
Technical Report

Using Red Hat Client with NetApp Storage over

NFS
Bikash Roy Choudhury, NetApp

October 2013 | TR-3183

Abstract
This report helps you to get the best from your Linux

®
 NFS clients when used in an

environment that includes NetApp
®
 storage. Most of the discussion revolves around Red

Hat Enterprise (RHEL) clients. This document does not include best practices and

recommendations for block protocols l ike FCP and iSCSI. The paper highlight some of the

best practices and tuning parameters that would be required for running user home

directories and regular UNIX
®
 fi le systems. The paper describes various tuning options on

RHEL clients and diagnoses performance and reliabil ity problems. Every workload has a

different access pattern and characterization; we recommend appropriate tuning on RHEL

clients based on the workload characterization, which should not be treated as “one size fits

all" for all workloads. Separate technical reports have been published for different

applications that provide recommendations for specific workloads. In this paper you will

learn where to look for more information when faced with problems that are d ifficult to

diagnose.

Storage tuning information specific to your application may be available in other NetApp

technical reports and solution guides.

2 Using Red Hat Client with NetApp Storage over NFS

TABLE OF CONTENTS

1 Introduction ... 3

2 Which RHEL Linux NFS Client Is Right for Me? ... 3

2.1 Identifying Kernel Releases ...4

2.2 Today ’s Linux distributions ..4

2.3 The NFS Client in the 2.6 Kernel ..5

2.4 Highlights of RHEL6.x kernel ...5

3 Foolproof Mount Options for Linux NFS Clients .. 10

3.1 Choosing a Network Transport Protocol .. 12

3.2 Capping the Size of Read and Write Operations ... 12

3.3 Special Mount Options.. 13

3.4 Tuning NFS Client Cache Behav ior .. 14

3.5 Mounting with NFS Version 4... 16

3.6 Mounting with NFS Version 4.1 .. 17

3.7 Mount Option Examples .. 18

4 Performance .. 19

4.1 Linux NFS Client Perf ormance... 19

4.2 Diagnosing Perf ormance Problems with the Linux NFS Client... 20

4.3 Error Messages in the Kernel Log .. 23

4.4 Getting Help.. 23

5 Addi tional Serv ices That May Affect NFS Behav ior ... 24

5.1 Telling Time .. 24

5.2 Security.. 24

5.3 Network Lock Manager ... 25

6 Tuning Options .. 28

6.1 TCP Tuning .. 28

6.2 Memory Tuning ... 29

6.3 Network Tuning ... 30

6.4 Controlling File Read-Ahead in Linux .. 31

6.5 How to Enable Trace Messages ... 32

6.6 Reporting and Monitoring Tools ... 32

3 Using Red Hat Client with NetApp Storage over NFS

1 Introduction

Traditionally NetApp has not recommended a specific Linux client because there are more than a

hundred different Linux distributions and thousands of different Linux kernel releases. When you add

to that the fact that there are many different versions of user-level helper applications (such as the

mount command), you can understand why NetApp is reluctant to choose a single, or even two or

three, specific clients.

Additionally, many hardware and application vendors specify a small set of releases or a single
release and distribution that are certified and supported. It would be confusing for us to recommend

one particular kernel or distribution when a hardware vendor recommends another and an application

vendor certifies yet a third.

However, more and more NetApp customers recognize the value of Red Hat Enterprise Linux (RHEL)

in their environments, including the value of the RHEL NFS client. The NFS client in recent RHEL

versions has been improved considerably with respect to stability, performance, sca labil ity, and the

ability to work under degraded network conditions when running enterprise workloads.

In addition, because Red Hat is the most commonly used commercial Linux distribution, including the

NetApp customer base, in this report we touch on some of the key improvements that Red Hat

included in its newer kernels to support applications that use NFSv3, NFSv4.x, and pNFS. This

document highlights the changes and new functionalities available on the newer Red Hat kernels with

respect to the Network File System (NFS) that can integrate with NetApp storage for optimum

performance. NetApp also certifies the major Red Hat releases for specific NFS versions and updates

that are in the interoperability matrix: http://support.netapp.com/matrix.

Although this document covers best practices for Red Hat Enterprise Linux and NetApp NFS, tuning

information for specific applications is not within the scope of the document.

This document focuses mainly on Red Hat Enterprise Linux (RHEL) versions of the kernel and on

identifying some of the key areas that may be considered while planning a new Red Hat client

deployment or while administering an existing environment that contains NFS clients accessing

NetApp storage. These areas include:

• The level of performance and stability to expect from RHEL NFS clients

• How to tune RHEL NFS clients to perform well with appliances

• How to diagnose client and network problems that involve RHEL NFS clients

• How to configure other services required to provide advanced NFS features

• Where to find more tuning and diagnostic information on support.netapp.com (formerly known as

NOW
™

, NetApp on the Web) and the Internet

Finally, some applications are more sensitive to NFS client behavior than others. Recommending a

particular RHEL kernel version depends on the applications that you want to run and your

performance and reliabil ity requirements. Therefore, instead of recommending one or two releases

that work well, this paper provides some guidelines to help you decide on a release based on the

different features available among the newer RHEL releases. We also provide some high-overview

guidelines to make your Linux NFS clients work their best.

2 Which RHEL Linux NFS Client Is Right for Me?

Before we begin our focus on technical issues, we cover some basic technical support challenges

specific to Linux. The NFS client is part of the Linux kernel. Because Linux is open source, you might

think that it is easy to provide Linux kernel patches to upgrade the NFS client. In fact, providing a

patch that fixes a problem or provides a new feature can be complicated by several facts of l ife in the

Linux and open-source worlds.

There are many different parts to a Linux distribution, but for Linux NFS client functionality we focus

on the RHEL distribution kernel. The kernel contains the set of base operating system files that are

included when customers install Red Hat Enterprise Linux on their hardware. A RHEL distribution

comes with an initial kernel version, but, l ike all software in the distribution, the kernel can be updated

to gain additional functionality, address bugs, or address security issues.

http://support.netapp.com/matrix

4 Using Red Hat Client with NetApp Storage over NFS

2.1 Identifying Kernel Releases
The version number of a Linux distribution and the release number of a Lin ux kernel use different

naming schemes. While planning a distribution, each distributor chooses a particular ke rnel release

(for example, 2.6.32) and adds some modifications of its own before placing the kernel into a

distribution. Current Red Hat distributions identify their kernel modifications by adding a number to the

base kernel release; for example, RHEL 6.3 ships a 2.6.32-279 kernel. To reduce the amount of

variation encountered in support contracts, distributors support a small set of kernels.

Because the NFS client is part of the kernel, updates to the NFS client require that you replace the

kernel. Technically, it is easy to replace a kernel after a distribution is installed, but Linux customers

risk losing distributor support for their installation if they install a kernel that was not built by the

distributor. For this reason, NetApp does not recommend unsupported specific patches or kernel

versions.

There is a single upstream kernel branch in which all new development is integrated and that is

periodically checkpointed into kernel versions. Each checkpointed version (2.6.39, 3.0.0 –3.8.0)

evolves into a stable branch containing back-ported fixes from upstream kernels deemed necessary

for stability. The stable branch is intended to remain “stable” at all times. Some new features

(submodules) can be marked as experimental (or in Tech Preview) when they are not ready for

regular enterprise consumption.

As of this writing, the latest development branch version is 3.8.0. Linux kernels are not published on a

time-based schedule. Kernel revisions are released when the branch maintainer decides they are

ready. New features and API changes are allowed in development kernels, but there is no schedule

for when such a kernel will become a stable release. Development branches have historically taken 2

years to 30 months to become stable branches.

It is for this reason that there is often significant pressure to add new features to stable releases

instead of working them into development releases. To expedite the addition of new features, kernel

developers recently changed the way stable and development branches are treated.

2.2 Today’s Linux distributions
As mentioned above, distributions are numbered differently than kernels. Each distributor chooses its

own numbering scheme. When describing your Linux environment to anyone, be sure to l ist both the

distribution release number and the kernel release number. Distributors usually append another

number on the end of their kernel versions to indicate which revision of th at kernel is in use. For

instance, Red Hat initially shipped kernel 2.6.32-272 with its RHEL 6.3 distribution, and then released

the 2.6.32-279 update kernel several months later.

An important trend in Linux distributions is the existence of commercial, or “enterprise,” Linux

distributions. Enterprise distributions are quality-assured releases that come with support. NetApp

recommends that its Linux customers always use the latest actively maintained distributions available,

along with the latest errata patches.

Customers running older and/or unsupported distributions do not get the benefits of rapid security

fixes and bug fixes on their Linux systems. Most Linux distributors will not address bugs in older

distributions at all.

To find out which kernel your clients run, you can use this command:

uname -r

2.6.32-358.el6.x86_64

Kernels built from community source code usually have only three or four dot -separated numbers, l ike

2.6.32.1. Distributors generally add a hyphen and more version numbers (in this case, -358), which

indicate that additional patches over the community source base have been applied. The keyword on

the end, such as “hugemem” or “smp” or “x86_64,” shows additional hardware capabilities for which

this kernel was built.

5 Using Red Hat Client with NetApp Storage over NFS

2.3 The NFS Client in the 2.6 Kernel
During 2004, distributions based on the 2.6 kernel appeared and became stable enough to be deployed

in production environments.

A new feature in the 2.6 kernel is support for the latest version of the NFS protocol, version 4 .0 / 4.1

(hereafter called NFS version 4). Developers are sti l l in the process of retrofitting the Linux NFS client

and server implementations for the new protocol version. Certain features like read and write

delegations are available today in the 2.6.32 (RHEL6) kernel, but others, such as replication and

migration support, are sti l l under development and are not yet available. Support for NFS version 4 is

available now in Fedora Linux and RHEL 6, and is regularly tested with the NFS version 4

implementation in the Data ONTAP
®
 operating system as support for new features such as

delegation. Refer to the interoperability matrix table published by NetApp
(http://support.netapp.com/matrix) to find out the recommended RHEL version that supports NFSv4

and integrates with Data ONTAP.

Although full fi le system replication and migration support sti l l is not available in the mainline kernel ,

there is support for NFSv4 "referrals." Referrals use the replication/migration protocol used in order to

tell a client that a given subdirectory exists on another serve r (rather l ike an automounter). Clustered

Data ONTAP 8.1 and later support referrals in which the referral feature is only effective during a

mount operation. When a volume is mounted from a node where the volume is remote, the mount is

automatically redirected to the node where the volume is local. When you move a volume

nondisruptively in the cluster namespace on NetApp storage, the RHEL clients can stil l access the

now-remote volume in the new location on the NetApp storage from the mount point. This means that

moving a volume in the background in the cluster namespace does not cause disruptions to the

applications running on the RHEL client. To regain direct access to the now-remote volume, an

“unmount” and a “mount” have to be performed on the client for it to identify the new location of the

volume and access the fi le(s) in it using a direct data path.

