

Improving Application Performance
Through Space Optimizations

Michael Carpenter
Doumit Ishak

Project Sponsor:

Will Cohen, Red Hat Inc.

Table of Contents

 Topic

 Page Number

Project Description

 1

Performance Metrics

 1

Experiment Procedures

 4

Testing Environment

 4

Incorporating Space
Optimization Into RPM

 5

Results for Static Metrics

8

Results for Dynamic Metrics

15

Conclusions

18

Future Research

18

Appendix A: Performance
Measurement Tools

19

Appendix B: Function Size Data 21

1

Project Description

 Commonly used benchmarks such as SPEC2000 are often dominated by small
loops which can fit entirely into the processors cache. Typical applications, such as
Mozilla, are very large and have very different characteristics. As the gap between
memory and processor speeds continues to widen, the cost of cache misses on application
performance becomes greater. Optimizing an application for space can help to reduce the
number of cache misses as well as the amount of paging to disc.

The purpose of this project is to quantify the effects of space optimizations on the
Mozilla web browser in Fedora Core Linux. The study will seek to measure the
performance changes by looking at such characteristics as resulting code size, cache and
memory performance, and application startup time. The specific goals for this project are
as follows:

� Develop test procedures for gauging performance
� Provide concrete evidence on whether performance under optimizations is

better or worse
� Show how to incorporate space optimizations into RPM
� Determine root causes of performance change
� Produce guidelines on when space optimizations should be used in packages
� Incorporate the results of this project into making Linux applications faster

The Linux distribution chosen to serve as the test environment for this project is

Fedora Core 3 test 1. This will allow for a consistent testing environment which could
easily be replicated for further study. In addition, this distribution contains all of the tools
necessary to measure performance. The Fedora Project is a Red-Hat-sponsored and
community-supported open source project. More information on the Fedora Project can
be obtained from the project website (http://fedora.redhat.com).

Performance Metrics

 In order to quantify the effects of space optimization on application performance a
set of metrics is needed. The metrics used in this study can be broken down into two
categories: static and dynamic. Static metrics are those which measure characteristics of
the space optimized code which do not change during the execution of the code, such as
code size. In contrast, dynamic metrics are those which may vary during execution of the
code or across multiple executions of the code. These include such characteristics as time
of execution and resident memory size.

 The static metrics used are RPM size, executable size, and function size. All of
these static metrics aim at measuring how effective the compiler is at reducing code size.
The obvious benefit of code size reduction is that the code is more likely to fit within the
processors cache and on the same page in memory, thereby reducing the number of cache

2

misses and page faults. Another added benefit of smaller code size is that the package
becomes easier to distribute. In a large distribution such as Fedora Core, having smaller
RPMs will allow users to download the distribution in a smaller amount of time and
could possibly reduce the number of CDs needed to install the operating system.

 Measurement of the executable size and RPM size will be done with the Linux
‘ls’ command. The function sizes will be measured using the Linux ‘nm’ command.
Included with this report is a script used to automate the process of gathering function
size information. Additional information on using this script can be found in “Appendix
A: Performance Measurement Tools.”

 In order to verify that the smaller code size will have the predicted effect on the
runtime performance, a number of dynamic metrics will be studied including instruction
cache misses, instruction translational look-aside buffer (ITLB) misses, page faults,
resident memory size, and application startup time. In order to verify that the change in
performance is applicable to both a trace cache and a traditional instruction cache the
measurements will be taken on an Intel Pentium III and an Intel Pentium 4 processor. The
specs for the two systems are summarized in Table 3.

Profiling the caches and the ITLB will be accomplished with the use of OProfile.
Due to limitations of the profiler to accurately measure the instruction misses in the trace
cache of the Pentium 4, the L2 unified cache references are used instead. The assumption
being made is that the data references for the space optimized version and the non-space
optimized version will remain consistent across both runs. Therefore, the difference in L2
cache references will be due to misses in the trace cache. Also the event
“TC_DELIVER_MODE” is used to measure how much time the trace cache spends in
deliver mode. These two events will provide a reasonable estimation as to the
performance of the trace cache. The Pentium III, L1 instruction cache misses will be
measured with the “IFU_IFETCH_MISS ” event. The events used for profiling the ITLB
and time based measurements for both processor types are summarized in Table 1.

