Improving Application Performance
Through Space Optimizations

Michael Carpenter
Doumit Ishak

Project Sponsor:
Will Cohen, Red Hat Inc.

Table of Contents

_Topic
Project Description
Performance Metrics
Experiment Procedures
Testing Environment

Incorporating Space
Optimization Into RPM

Results for Static Metrics
Results for Dynamic Metrics
Conclusions

Future Research

Appendix A: Performance
Measurement Tools

Appendix B: Function Size Data

Page Number

1

1

15

18

18

19

21

Project Description

Commonly used benchmarks such as SPEC2000 aredufteimated by small
loops which can fit entirely into the processorshea Typical applications, such as
Mozilla, are very large and have very differentreteeristics. As the gap between
memory and processor speeds continues to widerp#ief cache misses on application
performance becomes greater. Optimizing an apicébr space can help to reduce the
number of cache misses as well as the amount afigpag disc.

The purpose of this project is to quantify the etifeof space optimizations on the
Mozilla web browser in Fedora Core Linux. The studl seek to measure the
performance changes by looking at such charadterias resulting code size, cache and
memory performance, and application startup tinte §pecific goals for this project are
as follows:

= Develop test procedures for gauging performance

= Provide concrete evidence on whether performanderusptimizations is
better or worse

= Show how to incorporate space optimizations int&/RP

= Determine root causes of performance change

= Produce guidelines on when space optimizationsldhmiused in packages

= Incorporate the results of this project into makimgux applications faster

The Linux distribution chosen to serve as thedesironment for this project is
Fedora Core 3 test 1. This will allow for a corsgttesting environment which could
easily be replicated for further study. In addititims distribution contains all of the tools
necessary to measure performance. The Fedora PgeRed-Hat-sponsored and
community-supported open source project. More mfdron on the Fedora Project can
be obtained from the project websitétp://fedora.redhat.com

Performance Metrics

In order to quantify the effects of space optimabn application performance a
set of metrics is needed. The metrics used insthidy can be broken down into two
categories: static and dynamic. Static metricdlase which measure characteristics of
the space optimized code which do not change daneg@xecution of the code, such as
code size. In contrast, dynamic metrics are thdselhwmay vary during execution of the
code or across multiple executions of the codes@clude such characteristics as time
of execution and resident memory size.

The static metrics used are RPM size, executadde and function size. All of
these static metrics aim at measuring how effe¢heecompiler is at reducing code size.
The obvious benefit of code size reduction is thatcode is more likely to fit within the
processors cache and on the same page in memergbyhreducing the number of cache

misses and page faults. Another added benefit aflentode size is that the package
becomes easier to distribute. In a large distrdrusiuch as Fedora Core, having smaller
RPMs will allow users to download the distributiora smaller amount of time and
could possibly reduce the number of CDs neededstiali the operating system.

Measurement of the executable size and RPM sit®ds&vdone with the Linux
‘IS’ command. The function sizes will be measursahg the Linux ‘nm’ command.
Included with this report is a script used to awdterthe process of gathering function
size information. Additional information on usingg script can be found in “Appendix
A: Performance Measurement Tools.”

In order to verify that the smaller code size Walve the predicted effect on the
runtime performance, a number of dynamic metridshvei studied including instruction
cache misses, instruction translational look-abiaféer (ITLB) misses, page faults,
resident memory size, and application startup timerder to verify that the change in
performance is applicable to both a trace cacheaaratlitional instruction cache the
measurements will be taken on an Intel Pentiuraritl an Intel Pentium 4 processor. The
specs for the two systems are summarized in Table 3

Profiling the caches and the ITLB will be accomipéd with the use of OProfile.
Due to limitations of the profiler to accurately aseire the instruction misses in the trace
cache of the Pentium 4, the L2 unified cache refsgs are used instead. The assumption
being made is that the data references for theespaitmized version and the non-space
optimized version will remain consistent acrosshboins. Therefore, the difference in L2
cache references will be due to misses in the tacke. Also the event
“TC_DELIVER_MODE is used to measure how much time the trace caarespn
deliver mode. These two events will provide a readte estimation as to the
performance of the trace cache. The Pentium Illinstruction cache misses will be
measured with thelFU_IFETCH_MISS ” event. The events used for profiling the ITLB
and time based measurements for both process@ &ypesummarized in Table 1.

