
restarted on another computer, which
ensures that the service (e.g., a web
server) is available at all times.
Load distribution clusters hide mul-
tiple systems behind a single IP ad-
dress and distribute the incoming
requests to the back-end systems on
the basis of a specific algorithm.
If one of these systems fails, obvi-
ously, no requests will be forwarded
to it. Clusters of this kind are particu-
larly popular with heavily frequented
web servers for which a single server
would be unable to handle the high
volume of requests on its own.

Finally, high-performance clusters
distribute complex calculations over
the cluster nodes, thus boosting the
computational capacity. They are
often used in research and industry,
for example, for performing crash
test simulations in the automotive
industry. In this article, I’ll look pri-
marily at high-availability and storage
clusters.

Cluster Components

A cluster always comprises multiple
components. The heart is the cluster

When you talk about clusters, you
need to distinguish between the vari-
ous types. Storage clusters support ac-
cess to a single filesystem from mul-
tiple systems. This approach removes
the need to synchronize the data be-
tween individual computers because
they all share the same storage.
High-availability (HA) clusters bundle
individual resources, such as filesys-
tems and IP addresses, to provide a
cluster service. If one resource fails,
the cluster attempts to reactivate it.
If the machine hosting the cluster
service fails completely, the service is

br
un

oi
lfo

, 1
23

RF
.c

om

Setting up high-availability cluster resources is part of the administrator’s standard bag of tricks. We look at the
basic setup of a cluster using the free OpenAIS/ Corosync-based cluster suite. By Thorsten Scherf

Clustering with OpenAIS and Corosync

Heartbeat

Linux ClustersV I rT uA L I zAT I O n

58 A d m I n 03 W W W. A d m I n - m AgA z I n e .CO m

in some parts. The legacy OpenAIS
modules are still available in part, but
new modules have been added, and
they are now called by Corosync, not
by aisexec.

OpenAIS or Corosync

When OpenAIS or Corosync is used
with the CMAN module in the Red
Hat Cluster Suite, the cluster manager
configuration is not handled in the
typical way in the /etc/ais/openais.
conf or /etc/corosync/corosync.
conf configuration files. Instead, it is
handled by an XML file named /etc/
cluster/cluster.conf.
As of Cluster Suite version 3.0, an
LDAP server can be used as the con-
figuration repository. The /etc/sys‑
config/cman file then contains a CON‑
FIG_LOADER configuration parameter,
which contains a value of either xml‑
config or ldapconfig. When launch-
ing CMAN via

/etc/init.d/cman start

the corresponding CMAN module
loads the configuration options either
from the XML file or from the LDAP
server into the Corosync object data-
base. Listing 1 shows a minimal XML
configuration file.

XML Sections

The configuration file comprises sev-
eral sections. Global parameters, such

pletely in kernel space. Access by us-
erspace applications was via the Libc-
man API. Networking relied on UDP
broadcast/ unicast. The legacy CMAN
code was developed and maintained
only by Red Hat.
In more recent versions (e.g., 2.0 in
RHEL 5 and Fedora Core 6 or later),
the legacy CMAN implementation
was replaced by an open implementa-
tion based on the Application Inter-
face Specification, AIS. The OpenAIS
framework [2] is modular and pro-
vides a userspace daemon, aisexec,
that uses various modules to access
other subsystems. For example, a
totem subsystem provides the messag-
ing system for the cluster manager.
The Red Hat CMAN code has now
been modified to make CMAN just
another module for the OpenAIS sys-
tem. The only task handled by the
CMAN module is that of providing
a standardized API for existing ap-
plications – if the applications need
this information from the cluster
manager. Additionally, the module is
responsible for communications with
the quorum daemon, which is used
optionally where a quorum must be
calculated for a cluster. A specific al-
gorithm is used, and the quorum dae-
mon can be an optional part of this.
On the network front, OpenAIS re-
lies on UDP multicast/ unicast. If the
cluster manager configuration doesn’t
define a multicast address, the ad-
dress is generated dynamically. The
address will then
start with 239.192,
with the last two
octets created on
the basis of the
cluster ID.
Version 3.0 of the
cluster suite (in
RHEL 6 and Fe-
dora 10 or later),
replaces OpenAIS
with Corosync
[3]. Viewed su-
perficially, not too
many changes are
seen between the
two cluster man-
agers, but the code
is vastly different