 Pentium III
 Event Count Unit-

Mask
Mask

Description

Time-Based CPU_CLK_UNHALTED 200000

ITLB Misses ITLB_MISS 1000

L1 Instruction
Cache Misses

IFU_IFETCH_MISS 10000

 Pentium 4
 Event Count Unit-

Mask
Mask

Description

Time-Based GLOBAL_POWER_EVENTS 200000 0x1 Mandatory

ITLB Misses ITLB_REFERENCE 3000 0x2 Misses to
the ITLB

L2 Cache BSQ_CACHE_REFERENCE 10000 0x107 All reads to
second level

3

References cache

Trace Cache
Deliver Mode

TC_DELIVER_MODE 10000 0x4 Processor is
in deliver
mode

Table 1: OProfile events used to measure dynamic performance metrics.

 Measurement of application startup time is done with the use of a script provided
with this report. This script uses a timeline enabled version of Mozilla (also included in
the accompanying software) to compute an average startup time for the browser. For
more information on the usage of the script refer to “Appendix A: Performance
Measurement Tools.”

 The benchmark used in performing the tests is described below in Table 2. This
benchmark is a subset of the Mozilla Quality Assurance SmokeTest
(http://www.mozilla.org/quality/smoketests/) and tests a majority of the functionality of
the browser including features such as page loading/rendering, ssl security, JavaScript
handling, and file system interaction.

Step Description Action
1 Launch the browser using the

default profile
Either click on the icon on the menu bar or
launch from the terminal window

2 Load a local file File->Open File… Select a local file to load
(e.g. /usr/share/doc/HTML/index.html)

3 Load mozilla.org via the
“throbber” icon

Click on the “throbber” icon located in the
upper right hand corner of the browser window

4 Load a remote site from the
file menu

File-> Open Location… Enter a web address
(e.g. http://www.yahoo.com)

5 Load a remote site via a
hyperlink

Click on a link in the page opened in the
previous step

6 Load a remote https site via
the address bar

Enter https://sourceforge.net into the address
bar and press enter

7 Generate a domain name
mismatch warning

Enter https://sf.net into the address bar and
press enter. Hit enter when the domain name
mismatch dialog box comes up.

8 Open a page with embedded
JavaScript

Enter the address of a page which uses
JavaScript (e.g. http://java.sun.com) into the
address bar and press enter

9 Test one of the menu dialogs Edit -> Preferences -> History -> Clear History
-> Ok

10 Exit File -> Exit
Table 2: Benchmark used for performance testing on Mozilla.

4

Experiment Procedures

 Testing of the dynamic metrics was first done on the non-space optimized
packages. The tests were run three times with a reboot in between each run. The results
shown for the instruction cache misses, instruction TLB misses, page faults, and L2 cache
reads are an average of the three runs.

 The packages were then optimized for space and re-installed on the machines.
Once the optimized packages were installed a pre-linking was done so as to ensure that
the tests were run under the same conditions as the non-optimized tests were. The tests
were then run again using the procedure mentioned above. More information on the
testing procedures can be found in Appendix A: Performance Measurement Tools.

Testing Environment

 This study was conducted under Fedora Core 3 test1. The following RPMs were
rebuilt for space optimizations:

� freetype-2.1.7-5.i386.rpm
� glib2-2.4.2-1.i386.rpm
� glibc-2.3.3-36.i386.rpm
� gtk2-2.4.1-3.i386.rpm
� mozilla-1.7-0.3.2.i386.rpm
� mozilla-nspr-1.7-0.3.2.i386.rpm

In addition, gcc-3.4.1-2 was used to rebuild the RPMs for space optimization. As
mentioned earlier, the tests were conducted on both the Pentium III and Pentium 4
architectures. The system specs for both of these machines are described in Table 3.