The 2.6 kernel also brings support for advanced security frameworks such as Kerberos 5. Support for

Kerberos works with NFS version 3 as well as for NFS version 4. Kerberos authentication increases

security by reducing the likelihood that user identities in NFS requests can be forged. It also provides

optional facil ities to enable the integrity or privacy of communication between an NFS client and a

server. As with NFS version 4, developers are sti l l refining support for NFS with Kerberos in Linux, so

there are sti l l some missing features. In RHEL5 (2.6.18 kernel), it is safe to use for Kerberos

authentication, integrity, and privacy. The newer versions of RHEL5 and RHEL6 support DES, DES3,

and AES128-/256-bit encryptions. Because the Linux implementation of NFS with Kerberos is based

on Internet standards and because it is tested regularly with the leading proprietary Kerberos

implementations, Linux NFS with Kerberos interoperates seamlessly with NetApp storage.

The NFS client in the 2.6 kernel has demonstrated superior performance and stability compared to

older Linux NFS cl ients; however, as usual customers should be cautious about moving their

production workloads onto releases of the Linux kernel. The newer releases of RHEL5 are based on

Fedora Core and the kernel version is 2.6.18-308.8.1.el5. The kernel for RHEL6.4 GA is 2.6.32-358.

2.4 Highlights of RHEL6.x kernel

 Because the bandwidth requirements are increasing, it is very difficult for a single CPU to handle

all the data received over the wire. Starting with RHEL6.x, networking is multithreaded. That

means multicores on the node help to receive data from the wire a lot faster. Receive Flow

Steering (RFS) and Receive Packet Steering (RPS) work hand in hand to forward the packets

received from the network layer to the appropriate CPU where the corresponding application

thread is processed. In other words, instead of picking a random CPU to receive the data from the

wire, the receive buffers are processed by the same CPU that sent the data request . This also

helps to alleviate the bottleneck of having to receive all the traffi c for that network interface queue

on one particular CPU. The 10Gbe drivers are also improved to provide much better performance.

 The Linux kernel RPC implementation uses an RPC slot construct to manage interaction with the
transport layer. The RPC is the layer just below the application layer in the ISO-OSI model. Each

RPC slot represents an NFS request ready to be sent on the wire, and the number of RPC slots

represents the number of possible in-fl ight NFS requests. If an NFS request can¹t get an RPC slo t

because all slots are in use, then the request waits for an available slot in the RPC layer. This in

http://support.netapp.com/matrix

6 Using Red Hat Client with NetApp Storage over NFS

turn means that the transport layer (TCP) receives no pressure from the RPC layer. The TCP

layer is responsible for handling the advertised window size on the network to the storage. The

number of RPC slots needed to fi l l the TCP window is the TCP window size divided by the wsize

for WRITEs or the rsize for READS. For some network configurations and workloads, the TCP

window size can be larger than the number of RPC slots times the wsize or rsize. In this case the

RPC slot layer throttles the TCP layer as NFS requests wait for an available RPC slot, so the TCP

window may not be fi l led and performance can suffer under certain network configurations and

workloads.

 In the static RPC slot implementation used by Linux kernels 3.1 and earlier, the number of slots is
set by the administrator with a default of 16 slots and a maximum of 128 slots using the

sunrpc.tcp_slot_table_entries sysctl option. If the TCP window is being throttled by the

number of RPC slots as described above, the administrator needs to recognize this situation and

increase the number of RPC slots. On some long-haul WAN configurations the maximum of 128

RPC slots is not enough to fi l l the TCP window. For example, in the figure below, if an application

sends 2MB WRITE requests with the rsize and wsize mount option values set to 65536 (65k),

then each 2MB write request is broken up into 32 (64k) RPC requests in which each 64k takes

one slot in the RPC layer. If these requests are being sent over a long-haul WAN configuration or

over a 10G network, then increasing the number of RPC slots from 16 to 128 may not be enough

data to fi l l the TCP window.

FIGURE 1) STATIC RPC SLOT LAYOUT WITH NFSV3/NFSV4.

 The dynamic slot implementation present in the newer releases of Red Hat, RHEL 6.3 and later,

and in upstream kernels 3.2 and later removes this performance barrier for non -sessions-based

NFS (v3 and v4.0). Each RPC client starts with sunrpc.tcp_slot_table_entries number of

RPC slots, which by default is set to 2. RPC slots are then dynamically allocated as needed up to

sunrpc.tcp_max_slot_table_entries and then freed down to sunrpc.tcp_slot_table_entries if
not in use. The default maximum number of RPC slots is increased to 65536 slots. With this

7 Using Red Hat Client with NetApp Storage over NFS

implementation, the RPC layer never waits for RPC slots unless the maximum number of RPC

slots has been hit or the allocation fails due to memory pressure. The TCP layer is not throttled.

The administrator does not need to set any RPC slot values. This change is expected to improve

the performance for clients mounted over NFSv3 and NFSv4.

 FIGURE 2) DYNAMIC RPC SLOT LAYOUT WITH NFSV3/NFSV4.

 The NFSv4.1 protocol introduces Sessions (RFC 5661 reference), which exist for every NFSv4.1

connection. The session is part of the NFS layer. Sessions also uses a slot construct that is

similar to the RPC slot. Each session slot represents an NFSv4.1 request ready to be sent on the

wire, and the number of session slots represents the number of possible in-fl ight NFS requests. If

an NFS request can¹t get a session slot because all slots are in use, then the request waits for an

available session slot in the NFS layer. Once a request has a session slot, it then must obtain an

RPC slot and all of the issues with RPC slots explained above apply.

Unlike the RPC slots construct, which is internal to the Linux RPC implementation, session slot

behavior is dictated by the NFSv4.1 protocol. The number of session slots on an NFS v4.1

connection is negotiated with the server or the NetApp storage when the session is established.

Today NetApp Data ONTAP 8.1 has 180 session slots and in future releases this will be a higher

value, around 1,000, to dynamically grow the number of slots. The NetApp storage controls the

number of slots it is going to provide to multiple clients requesting sessions. Although the

NFSv4.1 protocol provides dynamic session slot implementations for all versions of RHEL 6, t he

number of slots that are negotiated between the NetApp storage and the Linux client during the

time of establishing the session does not change as long as the session is active and open.

8 Using Red Hat Client with NetApp Storage over NFS

FIGURE 3) DYNAMIC RPC SLOTS LAYOUT WITH NFSV4.1.

 DirectIO or the O_DIRECT is an OPEN() system call argument in the Linux kernel and is normally

used by applications that do not want to use page cache or memory buffers on the hosts running

Red Hat Enterprise Linux (RHEL). A good example is Oracle
®
 Real Application Cluster (RAC)

nodes that would like to write the new or modified blocks from the Shared Global Area (SGA) of

the database to NetApp storage directly, bypassing the page cache or the memory buffers of the

host. This reduces additional buffering on the RAC nodes and improves performance by providi ng

a zero copy mechanism from the application buffer to the disks in the storage subsystem. The

application determines if it would use DIRECTIO to communicate synchronously or

asynchronously using the POSIX Asynchronous IO (AIO) interface inside the kernel to improve

performance.

Prior to RHEL6.4, the regular READ/WRITE path shared the same code while the DIRECTIO

used a different code path. Due to the disparate code path between the normal READ/WRITE
and DIRECTIO, the fixes or patches applied to the normal path did not apply to the DIRECTIO

path and vice versa. Similarly the DIRECTIO code path was not available for pNFS. It only

benefited applications that used NFSv3 and NFSv4 protocols.

The READ vector (readv) and WRITE vector (writev) are more efficient ways of reading into and

writing from multiple memory buffers compared to the normal read() and write() operations. One

of the most important characteristic of the readv/writev is to coalesce the vector buffers that are

not contiguous in an array and convert them into one buffer and perform a single read or write

operation. This eliminates the overhead involved with the trivial way of performing multiple writes

into different buffers; copy them into one block of memory using “memcpy ,” following with a single

write operation. Prior to RHEL6.4 the process of coalescing vector buffers was unavailable for

applications that used DIRECTIO with NFSv3 or NFSv4. This posed issues for hypervisors like

Red Hat KVM that use DIRECTIO and coalescing of vector buffers to improve performance. The

normal read and write operations that use the regular page cache always had the ability to

coalesce the vector buffers into large reads and writes.

9 Using Red Hat Client with NetApp Storage over NFS

In RHEL6.4 the READ/WRITE code path was rewritten and was merged with DIRECTIO. Now the

normal READ/WRITE operations that use page cache and the DIRECTIO path share the same

code. Therefore, fixes applied to either one will have a global impact. The change in the

READ/WRITE code helped to apply DIRECTIO feature for applications that use pNFS. By reusing

the page cache code, the support for DIRECTIO was achieved for pNFS without having to change

the pNFS layout drivers. Now RHEL6.4 has the capability to use DIRECTIO on all of its data

paths as required by the applications using pNFS. The readv/writev buffers are also effectively

coalesced in large reads and writes, thereby improving the performance of the applications that

use DIRECTIO.

 The NFS cache consistency behavior is also optimized in RHEL6.4. In NFSv3 “mtime” is always

checked for validating the cache contents. NFSv4.x would use “ctime ,” “mtime,” and “change

attributes” to check the validity of the cache. This seems to be redundant and extra effort has to

be taken to keep all these variables up to date on the share storage infrastructure. With the new

fix in RHEL6.4, the “change attribute” on a fi le is the only one that is kept up to date on the share

storage infrastructure. However, for operations like REMOVE, CREATE, LINK, and OPEN, the

change attribute is updated and thereby invalidates the cache. The other variables like “mtime ,”

ctime,” and “atime” get updated eventually.

 The Linux kernel has an inherent behavior of tagging GETATTRs to a write operation to enable
consistency for a fi le system accessed over NFSv4 and NFSv4.1. This is known as a postattribute

operation. When NetApp clustered Data ONTAP receives an NFSv4.x write request, it generates

two SPIN-NP operations: one for the WRITE and the other for the GETATTR. This proves to be a

performance deterrent for applications that run over NFSv4.x. This also impacts the ability to do

“zero-copy” operations in clustered Data ONTAP for NFSv4.x WRITE requests. This issue is now

fixed in clustered Data ONTAP and patches are rolled into RHEL6.4. Now a single NFSv4.x

WRITE to clustered Data ONTAP will perform a single SPIN-NP operation and a prefetch of a

GETATTR. Instead of generating two SPIN-NP operations we have just one operation to satisfy

on clustered Data ONTAP for a WRITE request.

The fix also allows clustered Data ONTAP to perform “zero-copy” operations for fi le systems

accessed over NFSv4.x in which it steals the memory buffers from the network and adds them to

the buffer cache. The postattribute patches in RHEL6.4 allow applications sending WRITE

operations to clustered Data ONTAP over NFSv4.x using the DIRECTIO path to drop all the

GETATTRs. The GETATTRs that are tagged to a WRITE operation are also dropped when

delegations are enabled.

These fixes are mainly targeted when you are using either DIRECTIO or delegations. If the setup

does not have any of these conditions, then the client would do a WRITE and check for the

change attributes. A regular WRITE operation that does not use DIRECTIO or delegations will tag

the WRITEs with a GETATTR. Technically there would be two operations. The reason why the fix

only applies to DIRECTIO and delegation scenarios is that DIRECTIO bypasses the page cache

and the cache consistency is not required; in the case of delegations the cache consistency

already exists.

However, these fixes in clustered Data ONTAP and the patches in RHEL6.4 have nothing to do

with NFSv3 because the postattributes are part of the NFSv3 WRITE operation . NFSv3 performs

“zero-copy” operations in clustered Data ONTAP and does not send any postattributes like

GETATTR for a write operation. pNFS, which is component of NFSv4.1, also does not send any

postattributes for regular operations or over DIRECTIO for WRITE operations.

