendmail(1696):   <-loadavg_read_proc
   101 sendmail(1696):  <-proc_file_read
   106 sendmail(1696):  ->dnotify_parent
   115 sendmail(1696):  <-dnotify_parent
   119 sendmail(1696):  ->inotify_dentry_parent_queue_event
   127 sendmail(1696):  <-inotify_dentry_parent_queue_event
   133 sendmail(1696):  ->inotify_inode_queue_event
   141 sendmail(1696):  <-inotify_inode_queue_event
   146 sendmail(1696): <-vfs_read
   151 sendmail(1696):<-sys_read

Example 4.10. para-callgraph-simple.stp Sample Output

4.3.3. Determining Time Spent in Kernel and User Space
This section illustrates how to determine the amount of time any given thread is spending in either
kernel or user-space.

thread-times.stp

#! /usr/bin/stap

probe timer.profile {
  tid=tid()
  if (!user_mode())
    kticks[tid] <<< 1
  else



Chapter 4. Useful SystemTap Scripts

48

    uticks[tid] <<< 1
  ticks <<< 1
  tids[tid] <<< 1
}

global uticks, kticks, ticks

global tids

probe timer.s(5), end {
  allticks = @count(ticks)
  printf ("%5s %7s %7s (of %d ticks)\n",
          "tid", "%user", "%kernel", allticks)
  foreach (tid in tids- limit 20) {
    uscaled = @count(uticks[tid])*10000/allticks
    kscaled = @count(kticks[tid])*10000/allticks
    printf ("%5d %3d.%02d%% %3d.%02d%%\n",
      tid, uscaled/100, uscaled%100, kscaled/100, kscaled%100)
  }
  printf("\n")

  delete uticks
  delete kticks
  delete ticks
  delete tids
}

thread-times.stp lists the top 20 processes currently taking up CPU time within a 5-second sample,
along with the total number of CPU ticks made during the sample. The output of this script also notes
the percentage of CPU time each process used, as well as whether that time was spent in kernel
space or user space.

Example 4.11, “thread-times.stp Sample Output” contains a 5-second sample of the output for thread-
times.stp:



Identifying Contended User-Space Locks

49

  tid   %user %kernel (of 20002 ticks)
    0   0.00%  87.88%
32169   5.24%   0.03%
 9815   3.33%   0.36%
 9859   0.95%   0.00%
 3611   0.56%   0.12%
 9861   0.62%   0.01%
11106   0.37%   0.02%
32167   0.08%   0.08%
 3897   0.01%   0.08%
 3800   0.03%   0.00%
 2886   0.02%   0.00%
 3243   0.00%   0.01%
 3862   0.01%   0.00%
 3782   0.00%   0.00%
21767   0.00%   0.00%
 2522   0.00%   0.00%
 3883   0.00%   0.00%
 3775   0.00%   0.00%
 3943   0.00%   0.00%
 3873   0.00%   0.00%

Example 4.11. thread-times.stp Sample Output

4.4. Identifying Contended User-Space Locks
This section describes how to identify contended user-space locks throughout the system within a
specific time period. The ability to identify contended user-space locks can help you investigate hangs
that you suspect may be caused by futex contentions.

Simply put, a futex contention occurs when multiple processes are trying to access the same region
of memory. In some cases, this can result in a deadlock between the processes in contention, thereby
appearing as an application hang.

To do this, futexes.stp probes the futex system call.

futexes.stp

#! /usr/bin/env stap

# This script tries to identify contended user-space locks by hooking
# into the futex system call.

global thread_thislock # short
global thread_blocktime # 
global FUTEX_WAIT = 0 /*, FUTEX_WAKE = 1 */

global lock_waits # long-lived stats on (tid,lock) blockage elapsed time



Chapter 4. Useful SystemTap Scripts

50

global process_names # long-lived pid-to-execname mapping

probe syscall.futex {  
  if (op != FUTEX_WAIT) next # don't care about WAKE event originator
  t = tid ()
  process_names[pid()] = execname()
  thread_thislock[t] = $uaddr
  thread_blocktime[t] = gettimeofday_us()
}

probe syscall.futex.return {  
  t = tid()
  ts = thread_blocktime[t]
  if (ts) {
    elapsed = gettimeofday_us() - ts
    lock_waits[pid(), thread_thislock[t]] <<< elapsed
    delete thread_blocktime[t]
    delete thread_thislock[t]
  }
}

probe end {
  foreach ([pid+, lock] in lock_waits) 
    printf ("%s[%d] lock %p contended %d times, %d avg us\n",
            process_names[pid], pid, lock, @count(lock_waits[pid,lock]),
            @avg(lock_waits[pid,lock]))
}

futexes.stp needs to be manually stopped; upon exit, it prints the following information:

• Name and ID of the process responsible for a contention

• The region of memory it contested

• How many times the region of memory was contended

• Average time of contention throughout the probe

Example 4.12, “futexes.stp Sample Output” contains an excerpt from the output of futexes.stp upon
exiting the script (after approximately 20 seconds).

