
Copyright © 2004 bmind, LLC PREMIERE ISSUE 2004 WIDE OPEN MAGAZINE 53

OProfi le is very useful for identifying processor perfor-
mance bottlenecks. OProfi le can be confi gured to take
samples periodically to get time-based samples to indicate
which sections of code are executed on the computer
system. On many architectures OProfi le provides access
to the performance monitoring counters. The performance
monitoring counters allow samples to be collection based
on other events such as cache misses, memory references,
instructions retired, and processor clock cycles. These
performance events allow developers to determine whether
specifi c performance problems exist in the code and revise
the code appropriately based on the performance problem
observed.

John Levon started OProfi le as a Master’s thesis project
at Victoria University of Manchester, initially modeling it
after the DEC Continuous Profi ling Infrastructure (DCPI), a
system-wide profi ling system that ran on Alpha DEC Ultrix.
DCPI used the Alpha performance monitoring hardware to
trigger sampling and the data was stored in histograms for
the individual executables. The fi rst processors supported
by OProfi le were the Intel Pentium Pro and AMD Athlon
processors and it was extended to support the Intel Pentium
4, Intel Itanium, and AMD64 processors. OProfi le internals
were revised and incorporated into the Linux 2.5 kernel.
Once OProfi le support was merged into the Linux kernel,
support was added for IBM S/390, Compaq Alpha, and

by William E. Cohen

The complexity of computer systems makes it diffi cult to determine what code consumes

processor time and why code takes an excessive amount of time on the processor.

OProfi le is a low-overhead, system-wide sampling profi ler for Linux which aids developers

in fi nding where and why the processor spends time in particular sections of code.

OProfi le operates on a variety of architectures including Intel Pentium 4, AMD Athlon,

and AMD AMD64. OProfi le is provided in Fedora Core, recent Red Hat Linux distributions,

and Red Hat Enterprise Linux.

Tuning Programs
with OProfi le

54 WIDE OPEN MAGAZINE PREMIERE ISSUE 2004 Copyright © 2004 bmind, LLC

IBM PowerPC64.
Program tuning may be required to improve the perfor-

mance of code. However, code correctness always take
precedence over speed; fast, incorrect code is of little
use. Use of appropriate compiler options can improve the
speed of the code generated by the compiler while avoiding
changing the source code. Most optimizations performed
by the compiler provides a constant factor of improvement.
Often, selecting the appropriate algorithms for the program
can have a greater effect on program performance than the
compiler or hand tuning. For example the time required
for a bubble sort grows proportional to the square of the
number of elements being sorted (n), but there are much
more effi cient sorting algorithms that are proportional to
nlog2n. For sorting large lists of items this can have huge
impact because n grows much faster than log2n, making
the proportionality constant unimportant.

Processor architecture also has a huge impact on program
performance. The article describes some of the critical
architecture features of processors and how they affect
program performance. This is followed by a walk through
of the OProfi le system and an example tuning an image
processing program that converts a raw camera image to a
PorTable PixMap (PPM) image with OProfi le.

Processor Architecture
Processor performance has increased orders of magnitude

since the initial microprocessors were developed due to
the improvement in the processes used to fabricate the
processors and to the changes in the processor architecture.
However, the changes in the processor architecture can
lead to large differences between best-case and worst-case
performance. The code can execute very quickly when
the program has the behavior expected by the processor
designers, and the code can execute very slowly when the
program deviates signifi cantly from the assumption made
in the processor design.

A number of architectural features have been incorpo-
rated into current processors to improve performance.
Virtually all modern processors have cache memory to
hide the disparity in speed between the processor and
memory. Processors execute multiple instructions concur-
rently either through pipelining or superscalar execution.
Processors also make predictions on what will execute
rather than waiting idle for a result to be known. Let us take
a look at the common processor architecture features and
how program characteristics can affect the effectiveness.

Caches
On modern processors there is a large difference in

speed between the processor and memory. For example,
on the Pentium 4 the processor clock can be less than

.3 nanosecond and an access to memory takes tens of
nanoseconds. The small, fast cache memories are designed
to store memory locations accessed recently by the
processor. Cache memories make two assumptions about
programs: spatial and temporal locality.

Spatial locality assumes rather than just accessing a lone
memory location, memory accesses are to groups of nearby
memory locations. The result of this assumption is the cache
line size hold more than one word from memory. On the
Pentium 4 each cache line in the L1 data cache is 64 bytes
(16 four-byte words). Thus, when a memory access pulls in
a cache line it pulls 64 bytes including the data from the
desired memory address. This works well if the program is
going through each word in memory, for example stepping
through each element of array of integers. However, it does
not work so well for a program that is just using one word
or byte out of the cache line because it is striding through
the array. In this case much of the data transferred to the
cache is unused, wasting memory bandwidth.