manager – the communications sys-
tem of the cluster that decides which
systems belong to the cluster and
which need to be removed from the
cluster. Quorum rules form the basis
for the decision. If a machine is not
performing well, or at all, the Cluster
Manager accesses another subsystem
known as the Fencing System to re-
move the faulty node.
The Fencing daemon uses agents
to communicate with fencing de-
vices, which can be management
boards, power switches, or even SAN
switches. The important thing is that
access to a certain cluster resource is
no longer possible from a faulty node
after fencing. How exactly this works
depends on the cluster configuration
and the requirements placed on the
cluster.
A locking subsystem is required to
support access to shared storage. In a
cluster filesystem with GFS2 [1], com-
munication between the individual
nodes is important to ensure that
only one system modifies a filesystem
block at any single time; other nodes
can’t access the block until this action
has been completed.
In volume management, too, synchro-
nization of nodes is important. Both
functions are handled by the Lock
Manager. Finally, high-availability
clusters also have a Resource Man-
ager. The Resource Manager monitors
and manages the configured cluster
resources and services. If a node fails,
the Resource Manager can restart the
cluster services on another node. The
service restart occurs more or less
transparently from the user’s point of
view; in fact, the user will not typi-
cally even notice the system failure
(Figure 1).

Cluster Manager

Red Hat Enterprise Linux (RHEL) and
Fedora both include the Red Hat Clus-
ter Suite (RHCS) and use CMAN as
their Cluster Manager. Depending on
the version you use, the implemen-
tation will look total different. The
initial variant (version 1.0) included
with RHEL 4 or very old versions of
Fedora implemented CMAN com-

Figure 1: In a failover case, the Resource Manager launches a cluster resource

group on another host.

V I rT uA L I zAT I O nLinux Clusters

59A d m I n 03W W W. A d m I n - m AgA z I n e .CO m

contains two instructions, two_node
and expected_votes, for this. The first
instruction tells the cluster manager

that the current cluster
comprises only two nodes
and that only a single
vote is needed to calcu-
late the quorum.
When clusters have more
than two nodes, at least
half the votes from the ex-
isting cluster nodes plus
one are needed (n/ 2+1).
A two-node cluster is thus
an exception to the rule,
as evidenced by the ex‑
pected_votes parameter.
The value here is typically
identical to the number
of cluster nodes, but this
is not the case in a two-
node cluster.
Besides the parameters
mentioned so far, you also
can define a multicast
address, an alternative
UDP port (default: 5405)
for the CMAN reception
socket, or the cluster ID
here. If no cluster ID is
defined, the cluster will
define one. This can
be an issue if you have
multiple clusters on the
same network and they
accidentally generate the
same ID.
CMAN generates a key
based on the cluster name
to encrypt the data traf-
fic. If you prefer to use a
different key, you can do
so by adding a keyfile
instruction to this section.
Because CMAN is only
one module of many in
the Corosync Framework,
you can add instructions
for the other modules to
the cluster.conf configu-
ration file. For example,
the Totem protocol gives
you the option of defin-
ing a timeout for the
Totem token (<totem to‑
ken="30000"/>). The to-
ken travels back and forth

between the individual cluster nodes.
If the timeout period elapses on send-
ing the token, the node is assumed
to be down and is removed from the
cluster.
The logging instruction is also very
useful, because it lets administrators
write the logs for all the subsystems
involved with the cluster to a logfile,
send them to syslog, or output them
onscreen. Every subsystem can have
its own logfile. Listing 2 provides an
example.
For more Corosync-specific param-
eters, refer to the help page for
corosync.conf.

Cluster Nodes

The next section, clusternodes, de-
scribes the individual nodes in the
cluster and specifies their properties.
Each cluster node is assigned a name,
a vote, and an ID. Communication
between cluster nodes is handled by
the network, where the node names
specified can be resolved. If you want
to separate your data traffic from the
cluster traffic, make sure you use ap-
propriate DNS names.
If a cluster node has more than one
vote, the quorum rule referred to pre-
viously no longer applies because the
number of available votes and not the
number of cluster nodes is the basis
for quorum calculations. For example,
in a cluster with three nodes, at least
two computers should be online to
achieve a quorum (3/ 2+1=2); oth-
erwise, the cluster is not quorate and
cannot provide HA service. But, if one
node is given two votes rather than
one, it is sufficient for this node to be
online on its own for the cluster to
be quorate, even if the other two ma-
chines are offline.
As another property, you can assign
at least one reference to a fencing
device to each node. The device itself
must be defined in the fence section.
This configuration is shown in List-
ing 3.
The fencing subsystem configura-
tion is very important. If the cluster
manager is unable to drop a machine
that is down from the cluster (i.e.,
to receive a positive response to a

as the cluster name are located in the
cluster section; instructions for the
CMAN plugin are in cman. Listing 1