 Where NFSv3 places the numeric values for UID and GID in a GETATTR or SETATTR call, the
NFSv4.x protocol replaces the numeric syntax with a string format such as name@xyx.com in

which the name portion is the user or group name and the xyz.com portion is a DNS name .

Although this allows servers to more easily export any local fi le system representation of cty, it

imposes a requirement for translation between the on-the-wire string representation of a user or

group into the local fi le system representation. On Linux the idmapd daemon performs this task.

However, not all customers who plan to move to an NFSv4.x setup wish to set up a translation

mailto:username@xyx.com

10 Using Red Hat Client with NetApp Storage over NFS

service that can include LDAP configuration. Therefore, to fall back to the old method of

identification that used UID and GID, the “numeric_id” feature was implemented. When using this

implementation, an external translation by idmapd is not required because UID and GID

information is exchanged in the NFSv4.x protocol by the kernel , automatically translating a UID or

GID into the string syntax. Therefore UID 100 becomes the string 100@xyx.com. The numeric_id

feature is not permitted for AUTH_GSS security flavors and is l imited to the AUTH_SYS security

flavor. This means that that this feature is only useful when you export a fi le system over

AUTH_SYS and not in environments in which the users are configured in Kerberos as per RFC

3530bis. In a Kerberos environment a DNS and an LDAP are sti l l required to identify and resolve

the Kerberos Principal name. The numeric_id feature has to be supported by the Linux client and

also by the server. The RHEL6.4 kernel and clustered Data ONTAP 8.1 and later support the

numeric_id feature for fi le systems mounted over NFSv4.x.

 Under a high I/O workload, certain Linux clients fail to perform a state recovery on multiple LIF
migrate operations when the fi le system is mounted over NFSv4.1 and fi le delegations are

enabled on clustered Data ONTAP. The Linux client hangs in this scenario when the fi le system is

mounted over NFSv4.1 because it appears to the client that the server is rebooting multiple times

when multiple overlapping LIF migrate operations are performed. When an attempt to unmount

the NFSv4.1/pNFS file system is made on the client mounting from a clustered Data ONTAP node

that is a pNFS metadata server as well as the data server, the operation does not allow the

unmount process to complete cleanly. The RHEL6.4 kernel has the fixes for this issue.

 Clustered Data ONTAP 8.2 introduces the Quality of Service (QoS) feature. When QoS is

enabled on clustered Data ONTAP for a fi le system mounted over NFSv4.1, the RHEL6.4 NFS

client is optimized to handle the IOPs limit set by the QoS feature on the volume more efficiently.

 In RHEL6.x, the intr mount option is deprecated. The kernel is hard coded to nointr by

default. That mean you need to interrupt the process by using the kill -9 command. The

applications that use nointr to interrupt the Linux NFS client when it gets stuck waiting for

server or network recovery will no longer be recommended to have that as an explicit mount

option.

Note: RHEL6.4 GA may not have all the feature fixes. Use the “yum update” after RHEL6.4 is installed

to download the bz stream that has all the fixes.

Best Practice

Use the latest distribution and kernel available from your distributor when install ing a new deployment

and attempt to keep your existing Linux clients running the latest updates from your distributor. Always

check with your hardware and application vendors to be certain that they support the distribution and

kernel you choose to run. Contact NetApp if you have special requirements for integration with NetApp

storage.

3 Foolproof Mount Options for Linux NFS Clients

If you never set up mount options on an NFS client before, review the nfsman page on Linux to see

how these terms are defined. You can type “man nfs” at a shell prompt to display the page.

Also look in /etc/fstab on the client to see which options the client attempts to set when mounting a

particular fi le system. Check your automounter configuration to see which defaults it uses when

mounting. Running the mount command at a shell prompt tells you which options are actually in

effect. Clients negotiate some options, for example, the rsize option, with servers. Look in the client’s

/proc/mounts fi le to determine exactly which mount options are in effect for an existing mount.

The NFS protocol version (3 or 4.x) used when mounting an NFS server can change depending on

which protocols the server exports, which version of the Linux kernel is running on th e client, and

which version of the mount util ities package you use. NFSv3 is the minimum NFS version

recommended to mount any fi le system. So that your client uses the NFSv3 protocol, specify “vers=3”

when mounting a system. Be sure that the NFSv3 protocol is enabled on NetApp storage before trying

to mount using “vers=3” on the Linux client. RHEL6.x mounts NFSv4 by default.

mailto:100@xyx.com

11 Using Red Hat Client with NetApp Storage over NFS

The “hard” mount option is the default on Linux and is mandatory if you want data integrity. Using the

“soft” option reduces the likel ihood of client instability during server and network outages, but it

exposes your applications to silent data corruption, even if you mount fi le systems as read-only. If a

“soft” timeout interrupts a read operation, the client’s cached copy of the fi le is probably corrupt.

Purging a corrupt fi le requires that some application locks and unlocks the fi le, that the whole fi le

system is unmounted and remounted, or that another client modifies the fi le’s size or mtime. If a soft

timeout interrupts a write operation, there is no guarantee that the fi le on the server is correct, nor is

there any guarantee that the client’s cached version of the fi le matches what is on the server.

A client can indicate that a soft timeout has occurred in various ways. Usually syste m calls return EIO

when such a timeout occurs. You may also see messages in the kernel log suggesting that the client

had trouble maintaining contact with the server and has given up. If you see a message that says the

client is sti l l trying, then the hard mount option is in effect.

Best Practice

 NetApp recommends using hard mounts.

When running applications such as databases that depend on end -to-end data integri ty, use “hard” as

the mount option. Database vendors like Oracle have verified that using intr instead of nointr can

expose your database to the risk of corruption when a database instance is signaled (for example,

during a “shutdown abort” sequence). However, with intr being deprecated in RHEL6.x, nointr is

now the default value and does not require any explicit way to mention in the mount options.

The soft option is useful only in a small number of cases. If you expect significant server or network

instability, try using the soft option with TCP to help reduce the impact of temporary problems. This

reduces the likelihood that very brief outages or a few dropped packets will cause an application

failure or data corruption.

In 2.4 and older kernels, there was a hard limit of 255 mounts per fi le system type because the minor

number was only 8 bits. The 2.6.18 kernels (on which RHEL5.x is based) and later have a 20-bit

minor number, so this removes any practical l imit.

There is a limit on the number of reserved ports avai lable. Communication with the NetApp storage

NFS service and mount service occurs over privileged ports. By default there are 358 available

reserved ports for use (min: 665, max: 1,023). The lower limit can be updated through sysctl

(sunrpc.min_resvport), but do it with care because it will reduce the number of reserved ports for

other kernel services.

The reserved ports l imit the number of "active" mounts that are being accessed at the same time.

There is a limitation during a mount storm or when all of the mounts are continuously active. If all of

the mounts are listed in /etc/fstab, then upon reboot the client will attempt to mount all of them at the

same time. This means that you'l l be limited to ~179 (358/2) mounts. This is because each mount will

use one port to communicate with mountd and another port to communicate with NFS on the storage.

The mountd port connection is closed after a couple of minutes and the NFS connection remains

active as long as there's activity on the mount point. If there is no activity then the connection is

closed and may be used by another mount point.

If the environment has a large number of mounts it is better to use an automounter to avoid mount

storms. An automounter will allow the client to have more mounts available but not have all of them

triggered at the same time.

If the mountd port number is fixed on the server, then adding 'mountport=<portnr>' to the mount

options should also help reduce the total number of requests. The mountd daemon for NFSv3

normally l istens on port 4046 on NetApp storage. On the RHEL client the fi le system can be mounted

with “-o mountport” specifying the exact port number 4046 - -o mountport=4046.” In order to avoid any
overhead from portmap requests, port=2049 can be used as a mount option. This option can also be

included in the /etc/sysconfig/nfs fi le.

Finally, you may also specify 'mountproto=udp' in order to avoid any extra TCP connections for

mountd requests.

12 Using Red Hat Client with NetApp Storage over NFS

3.1 Choosing a Network Transport Protocol
NetApp recommends using TCP as the transport mechanism for all applications and workloads.

NFS over TCP can handle multi speed networks (networks in which the links connecting the server

and the client use different speeds), higher levels of packet loss and congestion, fair bandwidth

sharing, and widely varying network and server latency, but this can cause long delays during server

recovery. Although TCP has slightly greater network and CPU overhead on both the client and server,

you will find that NFS performance on TCP remains stable across a variety of network conditions and

workloads. With the new NFSv4 and NFSv4.1 protocols, UDP is forbidden; currently TCP is the only

transport protocol available.

You can control RPC retransmission timeouts with the timeo option. Retransmission is the

mechanism by which clients enable a server to receive and process an RPC request. If the client does

not receive a reply for an RPC within a certain interval for any reason, it retransmits the request until it

receives a reply from the server. After each retransmission, the client doubles the retransmit timeout

up to 60 seconds to keep network load to a minimum.

Retransmission for NFS over TCP works somewhat differently. The TCP network protocol contains its

own timeout and retransmission mechanism that enables packets to arrive at the receiving end

reliably and in order. The RPC client depends on this mechanism for recovering from the loss of RPC

requests and thus uses a much longer timeout setting for NFS over TCP by default .

In summary, we strongly recommend using TCP as the transport of choice for NFS on modern Linux

distributions. To avoid IP fragmentation issues on both the client and NetApp storage, consider

explicitly specifying “tcp” on all your NFS mounts. In addition, we strongly recommend the explicit use

of the timeo=600 mount option on Linux mount options to shorten the retransmit timeout.

For NFSv4, NetApp recommends using timeo=6000 against clustered Data ONTAP 8.2 in order to

work around replay cache issues.

Best Practice

 NetApp recommends using timeo=600 for NFSv3 and timeo=6000 for NFSv4.

3.2 Capping the Size of Read and Write Operations
NFS clients break application read and write requests into smaller chunks when communicating with

NFS servers. The maximum size, in bytes, that a client uses for NFS read requests is called the rsize,
and the maximum size a client uses for NFS write requests is called the wsize. Together, these two

are often referred to as the transfer size, because there are few cases in which the two need to have

different values. In RHEL6.x, the maximum transfer size is 1MB, but NetApp recommends using 64k

rsize and wsize values in the mount options for optimum performance.

The network transport protocol (TCP) interacts in complicated ways with the transfer size. When you

encounter poor performance because of network problems, using NFS over TCP is a better way to

achieve good performance. Ideally the MTU size is always set to 1,500 by default. With jumbo frames

the MTU size can be set to 9,000. However, caution should be exercised while setting jumbo frames.

The 9,000-MTU value has to be set end to end from the client network interfaces, switch ports, and on

the NetApp storage to provide better performance. The number of frames that move on the wire

depends on the rsize/wsize divided by the MTU; for example, 65536/1500 = 43 frames plus additional
headers. Thus with NFS over TCP, 64KB read and write size usually provides good performance by

allowing a single RPC to transmit or receive a large amount of data.

