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OProfi le is very useful for identifying processor perfor-
mance bottlenecks.  OProfi le can be confi gured to take 
samples periodically to get time-based samples to indicate 
which sections of code are executed on the computer 
system. On many architectures OProfi le provides access 
to the performance monitoring counters. The performance 
monitoring counters allow samples to be collection based 
on other events such as  cache misses, memory references, 
instructions retired, and processor clock cycles. These 
performance events allow developers to determine whether 
specifi c performance problems exist in the code and revise 
the code appropriately based on the performance problem 
observed.

John Levon started OProfi le as a Master’s thesis project 
at Victoria University of Manchester, initially modeling it 
after the DEC Continuous Profi ling Infrastructure (DCPI), a 
system-wide profi ling system that ran on Alpha DEC Ultrix. 
DCPI used the Alpha performance monitoring hardware to 
trigger sampling and the data was stored in histograms for 
the individual executables. The fi rst processors supported 
by OProfi le were the Intel Pentium Pro and AMD Athlon 
processors and it was extended to support the Intel Pentium 
4, Intel Itanium, and AMD64 processors. OProfi le internals 
were revised and incorporated into the Linux 2.5 kernel. 
Once OProfi le support was merged into the Linux kernel, 
support was added for IBM S/390, Compaq Alpha, and 
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IBM PowerPC64.
Program tuning may be required to improve the perfor-

mance of code. However, code correctness always take 
precedence over speed; fast, incorrect code is of little 
use. Use of appropriate compiler options can improve the 
speed of the code generated by the compiler while avoiding 
changing the source code. Most optimizations performed 
by the compiler provides a constant factor of improvement. 
Often, selecting the appropriate algorithms for the program 
can have a greater effect on program performance than the 
compiler or hand tuning. For example the time required 
for a bubble sort grows proportional to the square of the 
number of elements being sorted (n), but there are much 
more effi cient sorting algorithms that are proportional to 
nlog2n. For sorting large lists of items this can have huge 
impact because n grows much faster than log2n, making 
the proportionality constant unimportant. 

Processor architecture also has a huge impact on program 
performance. The article describes some of the critical 
architecture features of processors and how they affect 
program performance. This is followed by a walk through 
of the OProfi le system and an example tuning an image 
processing program that converts a raw camera image to a 
PorTable PixMap (PPM) image with OProfi le.

Processor Architecture
Processor performance has increased orders of magnitude 

since the initial microprocessors were developed due to 
the improvement in the processes used to fabricate the 
processors and to the changes in the processor architecture. 
However, the changes in the processor architecture can 
lead to large differences between best-case and worst-case 
performance.  The code can execute very quickly when 
the program has the behavior expected by the processor 
designers, and the code can execute very slowly when the 
program deviates signifi cantly from the assumption made 
in the processor design.

A number of architectural features have been incorpo-
rated into current processors to improve performance.  
Virtually all modern processors have cache memory to 
hide the disparity in speed between the processor and 
memory. Processors execute multiple instructions concur-
rently either through pipelining or superscalar execution. 
Processors also make predictions on what will execute 
rather than waiting idle for a result to be known. Let us take 
a look at the common processor architecture features and 
how program characteristics can affect the effectiveness.

Caches
On modern processors there is a large difference in 

speed between the processor and memory. For example, 
on the Pentium 4 the processor clock can be less than 

.3 nanosecond and an access to memory takes tens of 
nanoseconds. The small, fast cache memories are designed 
to store memory locations accessed recently by the 
processor. Cache memories make two assumptions about 
programs: spatial and temporal locality.

Spatial locality assumes rather than just accessing a lone 
memory location, memory accesses are to groups of nearby 
memory locations. The result of this assumption is the cache 
line size hold more than one word from memory. On the 
Pentium 4 each cache line in the L1 data cache is 64 bytes 
(16 four-byte words). Thus, when a memory access pulls in 
a cache line it pulls 64 bytes including the data from the 
desired memory address. This works well if the program is 
going through each word in memory, for example  stepping 
through each element of array of integers. However, it does 
not work so well for a program that is just using one word 
or byte out of the cache line because it is striding through 
the array. In this case much of the data transferred to the 
cache is unused, wasting memory bandwidth.

Temporal locality assumes that the accesses to a particular 
location in memory are grouped together in time; if there is 
an access to a memory location now there are likely to be 
accesses to that location in the near future. The processor 
cannot predict all the future accesses. A memory location 
may be accessed very rarely (maybe only once), but the 
processor evicts a much more commonly used memory 
location from the cache to make room for the rarely used 
item. Thus, the cache has no benefi t for the rarely accessed 
location and reduces the caches benefi t for the commonly 
accessed location.