Temporal locality assumes that the accesses to a particular
location in memory are grouped together in time; if there is
an access to a memory location now there are likely to be
accesses to that location in the near future. The processor
cannot predict all the future accesses. A memory location
may be accessed very rarely (maybe only once), but the
processor evicts a much more commonly used memory
location from the cache to make room for the rarely used
item. Thus, the cache has no benefi t for the rarely accessed
location and reduces the caches benefi t for the commonly
accessed location.

Pipelined, Superscalar, and Out-Of-
Order Execution

Pipelined, Superscalar, and Out-Of-Order execution
are different approaches to allow concurrent execution
of instructions. Processors may use one or more of these
methods to improve performance.

Pipelined processors have a series of stages connected
linearly as in Figure 1. The instructions are numbered in
Figure 1. Each row of Figure 1 is a snapshot of the pipeline
at a particular clock cycle; The row at the top is the earliest
clock cycle and the row at the bottom is the latest clock
cycle. The instructions enter the pipeline on the left
and leave the pipeline on the right. Instructions progress
through the different stages of the pipeline in sequence.
It is possible to have a new instruction enter the pipeline
each clock cycle and an instruction completed each clock
cycle. Pipelining can provide a signifi cant improvement in
throughput compared to sequential execution of instruc-
tions. Designers of processors can adjust the complexity
of the pipeline stages to reduce the clock period, providing
additional performance for the processor.

Copyright © 2004 bmind, LLC PREMIERE ISSUE 2004 WIDE OPEN MAGAZINE 55

Processor Pipeline

Completed
Instructions

Incoming
Instructions

Ti
m

e

Figure 1. Processor Pipeline

A superscalar processor architecture has multiple
execution units, allowing multiple instructions to be
executed on each cycle. An example of this is the original
Intel Pentium processor, which has two execution units and
allows two instructions to be started in the same processor
cycle. The execution units maybe pipelined so that a new
group of instructions can be started each cycle.

Most programmers expect the instructions to execute in
the order specifi ed in the program. Out-Of-Order execution
loosens this specifi cation on the processor. The processor
may appear to execute the instruction in the order specifi ed
in the program, but the hardware may change the order.
There are cases where data dependencies in the code may
not be known until the code actually executes. Instructions
later in the instruction sequence may be executed earlier
by the processor because all the required data is available
to execute the instruction. Earlier instructions in the
sequence may be delayed because some of the data from
earlier instruction is not yet available. Thus, with Out-Of-
Order execution the processor may be better utilized and
reduce the runtime by executing instruction as the required
dependencies are satisfi ed for instructions. The processor
maintains the illusion that the instructions are executed in
order to the programmer. Thus, if an instruction causes a
fault, the processor makes sure the operations from the
instructions preceding the fault instruction are completed
and all the operations from the instructions following the
faulting are nullifi ed.

Pipelined, Superscalar, and Out-Of-Order execution can
all reduce the average amount of time required to execute
an instruction. These techniques work best if each instruc-
tion is independent of the other instruction. Dependencies
on data from earlier instructions can stall the processor.
An instruction may have to stay at a stage in the pipeline
for several cycles until the data becomes available. On
a superscalar processor such as the Itanium processors
the group of instructions may not be issued until all the
dependencies are resolved or a function unit is available.
On the Out-Of-Order processors an instruction may be
delayed until the data available.

Branches in code can impact performance. Conditional
branches affect the instruction sequence. The processor

cannot start executing additional instructions until the
destination of the branch is fetched. If a condition branch
must wait for the immediately preceding instruction to
go through the pipeline to produce a result before the
destination of the branch can be determined, this can hurt
performance. Let us look at an example of the performance
impact. Assume that the processor has a 20 stage pipeline
and 10% of the instructions are conditional branches. In a
case without branches, throughput in the pipeline would
be 1 cycle per instruction. With 10% of the instructions
branches:

(.9*1)+(.1*20) = 2.9 cycles per instruction

Branches signifi cantly lowers performance. Processors
much avoid delays due to branches.

Branch Prediction and Instruction
Speculation

Branches change the stream of instructions executed by
the processor. If the processor has to wait for the branch
target instructions to be fetched the processor’s performance
is reduced. Most processors implement branch prediction
and instruction speculation to keep the processor busy
doing useful work.

Branch prediction hardware predicts the destination of
branches before all the information required to execute the
branch is known. This prediction is based on the history of
the branch. The instruction fetch unit will start supplying
instructions to the predicted destination, allowing the
processor to start executing instruction before the destina-
tion is known for certain. If the prediction is correct, then
the processor has done useful work rather than sitting idle.
However, if the prediction is incorrect, then the processor
has to nullify the instructions from the incorrectly predicted
branch.