By default, in the newer kernels of RHEL 5.x and 6.x, the default rsize and wsize are set to 65536

(64k). The early RHEL5.x kernel had a default rsize and wsize value set to 32768 (32k). Usually on

clean high-performance networks, or with NFS over TCP, you can improve NFS performance by

explicitly increasing these values. However, this has changed in 2.6 -based kernels. The default rsize

and wsize are set to 65536 unless otherwise specified. Currently the default transport is TCP, which is

highly recommended in all kinds of workloads.

In Linux, the rsize and wsize mount options have additional semantics compared with the same

options implemented in other operating systems. Normally, the Linux client caches application write

requests, issuing NFS WRITE operations when it has at least wsize bytes to write. The NFS client

13 Using Red Hat Client with NetApp Storage over NFS

often returns control to a writing application before it issues any NFS WRITE operations. It also issues

NFS READ operations in parallel before waiting for the server to reply to any of them. If the client is

requesting to read a 128k block of data, then it issues eight concurrent 16k read requests to the

NetApp storage. If rsize is set below the system’s page size (4KB on x86 hardware), the NFS client

issues individual read operations one at a time and waits for each operation to complete before

issuing the next read operation. If wsize is set bel ow the system’s page size, the NFS client issues

synchronous writes without regard to the use of the sync or async mount options. As with reads,

synchronous writes cause applications to wait until the NFS server completes each individual write

operation before issuing the next operation or before letting an application continue with other

processing. When performing synchronous writes, the client waits until the server has written its data

to stable storage before allowing an application to continue.

Some hardware architectures allow a choice of different page sizes. Intel
®
 Itanium systems, for

instance, support pages up to 64KB. On a system with 64KB pages, the rsize and wsize limitations

described above stil l apply; thus all NFS I/O is synchronous on these systems, significantly slowing

read and write throughput. This l imitation has been removed in 2.6 kernels so that all read and write

traffic is asynchronous whenever possible, independent of the transfer size settings. When running on

hardware that supports different page sizes, choose a combination of page size and r/wsize that

allows the NFS client to do asynchronous I/O if possible. Usually distributors choose a single large

page size, such as 16KB, when they build kernels for hardware architectures tha t support multiple

page sizes.

In the 2.6-based kernel, the memory manager deals with memory in 4KB pages on x86 systems. The

actual page size is architecture dependent. For most uses, pages of this size are the most efficient

way for the memory manager to deal with memory. Some applications, however, make use of

extremely large amounts of memory. Large databases are a common example of this. For every page

mapped by each process, page-table entries must also be created to map the virtual address to the

physical address. If you have a process that maps 1GB of memory with 4KB pages, it would take

262,144 page-table entries to keep track of those pages. If each page-table entry consumes 8 bytes,

then that would be 2MB of overhead for every 1GB of memory mapped . This is quite a bit of overhead

by itself, but the problem becomes even worse if you have multiple processes sharing that memory. In

such a situation, every process mapping that same 1GB of memory would consume its own 2MB ’s

worth of page-table entries. With enough processes, the memory wasted on overhead might exceed

the amount of memory the application requested for use.

One way to help alleviate this situation is to use a larger page size. Most modern processors support

at least a small and a large page size, and some support even more than that. On x86, the size of a

large page is 4MB, or 2MB on systems with physical address extension (PAE) turned on. Assuming

that a large page size of 4MB is used in the example mentioned earlier, that same 1GB of memory

could be mapped with only 256 page-table entries instead of 262,144. This translates to only 2,048

bytes of overhead instead of 2MB.

The use of large pages can also improve performance by reducing the number of translation

lookaside buffer (TLB) misses. The TLB is a sort of cache for page tables that allows virtual to

physical address translation to be performed more quickly for pages that are listed in the table. Of

course, the TLB can hold only a limited number of translations. Large pages can accomm odate more

memory in fewer actual pages, so as more large pages are used, more memory can be referenced

through the TLB than with smaller page sizes.

3.3 Special Mount Options
Consider using the bg option if your client system needs to be available even if it cannot mount some

servers. This option causes mount requests to put themselves in the background automatically if a

mount cannot complete immediately. When a client starts up and a server is not available, the client

waits for the server to become available by default. The default behavior, which you can adjust with

the retry mount option, results in waiting for almost a week before giving up.

The fg option is useful when you need to serialize your mount requests during system initialization.

For example, you probably want the system to wait for /usr to become available before proceeding

with a multiuser boot. If you mount /usr or other critical fi le systems from an NFS server, you should

consider using fg for these mounts. The retry mount option has no effect on foreground mounts.

14 Using Red Hat Client with NetApp Storage over NFS

For security, you can also use the nosuid mount option. This causes the client to disable the special

bits on fi les and directories. The Linux man page for the mount command recommends also disabling

or removing the suidperl command when using this option. Note that the storage also has a

nosuid export option that does roughly the same thing for all clients accessing an export.

Interestingly, the storage’s nosuid export option also disables the creation of special devices. If you
notice programs that use special sockets and devices (such as “screen”) behaving strangely, check

for the nosuid export option on your storage.

To enable Kerberos authentication on your NFS mounts, you can specify the sec=krb mount option.

In addition to Kerberos authentication, you can also choose to enable authentication with request

integrity checking (sec=krb5i), or authentication with privacy (sec=krb5p). Note that most Linux

distributions do not yet support krb5p as of the current writing.

3.4 Tuning NFS Client Cache Behavior
Other mount options allow you to tailor the client’s attribute caching and retry behavior. It is not

necessary to adjust these behaviors under most circumstances. However, sometimes you must adjust

NFS client behavior to make NFS appear to your applications more like a local fi le system, or to

improve performance for metadata-intensive workloads.

There are a few indirect ways to tune client-side caching. The most effective way is to add more RAM

to your clients. Linux will make appropriate use of the new memory automatically. To determine how

much RAM you need to add, determine how large your active fi le set is and increase RAM to fit. This

greatly reduces the cache turnover rate. You should see fewer read requests and faster client

response time as a result.

Some working sets may or may not fit in a client’s RAM cache. The clients may have 16GB to 128GB

or more RAM, but you may stil l see significant client cache turnover. In this case, reducing “cache

miss” latency is the best approach . You can do this by improving your network infrastructure and

tuning your server to improve its performance. Because a client-side cache is not effective in these

cases, you may find it beneficial to keep the client’s cache small.

Normally, for each fi le in a fi le system that has been accessed recently, the client caches fi le attribute

information, such as a fi le’s last modification time and size. To detect fi le changes quickly yet

efficiently, the NFS protocol uses “close-to-open” cache semantics. When a client opens a fi le, it uses

a GETATTR operation to check that the fi le sti l l exists and that any cached data it has is sti l l up to

date. A client checks back with the server only after a timeout indicates that the fi le’s attributes may

be stale. During such a check, if the server’s version of the attributes has changed, the client purges

i ts cache. A client can delay writes to a fi le indefinitely. When a client closes a fi le, however, it flushes

all pending modifications to the fi le to the server. This all ows a client to provide good performance in

most cases, but it means that it might take some time before an application running on one client sees

changes made by applications on other clients. In a pure “read only” that does not have a single writer

writing to a fi le(s), the nocto mount option can be used to reduce the amount of additional

GETATTRs generated from the close-to-open consistency. The cto mount option is enabled by

default and should be ON in any read and write workload environment.

In a high-fi le-count scenario that has a deep directory structure, the Directory Name Lookup Cache

(DLNC) on the RHEL client that is autotuned can be further optimized if the application tr ies to read

the fi les immediately after they are created. Setting “lookupcache=pos” (by default it is set to ALL)

does not cache negative LOOKUPs, meaning that you can look up "foo"; if it doesn't exist, the next
time you look it up it will go to the NetApp storage to check again. If you look up "bar" and it exists, the

next time you look it up it will get it from the cache and not go to the NetApp storage. However, this

will reduce efficiency, because every LOOKUP for an entry that doesn't exist will generate a new

LOOKUP request. This will have a major impact on builds, for example, or on launching programs that

always look in the current directory for the dynamic loadables. You really only want to use

"lookupcache=pos" when you know that you have fi les that are created rapidly and when you need to

detect that on another client. This is used in environments that use creation of fi les between

distributed applications to notice when one of the clients can proceed after the first client has created

the fi le. Additionally Flash Cache
™

 intell igent caching on NetApp storage can cache the metadata

when the client cache does not have it in its DLNC.

Clients check back with the server every so often to verify that cached attribute information is sti l l

valid. However, adding RAM on the client will not affect the rate at which the client trie s to revalidate

15 Using Red Hat Client with NetApp Storage over NFS

parts of the directory structure it has already cached. No matter how much of the directory structure is

cached on the client, it must sti l l validate what it knows when fi les are opened or when attribute cache

information expires. You can lengthen the attribute cache timeout with the actimeo mount option to

reduce the rate at which the client tries to revalidate its attribute cache. The nocto mount option

reduces the revalidation rate even further, at the expense of cache coherency among mul tiple clients.

The nocto mount option is appropriate for read-only mount points where fi les change infrequently,

such as a lib, include, or bin directory; static HTML files; or image libraries. In combination with

judicious settings of actimeo you can significantly reduce the number of on-the-wire operations

generated by your NFS clients. Test this setting with your application to verify that it will tolerate the
delay before the NFS client notices fi le changes made by other clients and fetches the new versions

from the server.

The Linux NFS client delays application writes to combine them into larger, more efficiently processed

requests. You can guarantee that a client immediately pushes every write system call an application

makes to servers by using the sync mount option. This is useful when an application needs the

guarantee that data is safe on disk before it continues. Frequently such applications already use the

O_SYNC open flag or invoke the flush system call when needed. Thus, the sync mount option is

often not necessary.

Delayed writes and the client’s attribute cache timeout can delay detection of changes on the server

by many seconds while a fi le is open. The noac mount option prevents the client from caching fi le

attributes. This means that every fi le operation on the client that requires fi le attribute information

results in a GETATTR operation to retrieve a fi le’s attribute information from the server. Note that

noac also causes a client to process all writes to that fi le system synchronously, ju st as the sync

mount option does. Disabling attribute caching is only one part of noac; it also guarantees that data

modifications are visible on the server so that other clients using noac can detect them immediately.

Thus noac is shorthand for actimeo=0,sync.

When the noac option is in effect, clients sti l l cache fi le data as long as they detect that a fi le has not

changed on the server. This mount option allows a client to keep very close track of fi les on a server

so it can discover changes made by other clients quickly. Normally you will not use this option, but it is

important when an application that depends on single system behavior is deployed across several

clients.

Using the noac mount option causes performance degradation on typical workloads, bu t some

common workloads, such as sequential write workloads, can have a high impact. Database workloads

that consist of random reads and writes are generally less affected by noac.

The noac mount option generates a very large number of GETATTR operations and sends write

operations synchronously. Both of these add significant protocol overhead. This mount option trades

off single-client performance for client cache coherency. Only applications that need tight cache

coherency among multiple clients require that fi le systems be mounted with the noac mount option.

Some applications require direct, uncached access to data on a server. Using the noac mount option

is sometimes not good enough, because, even with this option, the Linux NFS client sti l l caches

reads. To verify that your application sees the server’s version of a fi le’s data and not potentially stale

data cached by the client, your application can lock and unlock the fi le. This pushes all pending write

operations back to the server and purges any remaining cached data, so the next read operation will

go back to the server rather than reading from a local cache.