Pentium Il
Event Count Unit- Mask
Mask Descri ption

Time-Based CPU_CLK_UNHALTED 200000

ITLB Misses ITLB_MISS 1000
L1 Instruction IFU_IFETCH_MISS 10000
Cache Misses
Pentium 4
Event Count Unit- Mask
Mask Descri ption
Time-Based GLOBAL_POWER_EVENTS200000 px1 Mandatory
ITLB Misses ITLB_ REFERENCE 3000 0x2 Misses to
the ITLB
L2 Cache BSQ CACHE_REFERENCHO000 [x107 Allreadsto
second level

References cache
Trace Cache TC_DELIVER_MODE 10000 |0Ox4 Processor is
Deliver Mode in deliver

mode

Table 1: OProfile events used to measure dynamic performance metrics.

with this report. This script uses a timeline eedblersion of Mozilla (also included in
the accompanying software) to compute an averaggipttime for the browser. For
more information on the usage of the script rede™ppendix A: Performance
Measurement Tools.”

The benchmark used in performing the tests isritet below in Table 2. This

benchmark is a subset of the Mozilla Quality AsesaeaSmokeTest
(http://www.mozilla.org/quality/smoketesfsind tests a majority of the functionality of

the browser including features such as page lo&indering, ssl security, JavaScript
handling, and file system interaction.

Measurement of application startup time is dort wWie use of a script provided

Step Description Action
1 Launch the browser using th&ither click on the icon on the menu bar or
default profile launch from the terminal window
2 Load a local file File->Open File... Select a lofild to load
(e.g. /usr/share/doc/HTML/index.html)
3 Load mozilla.org via the Click on the “throbber” icon located in the
“throbber” icon upper right hand corner of the browser wind
4 Load a remote site from the| File-> Open Location... Enter a web address
file menu (e.g. http://lwww.yahoo.com)
5 Load a remote site via a Click on a link in the page opened in the
hyperlink previous step
6 Load a remote https site vig Enter https://sourceforge.net into the addres
the address bar bar and press enter
7 Generate a domain name | Enter https://sf.net into the address bar and
mismatch warning press enter. Hit enter when the domain namg
mismatch dialog box comes up.
8 Open a page with embeddedEnter the address of a page which uses
JavaScript JavaScript (e.g. http://java.sun.com) into the
address bar and press enter
9 Test one of the menu dialogs Edit -> Prefereneddistory -> Clear History
-> Ok
10 Exit File -> Exit

Table 2: Benchmark used for performance testing on Mozilla.

Experiment Procedures

Testing of the dynamic metrics was first donelanrion-space optimized
packages. The tests were run three times with@oteb between each run. The results
shown for the instruction cache misses, instructibB misses, page faults, and L2 cache
reads are an average of the three runs.

The packages were then optimized for space antstaled on the machines.
Once the optimized packages were installed a pkanaly was done so as to ensure that
the tests were run under the same conditions asa@ptimized tests were. The tests
were then run again using the procedure mentiohedea More information on the
testing procedures can be found in Appendix A: dterhnce Measurement Tools.

Testing Environment

This study was conducted under Fedora Core 3.t€ktLfollowing RPMs were
rebuilt for space optimizations:

freetype-2.1.7-5.i386.rpm
glib2-2.4.2-1.i386.rpm
glibc-2.3.3-36.i386.rpm
gtk2-2.4.1-3.i386.rpm
mozilla-1.7-0.3.2.i386.rpm
mozilla-nspr-1.7-0.3.2.i386.rpm

In addition, gcc-3.4.1-2 was used to rebuild thé/RFor space optimization. As
mentioned earlier, the tests were conducted onthetiPentium Il and Pentium 4
architectures. The system specs for both of thesdhimes are described in Table 3.