Branch prediction works well for branches that form
loops and for branches with simple repeating patterns
of taken/not-taken. However, most branch prediction
hardware has diffi culties with indirect branches such as
the ones that maybe be used in switch case statements,
for example the core of an interpreter. Virtual methods
in C++ code may also cause diffi culty because the same
call may have many different destinations because of the
different classes.

 Processors such as the Pentium Pro may speculatively
execute instruction rather than let the processor sit idle.
The processor may start to execute both possible paths in
the code to keep the processor doing possibly useful work.
However, some of the results will be discarded. Speculative
execution may not help in cases where the speculative
executed instruction further strain a scarce resource such
as main memory bandwidth.

56 WIDE OPEN MAGAZINE PREMIERE ISSUE 2004 Copyright © 2004 bmind, LLC

The Pentium 4 can also speculative execute instructions
before all the result from previous instructions are known,
to allow for better utilization of the processor. If it turns out
that the some of the data was changed by earlier instruc-
tions, the Pentium 4 performs what is known as a replay to
compute the correct value.

OProfi le in Fedora Core 1
OProfi le is a low-overhead system-wider profi ler for Linux

included in Fedora Core 1. The Linux 2.6 kernel supports
OProfi le for a number of different processor architectures.
Fedora Core 1 has a back port of the 2.6 OProfi le support
in its 2.4 kernel. Fedora Core 1 currently include OProfi le
0.7. The major OProfi le components are shown in Figure
2. The kernel has a driver which controls the performance
monitoring hardware and collects the samples. The driver
interfaces to the user space with the oprofi le pseudo fi le
system. The daemon read data from the oprofi le pseudo
fi le system and converts the data into a sample database.
The opcontrol script manages OProfi le’s profi ling sample
system. The analysis programs such as opreport and
opannotate read data from the sample database.

OProfi le can be divided into three sections: the kernel
support (left part of Figure 2), the daemon (center of Figure
2), and the sample database with analysis programs (right
part of Figure 2). To collect measurements the opcontrol
script write the events to measure in the oprofi le pseudo
fi le system, once the kernel driver has been initialized,

opcontrol spawns the oprofi led daemon which reads the
sample data from the OProfi le pseudo fi le system buffer.
The daemon processes the data and places the converted
data into /var/lib/oprofi le/samples. Status information
is placed into /var/lib/oprofi le/oprofi le.log by the
daemon. The opcontrol script can also force data to be
fl ushed to the sample database; the script determines when
the daemon has fi nished the operation by referencing the
fi le /var/lib/oprofi le/complete_dump. The sample
database is stored in /var/lib/oprofi le/samples. The
opreport and opannotate programs extract the profi le
information from the sample database and display it in
human-readable form.

Example Using OProfi le
Image processing applications that convert large images

from one format to another (such as camera raw format to
JPEG format) present an ideal type of application to tune
with OProfi le. The image processing applications are CPU-
intensive with usually input and output limited to reading in
the initial image and writing out the converted image. The
images fi les produced by digital cameras are too large to fi t
in the processor’s cache memory. Usually, the conversion

process is performed on a batch of dozens of photos. Thus,
the time saving due to tuning the conversion program can
be very noticeable to the person using it.

The dcraw program converts raw image fi les from
digital cameras (if the camera supports raw image fi les)
into standard PorTable PixMap (PPM) format. Most digital

Figure 2. OProfi le Block Diagram

Copyright © 2004 bmind, LLC PREMIERE ISSUE 2004 WIDE OPEN MAGAZINE 57

cameras sample only one of the three primary colors at
each pixel location. The remaining two colors for the pixel
must be computed (interpolated) from the values of nearby
pixels. Given the number of pixel in the image, such as 6.3
million on the Canon Digital Rebel, this results in a large
number of calculations.

A raw image from a Canon Digital Rebel was used as
input for the dcraw program. The experiments were run
on a Dell Dimension 4300. Table 1 describes the system
environment.

Hardware Dell Dimension 4300:
• Intel Pentium 4 1500MHz
• 8KB L1 data cache (4-way assoc., 64-
byte lines)
• 256KB L2 Unifi ed cache (8-way assoc.,
64-byte lines)
• Intel 845 chipset
• 640MB PC133 SDRAM
• “/” Maxtor 5T060H6, 60GB drive
• “/home” Maxtor 6Y120P0, 120GB drive

Software kernel-smp-2.4.22-1.2115.nptl
gcc-3.3.2-1
glibc-2.3.2-101.1
oprofi le-0.7cvs-0.20030829.6
dcraw-1.159

Table 1: System Environment

Time-based Profi ling
The fi rst step in reducing the amount of time a program

takes to execute is to fi nd where the program spends time.
Reducing the program hot spots will have the greatest
impact on performance. By default OProfi le uses the time-
based metrics. Table 2 shows the time-based events for
various platforms.