Hostname perftest1 perftest2

CPU Type
Intel Pentium 4 Intel Pentium III

(Katmai)

CPU Speed 1700MHz 500 Mhz

Total Memory 256 MB 256 MB

L1 Instruction
Cache/Trace Cache

Configuration

12K uOps, 4-way
associative

16 KB, 4-way
associative, 32 byte

line size

L2 Unified Cache
Configuration

256 KB, Sectored, 8-way
associative, 64 byte

line size

512 KB, 4-way
associative, 32 byte

line size

Instruction TLB
Configuration

4KB, 2MB or 4MB pages,
fully associative, 64

entries

4KB pages, 4-way
assocative, 32

entries; 4MB pages,
fully associative, 2

entries
Table 3: Specs for the two testing machines.

5

Incorporating Space Optimization into RPM

 Space optimizations will be accomplished with the use of the GNU Compiler
Collection (GCC) ‘-Os’ optimization flag. This flag turns on optimizations in the
compiler which do not typically increase code size as well as some which are designed to
reduce code size. More information on the ‘-Os’ flag can be obtained from the GCC
online documentation (http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html). Table
4 summarizes the optimizations used by GCC for different levels of optimization. Items
designated with a ‘+’ indicate that the optimization is turned on, and items designated
with a ‘-’ indicate that the optimization is turned off. In order to incorporate this change
into the RPMs used in Fedora Core Linux the RPMs must be rebuilt from source. For a
detailed guide on building RPMs from source refer to http://www.rpm.org/max-
rpm/p5208.html.

Optimization -O2 -O3 -Os
-fno-defer-pop - - -
-fforce-mem + + +
-fomit-frame-pointer + + +
-foptimize-sibling-calls + + +
-finline-functions - + -
-fmerge-constants + + +
-fstrength-reduce + + +
-fthread-jumps + + +
-fcse-follow-jumps + + +
-fcse-skip-blocks + + +
-frerun-cse-after-loop + + +
-frerun-loop-opt + + +
-fgcse + + +
-floop-optimize + + +
-fcrossjumping + + +
-fif-conversion + + +
-fif-conversion2 + + +
-fdelete-null-pointer-checks + + +
-fexpensive-optimizations + + +
-fregmove + + +
-fdelayed-branch + + +
-fschedule-insns + + +
-fschedule-insns2 + + +
-fcaller-saves + + +
-fpeephole + + +
-fpeephole2 + + +
-fguess-branch-probability + + +
-freorder-blocks + + -
-freorder-functions + + +

6

-fstrict-aliasing + + +
-falign-functions + + -
-falign-labels + + -
-falign-loops + + -
-falign-jumps + + -
-fweb - + -
-fno-cprop-registers - - -
-fprefetch-loop-arrays + + -

Table 4: Optimizations used by GCC.

 Before rebuilding the RPMs it is important to know the shared libraries used by
the application. This can easily be done with the use of OProfile’s time based
measurements. The commands below were used to generate the time-based profile of
Mozilla, shown in Figure 1, for the Pentium III test machine. The output shows the
percentage of time spent in the specified libraries by the application.

opcontrol –-init
opcontrol --reset
opcontrol --setup –-no-vmlinux --separate=library \
 --event=CPU_CLK_UNHALTED:200000::0:1
opcontrol –start
mozilla
 ... Perform application benchmark here
opcontrol --dump
opcontrol --stop
opreport --long-filenames \
 image:/usr/lib/mozilla - 1.7/mozilla - bin

7

Figure 1: Output from opreport for time based profiling on Mozilla

The packages which own these libraries can then be determined by querying the RPM
database (i.e. “rpm –qf <library filename> ”). A script to automate the
profiling has been provided in the software accompanying this report. For information on
using the script refer to “Appendix A: Performance Measurement Tools.” The packages
which contained libraries used by Mozilla, five percent of the execution time or more
were mozilla, mozilla-nspr, glibc, glib2, gtk, and freetype. Once the packages used by the
application have been determined they can then be optimized for space.