Pipelined, Superscalar, and Out-Of-
Order Execution

Pipelined, Superscalar, and Out-Of-Order execution 
are different approaches to allow concurrent execution 
of instructions. Processors may use one or more of these 
methods to improve performance.

Pipelined processors have a series of stages connected 
linearly as in Figure 1. The instructions are numbered in 
Figure 1. Each row of Figure 1 is a snapshot of the pipeline 
at a particular clock cycle; The row at the top is the earliest 
clock cycle and the row at the bottom is the latest clock 
cycle.  The instructions enter the pipeline on the left 
and leave the pipeline on the right. Instructions progress 
through the different stages of the pipeline in sequence. 
It is possible to have a new instruction enter the pipeline 
each clock cycle and an instruction completed each clock 
cycle. Pipelining can provide a signifi cant improvement in 
throughput compared to sequential execution of instruc-
tions. Designers of processors can adjust the complexity 
of the pipeline stages to reduce the clock period, providing 
additional performance for the processor.
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Figure 1. Processor Pipeline

A superscalar processor architecture has multiple 
execution units, allowing multiple instructions to be 
executed on each cycle. An example of this is the original 
Intel Pentium processor, which has two execution units and 
allows two instructions to be started in the same processor 
cycle. The execution units maybe pipelined so that a new 
group of instructions can be started each cycle.

Most programmers expect the instructions to execute in 
the order specifi ed in the program. Out-Of-Order execution 
loosens this specifi cation on the processor. The processor 
may appear to execute the instruction in the order specifi ed 
in the program, but the hardware may change the order. 
There are cases where data dependencies in the code may 
not be known until the code actually executes. Instructions 
later in the instruction sequence may be executed earlier 
by the processor because all the required data is available 
to execute the instruction. Earlier instructions in the 
sequence may be delayed because some of the data from 
earlier instruction is not yet available. Thus, with Out-Of-
Order execution the processor may be better utilized and 
reduce the runtime by executing instruction as the required 
dependencies are satisfi ed for instructions. The processor 
maintains the illusion that the instructions are executed in 
order to the programmer. Thus, if an instruction causes a 
fault, the processor makes sure the operations from the 
instructions preceding the fault instruction are completed 
and all the operations from the instructions following the 
faulting are nullifi ed. 

Pipelined, Superscalar, and Out-Of-Order execution can 
all reduce the average amount of time required to execute 
an instruction. These techniques work best if each instruc-
tion is independent of the other instruction. Dependencies 
on data from earlier instructions can stall the processor. 
An instruction may have to stay at a stage in the pipeline 
for several cycles until the data becomes available. On 
a superscalar processor such as the Itanium processors 
the group of instructions may not be issued until all the 
dependencies are resolved or a function unit is available. 
On the Out-Of-Order processors an instruction may be 
delayed until the data available.

Branches in code can impact performance. Conditional 
branches affect the instruction sequence. The processor 

cannot start executing additional instructions until the 
destination of the branch is fetched. If a condition branch 
must wait for the immediately preceding instruction to 
go through the pipeline to produce a result before the 
destination of the branch can be determined, this can hurt 
performance. Let us look at an example of the performance 
impact. Assume that the processor has a 20 stage pipeline 
and 10% of the instructions are conditional branches. In a 
case without branches, throughput in the pipeline would 
be 1 cycle per instruction. With 10% of the instructions 
branches:

(.9*1)+(.1*20) = 2.9 cycles per instruction

Branches signifi cantly lowers performance. Processors 
much avoid delays due to branches.

Branch Prediction and Instruction 
Speculation

Branches change the stream of instructions executed by 
the processor. If the processor has to wait for the branch 
target instructions to be fetched the processor’s performance 
is reduced. Most processors implement branch prediction 
and instruction speculation to keep the processor busy 
doing useful work.

Branch prediction  hardware predicts the destination of 
branches before all the information required to execute the 
branch is known. This prediction is based on the history of 
the branch. The instruction fetch unit will start supplying 
instructions to the predicted destination, allowing the 
processor to start executing instruction before the destina-
tion is known for certain. If the prediction is correct, then 
the processor has done useful work rather than sitting idle. 
However, if the prediction is incorrect, then the processor 
has to nullify the instructions from the incorrectly predicted 
branch.

Branch prediction works well for branches that form 
loops and for branches with simple repeating patterns 
of taken/not-taken. However, most branch prediction 
hardware has diffi culties with indirect branches such as 
the ones that maybe be used in switch case statements, 
for example the core of an interpreter.  Virtual methods 
in C++ code may also cause diffi culty because the same 
call may have many different destinations because of the 
different classes.