Hostname perftestl perftest2
Intel Pentium 4 Intel Pentium 1l
CPU Type (Katmai)
CPU Speed 1700MHz 500 Mhz
Total Memory 256 MB 256 MB
L1 Instruction 12K uOps, 4-way 16 KB, 4-way
Cache/Trace Cache associative associative, 32 byte
Configuration line size
- 256 KB, Sectored, 8-way 512 KB, 4-way
L2 Umﬂfgd Ca_che associative, 64 byte associative, 32 byte
Configuration line size line size
4KB, 2MB or 4MB pages, 4KB pages, 4-way
Instruction TLB fully associative, 64 assocative, 32
i . entries entries; 4MB pages,
Configuration fully associative, 2
entries

Table 3: Specs for the two testing machines.

Incorporating Space Optimization into RPM

Space optimizations will be accomplished with tise of the GNU Compiler
Collection (GCC) *-Os’ optimization flag. This flagrns on optimizations in the
compiler which do not typically increase code sizevell as some which are designed to
reduce code size. More information on the ‘-Ogjftan be obtained from the GCC
online documentatiorhftp://gcc.gnu.org/onlinedocs/gcc/Optimize-Optitiisil). Table
4 summarizes the optimizations used by GCC foetktit levels of optimization. Items
designated with a ‘+’ indicate that the optimizatis turned on, and items designated
with a ‘-’ indicate that the optimization is turneff. In order to incorporate this change
into the RPMs used in Fedora Core Linux the RPMstrha rebuilt from source. For a
detailed guide on building RPMs from source redenttp://www.rpm.org/max-
rpm/p5208.html

-fguess-branch-probability

-freorder-blocks

Optimization -02 -03 -Os
-fno-defer-pop - - -
-fforce-mem + + +
-fomit-frame-pointer + + +
-foptimize-sibling-calls + + +
-finline-functions - + -
-fmerge-constants + + +
-fstrength-reduce + + +
-fthread-jumps + + +
-fcse-follow-jumps + + +
-fcse-skip-blocks + + +
-frerun-cse-after-loop + + +
-frerun-loop-opt + + +
-fgcse + + +
-floop-optimize + + +
-fcrossjumping + + +
-fif-conversion + + +
-fif-conversion2 + + +
-fdelete-null-pointer-checks + + +
-fexpensive-optimizations + + +
-fregmove + + +
-fdelayed-branch + + +
-fschedule-insns + + +
-fschedule-insns2 + + +
-fcaller-saves + + +
-fpeephole + + +
-fpeephole2 + + +

+ + +
+ + -
+ + +

-freorder-functions

-fstrict-aliasing

-falign-functions

-falign-labels

-falign-loops

4|+ [+]+

-falign-jumps

Tl |+ |+ |+]+

-fweb -

-fno-cprop-registers - - -

-fprefetch-loop-arrays + + -

Table 4: Optimizations used by GCC.

Before rebuilding the RPMs it is important to kntdve shared libraries used by
the application. This can easily be done with tbe of OProfile’s time based
measurements. The commands below were used toageiee time-based profile of
Mozilla, shown in Figure 1, for the Pentium Il tesachine. The output shows the
percentage of time spent in the specified librabgshe application.

opcontrol —init
opcontrol --reset
opcontrol --setup —no-vmlinux --separate=library \
--event=CPU_CLK_UNHALTED:200000::0:1
opcontrol —start
mozilla
... Perform application benchmark here
opcontrol --dump
opcontrol --stop
opreport --long-filenames \
image:/ustr/lib/mozilla - 1.7/mozilla - bin

7046

1646
1183
1120
1037
1016

562

53461 100.000 /usr/lib/mozilla-1.7/mozilla-bin
CPU_CLK_UNHALT.. |
samples| %]

11396 21.3165 /ustr/lib/mozilla-1.7/comp

13.1797 /usr/lib/mozilla-1.7/libm

3.0789 /ust/lib/libnspr4.so
2.2128 Jusr/lib/mozilla-1.7/comp
2.0950 /usr/lib/libgobject-2.0.s
1.9397 /ustr/lib/mozilla-1.7/comp
1.9005 /ust/lib/libfontconfig.so