01 <logging to_syslog="yes" to_logfile="yes" syslog_facility="daemon"

02 syslog_priority="info" logfile_priority="info">

03 <logging_daemon name="qdiskd"

04 logfile="/var/log/cluster/qdiskd.log"/>

05 <logging_daemon name="fenced"

06 logfile="/var/log/cluster/fenced.log"/>

07 <logging_daemon name="dlm_controld"

08 logfile="/var/log/cluster/dlm_controld.log"/>

09 <logging_daemon name="gfs_controld"

10 logfile="/var/log/cluster/gfs_controld.log"/>

11 <logging_daemon name="rgmanager"

12 logfile="/var/log/cluster/rgmanager.log"/>

13 <logging_daemon name="corosync"

14 logfile="/var/log/cluster/corosync.log"/>

15 </logging>

Listing 2: detailed Logging

01 <clusternodes>

02 <clusternode name="iscsi1" votes="1" nodeid="1">

03 <fence>

04 <method name="1">

05 <device name="nps" port="1"/>

06 </method>

07 </fence>

08 </clusternode>

09 <clusternode name="iscsi2" votes="1" nodeid="2">

10 <fence>

11 <method name="1">

12 <device name="nps" port="1"/>

13 </method>

14 </fence>

15 <clusternodes>

16 <fencedevices>

17 <fencedevice name="nps" agent="fence_nps" ipaddr="1.2.3.4"

passwd="redhat123"/>

18 </fencedevices>

Listing 3: At Least One Fencing device per node

01 # cat /etc/cluster/cluster.conf

02 <?xml version="1.0"?>

03 <cluster name="iscsicluster" config_version="5">

04 <cman two_node="1" expected_votes="1"/>

05 <clusternodes>

06 <clusternode name="iscsi1" votes="1" nodeid="1">

07 <fence/>

08 </clusternode>

09 <clusternode name="iscsi2" votes="1" nodeid="2">

10 <fence/>

11 </clusternode>

12 </clusternodes>

13 <fencedevices/>

14 <rm/>

15 </cluster>

Listing 1: XmL Configuration File

Linux ClustersV I rT uA L I zAT I O n

60 A d m I n 03 W W W. A d m I n - m AgA z I n e .CO m

ate the matching LDIF file from it.
If you enjoy speaking LDIF, you can
generate the objects directly in your
LDAP tree. Managing the cluster
configuration in an LDAP tree is still
experimental and should not be used
in production environments.

Resource Manager

As I mentioned previously, the re-
source manager in an HA cluster is

confirms that the Corosync database
now knows the individual instruc-
tions and parameters.

LDAP Instead of XML

If you prefer to complete the con-
figuration on an LDAP server, you
can convert an existing XML config
to LDIF format (Listing 5) then use
ldapadd with the resulting LDIF file to
import it to the LDAP server. First you
must introduce your LDAP server to
the matching LDAP schema file in the
/usr/share/doc/cman‑version/ folder;
otherwise, the LDAP server will not
recognize the object classes and attri-
butes and the LDIF import will fail.
To ensure that every node in the clus-
ter can access the configuration, you
must add the LDAP server and the
BaseDN to your /etc/sysconfig/cman
configuration file:

grep ‑i ldap /etc/sysconfig/cman

CONFIG_LOADER=ldapconfig

COROSYNC_LDAP_URL=ldap://ldap.tuxgeek.de

After CMAN is restarted, it should be
able to populate the Corosync object
database with entries from the LDAP
server. To add new objects such as
fencing devices or cluster resources
to the LDAP database, add them to
a dummy XML file first and gener-

fencing event from the fencing dae-
mon), the resource manager for the
HA service that might be running on
this node can’t be launched on any
other node. It is conceivable that the
computer has just frozen temporarily
and will wake up again after a certain
amount of time and want to access
its resources again while a second
machine tries to do the same thing. A
situation like this could lead to cor-
rupted data.
If you now copy the cluster.conf
file to another cluster node and then
launch the cluster manager by typing
/etc/init.d/cman start, you should
see output similar to Listing 4 when
you query the cman_tool status.
Note that the current cluster version
3.0 no longer contains a cluster con-
figuration system. Thus, the option of
transferring changes to the configura-
tion to the cluster manager via ccs_
tool update no longer exists. Instead,
you can introduce the cluster to a
new version of the cluster configura-
tion by entering cman_tool version
‑r version_number and transfer the
configuration to the other nodes.
This step completes the configuration
for the cluster manager. Using the
corosync‑objctl tool