[...] 
automount[2825] lock 0x00bc7784 contended 18 times, 999931 avg us
synergyc[3686] lock 0x0861e96c contended 192 times, 101991 avg us
synergyc[3758] lock 0x08d98744 contended 192 times, 101990 avg us
synergyc[3938] lock 0x0982a8b4 contended 192 times, 101997 avg us
[...]

Example 4.12. futexes.stp Sample Output



Chapter 5.

51

Understanding SystemTap Errors
This chapter explains the most common errors you may encounter while using SystemTap.

5.1. Parse and Semantic Errors
These types of errors occur while SystemTap attempts to parse and translate the script into C, prior
to being converted into a kernel module. For example type errors result from operations that assign
invalid values to variables or arrays.

parse error: expected foo, saw bar
The script contains a grammatical/typographical error. SystemTap detected type of construct that is
incorrect, given the context of the probe.

The following invalid SystemTap script is missing its probe handlers:

probe vfs.read
probe vfs.write

It results in the following error message showing that the parser was expecting something other than
the probe keyword in column 1 of line 2:

parse error: expected one of '. , ( ? ! { = +='
 saw: keyword at perror.stp:2:1
1 parse error(s).

parse error: embedded code in unprivileged script
The script contains unsafe embedded C code (blocks of code surrounded by %{ %}. SystemTap
allows you to embed C code in a script, which is useful if there are no tapsets to suit your purposes.
However, embedded C constructs are not be safe; as such, SystemTap warns you with this error if
such constructs appear in the script.

If you are sure of the safety of any similar constructs in the script and are member of stapdev group
(or have root privileges), run the script in "guru" mode by using the option -g (i.e. stap -g script).

semantic error: type mismatch for identifier 'foo' ... string vs. long
The function foo in the script used the wrong type (i.e. %s or %d). This error will present itself in
Example 5.1, “error-variable.stp”, because the function execname() returns a string the format
specifier should be a %s, not %d.



Chapter 5. Understanding SystemTap Errors

52

probe syscall.open
{
  printf ("%d(%d) open\n", execname(), pid())
}

Example 5.1. error-variable.stp

semantic error: unresolved type for identifier 'foo'
The identifier (e.g. a variable) was used, but no type (integer or string) could be determined. This
occurs, for instance, if you use a variable in a printf statement while the script never assigns a
value to the variable.

semantic error: Expecting symbol or array index expression
SystemTap could not assign a value to a variable or to a location in an array. The destination for the
assignment is not a valid destination. The following example code would generate this error:

probe begin { printf("x") = 1 }

while searching for arity N function, semantic error: unresolved function call
A function call or array index expression in the script used an invalid number of arguments/
parameters. In SystemTap arity can either refer to the number of indices for an array, or the number of
parameters to a function.

semantic error: array locals not supported, missing global declaration?
The script used an array operation without declaring the array as a global variable (global variables
can be declared after their use in Systemtap scripts). Similar messages appear if an array is used, but
with inconsistent arities.

semantic error: variable ’foo’ modified during ’foreach’ iteration
The array foo is being modifed (being assigned to or deleted from) within an active foreach loop.
This error also displays if an operation within the script performs a function call within the foreach
loop.

semantic error: probe point mismatch at position N, while resolving probe point foo
SystemTap did not understand what the event or SystemTap function foo refers to. This usually
means that SystemTap could not find a match for foo in the tapset library. The N refers to the line and
column of the error.

semantic error: no match for probe point, while resolving probe point foo
The events / handler function foo could not be resolved altogether, for a variety of reasons. This error
occurs when the script contains the event kernel.function("blah"), and blah does not exist.



Run Time Errors and Warnings

53

In some cases, the error could also mean the script contains an invalid kernel file name or source line
number.

semantic error: unresolved target-symbol expression
A handler in the script references a target variable, but the value of the variable could not be resolved.
This error could also mean that a handler is referencing a target variable that is not valid in the context
when it was referenced. This may be a result of compiler optimization of the generated code.

semantic error: libdwfl failure
There was a problem processing the debugging information. In most cases, this error results from the
installation of a kernel-debuginfo RPM whose version does not match the probed kernel exactly.
The installed kernel-debuginfo RPM itself may have some consistency / correctness problems.

semantic error: cannot find foo debuginfo
SystemTap could not find a suitable kernel-debuginfo at all.

5.2. Run Time Errors and Warnings
Runtime errors and warnings occur when the SystemTap instrumentation has been installed and is
collecting data on the system.

WARNING: Number of errors: N, skipped probes: M
Errors and/or skipped probes occurred during this run. Both N and M are the counts of the number of
probes that were not executed due to conditions such as too much time required to execute event
handlers over an interval of time.

division by 0
The script code performed an invalid division.

aggregate element not found
An statistics extractor function other than @count was invoked on an aggregate that has not had any
values accumulated yet. This is similar to a division by zero.

aggregation overflow
An array containing aggregate values contains too many distinct key pairs at this time.