Processor Event

Pentium Pro/PII/PIII CPU_CLK_UNHALTED

Pentium 4 GLOBAL_POWER_EVENTS
unit_mask=1

Athlon/AMD64 CPU_CLK_UNHALTED

Itanium 2 CPU_CYCLES

TIMER_INT ----

Table 2: Time-based Events on Processors

Because the experiments are being performed on a
Pentium 4, we will use the GLOBAL_POWER_EVENTS.

To allow us to compare results from different programs,
each version of dcraw will have a suffi x to indicate the
experiment number. For the initial experiment dcraw.c is
copied to dcraw_1.c and it is compiled with:

gcc -g -O3 dcraw_1.c -o dcraw_1 -lm

OProfi le uses the debugging information provided by the
-g option, allowing the collected data to be mapped back
to the source code. The -O3 turns on GCC’s optimizations.
The program requires some math libraries provided by the
-lm. With the dcraw executable and a sample image, we
are now ready to fi nd out where dcraw spends its time.

The opcontrol command performs a number of
operations, such as setting up OProfi le, and starting and
stopping it. The opcontrol commands need to be run as
root. To clear out previous samples the following command
is executed as root:

/usr/bin/opcontrol --reset

To confi gure OProfi le and start OProfi le running the
following two commands are executed as root:

/usr/bin/opcontrol --setup --no-vmlinux \
--separate=library \
--event=GLOBAL_POWER_EVENTS:750000:0x1:1:1

/usr/bin/opcontrol --start

The --no-vmlinux command line option indicates that
we are not interested in recording samples for the kernel.
The --separate=library option groups samples for a
library with the executable that called the library. Finally,
the --event option specifi es measuring the time-based
GLOBAL_POWER_EVENTS with a sample recorded for every
750,000 events, a unit mask of 0x1 (required for this
event). The two “1”s at the end indicate to count events in
kernel space and count events in user space respectively.
The event should yield about 2,000 samples per second on
the test machine. The --start actually starts the OProfi le
collecting data.

The program is run under the time command to give
some wallclock time information:

/usr/bin/time ../dcraw/dcraw_1 crw_0327.crw

Immediately after the program is run OProfi le is shutdown
with the following command executed as root:

/usr/bin/opcontrol --shutdown

Analysis can be performed on the data as a normal user
with opreport and opannotate. Listing 1 shows the execut-
able and the associated shared libraries. The --threshold
10 option was used to exclude any executable with less
than 10 percent of the total number of samples. The option
--long-fi lenames provides the complete path for each of
the binaries. As expected the dcraw program is a CPU
intensive program. Assuming that there were 2,000 samples
per second, 19.48 seconds of user time would produce

58 WIDE OPEN MAGAZINE PREMIERE ISSUE 2004 Copyright © 2004 bmind, LLC

38,960 samples. The number of samples actually collected
for dcraw_1 is a slightly lower because of the overhead
of the sampling routine, but it is in good agreement with
38,305 samples.

/usr/bin/opreport --long-filenames --threshold 10

CPU: P4 / Xeon, speed 1495.19 MHz (estimated) Counted
GLOBAL_POWER_EVENTS events (time during which
processor is not stopped) with a unit mask of 0x01
(count cycles when processor is active) count 750000

38305 90.7529 /home/wcohen/dcraw/dcraw_1
 32245 84.1796 /home/wcohen/dcraw/dcraw_1
 5339 13.9381 /lib/tls/libm-2.3.2.so
 709 1.8509 /lib/tls/libc-2.3.2.so
 12 0.0313 /lib/ld-2.3.2.so

Listing 1. sample counts for dcraw_1

A more detailed per function breakdown of where the
program spends its time is shown in Listing 2. The run time
is dominated by vng_interpolate. This is the function that
we want examine more carefully and determine if there are
improvements that can be made to this function. The next
largest consumer of time is the __ieee754_pow function in
the math library.

/usr/bin/opreport image:/home/wcohen/dcraw/dcraw_1 \
 -l --threshold 1

CPU: P4 / Xeon, speed 1495.19 MHz (estimated) Counted
GLOBAL_POWER_EVENTS events (time during which
processor is not stopped) with a unit mask of 0x01
(count cycles when processor is active) count 750000

vma samples % image name symbol name
0804d338 25428 66.3830 dcraw_1 vng_interpolate
00c4b8e0 3499 9.1346 libm-2.3.2.so __ieee754_pow
080514a0 2997 7.8240 dcraw_1 convert_to_rgb
080517ac 1654 4.3180 dcraw_1 write_ppm
08049260 1279 3.3390 dcraw_1 decompress
00c507d0 744 1.9423 libm-2.3.2.so __isnan
00c4e0d0 698 1.8222 libm-2.3.2.so __pow
0804cd6c 546 1.4254 dcraw_1 scale_colors
00b6f0c0 494 1.2896 libc-2.3.2.so getc
00c50800 386 1.0077 libm-2.3.2.so __GI___finite