 Processors such as the Pentium Pro may speculatively 
execute instruction rather than let the processor sit idle. 
The processor may start to execute both possible paths in 
the code to keep the processor doing possibly useful work. 
However, some of the results will be discarded. Speculative 
execution may not help in cases where the speculative 
executed instruction further strain a scarce resource such 
as main memory bandwidth.
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The Pentium 4 can also speculative execute instructions 
before all the result from previous instructions are known, 
to allow for better utilization of the processor. If it turns out 
that the some of the data was changed by earlier instruc-
tions, the Pentium 4 performs what is known as a replay to 
compute the correct value.

OProfi le in Fedora Core 1
OProfi le is a low-overhead system-wider profi ler for Linux 

included in Fedora Core 1. The Linux 2.6 kernel supports 
OProfi le for a number of different processor architectures. 
Fedora Core 1 has a back port of the 2.6 OProfi le support 
in its 2.4 kernel. Fedora Core  1 currently include OProfi le 
0.7. The major OProfi le components are shown in Figure 
2. The kernel has a driver which controls the performance 
monitoring hardware and collects the samples. The driver 
interfaces to the user space with the oprofi le pseudo fi le 
system.  The daemon read data from the oprofi le pseudo 
fi le system and converts the data into a sample database. 
The opcontrol script manages OProfi le’s profi ling  sample 
system.  The analysis programs such as opreport and 
opannotate read data from the sample database.

OProfi le can be divided into three sections: the kernel 
support (left part of Figure 2), the daemon (center of Figure 
2), and the sample database with analysis programs (right 
part of Figure 2). To collect measurements the opcontrol
script write the events to measure in the oprofi le pseudo 
fi le system, once the kernel driver has been initialized, 

opcontrol spawns the oprofi led daemon which reads the 
sample data from the OProfi le pseudo fi le system buffer. 
The daemon processes the data and places the converted 
data into /var/lib/oprofi le/samples. Status information 
is placed into /var/lib/oprofi le/oprofi le.log by the 
daemon. The opcontrol script can also force data to be 
fl ushed to the sample database; the script determines when 
the daemon has fi nished the operation by referencing the 
fi le /var/lib/oprofi le/complete_dump. The sample 
database is stored in /var/lib/oprofi le/samples. The 
opreport and opannotate programs extract the profi le 
information from the sample database and display it in 
human-readable form.

Example Using OProfi le
Image processing applications that convert large images 

from one format to another (such as camera raw format to 
JPEG format) present an ideal type of application to tune 
with OProfi le. The image processing applications are CPU-
intensive with usually input and output limited to reading in 
the initial image and writing out the converted image. The 
images fi les produced by digital cameras are too large to fi t 
in the processor’s cache memory.  Usually, the conversion 

process is performed on a batch of dozens of photos. Thus, 
the time saving due to tuning the conversion program can 
be very noticeable to the person using it.

The dcraw program converts raw image fi les from 
digital cameras (if the camera supports raw image fi les) 
into standard PorTable PixMap (PPM) format. Most digital 

Figure 2. OProfi le Block Diagram
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cameras sample only one of the three primary colors at 
each pixel location. The remaining two colors for the pixel 
must be computed (interpolated) from the values of nearby 
pixels. Given the number of pixel in the image, such as 6.3 
million on the Canon Digital Rebel, this results in a large 
number of calculations.

A raw image from a Canon Digital Rebel was used as 
input for the dcraw program. The experiments were run 
on a Dell Dimension 4300. Table 1 describes the system 
environment.

Hardware Dell Dimension 4300:
• Intel Pentium 4 1500MHz
• 8KB L1 data cache (4-way assoc., 64-
byte lines)
• 256KB L2 Unifi ed cache (8-way assoc., 
64-byte lines)
• Intel 845 chipset
• 640MB PC133 SDRAM
• “/” Maxtor 5T060H6, 60GB drive
• “/home” Maxtor 6Y120P0, 120GB drive

Software kernel-smp-2.4.22-1.2115.nptl
gcc-3.3.2-1
glibc-2.3.2-101.1
oprofi le-0.7cvs-0.20030829.6
dcraw-1.159

Table 1: System Environment

Time-based Profi ling
The fi rst step in reducing the amount of time a program 

takes to execute is to fi nd where the program spends time.  
Reducing the program hot spots will have the greatest 
impact on performance.  By default OProfi le uses the time-
based metrics. Table 2 shows the time-based events for 
various platforms.