 There are two general techniques for rebuilding the RPMs with space
optimizations depending on how the build process is specified in the RPM spec file.
Some RPMs, such as Mozilla, will use a build variable such as “OPT_FLAGS” to specify
optimization flags to send to the compiler. If this is the case the spec file can be opened in
a text editor and the build variables can be set manually. However, many RPMs use the
“%build” macro provided by RPM. This macro will automatically export any compiler
flags to the appropriate build files. These compiler flags can be set in an “.rpmrc”
configuration file. A sample “.rpmrc” configuration file is shown below. The appropriate
line for a given architecture must be added to the configuration file in order to export the
compiler flags during build time. The “.rpmrc” file should be placed in the home

53461 100.000 /usr/lib/mozilla-1.7/mozilla-bin
 CPU_CLK_UNHALT...|
 samples| %|

 11396 21.3165 /usr/lib/mozilla-1.7/comp onents/libgklayout.so
 7046 13.1797 /usr/lib/mozilla-1.7/libm ozjs.so
 4234 7.9198 /lib/libc-2.3.3.so
 3869 7.2371 /usr/lib/mozilla-1.7/mozi lla-bin
 3368 6.2999 /lib/libpthread-0.10.so
 3043 5.6920 /usr/lib/mozilla-1.7/libx pcom.so
 2499 4.6744 /usr/lib/libfreetype.so.6 .3.5
 2445 4.5734 /usr/lib/libgdk-x11-2.0.s o.0.400.1
 1649 3.0845 /usr/X11R6/lib/libXft.so. 2.1.2
 1646 3.0789 /usr/lib/libnspr4.so
 1183 2.2128 /usr/lib/mozilla-1.7/comp onents/libxpconnect.so
 1120 2.0950 /usr/lib/libgobject-2.0.s o.0.400.2
 1037 1.9397 /usr/lib/mozilla-1.7/comp onents/libhtmlpars.so
 1016 1.9005 /usr/lib/libfontconfig.so .1.0.4
 915 1.7115 /usr/lib/mozilla-1.7/comp onents/libgfx_gtk.so
 914 1.7097 /lib/ld-2.3.3.so
 864 1.6161 /usr/lib/libglib-2.0.so.0 .400.2
 722 1.3505 /usr/lib/mozilla-1.7/comp onents/libimglib2.so
 666 1.2458 /usr/X11R6/lib/libX11.so. 6.2
 633 1.1840 /usr/lib/mozilla-1.7/libg kgfx.so
 562 1.0512 /usr/lib/mozilla-1.7/comp onents/libnecko.so
 462 0.8642 /usr/lib/mozilla-1.7/comp onents/librdf.so
 316 0.5911 /usr/lib/libsoftokn3.so
 199 0.3722 /usr/lib/mozilla-1.7/comp onents/libcaps.so
 193 0.3610 /usr/lib/libgtk-x11-2.0.s o.0.400.1

<------------------------Remaining Output Omitted-- ----------------------->

8

directory of the user building the RPM. Additional information on RPM optflags can be
found at http://www.rpm.org/max-rpm/s1-rpm-multi-optflags.html.

Sample .rpmrc file:

Results for Static Metrics

 The resulting RPM size data for the six optimized packages is summarized in
Figure 2 and in Table 5. As expected the RPM sizes do not change dramatically as the
RPM is composed of not only code, but also documentation and configuration files. In
addition, the effect of the smaller executables is minimized since the RPM is compressed.
Nevertheless, the RPM size decreased by an average of four percent for the six packages

RPM Size (MB)

0
5

10
15
20
25
30
35
40
45
50

freetype mozilla mozilla-nspr glibc gtk2 glib2

Non-space Optimized Space Optimized

Figure 2: Resulting RPM size decreased by 4% for the six packages.