1.0512 /usr/lib/mozilla-1.7/comp

onents/libgklayout.so
0zjs.S0

4234 7.9198 /lib/libc-2.3.3.s0

3869 7.2371 /usr/lib/mozilla-1.7/mozi lla-bin
3368 6.2999 /lib/libpthread-0.10.s0

3043 5.6920 /usr/lib/mozilla-1.7/libx pcom.so
2499 4.6744 |usrl/lib/libfreetype.so.6 3.5
2445 4.5734 Just/lib/libgdk-x11-2.0.s 0.0.400.1
1649 3.0845 /usr/X11R6/lib/libXft.so. 212

onents/libxpconnect.so
0.0.400.2
onents/libhtmlpars.so
1.04

915 1.7115 /usr/lib/mozilla-1.7/comp onents/libgfx_gtk.so
914 1.7097 /lib/ld-2.3.3.s0

864 1.6161 /usr/lib/libglib-2.0.s0.0 .400.2

722 1.3505 /usr/lib/mozilla-1.7/comp onents/libimglib2.so
666 1.2458 /usr/X11R6/lib/libX11.s0. 6.2

633 1.1840 /usr/lib/mozilla-1.7/libg kgfx.so

onents/libnecko.so

462 0.8642 /usr/lib/mozilla-1.7/comp onents/librdf.so

316 0.5911 /usr/lib/libsoftokn3.so

199 0.3722 /usr/lib/mozilla-1.7/comp onents/libcaps.so

193 0.3610 /usr/lib/libgtk-x11-2.0.s 0.0.400.1
o Remaining Output Omitted-- ~ —mmmmmmmreeeee >

Figure 1: Output from opreport for time based profiling on Mozilla

The packages which own these libraries can thatetermined by querying the RPM
database (i.erpm —qf <library filename> "). A script to automate the

profiling has been provided in the software accaomypay this report. For information on
using the script refer to “Appendix A: Performareasurement Tools.” The packages
which contained libraries used by Mozilla, five pemt of the execution time or more

were mozilla, mozilla-nspr, glibc, glib2, gtk, afrdetype. Once the packages used by the
application have been determined they can therpbmized for space.

There are two general techniques for rebuildirgRIPMs with space
optimizations depending on how the build procespecified in the RPM spec file.
Some RPMs, such as Mozilla, will use a build vadgauch as “OPT_FLAGS” to specify
optimization flags to send to the compiler. If tlighe case the spec file can be opened in
a text editor and the build variables can be setually. However, many RPMs use the
“%build” macro provided by RPM. This macro will amatically export any compiler
flags to the appropriate build files. These comdilegs can be set in an “.rpmrc”
configuration file. A sample “.rpmrc” configuratidie is shown below. The appropriate
line for a given architecture must be added tacthvdiguration file in order to export the
compiler flags during build time. The “.rpmrc” fighould be placed in the home

directory of the user building the RPM. Additiomaformation on RPM optflags can be
found athttp://www.rpm.org/max-rpm/s1-rpm-multi-optflagsit

Sample .rpmrc file:

optflags:
optflags:
optflags:
optflags:
optflags:
optflags:
optflags:
optflags:
optflags:

i386 —Os -march=i386
i486 -Os -march=i486
i586 —Os -march=i586
i686 —Os -march=i686
athlon —Os -march=athlon
ia64 -Os

x86_64 -Os

amd64 -Os

ia32e -Os

Results for Static Metrics

The resulting RPM size data for the six optimipagkages is summarized in
Figure 2 and in Table 5. As expected the RPM sipesot change dramatically as the
RPM is composed of not only code, but also docuatemt and configuration files. In
addition, the effect of the smaller executablasiisimized since the RPM is compressed.
Nevertheless, the RPM size decreased by an avefdger percent for the six packages

RPM Size (MB)
50
45 ~
40
35
30
25
20
15
10
5 _
X | BN -
freetype mozilla mozilla-nspr glibc gtk2 glib2
@ Non-space Optimized B Space Optimized ‘
Figure 2: Resulting RPM size decreased by 4% for the six packages.
Non-space Optimized RPM | Space Optimized RPM Percent
Package| Size (MB) Size (MB) Change
freetype 0.715679 0.690044 -3.5818¢

mozilla 45.66133 4456362 -2.40403
mozilla-

nspr 0.297445% 0.270617 -9.01973
glibc 7.05049 6.101048 -13.4663
gtk2 4.423068 4.198192 -5.08417
glib2 0.498142 0.457123 -8.23448

Table 5: Data for the resulting RPM size.