MAXNESTING exceeded
Too many levels of function call nesting were attempted. The default nesting of function calls allowed
is 10.

MAXACTION exceeded
The probe handler attempted to execute too many statements in the probe handler. The default
number of actions allow in a probe handler is 1000.



Chapter 5. Understanding SystemTap Errors

54

kernel/user string copy fault at ADDR
The probe handler attempted to copy a string from kernel or user space at an invalid address (ADDR).

pointer dereference fault
There was a fault encountered during a pointer dereference operation such as a target variable
evaluation.



Chapter 6.

55

References
This chapter enumerates other references for more information about SystemTap. It is advisable that
you refer to these sources in the course of writing advanced probes and tapsets.

SystemTap Wiki
The SystemTap Wiki is a collection of links and articles related to the deployment, usage, and
development of SystemTap. You can find it in  http://sourceware.org/systemtap/wiki/HomePage.

SystemTap Tutorial
Much of the content in this book comes from the SystemTap Tutorial. The SystemTap Tutorial is a
more appropriate reference for users with intermediate to advanced knowledge of C++ and kernel
development, and can be found at http://sourceware.org/systemtap/tutorial/.

man stapprobes
The stapprobes man page enumerates a variety of probe points supported by SystemTap,
along with additional aliases defined by the SystemTap tapset library. The bottom of the man
page includes a list of other man pages enumerating similar probe points for specific system
components, such as stapprobes.scsi, stapprobes.process, stapprobes.signal, etc.

man stapfuncs
The stapfuncs man page enumerates numerous functions supported by the SystemTap tapset
library, along with the prescribed syntax for each one. Note, however, that this is not a complete
list of all supported functions; there are more undocumented functions available.

SystemTap Language Reference
This document is a comprehensive reference of SystemTap's language constructs and syntax. It
is recommended for users with a rudimentary to intermediate knowledge of C++ and other similar
programming languages. The SystemTap Language Reference is available to all users at http://
sourceware.org/systemtap/langref/

Tapset Developers Guide
Once you have sufficient proficiency in writing SystemTap scripts, you can then try your hand out
on writing your own tapsets. The Tapset Developers Guide describes how to add functions to your
tapset library.

Test Suite
The systemtap-testsuite package allows you to test the entire SystemTap toolchain without
having to build from source. In addition, it also contains numerous examples of SystemTap
scripts you can study and test; some of these scripts are also documented in Chapter 4, Useful
SystemTap Scripts.

By default, the example scripts included in systemtap-testsuite are located in /usr/share/
systemtap/testsuite/systemtap.examples.

http://sourceware.org/systemtap/wiki/HomePage
http://sourceware.org/systemtap/tutorial/
http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/langref/


56



57

Appendix A. Revision History
Revision History
Revision 1.0 September 2, 2008 DonDomingoddomingo@redhat.com
Built scratch build (pre-Alpha) of document, content to be added later.
Revision 2.0 December 1, 2008 DonDomingoddomingo@redhat.com
Content now complete, pending tech review and other feedback for one final push. Build also includes
index.
Revision 3.0 December 10, 2008 DonDomingoddomingo@redhat.com
Revised product number to make suitable for new docs stage.

mailto:ddomingo@redhat.com
mailto:ddomingo@redhat.com
mailto:ddomingo@redhat.com


58



59

Index
Symbols
$count

sample usage
local variables, 39

$return
sample usage

local variables, 36, 40
@avg (integer extractor)

computing for statistical aggregates
array operations, 29

@count (integer extractor)
computing for statistical aggregates

array operations, 29
@max (integer extractor)

computing for statistical aggregates
array operations, 29

@min (integer extractor)
computing for statistical aggregates

array operations, 29
@sum (integer extractor)

computing for statistical aggregates
array operations, 29

A
adding values to statistical aggregates

computing for statistical aggregates
array operations, 28

advantages of cross-instrumentation, 6
aggregate element not found

runtime errors/warnings
understainding SystemTap errors, 53

aggregates (statistical)
array operations, 28

aggregation overflow
runtime errors/warnings

understainding SystemTap errors, 53
algebraic formulas using arrays

reading values from arrays
array operations, 23

architecture notation, determining, 7
architecture of SystemTap, 11
array locals not supported

parse/semantics error
understanding SystemTap errors, 52

array operations
assigning associated values, 22

associating timestamps to process names,
23

associative arrays, 22
clearing arrays/array elements, 25

delete operator, 25
multiple array operations within the same
probe, 26
virtual file system reads (non-cumulative),
tallying, 25

computing for statistical aggregates, 28
@avg (integer extractor), 29
@count (integer extractor), 29
@max (integer extractor), 29
@min (integer extractor), 29
@sum (integer extractor), 29
adding values to statistical aggregates, 28
count (operator), 28
extracting data collected by statistical
aggregates, 29