Package
Non-space Optimized RPM
Size (MB)

Space Optimized RPM
Size (MB)

Percent
Change

freetype 0.715679 0.690044 -3.58188

optflags: i386 –Os -march=i386
optflags: i486 -Os -march=i486
optflags: i586 –Os -march=i586
optflags: i686 –Os -march=i686
optflags: athlon –Os -march=athlon
optflags: ia64 -Os
optflags: x86_64 -Os
optflags: amd64 -Os
optflags: ia32e -Os

9

mozilla 45.66133 44.56362 -2.40403
mozilla-
nspr 0.297445 0.270617 -9.01973
glibc 7.05049 6.101048 -13.4663
gtk2 4.423068 4.198192 -5.08417
glib2 0.498142 0.457123 -8.23448

Table 5: Data for the resulting RPM size.

 The resulting executable file size data is summarized in Figure 3 and in Table 6.
As a result of space optimizations the average size of the executables for these six
packages decreased by more than six percent.

Average Executable Size (KB)

0

200

400

600

800

1000

1200

1400

1600

mozilla mozilla-
nspr

gtk2 glibc glib2 freetype

Non-space Optimized Space Optimized

Figure 3: Average executable size decreased by 6.63% for the six packages.

Package
Non-space Optimized Average
Executable Size (KB)

Space Optimized Average
Executable Size (KB)

Percent
Change

mozilla 1348.504 1317.666 -2.28682
mozilla-
nspr 225.863 204.7565 -9.3448
gtk2 139.582 114.3771 -18.0574
glibc 132.9298 117.9047 -11.303
glib2 177.3152 151.5402 -14.5363
freetype 301.6177 265.3198 -12.0344

Table 6: Average executable size data.

10

 The resulting function sizes data is summarized by Figure 4 and Table 7. The
average function sizes for the six packages decreased by twenty-two percent on average.
The reason the executables did not decrease in size proportionately with the function
sizes is because the executables contain data and other symbols which can not be
optimized for space.

Average Function Size (Bytes)

0

50

100

150

200

250

300

350

400

freetype mozilla mozilla-nspr gtk2 glib2 glibc

Non-space Optimized Space Optimized

Figure 4: Average function size for the six packages decreased by 22% on average.

Package

Non-space Optimized
Average Function Size
(Bytes)

Space Optimized
Average Function Size
(Bytes)

Percent
Change

freetype 306.71 256.44 -16.39007532
mozilla 262.57 230.92 -12.05392848
mozilla-nspr 162.32 136.97 -15.61729916
gtk2 265.79 186.85 -29.70013921
glib2 310.88 228.35 -26.54722079
glibc 346.18 235.87 -31.86492576

Table 7: Average function size data.

 Figures 7-12 provide a different perspective of the decrease in function size. In
these graphs the original function size is plotted on the x-axis and the space optimized
function size is plotted on the y-axis. All points which lie above the x=y line indicate a
function which has gotten larger due to space optimization and all points below the line
indicate a function which has gotten smaller due to space optimization. For most of the
packages the larger functions tend to get smaller under space optimization, with the
exception of glibc. Notice the density of points below the line in Figure 12. This indicates
that even the smaller functions are benefiting from space optimizations.

11

Function Size (Bytes)
freetype-2.1.7

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Non-space Optimized

S
p

ac
e

O
p

tim
iz

ed

Figure 7: Resulting function sizes for freetype-2.1.7.

Figure 8: Resulting function sizes for mozilla-1.7.

12

Function Size (Bytes)
mozilla-nspr-1.7

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Non-space optimized

S
p

ac
e

O
p

tim
iz

ed

Figure 9: Resulting function sizes for mozilla-nspr-1.7.

Function Size (Bytes)
gtk2-2.4.1

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Non-space Optimized

S
p

ac
e

O
p

ti
m

iz
ed

Figure 10: Resulting function sizes for gtk2-2.4.1.

13

Function Size (Bytes)
glib2-2.4.2

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Non-spaced Optimized

S
p

ac
e

O
p

tim
iz

ed

Figure 11: Resulting function sizes for glib2-2.4.2.