corosync‑objctl | grep cluster.name

cluster.name=iscsicluster

Listing 4: cman_tool status

01 # cman_tool status

02 Version: 6.2.0

03 Config Version: 5

04 Cluster Name: iscsicluster

05 Cluster Id: 46516

06 Cluster Member: Yes

07 Cluster Generation: 748

08 Membership state: Cluster‑Member

09 Nodes: 2

10 Expected votes: 1

11 Total votes: 2

12 Node votes: 1

13 Quorum: 1

14 Active subsystems: 8

15 Flags: 2node

16 Ports Bound: 0

17 Node name: iscsi1

18 Node ID: 1

19 Multicast addresses: 239.192.181.106

20 Node addresses: 192.168.122.171

Listing 5: Converting the XmL Config to LdIF
01 # confdb2ldif dc=tuxgeek,dc=de > cluster.ldif

02 # This file was generated by confdb2ldif,

03 # from an existing cluster configuration

04 #

05

06 dn: name=cluster,dc=tuxgeek,dc=de

07 name: iscsicluster

08 rhcsConfig‑version: 5

09 objectclass: rhcsCluster

10

11 dn: cn=cman,name=cluster,dc=tuxgeek,dc=de

12 rhcsTwo‑node: 1

13 rhcsExpected‑votes: 1

14 rhcsNodename: iscsi1

15 rhcsCluster‑id: 46516

16 cn: cman

17 objectclass: rhcsCman

18

19 dn: cn=clusternodes,name=cluster,dc=tuxgeek,

dc=de

20 cn: clusternodes

21 objectclass: nsContainer

22

23 dn: cn=clusternode,cn=clusternodes,name=clust

er,dc=tuxgeek,dc=de

24 cn: clusternode

25 objectclass: nsContainer

26

27 dn:

28 name=iscsi1,cn=clusternode,cn=clusternodes,na

me=cluster,dc=tuxgeek,dc=de

29 name: iscsi1

30 rhcsVotes: 1

31 rhcsNodeid: 1

32 objectclass: rhcsClusternode

33

34 dn:

35 cn=fence,name=iscsi1,cn=clusternode,

cn=clusternodes,name=cluster,dc=tuxgeek,dc=de

36 cn: fence

37 objectclass: nsContainer

38

39 dn: cn=clusternode,cn=clusternodes,name=clust

er,dc=tuxgeek,dc=de

40 cn: clusternode

41 objectclass: nsContainer

42

43 dn:

44 name=iscsi2,cn=clusternode,cn=clusternodes,na

me=cluster,dc=tuxgeek,dc=de

45 name: iscsi2

46 rhcsVotes: 1

47 rhcsNodeid: 2

48 objectclass: rhcsClusternode

49

50 dn:

51 cn=fence,name=iscsi2,cn=clusternode,cn=cluste

rnodes,name=cluster,dc=tuxgeek,dc=de

52 cn: fence

53 objectclass: nsContainer

54

55 dn: cn=fencedevices,name=cluster,dc=tuxgeek,

dc=de

56 cn: fencedevices

57 objectclass: nsContainer

58

59 dn: cn=rm,name=cluster,dc=tuxgeek,dc=de

60 cn: rm

61 objectclass: nsContainer

V I rT uA L I zAT I O nLinux Clusters

61A d m I n 03W W W. A d m I n - m AgA z I n e .CO m

the high-availability cluster services,
which involves restricting the cluster
nodes on which a service can run.
This step is very practical if you want
to restrict your heavyweight Oracle
database to the more powerful ma-
chines in your cluster. The configura-
tion for a failover domain is given in
Listing 6.
The ordered, restricted, and nofail‑
back instructions allow you to specify
whether certain nodes in a domain
are given preferential treatment,
whether the service is allowed to run
on nodes outside the failover domain,
and whether a preferred node should
be used on failover when it again be-
comes available in a failover domain
(e.g., following a fence event).
A resource group groups the individ-
ual cluster resources. The group can
be defined either separately in a re‑
sources block, or it can follow a ser-
vice definition. The first variant lets
you use resources multiple times by
referencing them. The resource group
itself is then defined within a service
block and points to the resources I
just mentioned.
If you want to bind the service to
a failover domain you set up previ-
ously, just specify it with the domain
parameter. The default service policy
is restart. In other words, if the
service fails, rgmanager attempts to
restart it on the same node.
If this process fails, the resource
manager starts the service on another
node in the specified failover domain.
Listing 7 shows an example for a
high-availability web server configu-
ration.
The individual cluster resources are
monitored by rgmanager by means of
resource scripts. They are OCF- and
LSB-compatible [4] [5] scripts in the
/usr/share/cluster/ directory. The
start order of the individual resources
is defined in the service.sh file;
however, you can also define depen-
dencies between individual resources
simply by indenting (Listing 7). The
timeouts for starting and stopping
and the interval for checking the re-
sources are defined in the resource
scripts themselves. After configuring
the cluster and resource manager, you