Processor Event

Pentium Pro/PII/PIII CPU_CLK_UNHALTED

Pentium 4 GLOBAL_POWER_EVENTS
unit_mask=1

Athlon/AMD64 CPU_CLK_UNHALTED

Itanium 2 CPU_CYCLES

TIMER_INT ----

Table 2: Time-based Events on Processors

Because the experiments are being performed on a 
Pentium 4, we will use the GLOBAL_POWER_EVENTS.

To allow us to compare results from different programs, 
each version of dcraw will have a suffi x to indicate the 
experiment number.  For the initial experiment dcraw.c is 
copied to dcraw_1.c and it is compiled with:

gcc -g -O3 dcraw_1.c -o dcraw_1 -lm

OProfi le uses the debugging information provided by the 
-g option, allowing the collected data to be mapped back 
to the source code. The -O3 turns on GCC’s optimizations. 
The program requires some math libraries provided by the 
-lm. With the dcraw executable and a sample image, we 
are now ready to fi nd out where dcraw spends its time.

The opcontrol command performs a number of 
operations, such as setting up OProfi le, and starting and 
stopping it. The opcontrol commands need to be run as 
root. To clear out previous samples the following command 
is executed as root:

/usr/bin/opcontrol --reset

To confi gure OProfi le and start OProfi le running the 
following two commands are executed as root:

/usr/bin/opcontrol --setup --no-vmlinux \ 
--separate=library \
--event=GLOBAL_POWER_EVENTS:750000:0x1:1:1

/usr/bin/opcontrol --start

The --no-vmlinux command line option indicates that 
we are not interested in recording samples for the kernel. 
The --separate=library option groups samples for a 
library with the executable that called the library. Finally, 
the --event option specifi es measuring the time-based 
GLOBAL_POWER_EVENTS with a sample recorded for every 
750,000 events, a unit mask of 0x1 (required for this 
event). The two “1”s at the end indicate to count events in 
kernel space and count events in user space respectively. 
The event should yield about 2,000 samples per second on 
the test machine. The --start actually starts the OProfi le 
collecting data.

The program is run under the time command to give 
some wallclock time information:

/usr/bin/time ../dcraw/dcraw_1 crw_0327.crw

Immediately after the program is run OProfi le is shutdown 
with the following command executed as root:

/usr/bin/opcontrol --shutdown

Analysis can be performed on the data as a normal user 
with opreport and opannotate. Listing 1 shows the execut-
able and the associated shared libraries. The --threshold 
10 option was used to exclude any executable with less 
than 10 percent of the total number of samples. The option 
--long-fi lenames provides the complete path for each of 
the binaries.  As expected the dcraw program is a CPU 
intensive program. Assuming that there were 2,000 samples 
per second, 19.48 seconds of user time would produce 
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38,960 samples. The number of samples actually collected 
for dcraw_1 is a slightly lower because of the overhead 
of the sampling routine, but it is in good agreement with 
38,305 samples.

/usr/bin/opreport  --long-filenames --threshold 10

CPU: P4 / Xeon, speed 1495.19 MHz (estimated) Counted 
GLOBAL_POWER_EVENTS events (time during which 
processor is not stopped) with a unit mask of 0x01 
(count cycles when processor is active) count 750000

38305  90.7529  /home/wcohen/dcraw/dcraw_1
  32245  84.1796  /home/wcohen/dcraw/dcraw_1
   5339  13.9381  /lib/tls/libm-2.3.2.so
    709   1.8509  /lib/tls/libc-2.3.2.so
     12   0.0313  /lib/ld-2.3.2.so

Listing 1. sample counts for dcraw_1

A more detailed per function breakdown of where the 
program spends its time is shown in Listing 2.  The run time 
is dominated by vng_interpolate. This is the function that 
we want examine more carefully and determine if there are 
improvements that can be made to this function. The next 
largest consumer of time is the __ieee754_pow function in 
the math library.