conditional statements, using arrays in, 26
testing for array membership, 27

deleting arrays and array elements, 25
incrementing associated values, 23

tallying virtual file system reads (VFS
reads), 24

multiple elements in an array, 24
processing multiple elements in an array, 24

cumulative virtual file system reads, tallying,
24
foreach, 24
iterations, processing elements in an array
as, 24
limiting the output of foreach, 25
ordering the output of foreach, 25

reading values from arrays, 23
computing for timestamp deltas, 23
empty unique keys, 23
using arrays in simple computations, 23

arrays, 21
(see also associative arrays)

assigning associated values
array operations, 22

associating timestamps to process names,
23

associating timestamps to process names
array operations, 23

associated values
introduction

arrays, 22
associating timestamps to process names

assigning associated values
array operations, 23

associative arrays



Index

60

introduction, 21
associated values, 22
example, 22
index expression, 22
key pairs, 22
syntax, 22
unique keys, 22

asynchronous events
Events, 14

B
begin

Events, 14
building instrumentation modules from
SystemTap scripts, 6
building kernel modules from SystemTap scripts,
6

C
call graph tracing

examples of SystemTap scripts, 45
capabilities of SystemTap

Introduction, 1
changes to file attributes, monitoring

examples of SystemTap scripts, 43
clearing arrays/array elements

array operations, 25
delete operator, 25
multiple array operations within the same
probe, 26
virtual file system reads (non-cumulative),
tallying, 25

command-line arguments
SystemTap handler constructs

handlers, 21
compiling instrumentation/kernel modules from
SystemTap scripts, 6
components

SystemTap scripts
introduction, 11

computing for statistical aggregates
array operations, 28

@avg (integer extractor), 29
@count (integer extractor), 29
@max (integer extractor), 29
@min (integer extractor), 29
@sum (integer extractor), 29
adding values to statistical aggregates, 28
count (operator), 28
extracting data collected by statistical
aggregates, 29

computing for timestamp deltas
reading values from arrays

array operations, 23
conditional operators

conditional statements
handlers, 21

conditional statements, using arrays in
array operations, 26

testing for array membership, 27
CONFIG_HZ, computing for, 19
contended user-space locks (futex contentions),
identifying

examples of SystemTap scripts, 49
copy fault

runtime errors/warnings
understainding SystemTap errors, 54

count operator
computing for statistical aggregates

array (operator), 28
counting function calls

examples of SystemTap scripts, 44
CPU ticks

examples of SystemTap scripts, 48
cpu()

functions, 16
cross-compiling, 6
cross-instrumentation

advantages of, 6
building kernel modules from SystemTap
scripts, 6
configuration

host system and target system, 7
generating instrumentation from SystemTap
scripts, 6
host system, 6
instrumentation module, 6
target kernel, 7
target system, 6

ctime()
functions, 17

ctime(), example of usage
script examples, 36

cumulative I/O, tracking
examples of SystemTap scripts, 40

cumulative virtual file system reads, tallying
processing multiple elements in an array

array operations, 24

D
delete operator

clearing arrays/array elements



61

array operations, 25
determining architecture notation, 7
determining the kernel version, 3
determining time spent in kernel and user space

examples of SystemTap scripts, 47
device I/O, monitoring

examples of SystemTap scripts, 41
device number of a file (integer format)

examples of SystemTap scripts, 42
disk I/O traffic, summarizing

script examples, 34
division by 0

runtime errors/warnings
understainding SystemTap errors, 53

documentation goals
Introduction, 1

E
embedded code in unprivileged script

parse/semantics error
understanding SystemTap errors, 51

empty unique keys
reading values from arrays

array operations, 23
end

Events, 14
errors

parse/semantics error, 51
embedded code in unprivileged script, 51
expected symbol/array index expression, 52
grammatical/typographical script error, 51
guru mode, 51
invalid values to variables/arrays, 51
libdwfl failure, 53
no match for probe point, 52
non-global arrays, 52
probe mismatch, 52
type mismatch for identifier, 51
unresolved function call, 52
unresolved target-symbol expression, 53
unresolved type for identifier, 52
variable modified during 'foreach', 52

runtime errors/warnings, 53
aggregate element not found, 53
aggregation overflow, 53
copy fault, 54
division by 0, 53
MAXACTION exceeded, 53
MAXNESTING exceeded, 53
number of errors: N, skipped probes: M, 53
pointer dereference fault, 54

event types
Understanding How SystemTap Works, 11

Events
asynchronous events, 14
begin, 14
end, 14
examples of synchronous and asynchronous
events, 13
introduction, 13
kernel.function("function"), 13
module("module"), 13
synchronous events, 13
syscall.system_call, 13
timer events, 14
vfs.file_operation, 13
wildcards, 13

