
Firefox is commonly regarded as
very secure, but popularity is no
protection against software bugs.

In July 2009, the Mozilla Foundation dis-
closed several bugs in Firefox 3.5, in-
cluding an error in the Just-in-time (JIT)
JavaScript compiler. If a user surfed to a
website with the exploit code using a
vulnerable version of the browser, an at-
tacker could run arbitrary code on the
client system, which poses a huge risk
for users who store credit card numbers,
passwords, and other sensitive informa-
tion in their browser.

The SELinux [1] mandatory access
control system is designed to prevent an
intruder who has gained a foothold on
the system from escalating privileges.
The original intent of SELinux was to
protect system services, but some time
ago, the SELinux developers team set
their sights on protecting the web
browser and other desktop applications.
The goal is to provide an isolated sand‑
box to let the browser execute untrusted

code in a more secure manner. But a
browser-oriented SELinux ruleset is not
as easy as it sounds. For example, most
applications on a Gnome desktop want
to have complete control of the user’s
home directory. Also, the application
needs to communicate with the comput-
er’s messaging system (D-Bus), and the
X server on which Firefox is running

needs access to the tmp directory. One of
SELinux’s mainstays, the least privilege
principle, is thus difficult to implement
because of the complex relationships of
the interdependent components.

The SELinux developer team at Red
Hat decided to create a kind of virtual
cage in which you can lock up graphical
applications such as Firefox. The result-

It is hard to keep your browser away from untrusted web scripts and applications. The SELinux Sandbox

locks those untrusted apps into a safe place where they can’t do mischief. By ThorsTen scherf

Securing programs with SELinux Sandbox

Safe Sand

01 # sesearch ‑‑allow ‑s sandbox_t ‑t etc_t ‑c file

02 Found 2 semantic av rules:

03 allow sandbox_domain etc_t : file { read write getattr lock append } ;

04 allow sandbox_domain file_type : file entrypoint ;

Listing 2: Opening Prohibited

01 type $1_t, sandbox_x_domain;

02 domain_type($1_t)

03

04 type $1_file_t, sandbox_file_type;

05 files_type($1_file_t)

06

07 type $1_client_t, sandbox_x_domain;

08 domain_type($1_client_t)

09

10 can_exec($1_client_t, $1_file_t)

11 ...

Listing 1: Excerpt from sandbox.if

josea
srey

es, 12
3

R
F

seLinux sandboxCover story

28 IssUe 112 March 2010

ing solution is both intelligent and ele-
gant. Instead of allowing the application
direct access to tmp and the user’s home
directory, the sandbox utility presents
the application with different folders
mapped to the required targets.

To lock an application away in a jail,
you just enter the following:

sandbox ‑X evince

How It Works
The sandbox tool creates a virtual cage
made up of two new directories: one in
the user’s home directory and the other
in tmp. Each folder is assigned its own
SELinux context. Different applications
are placed in different jails, making it
impossible for, say, the PDF viewer run-
ning in one sandbox to access the web
browser’s password file, which is run-
ning in a different sandbox. The seun‑
share module then bind-mounts the new
directories. Each time the application
launches, it sees new, and thus empty,
home and tmp directories. seunshare
then launches the user’s shell, again
using the sandbox’s SELinux context,
sandbox_ x_ t:MCS, and a random MCS
(Multi-Category Security) label.

Client applications inside the jail are
assigned the sandbox_x_client_t label. A
highly granular policy exists for this do-
main to specify what access is permitted
– the sandbox policy module (e.g., the
Evince PDF viewer will need an X server
and a Window manager). The X server
can’t access the host system. The appli-
cation itself runs in full-screen mode in
the sandbox’s dedicated window man-
ager, and this prevents access to the win-
dow manager’s other functions. Access
to the network is also initially impossible
from inside the sandbox. The files have
to be labeled sandbox_x_file_t; other-
wise, the policy will prevent access to
them (Figures 1 and 2).

To allow an application to access the
network from within the sandbox, you
can launch it with a different label, in-
stead of the default sandbox_x_client_t.
For example, to allow Firefox to visit the
outside world, you could launch it with
the label sandbox_web_t:

sandbox ‑X ‑t sandbox_web_t firefox

The sandbox_net_t label permits unre-
stricted network access (see Figure 3),

but some caution is advisable. The idea
of a sandbox is to support granular ac-
cess, and if an application running with
the sandbox_net_t label happens to be
buggy, the application could transport
sensitive user or system data out of the
sandbox, despite the precautions. For
this reason, each application should only
access the network protocol that it needs
to work properly.