/usr/bin/opreport image:/home/wcohen/dcraw/dcraw_1 \
 -l --threshold 1

CPU: P4 / Xeon, speed 1495.19 MHz (estimated) Counted 
GLOBAL_POWER_EVENTS events (time during which 
processor is not stopped) with a unit mask of 0x01 
(count cycles when processor is active) count 750000

vma      samples  %    image name   symbol name
0804d338 25428 66.3830 dcraw_1       vng_interpolate
00c4b8e0 3499   9.1346 libm-2.3.2.so  __ieee754_pow
080514a0 2997   7.8240 dcraw_1        convert_to_rgb
080517ac 1654   4.3180 dcraw_1        write_ppm
08049260 1279   3.3390 dcraw_1        decompress
00c507d0 744    1.9423 libm-2.3.2.so  __isnan
00c4e0d0 698    1.8222 libm-2.3.2.so  __pow
0804cd6c 546    1.4254 dcraw_1       scale_colors
00b6f0c0 494    1.2896 libc-2.3.2.so  getc
00c50800 386    1.0077 libm-2.3.2.so  __GI___finite

Listing 2. Per function breakdown of samples for initial 
program

The samples were mapped back to the source code 
with:

/usr/bin/opannotate \
image:/home/wcohen/dcraw/dcraw_1 --source \

> dcraw_1.annc

The mapping is not exact; the event that causes the 
sample is attributed to a later instruction. However, this view 
still provides some insight into which loops the program 
spends time in. The dcraw_1.annc fi le has each line in the 
source code preceded by the number of samples for that 
line.  Listing 3 shows a segment of code that consumes a 
signifi cant amount of time.  Much of this time is caused by 
the GCC 3.3 ineffi cient integer absolute value code.

GCC generated code that tested the value. If it was 
negative, it would jump to another section of code, negate 
the value, and jump back. The branch prediction has 
diffi culty accurately predicting whether the branch for the 
absolute value was taken because it is data dependent.

 258  0.6735 :   while ((g = *ip++) != INT_MAX) {
3671  9.5836 :   diff = abs(pix[g] - pix[*ip++]);
2582  6.7406 :   diff <<= *ip++;
1203  3.1406 :   while ((g = *ip++) != -1)
6565 17.1388 :   gval[g] += diff;
               :  }

Listing 3. Loop with abs

Our fi rst suggested fi x is to change the absolute value 
function into code without branches.  Listing 4 is a C 
implementation of code suggested by the AMD optimiza-
tion manual added to dcraw_2.c. 

static inline int abs(int ecx)
{
  int ebx = ecx;
  ecx = ecx >> 31;
  ebx = ebx ^ ecx;
  ebx -= ecx;
  return ebx;
}

Listing 4. C Function to compute abs without conditional 
branches

The revised program was compiled and the data collected 
on it with the following command:

/usr/bin/time ../dcraw/dcraw_2 crw_0327.crw

We can see there is some improvement in the run 
time from 19.48 seconds down to 16.37 seconds, a 16% 
reduction in the runtime. Listing 5 shows the annotation 
for lines in Listing 3 and the abs function in Listing 4 with 
a total of 10,190 samples. The original version had 14,279 
samples for the loop and the abs function.  Notice that 
some of the lines in the abs function have no samples even 
though the instruction must be executed. This is due to the 
function be inlined and the inexact mapping of samples 
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back to source code.

             :static inline int abs(int ecx)
2417  7.5235 :{
   3  0.0093 :  int ebx = ecx;
 247  0.7688 :  ecx = ecx >> 31;
 219  0.6817 :  ebx = ebx ^ ecx;
             :  ebx -= ecx;
             :  return ebx;
             :}

 252  0.7844 : while ((g = *ip++) != INT_MAX) { 
             :    diff = abs(pix[g] - pix[*ip++]);
1197  3.7260 :    diff <<= *ip++;
1263  3.9314 :    while ((g = *ip++) != -1)
4592 14.2937 :      gval[g] += diff;
            :  }

Listing 5. Loop with revised abs

The absolute number of samples and the percentage of 
runtime spent in the vng_interpolate function in Listing 6 
is reduced when compared to Listing 2. The __ieee754_pow 
and convert_to_rgb have a similar number of samples as 
before, but now are larger percentage of the runtime. 

/usr/bin/opreport  \
image:/home/wcohen/dcraw/dcraw_2 -l --threshold 1

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

The counted number of GLOBAL_POWER_EVENTS events 
(time during which processor is not stopped) with 
a unit mask of 0x01 (count cycles when processor is 
active) totals  750000.

vma      samples  %    image name    symbol name
0804d338 19205 59.7802  dcraw_2       vng_interpolate
00c4b8e0 3638  11.3242  libm-2.3.2.so  __ieee754_pow
08051488 2994   9.3196  dcraw_2       convert_to_rgb
08051794 1579   4.9150  dcraw_2       write_ppm
08049260 1326   4.1275  dcraw_2       decompress
00c4e0d0 713    2.2194  libm-2.3.2.so  __pow
00c507d0 699    2.1758  libm-2.3.2.so  __isnan
0804cd6c 552    1.7182  dcraw_2       scale_colors
00b6f0c0 456    1.4194  libc-2.3.2.so  getc
00c50800 405    1.2607  libm-2.3.2.so  __GI___finite
0804962c 325    1.0116  dcraw_2       canon_
compressed_load_raw