Listing 2. Per function breakdown of samples for initial
program

The samples were mapped back to the source code
with:

/usr/bin/opannotate \
image:/home/wcohen/dcraw/dcraw_1 --source \

> dcraw_1.annc

The mapping is not exact; the event that causes the
sample is attributed to a later instruction. However, this view
still provides some insight into which loops the program
spends time in. The dcraw_1.annc fi le has each line in the
source code preceded by the number of samples for that
line. Listing 3 shows a segment of code that consumes a
signifi cant amount of time. Much of this time is caused by
the GCC 3.3 ineffi cient integer absolute value code.

GCC generated code that tested the value. If it was
negative, it would jump to another section of code, negate
the value, and jump back. The branch prediction has
diffi culty accurately predicting whether the branch for the
absolute value was taken because it is data dependent.

 258 0.6735 : while ((g = *ip++) != INT_MAX) {
3671 9.5836 : diff = abs(pix[g] - pix[*ip++]);
2582 6.7406 : diff <<= *ip++;
1203 3.1406 : while ((g = *ip++) != -1)
6565 17.1388 : gval[g] += diff;
 : }

Listing 3. Loop with abs

Our fi rst suggested fi x is to change the absolute value
function into code without branches. Listing 4 is a C
implementation of code suggested by the AMD optimiza-
tion manual added to dcraw_2.c.

static inline int abs(int ecx)
{
 int ebx = ecx;
 ecx = ecx >> 31;
 ebx = ebx ^ ecx;
 ebx -= ecx;
 return ebx;
}

Listing 4. C Function to compute abs without conditional
branches

The revised program was compiled and the data collected
on it with the following command:

/usr/bin/time ../dcraw/dcraw_2 crw_0327.crw

We can see there is some improvement in the run
time from 19.48 seconds down to 16.37 seconds, a 16%
reduction in the runtime. Listing 5 shows the annotation
for lines in Listing 3 and the abs function in Listing 4 with
a total of 10,190 samples. The original version had 14,279
samples for the loop and the abs function. Notice that
some of the lines in the abs function have no samples even
though the instruction must be executed. This is due to the
function be inlined and the inexact mapping of samples

Copyright © 2004 bmind, LLC PREMIERE ISSUE 2004 WIDE OPEN MAGAZINE 59

back to source code.

 :static inline int abs(int ecx)
2417 7.5235 :{
 3 0.0093 : int ebx = ecx;
 247 0.7688 : ecx = ecx >> 31;
 219 0.6817 : ebx = ebx ^ ecx;
 : ebx -= ecx;
 : return ebx;
 :}

 252 0.7844 : while ((g = *ip++) != INT_MAX) {
 : diff = abs(pix[g] - pix[*ip++]);
1197 3.7260 : diff <<= *ip++;
1263 3.9314 : while ((g = *ip++) != -1)
4592 14.2937 : gval[g] += diff;
 : }

Listing 5. Loop with revised abs

The absolute number of samples and the percentage of
runtime spent in the vng_interpolate function in Listing 6
is reduced when compared to Listing 2. The __ieee754_pow
and convert_to_rgb have a similar number of samples as
before, but now are larger percentage of the runtime.

/usr/bin/opreport \
image:/home/wcohen/dcraw/dcraw_2 -l --threshold 1

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

The counted number of GLOBAL_POWER_EVENTS events
(time during which processor is not stopped) with
a unit mask of 0x01 (count cycles when processor is
active) totals 750000.

vma samples % image name symbol name
0804d338 19205 59.7802 dcraw_2 vng_interpolate
00c4b8e0 3638 11.3242 libm-2.3.2.so __ieee754_pow
08051488 2994 9.3196 dcraw_2 convert_to_rgb
08051794 1579 4.9150 dcraw_2 write_ppm
08049260 1326 4.1275 dcraw_2 decompress
00c4e0d0 713 2.2194 libm-2.3.2.so __pow
00c507d0 699 2.1758 libm-2.3.2.so __isnan
0804cd6c 552 1.7182 dcraw_2 scale_colors
00b6f0c0 456 1.4194 libc-2.3.2.so getc
00c50800 405 1.2607 libm-2.3.2.so __GI___finite
0804962c 325 1.0116 dcraw_2 canon_
compressed_load_raw

Listing 6. Per function breakdown of samples for dcraw_
2 with inline abs

Over 11% of the time is spent in __ieee754_pow, the
glibc pow function. This function take double precision
fl oating point arguments and returns a double precision

fl oating point number. However, the values being passed
in and the variable the value is being assigned to are single
precision fl oats. There is a single precision version of the
power function, powf. Use of this function may avoid some
conversions between fl oat and double. Lising 7 lists the
samples per function resulting from using the powf:

/usr/bin/time ../dcraw/dcraw_3 crw_0327.crw

The top three functions change an insignifi cant amount.
However, the change reduces the total number of samples
from 32,126 for dcraw_2 to 31,230 for dcraw_3. Comparing
Listing 6 and 7 reveals that single precision versions of
__pow, __isnan, and __GI__fi nite have fewer samples.