Alternatively, an NFS client in RHEL kernels supports direct I/O to NFS files when an application

opens a fi le with the O_DIRECT flag. Direct I/O is a feature designed to benefit applications that

manage their own data cache. When this feature is enabled, an application’s read and write system

calls are translated directly into NFS read and write operations. The Linux kernel never caches the

results of any read or write when a fi le is opened with this flag, so applications always get exactly

what’s on the server. Further improvements available in the DIRECTIO code path are discussed in

section 2.4.

To enable direct I/O, the application must open the fi le(s) with the O_DIRECT flag. The good part

about this is that in a volume, some files can be opened with O_SYNC and some can be opened with

O_DIRECT as per needs. In general this will degrade performance, but it is useful in special
situations, such as when applications do their own caching. File I/O is done directly to/from user

16 Using Red Hat Client with NetApp Storage over NFS

space buffers. The I/O is synchronous; that is, at the completion of a read or write, data is guaranteed

to have been transferred.

If a fi le is opened with no special open flags, the client writes normally. It can delay (cache) writes until

the application does an fflush, fsync, or close, at which point any preceding writes are flushed to

the server and committed to disk. System memory pressure may also cause the client to push writes

to the server.

If a fi le is opened with O_SYNC, the client writes normally on the wire, but it always guarantees that

all dirty data is flushed to the server's disks before the write(2) system call returns to the application.

If a Linux NFS file system is mounted with the sync mount option, then the client writes everything in

page-sized chunks, one write at a time and in ascending byte offset order, and guarantees that all

dirty data is flushed to the server before the write(2) system call return s to the application.

All of this is entirely independent of the NFS versi on 3 unstable write mechanism. This is a little

oversimplified, but, to write data, the client has two choices:

 Write the data with UNSTABLE writes.

 Write the data with DATA_SYNC or FILE_SYNC writes.

The server can reply to each write request in one of two ways:

 The write was committed to permanent storage, in which case the server replies, "this was a
DATA_SYNC or FILE_SYNC write."

 The write was saved in volatile storage, and a subsequent COMMIT request is required to

guarantee that the data is permanently saved, in which case the server replies, "this was an

UNSTABLE write."

The client looks at the reply to each write. If any of the writes come back marked UNSTABLE, then

the client must do a subsequent COMMIT before it reclaims dirty pages for other use. A COMMIT can

be a range of bytes or the whole fi le.

The key here is that the O_SYNC / sync mount option semantic determines whether the client holds

up the application until the wri tes are on the server's disk. The client can choose to use either

UNSTABLE or FILE_SYNC writes when writing data to the server to meet the requirements of

O_SYNC or the sync mount option.

fsync() waits for all dirty data in a fi le to be written to storage before allowing the application to

regain control . This guarantee is provided by the NFS client. sync(), which flushes all dirty data for

all fi le systems to permanent storage, but it does not wait for the flushes to complete.

Data ONTAP's NFS server promotes all write requests to FILE_SYNC, whether the client requests

UNSTABLE, DATA_SYNC or FILE_SYNC writes. Thus the client never has to send a COMMIT

request when it is writing to NetApp storage because all the writes are logged in the NVRAM and the

clients get an acknowledgement for the writes right away. Hence the writes with NetApp storage are

asynchronous in nature and are much faster.

For some servers or applications, it may be a requirement to prevent the Linux NFS client from

sending Network Lock Manager requests. You can use the nolock mount option to prevent the Linux

NFS client from notifying the server’s lock manager when an application locks a fi le.

Note: The client sti l l flushes its data cache and uses more restrictive write -back semantics when a fi le

lock is in effect. The client always flushes all pending writes whenever an application locks or unlocks

a fi le.

3.5 Mounting with NFS Version 4
NetApp recommends RHEL5.7 and later kernels to mount fi le systems over NFSv4. We highly

recommend using NFSv4 in your production environment with Data ONTAP 7.3 and later. Clustered

Data ONTAP 8.1 and later also support NFSv4.

The Linux NFS client now recognizes two different fi le system types. The nfs fi le system type uses the

vers= mount option to determine NFS version 3 when communicating with a server. The nfs4 fi le

system type supports only NFS version 4 and does not recognize the vers= mount option. If you

have scripts that specify particular fi le system types to act on NFS file systems, you need to modify

them to work with both nfs and nfs4 fi le systems.

17 Using Red Hat Client with NetApp Storage over NFS

An example of mounting NFSv4 using /etc/fstab:

172.17.44.102:/vol/vol1 /b1 nfs4

rw,bg,hard,rsize=65536,wsize=65536,proto=tcp,suid,timeo=6000

Compared to an NFSv3 mount entry in the /etc/fstab:

172.17.44.102:/vol/vol2 /b2 nfs

vers=3,rw,bg,hard,rsize=65536,wsize=65536,proto=tcp,suid,timeo=600

The NFS version 4 wire protocol represents users and groups as strings instead of UIDs and GIDs.

Before attempting to mount with NFS version 4, verify that the client’s UID mapper is configured and

running. Otherwise, the client will map all UIDs and GIDs to the user “nobody.” The mapper’s

configuration fi le is /etc/idmap.conf. Typically the only change needed is to specify the real domain

name of the client so that it can map local UIDs and GIDs on the client to network names. When this

is done, start the UID mapper daemon with this command:

 /etc/init.d/rpcidmapd start

As mentioned in section 2.4, RHEL6.4 and Data ONTAP 7.3.3 and clustered Data ONTAP 8.1 and

later support “numeric_id” for sec=sys mounts that do not require configuring /etc/idmap.conf fi le.

To mount a server that supports NFS version 4, use the following command:

 mount –t nfs4 –o filer:/vol/vol0 /mnt/nfs

For additional NFSv4 implementation information, refer to TR-3580 for Data ONTAP operating in 7-

Mode and TR-4067 for clustered Data ONTAP implementation information. Some mount options you

may be accustomed to using with NFS version 3 are no longer supported with the nfs4 fi l e system

type. As mentioned, vers= is not supported. The udp and tcp mount options are no longer

supported; instead, use proto= if you would like to choose a transport that is not TCP. Data ONTAP

follows the NFS version 4 Request for Comments (RFC) 3530. NFS version 4 does not support UDP,

so proto=tcp is the only protocol that can be used with NFS version 4 when your clients
communicate with NetApp storage. Other mount options that do not work with nfs4 fi le systems

include noacl, nocto, and nolock.

3.6 Mounting with NFS Version 4.1

NFSv4.1 is the next release of NFS after NFSv4. NFSv4.1 is a minor release version and has all the

functionalities of NFSv4. Unlike NFSv4, it only uses port 2049 and it does not have any other ancillary

protocols l ike portmap, mount, Network Lock Manage (NLM), and Network Status Monitor (NSM). The

locking mechanism is lease-based just as in the case of NFSv4. NFSv4.1 has some bug fixes and

introduces three new features:

 Sessions

 Directory Delegations

 Parallel NFS (pNFS)

In a typical NFSv3/NFSv4 scenario, every session had a single TCP connection. But with the

sessions model, depending on the application, each session can generate multiple TCP connections.

These TCP connections can be trucked to generate high bandwidth. But at this tim e no Linux client

supports session trucking. Sessions are used to provide replay cache correctness. The sessions slots

are negotiated by the client and the NetApp storage and represent l imits to how many NFS requests

can be on the wire. The server is requi red to have the resources for a replay cache that can hold the

negotiated number of slot responses and can guarantee “at most once” sema ntics with the resultant

bounded replay cache. The sessions implementation is discussed in section 2.4. RHEL6.1 and later

versions support sessions. Clustered Data ONTAP 8.1 and later versions support sessions too.

Directory delegations are not supported by any Linux client at this time.

pNFS is a feature in NFSv4.1. It is designed to improve performance because the metadata is

isolated from the data and the control paths. This means that the client talks to the metadata server

(MDS), and once the MDS provides the fi le-layout information to the pNFS-supported client, the client

then communicates with the data servers directl y. Note that by using pNFS, volumes that are remote

18 Using Red Hat Client with NetApp Storage over NFS

to clients in the NetApp Cluster namespace will have a direct data path access.RHEL6.2 and

RHEL6.3 versions were labeled as the “Tech Preview” kernels for pNFS. The RHEL6.4 kernel is the

GA version for pNFS. Clustered Data ONTAP 8.1 and later versions support pNFS. For more

information on pNFS, refer to TR-4063.

To mount a fi le system over pNFS on a pNFS-supported client:

mount -t nfs -o vers=4.1 <NetApp Storage IP>:/path01 /mnt/pNFSpath01

3.7 Mount Option Examples
We provide the following examples as a basis for beginning your experimentation. Start with an

example that closely matches your scenario, then thoroughly test the performance and reliabil ity of

your application while refining the mount options you selected.

The following mount options are best-practice recommendations for most of the fi le systems mounted

over NFS. Here is an example of mount options that are reasonable defaults. In fact, on many newer

Linux distributions, these are the default mount options.

Best Practice

 mount –o rw,bg,vers=3,tcp,timeo=600,rsize=65536,wsize=65536,hard,intr

Note: intr is deprecated in RHEL6.x. It is hard coded to nointr.

Using the bg option means our client will be able to finish booting without waiting for appli ances that

may be unavailable because of network outages. The hard option minimizes the likelihood of data

loss during network and server instability, while intr allows users to interrupt applications that may

be waiting for a response from an unavailable server. The tcp option works well on many typical

LANs with 32KB read and write size. Using timeo=600 is a good default for TCP mounts.

When mounting a group of home directories over a WAN, you might try the following best practice.

Best Practice

mount –o rw,bg,vers=3,nosuid,tcp,timeo=600,retrans=2,rsize=65536,

 wsize=65536,hard,intr,nosuid

Note: intr is deprecated in RHEL6.x. It is hard coded to nointr.

This example uses NFS over TCP because NFS clients often reside on slower, less capable networks

than servers. In this case, the TCP protocol can provide fast recovery from packet losses caused by

network speed transitions and noisy phone lines. Using the nosuid mount option means that users

cannot create or use suid programs that reside in their home directories, providing a certain degree of

safety from Trojan horses. Limiting the maximum size of read and write operations gives interactive

sessions on slow network links an advantage by keeping very large packets off the wire. On fast

networks, large rsize and wsize values, such as 65536, are more appropriate. The timeo=600 option

allows the TCP protocol a long time to attempt recovery before the RPC client interferes.

When mounting an appliance from an anonymous FTP or HTTP server, use the following best

practice.

Best Practice

 mount –o ro,fg,vers=3,tcp,timeo=600,retrans=2,rsize=65536,wsize=65536,

 hard,nointr,nocto,actimeo=600

Note: intr is deprecated in RHEL6.x. It is hard coded to nointr.

Here we use the fg option so that NFS files are available before the FTP or HTTP server is started.

The ro option anticipates that the FTP or HTTP server will never write data into fi les. The nocto

option helps reduce the number of GETATTR and LOOKUP operations at the expense of tight cache

coherency with other clients. The FTP server will see changes to fi les on the server after its attribute

19 Using Red Hat Client with NetApp Storage over NFS

cache times out (usually after about one minute). Lengthening the attribute cache timeout also

reduces the attribute cache revalidation rate.