Listing 6.  Per function breakdown of samples for dcraw_
2 with inline abs

Over 11% of the time is spent in __ieee754_pow, the 
glibc pow function. This function take double precision 
fl oating point arguments and returns a double precision 

fl oating point number. However, the values being passed 
in and the variable the value is being assigned to are single 
precision fl oats. There is a single precision version of the 
power function, powf. Use of this function may avoid some 
conversions between fl oat and double. Lising 7 lists the 
samples per function resulting from using the powf:

/usr/bin/time ../dcraw/dcraw_3 crw_0327.crw

The top three functions change an insignifi cant amount. 
However, the change reduces the total number of samples 
from 32,126 for dcraw_2 to 31,230 for dcraw_3. Comparing 
Listing 6 and 7 reveals that single precision versions of 
__pow, __isnan, and __GI__fi nite have fewer samples.

/usr/bin/opreport  \
image:/home/wcohen/dcraw/dcraw_3 -l --threshold 1

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

Counted GLOBAL_POWER_EVENTS events (time during 
which processor is not stopped) with a unit mask of 
0x01 (count cycles when processor is active) count 
750000

vma      samples  %    image name   symbol name
0804d338 19154 61.3340 dcraw_3       vng_interpolate
00c52730 3598  11.5213 libm-2.3.2.so  __ieee754_powf
08051488 2992   9.5808 dcraw_3       convert_to_rgb
08051794 1607   5.1459 dcraw_3       write_ppm
08049260 1339   4.2877 dcraw_3       decompress
0804cd6c 788    2.5233 dcraw_3       scale_colors
00c54ef0 530    1.6971 libm-2.3.2.so  __powf
00b6f0c0 447    1.4314 libc-2.3.2.so  getc

Listing 7.  Per function breakdown of samples for dcraw 
with powf

The vng_interpolate function has a section of code 
that computes minimums and maximums. Listing 8 shows 
the samples for the loop.  The Pentium 4 has conditional 
move instructions which are ideal for this situation. The 
GCC compiler has an option to generate Pentium 4 instruc-
tions. The main drawback of this option is the generated 
code will not execute on older x86 processors such as the 
Intel Pentium III. The code was compiled and run with the 
following command lines:

gcc -g -O3 -march=pentium4 dcraw_4.c -o dcraw_4 -lm

/usr/bin/time ./dcraw_4 crw_0327.crw

The annotated code in Listing 9 have much lower counts 
(682) than the equivalent code in Listing 8 (1273). This 
does not account for the reduction of 3,603 samples, from 
31,230 to 27,717 samples. Much of that reduction was in 
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vng_interpolate as shown in Listing 10.

 14  0.0448 : gmin = INT_MAX;        
189  0.6052 : gmax = 0;
502  1.6075 : for (g=0; g < 8; g++) {
158  0.5059 : if (gmin > gval[g]) gmin = gval[g];
410  1.3129 : if (gmax < gval[g]) gmax = gval[g];
            : }

Listing 8. Computing minimum and maximum code in 
dcraw_3

  6  0.0216 : gmin = INT_MAX;  
212  0.7649 : gmax = 0;
158  0.5700 : for (g=0; g < 8; g++) {
148  0.5340 : if (gmin > gval[g]) gmin = gval[g];
158  0.5700 : if (gmax < gval[g]) gmax = gval[g];
            : }

Listing 9.  Computing minimum and maximum code with 
Pentium 4 instructions

/usr/bin/opreport \
image:/home/wcohen/dcraw/dcraw_4 -l --threshold 1
CPU: P4 / Xeon, speed 1495.19 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during 
which processor is not stopped) with a unit mask of 
0x01 (count cycles when processor is active) count 
750000
vma      samples  %       image name               
symbol name
0804d6d4 16543   59.6854 dcraw_4       vng_interpo-
late
00c52730 3292  11.8772  libm-2.3.2.so   __ieee754_powf
08051c28 3163  11.4118  dcraw_4        convert_to_rgb
080492ca 1303   4.7011  dcraw_4        decompress
08051f0f 1151   4.1527  dcraw_4        write_ppm
00c54ef0 516    1.8617  libm-2.3.2.so   __powf
00b6f0c0 498    1.7967  libc-2.3.2.so   getc
0804d120 497    1.7931  dcraw_4        scale_colors
08049695 358    1.2916  dcraw_4        canon_
compressed_load_raw

Listing 10. Per function breakdown of samples for dcraw 
using Pentium 4 instructions

Caching

Effective use of the memory hierarchy in the computer 
system is very important.  There is a huge difference in 
the latency between accessing data in the fi rst level data 
cache and main memory. Main memory can have latencies 
that are two orders of magnitude larger than the fi rst level 
cache.