The resulting executable file size data is sumrearin Figure 3 and in Table 6.
As a result of space optimizations the averagedfitiee executables for these six
packages decreased by more than six percent.

Average Executable Size (KB)
1600
1400
1200 |
1000 +
800
600
400 +
n
. 0w wm (W
mozilla mozilla- gtk2 glibc glib2 freetype
nspr
O Non-space Optimized B Space Optimized
Figure 3: Average executable size decreased by 6.63% for the six packages.
Non-space Optimized Average| Space Optimized Average | Percent
Package| Executable Size (KB) Executable Size (KB) Change
mozilla 1348.504 1317.666) -2.28682
mozilla-
nspr 225.863 204.7565 -9.3448
gtk2 139.582 114.3771 -18.0574
glibc 132.9298 117.9047] -11.303
glib2 177.3152 151.5402] -14.5363
freetype 301.6177 265.3198 -12.0344

Table 6: Average executable size data.

The resulting function sizes data is summarizeéigyre 4 and Table 7. The
average function sizes for the six packages deeddag twenty-two percent on average.
The reason the executables did not decrease ippertionately with the function
sizes is because the executables contain datatla@dsymbols which can not be
optimized for space.

Average Function Size (Bytes)

400

350 ~

300 +

250 -

200

150 ~

100 ~

50
0
freetype mozilla mozilla-nspr gtk2 glib2 glibc
@ Non-space Optimized B Space Optimized
Figure 4: Average function size for the six packages decreased by B2%evage.
Non-space Optimized Space Optimized
Average Function Size Average Function Size | Percent

Package (Bytes) (Bytes) Change
freetype 306.71 256.44| -16.39007532
mozilla 262.57 230.92| -12.05392848
mozilla-nspr 162.32 136.97| -15.61729916
gtk2 265.79 186.85| -29.70013921
glib2 310.88 228.35| -26.5472207¢
glibc 346.18 235.87| -31.86492576

Table 7: Average function size data.

Figures 7-12 provide a different perspective efdecrease in function size. In
these graphs the original function size is plotiedhe x-axis and the space optimized
function size is plotted on the y-axis. All pointhich lie above the x=y line indicate a
function which has gotten larger due to space apétion and all points below the line
indicate a function which has gotten smaller dugpace optimization. For most of the
packages the larger functions tend to get smatldeuspace optimization, with the
exception of glibc. Notice the density of pointédvethe line in Figure 12. This indicates
that even the smaller functions are benefiting fepace optimizations.

10

Function Size (Bytes)
freetype-2.1.7

6000
5000
3
N 4000
£
8— 3000
S
© 2000
n
1000
0
0 1000 2000 3000 4000 5000 6000
Non-space Optimized
Figure 7: Resulting function sizes for freetype-2.1.7.
Function Size (Bytes)
mozilla-1.7
40000
Ja0o0
- 30000
Q
i)
£ 25000
-3
O 20000
o
S 15000
m
10000
2000
0
0 10000 20000 30000 40000
Non-space Optimized

Figure 8: Resulting function sizes for mozilla-1.7.

11

Function Size (Bytes)
mozilla-nspr-1.7

5000
g 4000
N
£ 3000
o
O
o 2000
(@]
a
»n 1000
0
0 1000 2000 3000 4000 5000
Non-space optimized
Figure 9: Resulting function sizes for mozilla-nspr-1.7.
Function Size (Bytes)
gtk2-2.4.1
5000
3 4000
N
g 3000
Q.
O
©
S 2000
Q.
n
1000
0
0 1000 2000 3000 4000 5000

Non-space Optimized

Figure 10: Resulting function sizes for gtk2-2.4.1.