The SELinux developers provide a
number of macros to help you do this,
and these macros are really useful for
developing custom policies. To create a
ruleset for arbitrary applications, you
can use sandbox_x_domain_template.
For example, if you want an application
to use smtp from within the sandbox,
you can call the macro inside your own
policy, as follows:

sandbox_x_domain_templateU

 (sandbox_mail)

A glance at the macro definition source
code (Listing 1) quickly reveals what
happens when you call the macro. On
accessing the macro, you receive a basic
framework for a new SELinux domain in
which the application will run. If you
then add your own rules, you can call se‑
module to add the newly compiled pol-
icy module to the system.

scripts
Additionally, a sandbox is handy if you
want to run new or unknown scripts and
non-GUI applications safely [2]. This
technique is particularly useful if you
download a script and aren’t sure
whether the source is trustworthy.
Launching the unknown application in a
sandbox applies the predefined ruleset,
which specifies the kind of access the
script is permitted. The syntax is similar
to that for graphical applications, but
you can leave out the ‑X option.

Figure 2: The sandbox only permits access to specific resources.

Figure 1: The sandbox policy permits access to sandbox_x_file_t types of files, but not to

tmp_t file types.

Figure 3: Launching an application with the sandbox_net_t label gives the application full net-

work access.

Cover storyseLinux sandbox

29IssUe 112March 2010

ls ‑lZ /etc/passwd

‑rw‑r‑‑r‑‑. root root U

 system_u:object_r:etc_t:s0 U

 /etc/passwd

sandbox cat /etc/passwd|cut ‑d: ‑f1

/bin/cat: /etc/passwd: U

 Permission denied

Listing 2 would normally output a list of
existing user accounts, but the policy
does not define an open permission for
etc_t types of files, which effectively pre-
vents applications running in the sand-
box from opening them (Listing 2)

This rule might appear confusing at
first glance because it does specify the
read and write permissions. Of course,
you need to pass the file descriptors into
the sandbox for this kind of access. If
you change the script as shown in the
following code snippet, you will have
the kind of access restrictions you need:

cat /etc/passwd|sandbox cut ‑d: ‑f1

Again, it makes sense to check the policy
to discover the details of permitted ac-
cess (Listing 3).

If you want an application to open a
file autonomously from within the sand-
box, the file must be of the sandbox_
file_t type; otherwise, this access is not
permitted. Network access is generally
prohibited for scripts in the sandbox_t
domain (Listing 4); to change this, you
need a ruleset for the sandbox_t domain.

Because development of the sandbox
functions has only just begun, they are
only available in the Fedora 12 beta ver-
sion right now [3]. Some functions, such
as copy and paste between the sandbox
and the host system or the ability to
store files inside the sandbox have not

been implemented as of this writing, al-
though they are likely to be available in
the near future.

Kiosk system
If you like what you have heard thus far
and are interested in restricting access
for all the applications running on a sys-
tem, you might like to check out the
guest/xguest account on an SELinux sys-
tem. This account lets you confine a
complete user account inside a terminal
(guest) or desktop session (xguest) and
only permit access defined in a ruleset
(guest/xguest policy module).

Whereas Sandbox mainly uses the SE-
Linux Type Enforcement (TE) implemen-
tation for restricting access to resources,
a guest/xguest account also relies on
Role Based Access Control (RBAC). After
the merge between the targeted and
strict policies is accomplished, a single
ruleset is available.