Function Size (Bytes)
glibc-2.3.3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5000 10000 15000

Non-space optimized

S
p

ac
e

O
p

tim
iz

ed

Figure 12: Resulting function sizes for glibc-2.3.3

14

It is worth noting the results seen in Figure 12. Unlike the other function size plots
which tend to follow the x=y line, this plot contains a number of points which move away
from this trend. This would indicate that space optimizations were particularly effective,
even on small functions. This trend is due to the large number of functions in glibc which
have been compiled with the ‘-O3’ option and therefore have functions inlined. Once the
function is recompiled with ‘-Os’ the inline function is then converted to a call to the
function resulting in a reduction in code size.

The following example illustrates this point. The function shown below is
contained within glibc. The first version has been compiled using ‘-O3’ which by default
has inline function optimizations turned on. The second was compiled using ‘-Os’ and
includes a call to the function ‘svcerr_auth’. As a result the space optimized function is
considerably smaller.

‘svcerr_weakauth’ compiled with –O3:

000e351c <svcerr_weakauth>:
 e351c: 55 push %ebp
 e351d: 89 e5 mov %esp,%ebp
 e351f: 83 ec 30 sub $0x30,%esp
 e3522: 8b 4d 08 mov 0x8(%ebp),%e cx
 e3525: c7 45 d8 01 00 00 00 movl $0x1,0xfffff fd8(%ebp)
 e352c: c7 45 dc 01 00 00 00 movl $0x1,0xfffff fdc(%ebp)
 e3533: c7 45 e0 05 00 00 00 movl $0x5,0xfffff fe0(%ebp)
 e353a: 8d 45 d0 lea 0xffffffd0(% ebp),%eax
 e353d: 8b 51 08 mov 0x8(%ecx),%e dx
 e3540: 50 push %eax
 e3541: c7 45 d4 01 00 00 00 movl $0x1,0xfffff fd4(%ebp)
 e3548: 51 push %ecx
 e3549: ff 52 0c call *0xc(%edx)
 e354c: 58 pop %eax
 e354d: 5a pop %edx
 e354e: c9 leave
 e354f: c3 ret

‘svcerr_weakauth’ compiled with –Os

000ad86d <svcerr_weakauth>:
 ad86d: 55 push %ebp
 ad86e: 89 e5 mov %esp,%ebp
 ad870: 6a 05 push $0x5
 ad872: ff 75 08 pushl 0x8(%ebp)
 ad875: e8 c2 ff ff ff call ad83c <svcer r_auth>
 ad87a: c9 leave
 ad87b: c3 ret

15

Results for Dynamic Metrics

Figure 13 summarizes the L1 instruction cache performance for the Pentium III machine.
The number of instruction cache misses was reduced by 4.75 percent.

L1 Instruction Cache Misses
(Pentium III)

0

20000000

40000000

60000000

80000000

100000000

Non-space Optimized Space Optimized

Figure 13: Level 1 instruction cache misses decreased by 4.75% on the Pentium III.

Additionally, the number of ITLB misses on the same machine was decreased by 7.64
percent due to space optimizations. This data is depicted in Figure 14.

Instruction TLB Misses
(Pentium III)

0

5000000

10000000

15000000

20000000

25000000

30000000

Non-space Optimized Space Optimized

Figure 14: ITLB misses decreased by 7.64% due to space optimizations.

16

Similar results were obtained from the Pentium 4 cache architecture. The number of reads
to the Pentium 4’s unified L2 cache decreased by 4.3 percent as shown in Figure 15.
Additionally the trace cache spent nearly three percent more time in deliver mode as
summarized in Figure 16.

L2 Cache Reads
(Pentium 4)

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

Non-space Optimized Space Optimized

Figure 15: The total number of reads (data + instruction) to the Pentium 4’s L2 cache decreased by 4.3%.

Time Spent in Deliver Mode by the Trace Cache

0

100000

200000

300000

400000

500000

600000

700000

800000

N
u

m
b

er
 o

f
S

am
p

le
s

Non-space Optimized Space Optimized

Figure 16: The amount of time the trace cache spent in deliver mode increased by 2.85%.