Due to limitations in OProfi le it cannot directly monitor 
events on the fi rst level data cache.  The Pentium 4 perfor-
mance monitoring events for the L2 data cache can be off 
by a factor of two.  Thus, sampling on these event on the 
Pentium 4 give a rough estimate of where to look for L1 
cache misses.  Tables 3 and 4 lists the appropriate events 
for various processors.

The miss rates for the L1 cache (L2 accesses) should be 
relatively rare. Thus, the samples interval should be set much 
smaller than the one used for the GLOBAL_POWER_EVENTS. 
The follow was used to set the sampling on the Pentium 4 
to fi nd where the L2 hits occur:

/usr/bin/opcontrol --setup \
--no-vmlinux --separate=library \
--event=BSQ_CACHE_REFERENCE:7500:0x7:1:1

The results of the run of dcraw_4 are in Listing 11. 
As expected, vng_interpolate is at the top of the list. 
However, the decompress function is second. This is run 
relatively early in the program and creates the initial raw 
image in memory from the compressed fi le. Listing 12 
shows the L2 cache misses; as expected there are fewer 
samples for Listing 12. The dcraw program goes through 
working memory in a fairly linear manner contributing to 
the relatively good cache performance.

/usr/bin/opreport  \
image:/home/wcohen/dcraw/dcraw_4  --threshold  5 -l

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

Counted BSQ_CACHE_REFERENCE events (cache references 
seen by the bus unit) with a unit mask of 0x07 
(multiple flags) count 7500

vma      samples  %     image name  symbol name
0804d6d4 2002  23.7767  dcraw_4      vng_interpolate
080492ca 1655  19.6556  dcraw_4      decompress
00c52730 1086  12.8979  libm-2.3.2.so __ieee754_powf
08051f0f 989   11.7458  dcraw_4      write_ppm
08051c28 606    7.1971  dcraw_4      convert_to_rgb
00b6f0c0 554    6.5796  libc-2.3.2.so getc

Listing 11. L2 Cache Hits

Processor Event

Pentium Pro/PII/PIII DATA_MEM_REFS

Pentium 4 
(HT and non-HT)

BSQ_CACHE_REFERENCE
unit-mask=0x7

Athlon/AMD64 DATA_CACHE_ACCESSES

Table 3. Memory Reference Events
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/usr/bin/opreport  \
image:/home/wcohen/dcraw/dcraw_4  --threshold  5 -l

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

Counted BSQ_CACHE_REFERENCE events (cache references 
seen by the bus unit) with a unit mask of 0x100 
(read 2nd level cache miss) count 7500

vma      samples  %  image name    symbol name
0804d6d4 162  42.9708 dcraw_4       vng_interpolate
08051f0f 59   15.6499 dcraw_4       write_ppm
0804d120 53   14.0584 dcraw_4       scale_colors
08051c28 50   13.2626 dcraw_4       convert_to_rgb
00b81c30 40   10.6101 libc-2.3.2.so __GI_memcpy

Listing 12. L2 Cache Misses

Processor Event

Pentium Pro/PII/PIII DCU_MISS_OUTSTANDING

Pentium 4 
(HT and non-HT)

BSQ_CACHE_REFERENCE 
unit-mask=0x100

Athlon/AMD64 CPU_CLK_UNHALTED

Table 4. Data Cache Miss Events

Virtual Memory Issues

Although current computers may 
have many megabytes of RAM only 
a small portion of that can be directly 
addressed by the processor at any given 
time. All the RAM is accessed using 
physical addresses, but the computer 
programs use virtual memory address 
(VMA) to allow for memory protec-
tion, paging, swapping, and relocation 
of code.  When accessing RAM the 
processor must convert the virtual 
memory address to a physical address.  
The processor stores recent conver-
sions in Translation Lookaside Buffers 
(TLBs). If the mapping for a particular 
VMA is found in the TLBs, then the 
translation is handled completely in 
hardware. Usually each entry in the 
TLB is for one page and there a dozen 
to a couple hundred entries in the TLB. 
Linux on i386 processors have 4096 
byte pages in user space. The Pentium 
4 used for these experiments has 64 

TLB entries for data memory, allowing hardware to handle 
VMA to physical memory mappings for 256 kilobytes of 
RAM for data; the processor has another 64 TLB entries 
for instructions, allowing mapping for 256 kilobytes of 
RAM for instructions. If a VMA is encounter outside the 
ones handled by the TLB, the kernel must navigate some 
data structures describing virtual memory, compute a new 
mapping, select a TLB entry to remove, and place the new 
mapping. If the TLB misses are frequent, performance will 
suffer. Given, the small sections of code and the caching 
performance of dcraw, the TLB performance is not a signifi -
cant problem.  Table 5 lists the TLB miss events for various 
processors. 