/usr/bin/opreport \
image:/home/wcohen/dcraw/dcraw_3 -l --threshold 1

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

Counted GLOBAL_POWER_EVENTS events (time during
which processor is not stopped) with a unit mask of
0x01 (count cycles when processor is active) count
750000

vma samples % image name symbol name
0804d338 19154 61.3340 dcraw_3 vng_interpolate
00c52730 3598 11.5213 libm-2.3.2.so __ieee754_powf
08051488 2992 9.5808 dcraw_3 convert_to_rgb
08051794 1607 5.1459 dcraw_3 write_ppm
08049260 1339 4.2877 dcraw_3 decompress
0804cd6c 788 2.5233 dcraw_3 scale_colors
00c54ef0 530 1.6971 libm-2.3.2.so __powf
00b6f0c0 447 1.4314 libc-2.3.2.so getc

Listing 7. Per function breakdown of samples for dcraw
with powf

The vng_interpolate function has a section of code
that computes minimums and maximums. Listing 8 shows
the samples for the loop. The Pentium 4 has conditional
move instructions which are ideal for this situation. The
GCC compiler has an option to generate Pentium 4 instruc-
tions. The main drawback of this option is the generated
code will not execute on older x86 processors such as the
Intel Pentium III. The code was compiled and run with the
following command lines:

gcc -g -O3 -march=pentium4 dcraw_4.c -o dcraw_4 -lm

/usr/bin/time ./dcraw_4 crw_0327.crw

The annotated code in Listing 9 have much lower counts
(682) than the equivalent code in Listing 8 (1273). This
does not account for the reduction of 3,603 samples, from
31,230 to 27,717 samples. Much of that reduction was in

60 WIDE OPEN MAGAZINE PREMIERE ISSUE 2004 Copyright © 2004 bmind, LLC

vng_interpolate as shown in Listing 10.

 14 0.0448 : gmin = INT_MAX;
189 0.6052 : gmax = 0;
502 1.6075 : for (g=0; g < 8; g++) {
158 0.5059 : if (gmin > gval[g]) gmin = gval[g];
410 1.3129 : if (gmax < gval[g]) gmax = gval[g];
 : }

Listing 8. Computing minimum and maximum code in
dcraw_3

 6 0.0216 : gmin = INT_MAX;
212 0.7649 : gmax = 0;
158 0.5700 : for (g=0; g < 8; g++) {
148 0.5340 : if (gmin > gval[g]) gmin = gval[g];
158 0.5700 : if (gmax < gval[g]) gmax = gval[g];
 : }

Listing 9. Computing minimum and maximum code with
Pentium 4 instructions

/usr/bin/opreport \
image:/home/wcohen/dcraw/dcraw_4 -l --threshold 1
CPU: P4 / Xeon, speed 1495.19 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during
which processor is not stopped) with a unit mask of
0x01 (count cycles when processor is active) count
750000
vma samples % image name
symbol name
0804d6d4 16543 59.6854 dcraw_4 vng_interpo-
late
00c52730 3292 11.8772 libm-2.3.2.so __ieee754_powf
08051c28 3163 11.4118 dcraw_4 convert_to_rgb
080492ca 1303 4.7011 dcraw_4 decompress
08051f0f 1151 4.1527 dcraw_4 write_ppm
00c54ef0 516 1.8617 libm-2.3.2.so __powf
00b6f0c0 498 1.7967 libc-2.3.2.so getc
0804d120 497 1.7931 dcraw_4 scale_colors
08049695 358 1.2916 dcraw_4 canon_
compressed_load_raw

Listing 10. Per function breakdown of samples for dcraw
using Pentium 4 instructions

Caching

Effective use of the memory hierarchy in the computer
system is very important. There is a huge difference in
the latency between accessing data in the fi rst level data
cache and main memory. Main memory can have latencies
that are two orders of magnitude larger than the fi rst level
cache.

Due to limitations in OProfi le it cannot directly monitor
events on the fi rst level data cache. The Pentium 4 perfor-
mance monitoring events for the L2 data cache can be off
by a factor of two. Thus, sampling on these event on the
Pentium 4 give a rough estimate of where to look for L1
cache misses. Tables 3 and 4 lists the appropriate events
for various processors.