12

Function Size (Bytes)

glib2-2.4.2
5000
©
& 4000
£
o 3000
O
& 2000
%)
1000
0
0 1000 2000 3000 4000 5000
Non-spaced Optimized
Figure 11: Resulting function sizes for glib2-2.4.2.
Function Size (Bytes)
glibc-2.3.3
18000
16000
E 14000
E 12000
g_ 10000
@ 8000
S8 6000
? 4000
2000
0
0 5000 10000 15000

Non-space optimized

Figure 12: Resulting function sizes for glibc-2.3.3

13

It is worth noting the results seen in Figure 18liké the other function size plots
which tend to follow the x=y line, this plot contaia number of points which move away
from this trend. This would indicate that spacdroations were particularly effective,
even on small functions. This trend is due to #rge number of functions in glibc which
have been compiled with the ‘-O3’ option and therefhave functions inlined. Once the
function is recompiled with *-Os’ the inline funoti is then converted to a call to the
function resulting in a reduction in code size.

The following example illustrates this point. Then€tion shown below is
contained within glibc. The first version has beempiled using -O3’ which by default
has inline function optimizations turned on. Thems® was compiled using ‘-Os’ and
includes a call to the function ‘svcerr_auth’. Aseault the space optimized function is
considerably smaller.

‘svcerr_weakauth’ compiled with —O3:

000e351c <svcerr_weakauth>:

e351lc: 55 push %ebp

e351d: 89e5 mov %esp,%ebp

e351f: 83 ec 30 sub $0x30,%esp

e3522: 8b4d 08 mov 0x8(%ebp),%e cX

e3525: ¢745d801000000 movl $0x1,0xfffff fd8(%ebp)
e352c: c745dc01000000 movl $0x1,0xfffff fdc(%ebp)
e3533: ¢c745e005000000 movl $0x5,0xfffff fe0(%ebp)
e353a: 8d45d0 lea Oxffffffd0(% ebp),%eax
e353d: 8b 5108 mov 0x8(%ecx),%e dx

e3540: 50 push %eax

e3541: ¢745d401000000 movl $0x1,0xfffff fd4(%ebp)
e3548: 51 push %ecx

e3549: ff520c call *0xc(%edx)

e354c: 58 pop %eax

e354d: 5a pop %edx

e354e: ¢9 leave

e354f. ¢3 ret

‘svcerr_weakauth’ compiled with —Os

000ad86d <svcerr_weakauth>:

ad86d: 55 push %ebp

ad86e: 89e5 mov %esp,%ebp

ad870: 6a05 push $0x5

ad872: ff7508 pushl 0x8(%ebp)

ad875: e8c2ffffff call ad83c <svcer r_auth>
ad87a: ¢9 leave

ad87b: c3 ret

14

Results for Dynamic Metrics

Figure 13 summarizes the L1 instruction cache perdmce for the Pentium Il machine.
The number of instruction cache misses was rediiged75 percent.

L1 Instruction Cache Misses
(Pentium 11I)
100000000
80000000 -
60000000 -
40000000
20000000 -
0 -
@ Non-space Optimized B Space Optimized

Figure 13: Level 1 instruction cache misses decreased by 4.75% on therPdiht

Additionally, the number of ITLB misses on the sam&chine was decreased by 7.64
percent due to space optimizations. This datapgtid in Figure 14.

Instruction TLB Misses
(Pentium III)

30000000
25000000 -
20000000 -
15000000 -
10000000 H

5000000 -

0,

O Non-space Optimized B Space Optimized

Figure 14:ITLB misses decreased by 7.64% due to space optimizations.

15

Similar results were obtained from the Pentium eheaarchitecture. The number of reads
to the Pentium 4’s unified L2 cache decreased Bydrcent as shown in Figure 15.
Additionally the trace cache spent nearly three@earmore time in deliver mode as
summarized in Figure 16.

L2 Cache Reads
(Pentium 4)

700000000

600000000 -

500000000 -

400000000 -

300000000 -

200000000 -

100000000 -

0,

O Non-space Optimized B Space Optimized

Figure 15: The total number of reads (data + instruction) to theilart’'s L2 cache decreased by 4.3%.