events and handlers, 11
events wildcards, 13
example

introduction
arrays, 22

example of multiple command-line arguments
examples of SystemTap scripts, 46

examples of synchronous and asynchronous
events

Events, 13
examples of SystemTap scripts, 31

call graph tracing, 45
CPU ticks, 48
ctime(), example of usage, 36
determining time spent in kernel and user
space, 47
file device number (integer format), 42
futex system call, 49
identifying contended user-space locks (i.e.
futex contentions), 49
if/else conditionals, alternative syntax, 32
inode number, 43
monitoring changes to file attributes, 43
monitoring device I/O, 41
monitoring I/O time, 37
monitoring reads and writes to a file, 42
multiple command-line arguments, example of,
46
net/socket.c, tracing functions from, 33
network profiling, 31
process deadlocks (arising from futex
contentions), 49
stat -c, determining file device number (integer
format), 43
stat -c, determining whole device number, 42



Index

62

summarizing disk I/O traffic, 34
tallying function calls, 44
thread_indent(), sample usage, 46
timer.ms(), sample usage, 45
tracing functions called in network socket
code, 33
tracking cumulative I/O, 40
trigger function, 46
usrdev2kerndev(), 42
whole device number (usage as a command-
line argument), 42

exceeded MAXACTION
runtime errors/warnings

understainding SystemTap errors, 53
exceeded MAXNESTING

runtime errors/warnings
understainding SystemTap errors, 53

exit()
functions, 15

expected symbol/array index expression
parse/semantics error

understanding SystemTap errors, 52
extracting data collected by statistical aggregates

computing for statistical aggregates
array operations, 29

F
fedoradebugurl.sh, 5
feedback

contact information for this manual, viii
file attributes, monitoring changes to

examples of SystemTap scripts, 43
file device number (integer format)

examples of SystemTap scripts, 42
file reads/writes, monitoring

examples of SystemTap scripts, 42
for loops

conditional statements
handlers, 21

foreach
processing multiple elements in an array

array operations, 24
format

introduction
arrays, 22

format and syntax
printf(), 16
SystemTap handler constructs

handlers, 19
SystemTap scripts

introduction, 12

format specifiers
printf(), 15

format strings
printf(), 15

function call (unresolved)
parse/semantics error

understanding SystemTap errors, 52
function calls (incoming/outgoing), tracing

examples of SystemTap scripts, 45
function calls, tallying

examples of SystemTap scripts, 44
functions, 16

cpu(), 16
ctime(), 17
gettimeofday_s(), 16
pp(), 17
SystemTap scripts

introduction, 12
target(), 18
thread_indent(), 17
tid(), 16, 16
uid(), 16

functions (used in handlers)
exit(), 15

functions called in network socket code, tracing
examples of SystemTap scripts, 33

futex contention, definition
examples of SystemTap scripts, 49

futex contentions, identifying
examples of SystemTap scripts, 49

futex system call
examples of SystemTap scripts, 49

G
gettimeofday_s()

functions, 16
global

SystemTap handler constructs
handlers, 19

goals, documentation
Introduction, 1

grammatical/typographical script error
parse/semantics error

understanding SystemTap errors, 51
guru mode

parse/semantics error
understanding SystemTap errors, 51

H
handler functions, 16
handlers



63

conditional statements, 19
conditional operators, 21
for loops, 21
if/else, 20
while loops, 20

introduction, 15
SystemTap handler constructs, 18

command-line arguments, 21
global, 19
syntax and format, 18
variable notations, 21
variables, 19

handlers and events, 11
SystemTap scripts

introduction, 11
heaviest disk reads/writes, identifying

script examples, 34
host system

cross-instrumentation, 6
host system and target system

cross-instrumentation
configuration, 7

I
I/O monitoring (by device)

examples of SystemTap scripts, 41
I/O time, monitoring

examples of SystemTap scripts, 37
I/O traffic, summarizing

script examples, 34
identifier type mismatch

parse/semantics error
understanding SystemTap errors, 51

identifying contended user-space locks (i.e. futex
contentions)

examples of SystemTap scripts, 49
identifying heaviest disk reads/writes

script examples, 34
if/else

conditional statements
handlers, 20

if/else conditionals, alternative syntax
examples of SystemTap scripts, 32

if/else statements, using arrays in
array operations, 26

incoming/outgoing function calls, tracing
examples of SystemTap scripts, 45

incrementing associated values
array operations, 23

tallying virtual file system reads (VFS
reads), 24

index expression
introduction

arrays, 22
initial testing, 5
inode number

examples of SystemTap scripts, 43
Installation

fedoradebugurl.sh, 5
initial testing, 5
installation script, 4
kernel information packages, 3
kernel version, determining the, 3
required packages, 3
Setup and Installation, 3
stapprep.sh, 4
systemtap package, 3
systemtap-runtime package, 3

installation script, 4
instrumentation module

cross-instrumentation, 6
instrumentation modules from SystemTap scripts,
building, 6
integer extractors

computing for statistical aggregates
array operations, 29

Introduction
capabilities of SystemTap, 1
documentation goals, 1
goals, documentation, 1
limitations of SystemTap, 2
performance monitoring, 1

invalid division
runtime errors/warnings

understainding SystemTap errors, 53
invalid values to variables/arrays

parse/semantics error
understanding SystemTap errors, 51

iterations, processing elements in an array as
processing multiple elements in an array

array operations, 24

K
kernel and user space, determining time spent in

examples of SystemTap scripts, 47
kernel information packages, 3
kernel modules from SystemTap scripts, building,
6
kernel version, determining the, 3
kernel.function("function")