The miss rates for the L1 cache (L2 accesses) should be
relatively rare. Thus, the samples interval should be set much
smaller than the one used for the GLOBAL_POWER_EVENTS.
The follow was used to set the sampling on the Pentium 4
to fi nd where the L2 hits occur:

/usr/bin/opcontrol --setup \
--no-vmlinux --separate=library \
--event=BSQ_CACHE_REFERENCE:7500:0x7:1:1

The results of the run of dcraw_4 are in Listing 11.
As expected, vng_interpolate is at the top of the list.
However, the decompress function is second. This is run
relatively early in the program and creates the initial raw
image in memory from the compressed fi le. Listing 12
shows the L2 cache misses; as expected there are fewer
samples for Listing 12. The dcraw program goes through
working memory in a fairly linear manner contributing to
the relatively good cache performance.

/usr/bin/opreport \
image:/home/wcohen/dcraw/dcraw_4 --threshold 5 -l

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

Counted BSQ_CACHE_REFERENCE events (cache references
seen by the bus unit) with a unit mask of 0x07
(multiple flags) count 7500

vma samples % image name symbol name
0804d6d4 2002 23.7767 dcraw_4 vng_interpolate
080492ca 1655 19.6556 dcraw_4 decompress
00c52730 1086 12.8979 libm-2.3.2.so __ieee754_powf
08051f0f 989 11.7458 dcraw_4 write_ppm
08051c28 606 7.1971 dcraw_4 convert_to_rgb
00b6f0c0 554 6.5796 libc-2.3.2.so getc

Listing 11. L2 Cache Hits

Processor Event

Pentium Pro/PII/PIII DATA_MEM_REFS

Pentium 4
(HT and non-HT)

BSQ_CACHE_REFERENCE
unit-mask=0x7

Athlon/AMD64 DATA_CACHE_ACCESSES

Table 3. Memory Reference Events

Copyright © 2004 bmind, LLC PREMIERE ISSUE 2004 WIDE OPEN MAGAZINE 61

/usr/bin/opreport \
image:/home/wcohen/dcraw/dcraw_4 --threshold 5 -l

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

Counted BSQ_CACHE_REFERENCE events (cache references
seen by the bus unit) with a unit mask of 0x100
(read 2nd level cache miss) count 7500

vma samples % image name symbol name
0804d6d4 162 42.9708 dcraw_4 vng_interpolate
08051f0f 59 15.6499 dcraw_4 write_ppm
0804d120 53 14.0584 dcraw_4 scale_colors
08051c28 50 13.2626 dcraw_4 convert_to_rgb
00b81c30 40 10.6101 libc-2.3.2.so __GI_memcpy

Listing 12. L2 Cache Misses

Processor Event

Pentium Pro/PII/PIII DCU_MISS_OUTSTANDING

Pentium 4
(HT and non-HT)

BSQ_CACHE_REFERENCE
unit-mask=0x100

Athlon/AMD64 CPU_CLK_UNHALTED

Table 4. Data Cache Miss Events

Virtual Memory Issues

Although current computers may
have many megabytes of RAM only
a small portion of that can be directly
addressed by the processor at any given
time. All the RAM is accessed using
physical addresses, but the computer
programs use virtual memory address
(VMA) to allow for memory protec-
tion, paging, swapping, and relocation
of code. When accessing RAM the
processor must convert the virtual
memory address to a physical address.
The processor stores recent conver-
sions in Translation Lookaside Buffers
(TLBs). If the mapping for a particular
VMA is found in the TLBs, then the
translation is handled completely in
hardware. Usually each entry in the
TLB is for one page and there a dozen
to a couple hundred entries in the TLB.
Linux on i386 processors have 4096
byte pages in user space. The Pentium
4 used for these experiments has 64

TLB entries for data memory, allowing hardware to handle
VMA to physical memory mappings for 256 kilobytes of
RAM for data; the processor has another 64 TLB entries
for instructions, allowing mapping for 256 kilobytes of
RAM for instructions. If a VMA is encounter outside the
ones handled by the TLB, the kernel must navigate some
data structures describing virtual memory, compute a new
mapping, select a TLB entry to remove, and place the new
mapping. If the TLB misses are frequent, performance will
suffer. Given, the small sections of code and the caching
performance of dcraw, the TLB performance is not a signifi -
cant problem. Table 5 lists the TLB miss events for various
processors.