Again, the fg option enables NFS file systems to be available before the database instance starts

up. We use TCP here because, even though the physical network is fast and clean, TCP adds extra

data integrity guarantees. The hard option enables data integrity in the event of network problems or a

cluster failover event. The nointr option prevents signals from interrupting NFS client operations.

Such interruptions may occur during a shutdown abort, for instance, and are known to cause

database corruption. File locking should be enabled when running databases in production as a

degree of protection against corruption caused by improper backup procedures (for example, another

instance of the same database running at a disaster recovery site against the same files as your

normal production instance).

Best Practice

NetApp strongly recommends using NFS version 3 over TCP. In slower networks use TCP instead.
Avoid using the soft mount option. Try the special mount options if you need an extra boost in

performance.

4 Performance

This section covers aspects of Linux client performance, with a special focus on networking.

4.1 Linux NFS Client Performance
The Linux NFS client runs in many different environments, from light desktop usage to a database

with a dedicated private SAN. In general, the RHEL NFS client can perform as well as most other

NFS clients, and better than some, in these environments. However, the default values and the best-

practice recommendations for mount options need to be followed while mounting a fi le system from

NetApp storage, and you need to observe network behavior carefully so that the Linux NFS client

performs at its best.

Most often, when the subject of tuning is brought up, it is done so in a preemptive fashion , the notion

being that various dials can be turned in such a way as to make the network “go faster.” Although

experience with a fixed and stable set of applications often yields a set of adjustments that can result

in superior network performance, this sort of adjustment should not be made unless a particular

problem (for example, frame loss or degraded throughput compared to expected norms) has been

observed and diagnosed. Simply turning up settings (for example, making buffer/queue lengths larger,

reducing interrupt latency, and so on) can actually have a detrimental effect on throughput in many

cases.

Take, for example, the buffer bloat problem, in which ever-increasing buffer queue depths result in

TCP connections that have congestion windows larger than the link would otherwise allow (due to

deep buffering), but they also have huge RTT values since the frames spend so long in the queue.

This effectively breaks TCP congestion avoidance.

With that said, when should you tune? The first step in making adjustments to your network stack is to

observe a problem. Administrators should monitor the various fi les and tools in Linux

(/proc/net/dev, /proc/net/snmp, netstat, dropwatch, etc) for excessive frame drops

or other odd conditions that signal suboptimal performance. Using the data collected from those

sources, a description of the problem can be formulated along with a tuning solution to mitigate the

problem. For example, an increase in UDP input errors in /proc/net/snmp indicates that one or more

socket-receive queues are full when the network stack attempts to enqueue a new frame to an

application’s socket. This indicates that the rate at which at least one socket queue is draining is less

than the rate at which new packets destined for that socket are arriving. Couple this with some

application-level logging that indicates lost data at the application and you can see the need to either

drain that application ’s socket queue faster (by optimizing the application) or increase the depth of

that application ’s socket queue (via the rmem_default sysctl or the SO_RCVBUF socket option).

20 Using Red Hat Client with NetApp Storage over NFS

Following this process of observation/diagnose/tune iteratively, a set of tunings can be derived that,

for a fixed environment, can eventually be deployed preemptively. The point , however, is that initial

and ongoing observation is always the key to proper tuning of a network stack.

When using Gigabit Ethernet, verify that both ends of every link have enabled full flow control.

ethtool can be used to check and enable flow control on RHEL clients. Some switches, particularly

midrange Cisco
®
 switches, do not support flow control in both directions. Discuss support for full flow

control with your switch vendor so that your gigabit NIC and routers support it properly. In the new

10Gbe network cards, autonegotiation is turned OFF and flow control is set to FULL.

Further, if you use Linux NFS clients and storage together on an unrouted network, consider using

jumbo frames to improve the performance of your application. Consult your switch’s command

reference to verify that it is capable of handling jumbo frames in your environment. There are some

known problems in Linux drivers and the networking layer when using the maximum frame size (9,000

bytes). If you experience unexpected performance slowdowns when using jumbo frames, try reducing

the MTU to, say, 8,960 bytes. Ideally the README file on the network interface driver provides more

accurate information about the jumbo frame MTU size. The same value has to be set on the switch

ports and on the NetApp storage. When using jumbo frames on more complex networks, verify that

every link in the network between your client and server supports them and have the support enabled.

The Linux NFS client and network layer are sensitive to network performance and reliabil ity. After you

set your mount options as we recommend, you should get reasonable performance. If you do not and

your workload is not already CPU-bound, look at network conditions between your clients and

servers.

For example, on a clean 10 Gigabit Ethernet network, a single Linux client can send up to 1.2GB/sec

on the network to an FAS6280. If there is other network traffic or packet loss, write performance from

a Linux client on NFS over TCP, performance should remain reasonable. Read performance depends

on the size and speed of the client’s and the storage’s memory. Caching on the storage and on the

client plays a big role to improve throughput by increasing the number of IOPs required by the

application. The bandwidth is determined by the block size times the number of IOPs and is measured

in MB/sec. Due to high concurrency by the application, the network interfaces on the NetApp storage

may require aggregation of network ports to handle the high throughput requirement. Aggregating two

10Gbe ports would provide 2.4GB/sec of bandwidth.

Best Practice

NetApp recommends having a clean network over TCP. Verify that the network cards always negotiate

the fastest settings and that the NIC drivers are up to date.

4.2 Diagnosing Performance Problems with the Linux NFS Client
The client works best when the network does not drop any packets. The NFS and RPC clients also

compete with applications for available CPU resources. These are the two main categories that can

impact client performance.

Checking for network packet loss is the first thing to do to look for problems. With NFS over UDP, a

high retransmission count can indicate packet loss due to network or server problems. With NFS over

TCP, the network layer on the client handles network packet loss, but server problems stil l show up as

retransmissions.

To check for retransmissions, nfsstat –c can be used at the shell prompt. At the top of the output,

it l ists the total number of RPCs the client has sent and the number of times the client had to

retransmit an RPC. The retransmit rate is determined by dividing the number of retransmissions by

the total number of RPCs. If the rate exceeds a few tenths of a percent, network losses may be a

problem for performance.

NFS over TCP does not show up network problems as clearly as UDP and performs better in the face

of packet loss. If the TCP mounts run faster than the UDP mounts, that’s a sure indication that the

network between the clients and the storage is dropping packets or is otherwise bandwidth -limited.

Normally UDP is as fast as or slightly faster than TCP. The client keeps network statistics that can be

viewed with netstat –s at a shell prompt. Look for high error counts in the IP, UDP, and TCP

21 Using Red Hat Client with NetApp Storage over NFS

sections of this command’s output. The same command also works on an appliance's console. Here

look for nonzero counts in the “fragments dropped after timeout” and “fragments dropped (dup or out

of space)” fields in the IP section.

There are a few basic sources of packet loss.

 If the end-to-end connection between the clients and servers contains links of different speeds

(for instance, the server is connected via Gigabit Ethernet, but the clients are all connected to the

network with 100Base-TX), packet loss occurs at the point where the two speeds meet. If a

gigabit-connected server sends a constant gigabit stream to a 100Mb client, only 1 packet in 10

can get to the client. UDP does not have any flow control built in to slow the server’s transmission

rate, but TCP does; thus, it provides reasonable performance through a link speed change.

 Another source of packet loss is small packet buffers on switches. If either the client or server

bursts a large number of packets, the switch may buffer them before sending them on. If the

switch buffer overflows, the packets are lost. It is also possible that a switch can overrun a client’s

NIC in a similar fashion.

 The client’s RPC layer allocates a socket for each mount. If by any means these sockets use

input and output buffers that are too small on systems that use large rsize or wsize or generate a

large number of NFS operations in a short period, then there is a high chance of packet drop.

Therefore we highly recommend increasing the size of these buffers as documented in section 6

or using a new kernel that autotunes the socket buffer settings.

If the issues are resolved and stil l have poor performance, then attempt end-to-end performance

testing between one of the clients and a similar system on the server’s LAN using a tool such as ttcp

or iPerf. This exposes problems that occur in the network outside of the NFS protocol. If the network

is full duplex, run iPerf tests in both directions concurrently so that the network is capable of handling

a full load of traffic in both directions simultaneously.

One more piece of network advice: Become familiar with network snooping too ls such as tcpdump

and ethereal. In RHEL5, ethereal and tethereal are replaced by wireshark and tshark. On NetApp

storage, pktt generates trace fi les in tcpdump format that can be analyzed later on a client. These

tools provide the last word in what is really happening on the network between the clients and the

storage.

Best Practice

NetApp recommends running both tcpdump on a client and pktt on the storage at the same time and

comparing the traces to determine where the problem lies.

Several options must be specified explicitly to collect clean network traces with tcpdump. Verify that

the snaplen option (-s) is set large enough to capture all the interesting bytes in each packet, but

small enough that tcpdump is not overwhelmed with incoming traffic. If tcpdump is overwhelmed, it

drops incoming packets, making the network trace incomplete. The default value is 96 bytes, which is

too short to capture all the RPC and NFS headers in each packet. Usually a value of 256 bytes is a

good compromise for UDP, but that can set it to zero if there is a need to check all the data in each

packet. Snooping TCP packets requires a zero snaplen because TCP can place several RPC

requests in a single network packet. If snaplen is short, the trace will miss RPCs that are conta ined

near the end of long packets.

Examples: tcpdump host 172.17.32.100 -s 256 -w xyz.trc

In addition, always use fi ltering to capture just the traffic between the client and the server. Again, this

reduces the likelihood that tcpdump or the local fi le system will be overwhelmed by incoming traffic
and makes later analysis easier. You can collect traffic to or from your client using the hostname filter.

Several other tcpdump options allow you to collect traffic destined for one or more hosts at a time;

read the manual to find out more. In the RHEL6.x kernel you can also use the “dropwatch” util ity to

monitor and record any dropped packets.

22 Using Red Hat Client with NetApp Storage over NFS

To find out if the application is competing for CPU resources with the NFS client, RPC client, or

network layer on your client system, the top program can be used. The rpciod process at the top of
the listing is an indicator that NFS operations are dominating the CPU on your system. In addition, if

the system CPU percentage increases significantly when the application accesses NFS data, this also

can indicate a CPU shortage. In many cases, adding more CPUs or faster CPUs helps.

There are certain cases in which processes accessing NFS file systems may hang. This is most often

due to a network partition or server outage. Today’s client implementation is robust enough to recover

in most cases. Occasionally a client fails because of high load or some other problem. Unfortunately,

l ittle can be done in these cases other than rebooting the client and reporting th e problem. Using the

“strace” util ity is another way of gathering kernel -level information on any behavior of system calls that

the client communicates with the NetApp storage.

[root@ibmx3650-svl26 ~]# strace mount

execve("/bin/mount", ["mount"], [/* 28 vars */]) = 0

brk(0) = 0x1b367000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2aaeb3484000

uname({sys="Linux", node="ibmx3650-svl26.iop.eng.netapp.com", ...}) = 0

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=182290, ...}) = 0

mmap(NULL, 182290, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2aaeb3485000

close(3) = 0

open("/lib64/libblkid.so.1", O_RDONLY) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0008@/?\0\0\0"..., 832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=44224, ...}) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2aaeb34b2000

mmap(0x3f2f400000, 2137216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x3f2f400000

…..

[root@ibmx3650-svl25 ~]# dropwatch -l kas

Initalizing kallsyms db

dropwatch> start

Enabling monitoring...