17

Figure 17 summarizes the number of page faults for the non-space optimized version of
Mozilla and the space optimized version. The number of major page faults decreased by
4.2 percent.

Mozilla Major Page Faults
(Pentium 4)

0

50

100

150

200

250

300

350

400

Non-space Optimized Space Optimized

Figure 17: Major page faults were reduced by 4.2% due to space optimization.

Average startup time, as measured using the Mozilla timeline feature, decreased by 2.68
percent as seen in Figure 18. More details on using the Mozilla timeline feature can be
found in Appendix A: Performance Measurement Tools.

Mozilla Average Startup Time (secs)
(Pentium 4)

0

0.5

1

1.5

2

2.5

Non-space Optimized Space Optimized

Figure 18: Average startup time for Mozilla decreased by 2.68%.

18

Conclusions

 Overall space optimizations proved to be very effective in improving application
performance. The optimizing algorithms were able to reduce code size by significant
amounts, thus leading to smaller functions and the predicted improvement in cache and
memory performance. These improvements proved to be applicable to both the Pentium
III and Pentium 4 architectures. Ultimately these improvements translated into faster
startup times for Mozilla. It is our hope that these encouraging results can be applied to
making other Linux applications faster.

 In addition to the performance gain due to space optimizations, this smaller code
can be used to make distributing large Linux distributions, such as Fedora Core, easier.
Smaller RPMs require less media and less network bandwidth in getting the product to
the customers.

Future Research

 This study has shown that gcc’s space optimizing algorithms can be very effective
in reducing code size. Likewise, this reduction in code size can lead to increased cache,
memory, and TLB performance. However, more testing is needed to determine how these
improved dynamic characteristics will translate into execution time improvements. Some
areas for future research include:

� Conducting similar studies on non-GUI applications for which automated
benchmarks can be established. This will allow for more precise execution time
measurements which can’t be taken for GUI driven applications due to variance in
user input speeds.

� Establishing upper bounds for the amount of performance improvement that could
be expected with space optimizations. This includes quantifying the amount
execution time spent handling cache misses, ITLB misses, and page faults.

� Establishing a set of characteristics of source code which lead to effective space
optimizations. It would be useful to understand why some of the functions
actually got larger due to space optimizations (see Appendix B), while others
experienced only moderate reductions in size.

� Using the characteristics mentioned above, generate a set of guidelines on when
to use space optimizations. These guidelines could be used by application
developers in developing a coding style which could make better use of space
optimizations.

19

Appendix A: Performance Measurement Tools

 A number of different tools were used in this study to measure the performance of
the space optimized RPMs. This appendix will explain how these tools were used so that
future research can be conducted in a similar manner.

 The main tool used in this study was OProfile. OProfile is a system-wide profiler
for Linux systems, capable of profiling all running code at low overhead. It makes use of
hardware performance counters of the CPU to enable profiling of a wide variety of
interesting statistics. More information about OProfile as well as source code and
tutorials can be found at the project website (http://oprofile.sourceforge.net/news/).

OProfile was used in this study to profile the caches, instruction TLBs, and for
time based sampling. The kernel used for this study was ‘kernel-smp-2.6.5-1.358.’ The
drivers for OProfile are enabled only in the SMP kernels; therefore an SMP kernel must
be installed in order to utilize oprofile.

OProfile was initially used to gather information about the shared libraries for

which Mozilla used, as described in the section “Incorporating Space Optimizations into
RPM.” Once this was done the cache and ITLB profiling was performed on the non-
space optimized packages using the events listed in Table 2. The tests were run three
times, with a reboot in between each run, and the numbers shown in the tables are the
average of these three runs. The packages were then re-built for space optimization and
the tests were performed once again in the same manner. However, before running the
tests again on the optimized packages, the system prelinker, which normally runs as a
cron job overnight, was run manually. This ensured that the newly installed libraries are
prelinked just as the old libraries were. Prelinking should be done before testing anytime
new packages have been installed.