Processor Event

Pentium Pro/PII/PIII ITLB_MISS (instruction)

Pentium 4
(non-HT)

PAGE_WALK_TYPE
(0x01 data miss)
PAGE_WALK_TYPE
(0x02 instruction)

Pentium 4
(HT and non-HT)

ITLB_REFERENCE
(0x02) instruction

Athlon/AMD64 L1_AND_L2_DTLB_MISSES
(data)
L1_AND_L2_ITLB_MISSES
(instruction)

Table 5. TLB Misses

Command Description

opcontrol --setup --no-vmlinux Confi gure OProfi le for data
collection

opcontrol --start Start OProfi le data collection

opcontrol --dump Flush data to sample database

opcontrol --shutdown Stop OProfi le data collection

opcontrol --reset Clear out the sample
database

opreport --long-fi lenames List out fi les from most to
fewest samples

opreport image:fi lename -l List out functions in fi lename
from most tofewest samples

opannotate image:fi lename --source Annotate source code for
fi lename with sample counts

op_help List the available perfor-
mance events for the
processor

Table 6. Common OProfi le Commands

62 WIDE OPEN MAGAZINE PREMIERE ISSUE 2004 Copyright © 2004 bmind, LLC

Instruction Caching
Because the dcraw program spends much of its time in a

single function, it is unlikely that the processor has a signifi -
cant problem with instruction caching. However, we will
verify this is the case. The Pentium 4 trace cache is different
from traditional L1 instruction caches. The trace cache in
the Pentium 4 stores decoded instructions for paths through
the code. This avoids some of the scheduling constraints of
the Pentium III processors where a 4 micro-ops instruction
must be followed by two single micro-op instructions to
get the maximum three instructions decoded per cycle. As
long as the Pentium 4 is executing out the trace cache, it
can issue three micro-ops per cycle. However, the Pentium
4 can only decode one instruction per cycle when building
a trace. When building a trace on the Pentium 4, signifi cant
delays can be observed with BPU_FETCH_REQUEST. To verify
the that misses are relatively rare, dcraw_4 was run with
with the –event=BPU_FETCH_REQUEST:7500:0x1:1:1 option.
Despite the relatively small interval between samples,
7500, there are still relatively few samples in Listing 13.
Table 7 lists the instruction cache miss events for various
processors. Table 8 lists the instruction fetch events.

Processor Event

Pentium Pro/PII/PIII IFU_IFETCH_MISS

Pentium 4 (non-HT) TC_DELIVER_MODE
unit-mask=0x38

Pentium 4 (HT/non-HT) BPU_FETCH_REQUEST
unit-mask=0x1

Athlon/AMD64 ICACHE_MISSES

Itanium 2 L1I_FILLS

Table 7. Instruction Fetch Miss

/usr/bin/opreport \
image:/home/wcohen/dcraw/dcraw_4 --threshold 1 -l

CPU: P4 / Xeon, speed 1495.19 MHz (estimated)

Counted BPU_FETCH_REQUEST events (instruction fetch
requests from the branch predict unit) with a unit
mask of 0x01 (trace cache lookup miss) count 7500

vma samples % image name symbol name
00c52730 295 87.5371 libm-2.3.2.so __ieee754_powf
080540d8 12 3.5608 dcraw_4 _fini
00b81710 10 2.9674 libc-2.3.2.so __GI_memset
00c54ef0 4 1.1869 libm-2.3.2.so __powf

Listing 13. BPU_FETCH_REQUEST events for dcraw_4

Processor Event

Pentium Pro/PII/PIII IFU_IFETCH

Pentium 4 (non-HT) TC_DELIVER_MODE
unit-mask=7

Athlon/AMD64 ICACHE_FETCHES

Itanium 2 INST_DISPERSED

Table 8. Instruction Fetch

Conclusion
OProfi le is a useful tool for identifi ng locations in

programs and reasons for performance problems. The
dcraw performance was characterized with OProfi le, and
the performance was improved by 26%.

William E. Cohen is a performance tools engineer at Red
Hat, Inc. Will received his BS in electrical engineering
from the University of Kansas. He earned a MSEE and a
PhD from Purdue University. In his spare time he bicycles
and takes pictures with his digital cameras.

Further Reading
AMD Athlon Processor X86 Code Optimization
Guide, February 2002, AMD Publication 22007.
http://www.amd.com/us-en/assets/content_type/white_papers_

and_tech_docs/22007.pdf

Software Optimization Guide for AMD Athlon 64
and AMD Opteron Processors, Sept 2003, AMD
Publication 25112. http://www.amd.com/us-en/assets/

content_type/white_papers_and_tech_docs/25112.PDF

D. Coffi n, Raw Digital Photo Decoding in Linux. http://

www.cybercom.net/~dcoffi n/dcraw/

IA-32 Intel Architecture Optimization Reference
Manual, 2003, Intel Order number 248966-09. http://

www.intel.com/design/pentium4/manuals/248966.htm

Intel Itanium 2 Processor Reference Manual for
Software Development and Optimization, June 2002,
Intel Document 251110-002. http://www.intel.com/design/

itanium2/manuals/251110.htm

OProfi le. http://oprofi le.sourceforge.net/news/