Kernel monitoring activated.

Issue Ctrl-C to stop monitoring

1 drops at netlink_unicast+251

2 drops at ip_forward+288

1 drops at nf_hook_slow+eb

1 drops at netlink_destroy_callback+19

1 drops at tcp_v4_rcv+aa

1 drops at unix_stream_recvmsg+30d

1 drops at unix_stream_recvmsg+30d

1 drops at ip_forward+288

1 drops at ip_rcv_finish+199

7 drops at nf_hook_slow+eb

1 drops at __brk_limit+1e2a13d7

2 drops at nf_hook_slow+eb

10 drops at nf_hook_slow+eb

4 drops at nf_hook_slow+eb

5 drops at nf_hook_slow+eb

1 drops at ip_forward+288

1 drops at ip_rcv_finish+199

2 drops at ip_forward+288

^CGot a stop message

dropwatch>

23 Using Red Hat Client with NetApp Storage over NFS

4.3 Error Messages in the Kernel Log
There are two messages that you may encounter frequently in the kernel log (this is located in

/var/log/messages on Linux systems). The first is “server not responding.” This message occurs after

the client retransmits several times without any response from a server. If you know the server is up,

this can indicate that the server is sluggish or that there are network problems. If you know the server

is down, this indicates that the client is waiting for outstanding operations to complete on that server,

and it is l ikely there are programs waiting for the server to respond.

The second, perhaps more frustrating, message is “can’t get request slot.” This message indicates

that the RPC client is queuing messages and cannot send them. This is usually due to network

problems such as a bad cable, incorrectly set duplex or flow control options, or an overloaded switch.

It may appear as if your client is stuck at this point, but you should always wait at least 15 minutes for
network and RPC client timeouts to recover before trying harsher remedies such as rebooting your

client or storage.

4.4 Getting Help
Most Linux NFS client performance problems are due to lack of CPU or memory on the client,

incorrect mount options, or packet losses on the network between the client and servers. If you set up

your client correctly and your network is clean but you stil l suffer from performance or reliabil ity

problems, contact experts to help you proceed further.

Currently, there is no single knowledge base that tracks Linux NFS client issues. However, expert

help is avai lable on the Web at nfs.sourceforge.net, where you can find a Linux NFS Frequently
Asked Questions list, as well as several how-to documents. There is also a mailing list specifically for

helping administrators get the best from Linux NFS clients and serve rs. NetApp customers can also

search the support database for Linux-related issues. NetApp also maintains some of the more salient

Linux issues within its BURT database. See the appendix in this report for more information.

If you find there are missing features or performance or reliabil ity problems, we encourage you to

participate in the community development process. Unlike proprietary operating systems, new

features appear in Linux only when users implement them. Problems are fixed when users are dil igent

about reporting them and following up to see that they are fixed. If you have ever complained about

the Linux NFS client, here is your opportunity to do something about it.

If you find a problem with the Linux NFS client, report it to Red Hat. Red Hat supports an online bug

database based on bugzilla. You can access Red Hat’s bugzilla instance at http://bugzilla. Red

Hat.com/.

When fi l ing a BURT that relates to Linux client misbehavior with an appliance, report:

 The Linux distribution and the Linux kernel release (for example, RHEL6.1)

 The client’s kernel configuration (cat /etc/Red Hat-release is the usual location) if you built the

kernel yourself

 Any error messages that appear in the kernel log, such as oops output or reports of network or

server problems

 All mount options in effect (use cat /proc/mounts to display them, and do not assume they are the

same as the options you specified on your mount commands)

 Details about the network topology between the client and the storage, such as how busy the
network is, how many switches and routers there are, the link speeds, and so on; you can report

network statistics on the client with nfsstat –c and netstat –s

 Client hardware details, such as SMP or UP, which NIC, and how much memory; you can use the

lspci –v command and cat /proc/cpuinfo or cat /proc/meminfo on RHEL clients to

collect most of this

 Include a network trace and/or a dump of debugging messages using strace

Most importantly, carefully describe the symptoms on the client. A “client han g” is generally not

specific enough. This could mean the whole client system has deadlocked or that an application on

the client has stopped running. Always be as specific as you can.

24 Using Red Hat Client with NetApp Storage over NFS

Best Practice

If you cannot find what you need in this paper or from other resources, contact Red Hat or NetApp

for information on specific solutions on NetApp storage.

5 Additional Services That May Affect NFS Behavior

This section covers auxiliary services you may need to support advanced NFS features.

5.1 Telling Time
The clock on your Linux clients must remain synchronized with your storage to avoid problems such

as authentication failures or incomplete software builds. Usually you set up a network time service

such as NTP and configure your storage and clients to update thei r time using this service. After you
properly configure a network time service, you can find more information on enabling NTP on your

storage in the “Data ONTAP System Administrator’s Guide .”

Linux distributions usually come with a prebuilt network time protocol (NTP) daemon. If your

distribution does not have an NTP daemon, you can build and install one yourself by downloading the

latest ntpd package from the Internet (see the appendix).

There is l ittle documentation available for the preinstalled NTP daem on on Linux. To enable NTP on

your clients, verify that the ntpd startup script runs when your client boots (look in /etc/rc.d or

/etc/init.d—the exact location varies, depending on your distribution; for Red Hat systems, you

can use chkconfig –level 35 ntpd on). You must add the network time server’s IP address to

/etc/ntp/step-tickers and /etc/ntp.conf.

If you find that the time protocol daemon has difficulty maintaining synchronization with your time

servers, you may need to create a new drift fi le. Verify that your client’s /etc/ntp directory and its

contents are permitted to the ntp user and group to allow the daemon to update the drift fi le, and

disable authentication and restriction commands in /etc/ntp.conf until you are sure everything

works correctly.

Next, as root, shut down the time daemon and delete the drift fi le (usually /etc/ntp/drift). Now
restart the time daemon again. After about 90 minutes, it will write a new drift fi le into

/etc/ntp/drift. Your client system should keep better time after that.

Always keep the date, time, and time zone on your appliance and clients synchronized. Not only will

you enable any time-based caching on your clients to work correctly, but you will also make

debugging easier by aligning time stamps in client logs and on client network trace events with the

appliance’s message log and pktt traces.

5.2 Security
Today, most versions of the Linux NFS client support only two types of authentication: AUTH_NULL

and AUTH_UNIX. Linux distributions based on 2.6 kernels support Ke rberos 5, just as Solaris does

today via RPCSEC GSS. Later versions of the NFS protocol (for example NFSv4) support a wide

variety of authentication and security models, including Kerberos 5, 5p (privacy), and 5i (integrity).

NFSv3 and NFSv4 support Kerberos but there is a difference in the stack in the way they are

implemented. NFSv3 has portmap, mount, NFS, NLM, and NSM. Kerberos RPC calls apply only to

NFS that uses port 2049. The rest of the ports that are used by remaining services do not

communicate over Kerberos; they use AUTH_SYS., though NFSv4 only has a single port 2049 of

NFS. Therefore Kerberos is more fine grained in the NFSv4 stack compared to NFSv3. The newer

versions of the RHEL6.x kernel support DES and AES128/256 encryption types. NFSv4 is firewall

friendly too because it communicates over one single port 2049 with the caveat that callbacks require

a separate port to be opened on the client. NFSv4.1 removes this restriction with the introduction of

sessions. The callback paths are also over Kerberos in RHEL6.x kernels.

To maintain the overall security of your Linux clients, check for and install the l atest security updates

from Red Hat. NFS over TCP avoids any reordering of IP fragments caused from packets larger than

the maximum transfer unit. This helps in crossing firewalls.

25 Using Red Hat Client with NetApp Storage over NFS

Firewall configuration can also block auxiliary ports that the NFS protocol requires to operate. For

example, traffic may be able to pass on the main NFS port numbers, but if a firewall blocks the mount

protocol or the lock manager or port manager ports, NFS cannot work. This applies to standalone

router/firewall systems as well as local firewall applications such as tcpwrapper, ipchains, or iptables

that might run on the client system itself. Check if there are any rules in /etc/hosts.deny that

could prevent communication between your client and server.

In a firewall setup the client needs access to port 2049 and possibly to 111. If you use NFSv3, the

client also needs access to the rpc.mountd and rpc.statd ports. For NFSv3 in RHEL, the client ports

can be forced by “uncommenting” the “LOCKD_TCPPORT=32803” and “STATD_PORT=662” lines in

the “/etc/sysconfig/nfs” fi le. This in turn allows the host firewall (iptables) as well as the network

firewall to remain secure by allowing only those ports for NFS access. This configuration change

requires a reboot to take effect. The server, which is the NetApp storage in this case, needs access to

the rpc.statd callback port on the client (NFSv3) and/or the NFSv4 callback port.

Note that the NFSv4 callback port on the Linux NFS client is accessed by creating a fi le

/etc/modprobe.d/options-local.conf containing the line options nfs

callback_tcpport=<portnumber> and then rebooting in RHEL6.x. However, with NFSv4.1 the

callback path uses port 2049 with the help of sessions introduced in this minor version of NFSv4.

Best Practice

Therefore it is highly recommended to use NFSv4.1 over NFSv4 as becomes more easy to configure

and manage firewalls through a single NFS port.

There has always been a requirement to support more than 16 groups for any user. Moving to

Kerberos is a natural choice because RPCSEC_GSS allows more than 16 groups. But with the

changes in Data ONTAP, the user can be a member of more than 16 groups without using Kerberos.

We recommend that if you want to use NFS with Kerberos you use NFS over TCP. For more

information on Kerberos refer to TR-4073.

You can enable more than 16 groups on the storage system with the hidden options. Once these

options are set, the client mounts the exported fi le system from the storage. For example, say that

user1 is part of 50 groups and is trying to log in from a Linux client. The Linux client definitely has the
limitation of 16 groups, beyond which it would allow or truncate. When user1 tries to log in to access

the NFS share, UIDs and the GIDs are transferred to the storage system. Only 16 groups get to the

system. Once the system gets the UID, it uses the same UID and talks to the local group fi le, NIS , or

LDAP to verify that this UID is indeed with 16 groups or part of some more groups, since this is a

limitation at the protocol level. Then the local group fi le (which is not used for practical reasons and is

not recommended), NIS, or LDAP sends the system the actual l ist of GIDs that user1 is part of; in this

case it would be 50 GIDs. This additional checking of UID is done by Data ONTAP/clustered Data

ONTAP to get around this group limitation without moving to a Kerberos environment.

5.3 Network Lock Manager
The NFS version 3 protocol uses separate side-band protocols to manage fi le locking. On Linux 2.6

kernels, the lockd daemon manages fi le locks using the NLM (Network Lock Manager) protocol, and

the rpc.statd program manages lock recovery using the NSM (Network Status Monitor) protocol to

report server and client reboots. The lockd daemon runs in the kernel and is started automatically

when the kernel starts up at boot time. The rpc.statd program is a user-level process that is started

during system initialization from an init script. If rpc.statd is not able to contact servers when the

client starts up, stale locks will remain on the servers that can interfere with the normal operation of

applications.