Events, 13
key pairs



Index

64

introduction
arrays, 22

L
libdwfl failure

parse/semantics error
understanding SystemTap errors, 53

limitations of SystemTap
Introduction, 2

limiting the output of foreach
processing multiple elements in an array

array operations, 25
local variables

name, 18
sample usage

$count, 39
$return, 36, 40

M
MAXACTION exceeded

runtime errors/warnings
understainding SystemTap errors, 53

MAXNESTING exceeded
runtime errors/warnings

understainding SystemTap errors, 53
membership (in array), testing for

conditional statements, using arrays in
array operations, 27

module("module")
Events, 13

monitoring changes to file attributes
examples of SystemTap scripts, 43

monitoring cumulative I/O
examples of SystemTap scripts, 40

monitoring device I/O
examples of SystemTap scripts, 41

monitoring I/O time
examples of SystemTap scripts, 37

monitoring reads and writes to a file
examples of SystemTap scripts, 42

multiple array operations within the same probe
clearing arrays/array elements

array operations, 26
multiple command-line arguments, example of

examples of SystemTap scripts, 46
multiple elements in an array

array operations, 24

N
name

local variables, 18

net/socket.c, tracing functions from
examples of SystemTap scripts, 33

network profiling
examples of SystemTap scripts, 31

network socket code, tracing functions called in
examples of SystemTap scripts, 33

network traffic, monitoring
examples of SystemTap scripts, 31

no match for probe point
parse/semantics error

understanding SystemTap errors, 52
non-global arrays

parse/semantics error
understanding SystemTap errors, 52

number of errors: N, skipped probes: M
runtime errors/warnings

understainding SystemTap errors, 53

O
operations

assigning associated values
associating timestamps to process names,
23

associative arrays, 22
clearing arrays/array elements, 25

delete operator, 25
multiple array operations within the same
probe, 26
virtual file system reads (non-cumulative),
tallying, 25

computing for statistical aggregates, 28
@avg (integer extractor), 29
@count (integer extractor), 29
@max (integer extractor), 29
@min (integer extractor), 29
@sum (integer extractor), 29
adding values to statistical aggregates, 28
count (operator), 28
extracting data collected by statistical
aggregates, 29

conditional statements, using arrays in, 26
testing for array membership, 27

deleting arrays and array elements, 25
incrementing associated values, 23

tallying virtual file system reads (VFS
reads), 24

multiple elements in an array, 24
processing multiple elements in an array, 24

cumulative virtual file system reads, tallying,
24
foreach, 24



65

iterations, processing elements in an array
as, 24
limiting the output of foreach, 25
ordering the output of foreach, 25

reading values from arrays, 23
computing for timestamp deltas, 23
empty unique keys, 23
using arrays in simple computations, 23

options, stap
Usage, 8

ordering the output of foreach
processing multiple elements in an array

array operations, 25
overflow of aggregation

runtime errors/warnings
understainding SystemTap errors, 53

P
packages required to run SystemTap, 3
parse/semantics error

understanding SystemTap errors, 51
embedded code in unprivileged script, 51
expected symbol/array index expression, 52
grammatical/typographical script error, 51
guru mode, 51
invalid values to variables/arrays, 51
libdwfl failure, 53
no match for probe point, 52
non-global arrays, 52
probe mismatch, 52
type mismatch for identifier, 51
unresolved function call, 52
unresolved target-symbol expression, 53
unresolved type for identifier, 52
variable modified during 'foreach', 52

performance monitoring
Introduction, 1

pointer dereference fault
runtime errors/warnings

understainding SystemTap errors, 54
pp()

functions, 17
printf()

format specifiers, 15
format strings, 15, 15
syntax and format, 16

printing I/O activity (cumulative)
examples of SystemTap scripts, 40

probe mismatch
parse/semantics error

understanding SystemTap errors, 52

probe point (no match for)
parse/semantics error

understanding SystemTap errors, 52
probes

SystemTap scripts
introduction, 12

process deadlocks (arising from futex
contentions)

examples of SystemTap scripts, 49
processing multiple elements in an array

array operations, 24
cumulative virtual file system reads, tallying

array operations, 24
foreach

array operations, 24
limiting the output of foreach

array operations, 25
ordering the output of foreach

array operations, 25
profiling the network

examples of SystemTap scripts, 31

R
reading values from arrays

array operations, 23
empty unique keys, 23
using arrays in simple computations, 23

computing for timestamp deltas
array operations, 23

reads/writes to a file, monitoring
examples of SystemTap scripts, 42

required packages, 3
RPMs required to run SystemTap, 3
running scripts from standard input, 9
running SystemTap scripts