Time Spentin Deliver Mode by the Trace Cache

800000
700000 -
600000 -

Number of Samples
wWw b O
o O O
o O O
o O o
o O O
o O O

O Non-space Optimized B Space Optimized

Figure 16: The amount of time the trace cache spent in deliver mode incriea2e85%.

16

Figure 17 summarizes the number of page faultthfdnon-space optimized version of
Mozilla and the space optimized version. The nundb@najor page faults decreased by
4.2 percent.

Mozilla Major Page Faults
(Pentium 4)

400
350
300
250
200
150
100 -

50

@ Non-space Optimized m Space Optimized

Figure 17: Major page faults were reduced by 4.2% due to space aption.

Average startup time, as measured using the Mdzitleline feature, decreased by 2.68
percent as seen in Figure 18. More details on ub@dozilla timeline feature can be
found in Appendix A: Performance Measurement Tools.

Mozilla Average Startup Time (secs)
(Pentium 4)

2.5

1.5 -

0.5 1

@ Non-space Optimized m Space Optimized

Figure 18: Average startup time for Mozilla decreased by 2.68%.

17

Conclusions

Overall space optimizations proved to be very e¢ffedn improving application
performance. The optimizing algorithms were ablesttuce code size by significant
amounts, thus leading to smaller functions angteeicted improvement in cache and
memory performance. These improvements proved appkcable to both the Pentium
[l and Pentium 4 architectures. Ultimately thesg@iovements translated into faster
startup times for Mozilla. It is our hope that teencouraging results can be applied to
making other Linux applications faster.

In addition to the performance gain due to spgtemzations, this smaller code
can be used to make distributing large Linux disitions, such as Fedora Core, easier.
Smaller RPMs require less media and less netwankve@th in getting the product to
the customers.

Future Research

This study has shown that gcc’s space optimiziggrahms can be very effective
in reducing code size. Likewise, this reductiocaae size can lead to increased cache,
memory, and TLB performance. However, more tessngeeded to determine how these
improved dynamic characteristics will translateiakecution time improvements. Some
areas for future research include:

= Conducting similar studies on non-GUI applicatiémswhich automated
benchmarks can be established. This will allowiore precise execution time
measurements which can’t be taken for GUI drivepliagtions due to variance in
user input speeds.

= Establishing upper bounds for the amount of peréoroe improvement that could
be expected with space optimizations. This incluglemntifying the amount
execution time spent handling cache misses, ITL&ga%, and page faults.

= Establishing a set of characteristics of sourceeagllich lead to effective space
optimizations. It would be useful to understand vgbyne of the functions
actually got larger due to space optimizations fggeendix B), while others
experienced only moderate reductions in size.

= Using the characteristics mentioned above, genaraé&t of guidelines on when
to use space optimizations. These guidelines deeildsed by application
developers in developing a coding style which canéike better use of space
optimizations.

18

Appendix A: Performance Measurement Tools

A number of different tools were used in this stilyneasure the performance of
the space optimized RPMs. This appendix will explaw these tools were used so that
future research can be conducted in a similar nranne

The main tool used in this study was OProfile. @i is a system-wide profiler
for Linux systems, capable of profiling all runniogde at low overhead. It makes use of
hardware performance counters of the CPU to enablding of a wide variety of
interesting statistics. More information about Ciifecas well as source code and
tutorials can be found at the project webditig(//oprofile.sourceforge.net/news/

OProfile was used in this study to profile the ashnstruction TLBs, and for
time based sampling. The kernel used for this sway ‘kernel-smp-2.6.5-1.358." The
drivers for OProfile are enabled only in the SMPlets; therefore an SMP kernel must
be installed in order to utilize oprofile.

OProfile was initially used to gather informatidmoait the shared libraries for
which Mozilla used, as described in the sectiomdhporating Space Optimizations into
RPM.” Once this was done the cache and ITLB prajikvas performed on the non-
space optimized packages using the events listédhie 2. The tests were run three
times, with a reboot in between each run, and timehers shown in the tables are the
average of these three runs. The packages weredHanlt for space optimization and
the tests were performed once again in the sameaenardowever, before running the
tests again on the optimized packages, the systelmlger, which normally runs as a
cron job overnight, was run manually. This ensubed the newly installed libraries are
prelinked just as the old libraries were. Preligkghould be done before testing anytime
new packages have been installed.