If you log on to a system with an
xguest account, the user shell is
launched in the protected SELinux
xguest domain. The user is assigned to
the SELinux xguest role, which only al-
lows access to specific domains:

id ‑Z

xguest_u:xguest_r:xguest_t:s0

The xguest policy module again controls
access to the individual resources. All of
the user’s applications run in the xguest
domain. The applications are not permit-
ted unrestricted access to the network,
the only exception being the Firefox web
browser, which is allowed unrestricted
access via HTTP. The policy also pre-
vents the execution of files in the user’s
tmp or home directories. If a user were
to download a malicious program using
Firefox, the xguest policy would still stop
the program and thus prevent further

01 # mkdir ~/policy

02 # cat > xguest_smtp.te <<eof

03

04 policy_module(xguest_smtp,1.0.0)

05

06 require {

07 type xguest_t;

08 }

09

10 #============= xguest_t ==============

11 corenet_tcp_connect_smtp_port(xguest_t)

12

13 # make ‑f /usr/share/selinux/devel/Makefile

14 Compiling targeted xguest_smtp module

15 /usr/bin/checkmodule: loading policy configuration from
tmp/xguest_smtp.tmp

16 /usr/bin/checkmodule: policy configuration loaded

17 /usr/bin/checkmodule: writing binary representation
(version 10) to

18 tmp/xguest_smtp.mod

19 Creating targeted xguest_smtp.pp policy package

20 rm tmp/xguest_smtp.mod.fc tmp/xguest_smtp.mod

21

22 # semodule ‑i xguest_smtp.pp

23 # semodule ‑l |grep xguest_smtp

24 xguest_smtpt 1.0.0

Listing 6: xguest Policy for SMTP

01 type=AVC msg=audit(1256575191.000:861): avc: denied { name_connect }

02 for pid=15663 comm="telnet" dest=25 scontext=xguest_u:xguest_r:xguest_t:s0

03 tcontext=system_u:object_r:smtp_port_t:s0 tclass=tcp_socket

Listing 5: Excerpt from audit.log

01 type=AVC msg=audit(1256541838.863:183): avc: denied { create } for pid=5474

02 comm="ping" scontext=unconfined_u:unconfined_r:sandbox_t:s0:c313,c341

03 tcontext=unconfined_u:unconfined_r:sandbox_t:s0:c313,c341 tclass=rawip_socket

Listing 4: Ping Prohibited

01 $ sesearch ‑‑allow ‑s sandbox_t ‑c file ‑p open ‑d

02 Found 1 semantic av rules:

03 allow sandbox_t sandbox_file_t : file { ioctl read write create getattr

setattr lock append

04 unlink link rename execute execute_no_trans open } ;

Listing 3: sesearch Displays the Policy

seLinux sandboxCover story

30 IssUe 112 March 2010

damage. But if you really want to grant
an xguest user permission to run arbi-
trary files, you can use a Boolean:

setsebool ‑P U

 allow_xguest_exec_content=1

To allow access to other network ser-
vices from within the xguest domain,
you again need a separate policy mod-
ule. Say you want to let an xguest user
send mail; in this case, the domain
needs access to the SMTP port. Without
a rule allowing this, access to SMTP

would be prohibited, as you can see
from the audit.log excerpt in Listing 5. A
separate module will grant SMTP access
(Listing 6).

After adding the new policy module to
the system, SMTP-based access should
now work. If you want to extend the pol-
icy, check audit.log for more deny mes-
sages and then add instructions to the
policy module to change the access
types. One remaining question is how to
add a user account to the xguest do-
main. The simplest case would be to use
the usermod tool for existing accounts or

useradd for new accounts (Listing 7).
When a user logs in to a desktop, the
whole user session runs in the protected
SELinux xguest domain:

$ id ‑Z

xguest_u:xguest_r:xguest_t:s0

Conclusions
The new SELinux Sandbox technology
makes it easy to place an application in
the protective hands of SELinux. The SE-
Linux rulesets were designed to protect
individual system services, and Manda-
tory Access Control protection is now ex-
tended to normal users. Thanks to
xguest, new types of applications are on
the SELinux radar screen. n

[1] SELinux:
http:// selinux. sourceforge. net/

[2] Introducing the SELinux sandbox:
http:// danwalsh. livejournal. com/
 28545. html

[3] SELinux with Fedora:
http:// fedoraproject. org/ wiki/ SELinux

INFO

01 # usermod ‑Z xguest_u foobar

02 # semanage login ‑l

03

04 Login Name SELinux User MLS/MCS Range

05

06 __default__ unconfined_u s0‑s0:c0.c1023

07 foobar xguest_u s0

08 root unconfined_u s0‑s0:c0.c1023

09 system_u system_u s0‑s0:c0.c1023

10 xguest xguest_u s0

Listing 7: New Accounts for xguest

Cover storyseLinux sandbox

31IssUe 112March 2010