can start the cluster services that you
set up. You can use the clusvcadm
tool:

clusvcadm ‑e service:www

at the command line to do so.

Conclusions

In the course of time, much has hap-
pened behind the scenes of the Red
Hat Cluster Suite. From an in-house
development with a kernel-based
cluster manager, the framework has
mutated into a completely open clus-
ter manager based on Corosync.
The old CMAN now plays a fairly
insignificant role and mainly supports
legacy functions. The advantage is
that the configuration itself has not
changed much; it still uses the clus‑
ter.conf XML file.
The rgmanager tool still is used for
cluster resources; however, Pace-
maker, by the popular Heartbeat
project, now provides an alternative.
Although complete integration still
might take some time, the current
Fedora 14 version, or RHEL 6, which
includes Pacemaker as a technology
preview, will give you an initial im-
pression. For up-to-date information
on developments in the cluster field,
the Red Hat cluster pages are always
a useful resource [6]. n

Info

[1] GFS2:

[http:// sources. redhat. com/ cluster/ gfs/]

[2] OpenAIS:

[http:// www. openais. org/ doku. php]

[3] Corosync:

[http:// www. corosync. org/ doku. php]

[4] Open Cluster Framework:

[http:// opencf. org/]

[5] Linux Standard Base:

[http:// www. linuxfoundation. org/

 collaborate/ workgroups/ lsb]

[6] Red Hat cluster pages:

[http:// www. sourceware. org/ cluster/ wiki/]

The Author

Thorsten Scherf is a Senior Consultant for Red

Hat EMEA. You can meet him as a speaker at

conferences. He is also a keen marathon runner

whenever time permits.

responsible for providing and manag-
ing the cluster services – also known
as resource groups. These duties
include manually and automatically
starting and stopping the services and
switching to other cluster nodes if the
active cluster node fails.
In cluster versions 1.0 and 2.0, rg‑
manager was the only master of the
Red Hat Cluster, but as of cluster ver-
sion 3.0, the pacemaker tool is now
included with RHEL 6 and Fedora 12
or newer.
The configuration in rgmanager also
relies on the cluster.conf XML file
or uses LDAP. The pacemaker tool
has its own XML-based configuration
file – also known as the Cluster In-
formation Base (CIB). Manual editing
of the file is not advisable; it makes
far more sense to use the crm tool. In
this section, I will be referring to the
legacy rgmanager.
In the cluster.conf XML file, all
configuration instructions for rgman‑
ager reside in the rm section. The first
step is to create a failover domain for

01 <resources>

02 <script file="/etc/init.d/httpd" name="httpd"/>

03 < fs device="/dev/vdb1" force_fsck="0"

force_umount="1" self_fence="1" fsytpe="ext3"

mountpoint="/var/www/html/" name="docroot"/>

04 <ip address="192.168.0.60" monitor_link="1"/>

05 </resource>

06 <service autostart="1" domain="www‑domain"

name="www">

07 <ip ref="192.168.122.20"/>

08 <fs ref="docroot">

09 <script ref="httpd"/>

10 </fs>

11 </service>

Listing 7: Cluster Services per rgmanager

01 <failoverdomains>

02 <failoverdomain name="www‑domain" ordered="0"

restricted="0" nofailback="1">

03 <failoverdomainnode name="node1"

priority="2"/>

04 <failoverdomainnode name="node2"

priority="1"/>

05 </failoverdomain>

06 <failoverdomain name="oracle‑domain" ordered="0"

restricted="0" nofailback="1">

07 <failoverdomainnode name="node3"

priority="1"/>

08 </failoverdomain>

09 </failoverdomains>

Listing 6: Failover domain

Linux ClustersV I rT uA L I zAT I O n

62 A d m I n 03 W W W. A d m I n - m AgA z I n e .CO m