Usage, 8
runtime errors/warnings

understainding SystemTap errors, 53
aggregate element not found, 53
aggregation overflow, 53
copy fault, 54
division by 0, 53
MAXACTION exceeded, 53
MAXNESTING exceeded, 53
number of errors: N, skipped probes: M, 53
pointer dereference fault, 54

S
script examples

call graph tracing, 45
CPU ticks, 48



Index

66

ctime(), example of usage, 36
determining time spent in kernel and user
space, 47
file device number (integer format), 42
futex system call, 49
identifying contended user-space locks (i.e.
futex contentions), 49
if/else conditionals, alternative syntax, 32
inode number, 43
monitoring changes to file attributes, 43
monitoring device I/O, 41
monitoring I/O time, 37
monitoring reads and writes to a file, 42
multiple command-line arguments, example of,
46
net/socket.c, tracing functions from, 33
network profiling, 31
process deadlocks (arising from futex
contentions), 49
stat -c, determining file device number (integer
format), 43
stat -c, determining whole device number, 42
summarizing disk I/O traffic, 34
tallying function calls, 44
thread_indent(), sample usage, 46
timer.ms(), sample usage, 45
tracing functions called in network socket
code, 33
tracking cumulative I/O, 40
trigger function, 46
usrdev2kerndev(), 42
whole device number (usage as a command-
line argument), 42

script for installing kernel information packages, 4
scripts

introduction, 11
components, 11
events and handlers, 11
format and syntax, 12
functions, 12
probes, 12
statement blocks, 12

sessions, SystemTap, 11
Setup and Installation, 3
standard input, running scripts from

Usage, 9
stap

Usage, 8
stap options, 8
stapdev

Usage, 8

stapprep.sh, 4
staprun

Usage, 8
stapusr

Usage, 8
stat -c, determining file device number (integer
format)

examples of SystemTap scripts, 43
stat -c, determining whole device number

examples of SystemTap scripts, 42
statement blocks

SystemTap scripts
introduction, 12

statistical aggregates
array operations, 28

summarizing disk I/O traffic
script examples, 34, 34

synchronous events
Events, 13

syntax
introduction

arrays, 22
syntax and format

printf(), 16
SystemTap handler constructs

handlers, 18
SystemTap scripts

introduction, 12
syscall.system_call

Events, 13
SystemTap architecture, 11
SystemTap handlers

SystemTap handler constructs, 18
syntax and format, 18

systemtap package, 3
SystemTap script functions, 16
SystemTap scripts

introduction, 11
components, 11
events and handlers, 11
format and syntax, 12
functions, 12
probes, 12
statement blocks, 12

useful examples, 31
SystemTap scripts, how to run, 8
SystemTap sessions, 11
SystemTap statements

conditional statements, 19
conditional operators, 21
for loops, 21



67

if/else, 20
while loops, 20

SystemTap handler constructs
command-line arguments, 21
global, 19
variable notations, 21
variables, 19

systemtap-runtime package, 3
systemtap-testsuite package

sample scripts, 31

T
tallying function calls

examples of SystemTap scripts, 44
tallying virtual file system reads (VFS reads)

incrementing associated values
array operations, 24

Tapsets
definition of, 30

target kernel
cross-instrumentation, 7

target system
cross-instrumentation, 6

target system and host system
configuration, 7

target()
functions, 18

target-symbol expression, unresolved
parse/semantics error

understanding SystemTap errors, 53
testing for array membership

conditional statements, using arrays in
array operations, 27

testing, initial, 5
thread_indent()

functions, 17
thread_indent(), sample usage

examples of SystemTap scripts, 46
tid()

functions, 16
time of I/O

examples of SystemTap scripts, 37
time spent in kernel/user space, determining

examples of SystemTap scripts, 47
timer events

Events, 14
timer.ms(), sample usage

examples of SystemTap scripts, 45
timestamp deltas, computing for

reading values from arrays
array operations, 23

timestamps, association thereof to process
names

assigning associated values
array operations, 23

tracing call graph
examples of SystemTap scripts, 45

tracing functions called in network socket code
examples of SystemTap scripts, 33

tracing incoming/outgoing function calls
examples of SystemTap scripts, 45

tracking cumulative I/O
examples of SystemTap scripts, 40

trigger function
examples of SystemTap scripts, 46

type mismatch for identifier
parse/semantics error

understanding SystemTap errors, 51
typographical script error

parse/semantics error
understanding SystemTap errors, 51

U
uid()

functions, 16
uname -m, 7
uname -r, 3
understainding SystemTap errors

runtime errors/warnings, 53
aggregate element not found, 53
aggregation overflow, 53
copy fault, 54
division by 0, 53
MAXACTION exceeded, 53
MAXNESTING exceeded, 53
number of errors: N, skipped probes: M, 53
pointer dereference fault, 54