Processor Event

Pentium Pro/PII/PIII ITLB_MISS (instruction)

Pentium 4 
(non-HT)

PAGE_WALK_TYPE 
(0x01 data miss)
PAGE_WALK_TYPE 
(0x02 instruction)

Pentium 4 
(HT and non-HT)

ITLB_REFERENCE 
(0x02) instruction

Athlon/AMD64 L1_AND_L2_DTLB_MISSES 
(data)
L1_AND_L2_ITLB_MISSES 
(instruction)

Table 5. TLB Misses

Command Description

opcontrol --setup --no-vmlinux Confi gure OProfi le for data 
collection

opcontrol --start Start OProfi le data collection

opcontrol --dump Flush data to sample database

opcontrol --shutdown Stop OProfi le data collection

opcontrol --reset Clear out the sample 
database

opreport --long-fi lenames List out fi les from most to 
fewest samples

opreport image:fi lename -l List out functions in fi lename 
from most tofewest samples

opannotate image:fi lename --source Annotate source code for 
fi lename with sample counts 

op_help List  the available perfor-
mance events for the 
processor

Table 6. Common OProfi le Commands



62  WIDE OPEN MAGAZINE  PREMIERE ISSUE 2004                                                                                           Copyright © 2004 bmind, LLC

Instruction Caching
Because the dcraw program spends much of its time in a 

single function, it is unlikely that the processor has a signifi -
cant problem with instruction caching. However, we will 
verify this is the case. The Pentium 4 trace cache is different 
from traditional L1 instruction caches.  The trace cache in 
the Pentium 4 stores decoded instructions for paths through 
the code.  This avoids some of the scheduling constraints of 
the Pentium III processors where a 4 micro-ops instruction 
must be followed by two single micro-op instructions to 
get the maximum three instructions decoded per cycle. As 
long as the Pentium 4 is executing out the trace cache, it 
can issue three micro-ops per cycle. However, the Pentium 
4 can only decode one instruction per cycle when building 
a trace.  When building a trace on the Pentium 4, signifi cant 
delays can be observed with BPU_FETCH_REQUEST. To verify 
the that misses are relatively rare, dcraw_4 was run with 
with the –event=BPU_FETCH_REQUEST:7500:0x1:1:1 option. 
Despite the relatively small interval between samples, 
7500, there are still relatively few samples in Listing 13.  
Table 7 lists the instruction cache miss events for various 
processors. Table 8 lists the instruction fetch events.

Processor Event

Pentium Pro/PII/PIII IFU_IFETCH_MISS

Pentium 4 (non-HT) TC_DELIVER_MODE
unit-mask=0x38

Pentium 4 (HT/non-HT) BPU_FETCH_REQUEST
unit-mask=0x1

Athlon/AMD64 ICACHE_MISSES

Itanium 2 L1I_FILLS

Table 7. Instruction Fetch Miss

/usr/bin/opreport \
image:/home/wcohen/dcraw/dcraw_4  --threshold  1 -l

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

Counted BPU_FETCH_REQUEST events (instruction fetch 
requests from the branch predict unit) with a unit 
mask of 0x01 (trace cache lookup miss) count 7500

vma      samples  %   image name    symbol name
00c52730 295  87.5371  libm-2.3.2.so  __ieee754_powf
080540d8 12    3.5608  dcraw_4      _fini
00b81710 10    2.9674  libc-2.3.2.so  __GI_memset
00c54ef0 4     1.1869  libm-2.3.2.so __powf

Listing 13. BPU_FETCH_REQUEST events for dcraw_4

Processor Event

Pentium Pro/PII/PIII IFU_IFETCH

Pentium 4 (non-HT) TC_DELIVER_MODE
unit-mask=7

Athlon/AMD64 ICACHE_FETCHES

Itanium 2 INST_DISPERSED

Table 8. Instruction Fetch

Conclusion
OProfi le is a useful tool for identifi ng locations in 

programs and reasons for performance problems. The 
dcraw performance was characterized with OProfi le, and 
the performance was improved by 26%.
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