The function sizes were obtained using /usr/bin/nm. In order to automate this

process, a script called fsizes.pl was written. This script will allow the user to specify a
package name and will print out all of the functions and their sizes for the given package.
This script has been included with the accompanying software. Usage for the script can
be obtained by executing it with no command line arguments.

Executable sizes were also gathered with the use of a perl script. This script,

called execsize.pl, accepts the name of a package and then queries the RPM database for
a list of all the files associated with the package. It then goes through and sees which of
these files are executable and prints the file name as well the file size for those which are
executable. Usage for this script can be obtained by executing the script with no
command line arguments.

Average resident memory size was obtained using a script called memprof.pl.

This script accepts a single command line argument, the command to profile, and will
return the maximum resident memory size and the average resident memory size in 4KB
pages.

20

Application startup time was measured with the use of the Mozilla timeline
feature; a feature which was re-built into the RPMs. RPMs which have the timeline
feature enabled are included with the accompanying software. A timeline enabled RPM
has been built as both non-space optimized and space optimized. These RPMs are
designated by a ‘-te’ in the filename (i.e. mozilla-1.7-0.3.2-te.i386.rpm). To measure the
startup time a script called measure-simple.pl is included. This script will export the
necessary environment variables to enable the timeline feature, startup the browser using
a file called quit.html, and parse the resulting timeline file for a startup time
measurement. A sample call to the script is shown below. It requires two parameters, the
first being the path to the Mozilla shell script and the second being the number of times to
measure the startup (the first run is omitted and the subsequent runs are averaged
together). More information on the timeline feature can be obtained at
http://www.mozilla.org/performance/measureStartup.html.

Sample call to startup measurement script:

Page fault information was gathered with the use of /usr/bin/time. The page faults

shown in the report refer to major page faults specified by the ‘%F’ format string. A
major page fault is defined as one in which the page has to be brought in from disk. A
sample call to /usr/bin/time is shown below. This command will start Mozilla and print
the number of major page faults once the browser window has been closed.

Sample call to /usr/bin/time to measure major page faults:

/usr/bin/time -- format=”%F” mozilla

./measure - simple.pl mozilla 5

21

Appendix B: Function Size Data

Table 8 summarizes the functions for which space optimization was particularly
effective in reducing code size.

Function Package
Non-space
Optimized
Size (Bytes)

Space
Optimized
Size (Bytes)

Percent
Change

syslog glibc 2099 20 - 99.05
rexec glibc 1307 30 - 97.70
__libc_system glibc 2728 96 - 96.48
_IO_flush_all glibc 336 12 - 96.42
__argp_fmtstream_printf glibc 1892 76 - 95.98
_mcleanup glibc 1458 60 - 95.88
PL_DHashClearEntryStub mozilla 48 21 - 56.25
JS_DHashClearEntryStub mozilla 48 21 - 56.25
JS_Finish mozilla 408 192 - 52.94
g_static_rec_mutex_init glib2 194 94 - 51.54
g_value_transforms_init glib2 5092 2656 - 47.84
g_array_set_size glib2 173 91 - 47.40

Table 8: A sampling of functions which became significantly smaller due to space optimizations.

Table 9 summarizes the functions for which space optimization was not
particularly effective in reducing code size.

Function Package
Non-space
Optimized
Size (Bytes)

Space
Optimized
Size (Bytes)

Percent
Change

atof glibc 20 31 55.00
atoll glibc 22 33 50.00
atoll glibc 22 33 50.00
__mpn_construct_float glibc 48 66 37.50
getenv glibc 176 220 25.00
CSSParserImpl::ParseProperty mozilla 815 1286 57.79
nsBoxSize::Add mozilla 68 102 50.00
nsPseudoFrames::operator mozilla 107 151 41.12
TT_LookUp_Table freetype 68 73 7.35
_g_locale_charset_unalias glib2 141 155 9.93