Understanding How SystemTap Works, 11
architecture, 11
event types, 11
events and handlers, 11
SystemTap sessions, 11

understanding SystemTap errors
parse/semantics error, 51

embedded code in unprivileged script, 51
expected symbol/array index expression, 52
grammatical/typographical script error, 51
guru mode, 51
invalid values to variables/arrays, 51
libdwfl failure, 53
no match for probe point, 52
non-global arrays, 52



Index

68

probe mismatch, 52
type mismatch for identifier, 51
unresolved function call, 52
unresolved target-symbol expression, 53
unresolved type for identifier, 52
variable modified during 'foreach', 52

unique keys
introduction

arrays, 22
unprivileged script, embedded code in

parse/semantics error
understanding SystemTap errors, 51

unresolved function call
parse/semantics error

understanding SystemTap errors, 52
unresolved target-symbol expression

parse/semantics error
understanding SystemTap errors, 53

unresolved type for identifier
parse/semantics error

understanding SystemTap errors, 52
unsafe embedded code in unprivileged script

parse/semantics error
understanding SystemTap errors, 51

Usage
options, stap, 8
running SystemTap scripts, 8
standard input, running scripts from, 9
stap, 8
stapdev, 8
staprun, 8
stapusr, 8

useful examples of SystemTap scripts, 31
user and kernel space, determining time spent in

examples of SystemTap scripts, 47
using arrays in simple computations

reading values from arrays
array operations, 23

Using SystemTap, 3
usrdev2kerndev()

examples of SystemTap scripts, 42

V
values, assignment of

array operations, 22
variable modified during 'foreach'

parse/semantics error
understanding SystemTap errors, 52

variable notations
SystemTap handler constructs

handlers, 21

variables
SystemTap handler constructs

handlers, 19
variables (local)

name, 18
sample usage

$count, 39
$return, 36, 40

VFS reads, tallying of
incrementing associated values

array operations, 24
vfs.file_operation

Events, 13
virtual file system reads (cumulative), tallying

processing multiple elements in an array
array operations, 24

virtual file system reads (non-cumulative), tallying
clearing arrays/array elements

array operations, 25

W
while loops

conditional statements
handlers, 20

whole device number (usage as a command-line
argument)

examples of SystemTap scripts, 42
wildcards in events, 13
writes/reads to a file, monitoring

examples of SystemTap scripts, 42


	SystemTap Beginners Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Documentation Goals
	1.2. SystemTap Capabilities

	Chapter 2. Using SystemTap
	2.1. Installation and Setup
	2.1.1. Installing SystemTap
	2.1.2. Installing Required Kernel Information RPMs
	2.1.3. Initial Testing

	2.2. Generating Instrumentation for Other Computers
	2.3. Running SystemTap Scripts

	Chapter 3. Understanding How SystemTap Works
	3.1. Architecture
	3.2. SystemTap Scripts
	3.2.1. Event
	3.2.2. Systemtap Handler/Body

	3.3. Basic SystemTap Handler Constructs
	3.3.1. Variables
	3.3.2. Conditional Statements
	3.3.3. Command-Line Arguments

	3.4. Associative Arrays
	3.5. Array Operations in SystemTap
	3.5.1. Assigning an Associated Value
	3.5.2. Reading Values From Arrays
	3.5.3. Incrementing Associated Values
	3.5.4. Processing Multiple Elements in an Array
	3.5.5. Clearing/Deleting Arrays and Array Elements
	3.5.6. Using Arrays in Conditional Statements
	3.5.7. Computing for Statistical Aggregates

	3.6. Tapsets

	Chapter 4. Useful SystemTap Scripts
	4.1. Network
	4.1.1. Network Profiling
	4.1.2. Tracing Functions Called in Network Socket Code

	4.2. Disk
	4.2.1. Summarizing Disk Read/Write Traffic
	4.2.2. Tracking I/O Time For Each File Read or Write
	4.2.3. Track Cumulative IO
	4.2.4. I/O Monitoring (By Device)
	4.2.5. Monitoring Reads and Writes to a File
	4.2.6. Monitoring Changes to File Attributes

	4.3. Profiling
	4.3.1. Counting Function Calls Made
	4.3.2. Call Graph Tracing
	4.3.3. Determining Time Spent in Kernel and User Space

	4.4. Identifying Contended User-Space Locks

	Chapter 5. Understanding SystemTap Errors
	5.1. Parse and Semantic Errors
	5.2. Run Time Errors and Warnings

	Chapter 6. References
	Appendix A. Revision History
	Index