The function sizes were obtained using /usr/binimorder to automate this
process, a script called fsizes.pl was writtensHBaript will allow the user to specify a
package name and will print out all of the funci@nd their sizes for the given package.
This script has been included with the accompangoftyvare. Usage for the script can
be obtained by executing it with no command lirguanents.

Executable sizes were also gathered with the uaepefl script. This script,
called execsize.pl, accepts the name of a packatjghan queries the RPM database for
a list of all the files associated with the packdgthen goes through and sees which of
these files are executable and prints the file nasneell the file size for those which are
executable. Usage for this script can be obtairyegixlecuting the script with no
command line arguments.

Average resident memory size was obtained usimgipt £alled memprof.pl.
This script accepts a single command line arguntbatcommand to profile, and will
return the maximum resident memory size and theageeresident memory size in 4KB
pages.

19

Application startup time was measured with theafdbe Mozilla timeline
feature; a feature which was re-built into the RPRIBMs which have the timeline
feature enabled are included with the accompanyafigvare. A timeline enabled RPM
has been built as both non-space optimized ancesgatonized. These RPMs are
designated by a ‘-te’ in the filename (i.e. mozillF-0.3.2-te.i386.rpm). To measure the
startup time a script called measure-simple.ptétuided. This script will export the
necessary environment variables to enable theitimé&ature, startup the browser using
a file called quit.html, and parse the resultimgiine file for a startup time
measurement. A sample call to the script is shoglovin It requires two parameters, the
first being the path to the Mozilla shell scriptahe second being the number of times to
measure the startup (the first run is omitted thedsubsequent runs are averaged
together). More information on the timeline featoes be obtained at
http://www.mozilla.org/performance/measureStarttrplh

Sample call to startup measurement script:

Jmeasure - simple.pl mozilla 5

Page fault information was gathered with the useisifbin/time. The page faults
shown in the report refer to major page faults sjgecby the ‘%F’ format string. A
major page fault is defined as one in which theegaas to be brought in from disk. A
sample call to /usr/bin/time is shown below. Thesnenand will start Mozilla and print
the number of major page faults once the browsedow has been closed.

Sample call to /usr/bin/time to measure major fagés:
/usr/bin/time -- format="%F" mozilla

20

Appendix B: Function Size Data

Table 8 summarizes the functions for which spadaropation was particularly
effective in reducing code size.

Non-space Space
: o e Percent
Function Package Optimized Optimized
. : Change
Size (Bytes) | Size (Bytes)
syslog glibc 2099 20 - 99.05
rexec glibc 1307 30 -97.70
__libc_system glibc 2728 96 - 96.48
10 flush_all glibc 336 12 - 96.42
__argp_fmtstream_printf | glibc 1892 76 - 95,98
__mcleanup glibc 1458 60 - 95.88
PL_ DHashClearEntryStub | mozilla 48 21 - 56.25
JS DHashClearEntryStub | mozilla 48 21 - 56.25
JS_Finish mozilla 408 192 - 52.94
g_static_rec_mutex_init glib2 194 94 -51.54
g_value_transforms_init glib2 5092 2656 -47.84
g_array set size glib2 173 91 -47.40

Table 8: A sampling offunctions which became significantly smaller due to spatien@ations.

Table 9 summarizes the functions for which spadempation was not
particularly effective in reducing code size.

Non-space Space Percent
Function Package | Optimized Optimized Chanoe
Size (Bytes)| Size (Bytes) 9

atof glibc 20 31 55.00
atoll glibc 22 33 50.00
atoll glibc 22 33 50.00
___mpn_construct_float glibc 48 66 37.50
getenv glibc 176 220 25.00
CSSParserimpl::ParseProperty | mozilla 815 1286 57.79
nsBoxSize::Add mozilla 68 102 50.00
nsPseudoFrames::operator mozilla 107 151 41.12
TT LookUp Table freetype 68 73 7.35
_g_locale_charset unalias glib2 141 155 9.93

21