The rpcinfo command on Linux can help determine whether these services have started an d are

available. If rpc.statd is not running, use the chkconfig program to check that its init script

(which is usually /etc/init.d/nfslock) is enabled to run during system bootup. If the client host’s

network stack is not fully initialized when rpc.statd runs during system startup, rpc.statd may

not send a reboot notification to all servers. Some of the reasons network stack initialization can be

delayed are slow NIC devices, slow DHCP service, and CPU-intensive programs running during

system startup. Network problems external to the client host may also cause these symptoms.

26 Using Red Hat Client with NetApp Storage over NFS

Because status monitoring requires bidirectional communication between server and client, some

firewall configurations can prevent lock recovery from working. Firewalls may also signif icantly restrict

communication between a client’s lock manager and a server. Network traces captured on the client

and server at the same time usually reveal a networking or firewall misconfiguration. Read the section

on using Linux NFS with firewalls carefully if you suspect a firewall is preventing lock management

from working.

Your client’s nodename determines how an appliance recognizes fi le lock owners. You can easily find

out what your client’s nodename is using the uname –n or hostname command. (A system’s

nodename is set on RHEL clients during boot using the HOSTNAME value set in

/etc/sysconfig/network.) The rpc.statd daemon determines which name to use by call ing

gethostbyname(3), or you can specify it explicitly when starting rpc.statd using the -n option.

Check that netfs is running at the proper init levels:

/sbin/chkconfig --list netfs

Netfs should be running at init levels 3 and 5.

If netfs is not running at the proper init levels:

/sbin/chkconfig --levels 35 netfs on

Check that portmap is running at the proper init levels:

/sbin/chkconfig --list portmap

Portmap should be running at init levels 3 and 5.

If portmap is not running at the proper init levels, set it so it will run at the proper levels:

/sbin/chkconfig --levels 35 portmap on.

Check for the portmap daemon:

$ ps -ef |grep portmap

Portmap should be running and owned by the user rpc.

If portmap is not running, start it:

/etc/init.d/portmap start

Check that nfslock is running at the proper init levels:

/sbin/chkconfig --list nfslock

nfslock should be running at init levels 3 and 5

If nfslock is not running at the proper init levels, set it so it will run at the proper levels:

/sbin/chkconfig --levels 35 nfslock on

Check for nfslock:

$ ps -ef |grep rpc.statd

The daemon rpc.statd should be running and owned by the user rpcuser.

The problem of nfslock (rpc.statd) not running has been encountered many times on 2.4

27 Using Red Hat Client with NetApp Storage over NFS

kernels.

If nfslock is not running, start it:

/etc/init.d/nfslock start

rpc.statd uses gethostbyname() to determine the client's name, but lockd (in the Linux kernel)

uses uname –n. By changing the HOSTNAME= fully qualified domain name, that means that lockd

will then use an FQDN when contacting the storage. If a lnx_node1.iop.eng.netapp.com and

also a lnx_node5.ppe.iop.eng.netapp.com are contacting the same NetApp storage, the

storage will be able to correctly distinguish the locks owned by each client. Therefore, we recommend

using the fully qualified name in /etc/sysconfig/network. In addition to this, sm_mon –l or

lock break on the storage will also clear the locks on the storage, which will fix the lock recovery

problem.

If the client’s nodename is fully qualified (that is, it contains the hostname and the domain name

spelled out), then rpc.statd must also use a fully qualified name. Likewise, if the nodename is

unqualified, then rpc.statd must use an unqualified name. If the two values do not match, lock

recovery will not work. Be sure the result of gethostbyname(3) matches the output of uname –n

by adjusting your client’s nodename in /etc/hosts, DNS, or your NIS databases.

Similarly, you should account for client hostname clashes in different subdomains by always using a

fully qualified domain name when setting up a client’s nodename during installation. Wit h multihomed

hosts and aliased hostnames, you can use the rpc.statd -n option to set unique hostnames for

each interface. The easiest approach is to use each client’s fully qualified domain name as its

nodename.

When working in high-availabil ity database environments, test all worst-case scenarios (such as

server crash, client crash, application crash, network partition, and so on) to verify that lock recovery

is functioning correctly before you deploy your database in a production environment. Ideally, you

should examine network traces and the kernel log before, during, and after locking/disaster/locking

recovery events.

The fi le system containing /var/lib/nfs must be persistent across client reboots. This directory is

where the rpc.statd program stores information about servers that are holding locks for the local

NFS client. A tmpfs fi le system, for instance, is not sufficient; the server will fail to be notified that it

must release any POSIX locks it might think your client is holding if it fails to shut down cleanly. That

can cause a deadlock the next time you try to access a fi le that was locked before the client restarted.

Locking fi les in NFSv3 can affect the performance of your application. The NFSv3 client assumes that

if an application locks and un locks a fi le, it wishes to share that fi le’s data among cooperating

applications running on multiple clients. When an application locks a fi le, the NFS client purges any

data it has already cached for the fi le, forcing any read operation after the lock to go back to the

server. When an application unlocks a fi le, the NFS client flushes any writes that may have occurred

while the fi le was locked. In this way, the client greatly increases the probability that locking

applications can see all previous changes to the fi le.

However, this increased data cache coherency comes at the cost of decreased performance. In some
cases, all of the processes that share a fi le reside on the same client; thus aggressive cache purging

and flushing unnecessarily hamper the performance of the application. Solaris allows administrators

to disable the extra cache purging and flushing that occur when applications lock and unlock fi les with

the llock mount option. Note that this is not the same as the nolock mount option in Linux. This

mount option disables NLM calls by the client, but the client continues to use aggressive cache

purging and flushing. Essentially this is the opposite of what Solaris does when llock is in effect.

During a storage takeover/giveback from panic/reboot or during a LIF migrate in clustered Data

ONTAP, the surviving partner assumes the identity of the dead partner to the MAC address level

when a node dies in the HA pair. This takeover is a simulated reboot of the dead partner. (Clients

accessing the live partner are unaffected.) The takeover replays the NVRAM log for the failed partner

and starts the services up for the failed partner. One service is a piece of code that supports locking

for all protocols, including CIFS, NFSv2v3, and NFSv4, where NLM (the network lock manager

protocol) is specific to NFS that provides locking support for NFSv2/v3 clients. So the newly

28 Using Red Hat Client with NetApp Storage over NFS

"rebooted" server sends a reboot notification to any NFS client holding open locks and allows the

client to reclaim its locks before enabling new lock acquisition.

NetApp handles the lock a little aggressively here. Although we assume that the storage giveback will

complete within 30 seconds, we do not give out new lock requests during that time but queue them

up. We hold the locks for 45 seconds to allow the original clients to reclaim the locks; otherwise we

give them away to new clients in the queue requesting for those thereafter. This is standard recovery

of lock state for NFS; it is transparent to the applications and managed completely by the NFS client

and NetApp storage. However, it recently was discovered that the Linux clients never requested a

resend of the locks once the grace period on the NetApp storage expired. This caused the lock

request to fail with an ENOLCK error on the client, a problem that is fixed in RHEL6.4.

With NFSv4.x, the chance that these failures with locks will occur is lower because it is a stateful

protocol and all state information is stored on both the client and the server when they are active and

recovered mutually in the event of an outage. In NFSv4.x, nfsd is the only daemon required to start

the nfs service. Ancillary protocols l ike portmapd, mountd, lockd, and statd are no longer present.

With the elimination of these adjunct protocols, the locking mechanism is streamlined and an Oracle

Database faces fewer challenges when recovering locks on startup.

NFSv4.x locks provide a time-bounded grant of control over fi le state to an NFS client. During the

lease interval, the NFS server might not grant conflicting control to another client. Holding a lease

allows a client to assume that its lock will remain valid for a server-specified, renewable time interval.

The client is responsible for contacting the NFS server to refresh the lease to maintain a lock at the

end of every lease interval. (The lease interval defaults to 30 seconds in NetApp Data ONTAP.)

Lease expiration is considered a failure in communications between the client and server, requiring

recovery. The server assumes that the client has failed and may allow other clients to acquire the

same lock. If the NFS server fails, on reboot it waits the full lease interval for clients to reclaim locks

before allowing new lock requests. Leases enable cache consistency and are kept short to prevent

delays in normal operations. Longer lock lease intervals reduce lease refreshes. Earlier RHEL5.x

clients were chatty because of the overhead caused from the lease check communication that

happens between NetApp storage and NFS clients. However, the newer RHE6.x clients are less

chatty and thus there is lower overhead.

Leases protect against loss of locking state by the client. A client normally exists in one of two states:

Either all locks are correct or all are lost. The refresh of any lock by a client validates all locks held by

the client. This reduces the number of lease refreshes by a client from one per lock each lease

interval to one per client each lease interval.

6 Tuning Options

The tuning options listed in this section do not apply to all types of workloads. Some tuning options

work for random workloads while others help sequential workloads. It is very important that you have

adequate information about the application workload and access pattern before applying any of these

changes to any of the RHEL clients. NetApp always recommends using the default values on the

RHEL clients. Tuning of the default parameters on the RHEL clients should be done in consultation

with the appropriate technical reports and subject matter experts on specific applications that run on

RHEL clients and integrate with NetApp storage.

6.1 TCP Tuning
Ideally, in an NFS environment that uses TCP for transport, enlarging the transport socket and

memory buffers that the Linux client uses for NFS traffic helps reduce resource contention on the

client, reduces performance variance, and improves maximum data and operation throughput. In the

newer 2.6. kernels, the client automatically chooses an optimal socket buffer size based on the

system memory. However, in high-latency environments over WAN or across data centers that span

metropolitan areas where fi le transfer is slow over fast connections, these values need to be

calculated appropriately.

The following parameters are responsible for default and maximum receive TCP socket buffers in

bytes:

 net.core.rmem_default = 4194304

net.core.rmem_max = 4194304

29 Using Red Hat Client with NetApp Storage over NFS

The following parameters are responsible for default and maximum send TCP socket buffers in bytes:

 net.core.wmem_default = 4194304

net.core.wmem_max = 4194304

The values in the previous examples were received from a RHEL5.4 client with 32GB of system

memory. These values would be different on different RHEL versions and values depend on the client

system ’s memory size.

As mentioned above, the default values are always used for “_max,” but in high-latency environments

the following steps need to taken to calculate the “_max” values.

 We can measure the round-trip latency between two locations that are geographically apart by

“pinging” from one location to another.

 From the client at Location A: “ping –s <1514-100> <Server IP address>”. The round-trip

 value comes to 50ms, or .050 secs.

 The maximum TCP window size in bytes = Bandwidth-in-bits-per-second * Round-trip-latency-in-

seconds = TCP window size in bits / 8

 A 10GBe connection with a round-trip latency of .050 secs would come to:

1,000,000,000 bits per sec * .050 sec = 500,000,000 bits/sec

500,000,000/8 bits per byte = 62,500,000 bytes

 Now the “_max” values can be set as follows:

sysctl -w net.core.rmem_max=62500000

sysctl -w net.core.wmem_max= 62500000

sysctl -w "net.ipv4.tcp_rmem=4096 16384 62500000"

sysctl -w "net.ipv4.tcp_wmem=4096 16384 62500000"

Some customers have found the following settings on NetApp storage to help performance in WAN

and high-performance LAN network environments. Use these settings only after thorough testing in
your own environment over TCP. The following settings also apply in a large compute farm

environment in which thousands of cores access the NetApp storage concurrently.

Netapp storage:

nfs.tcp.recvwindowsize 2097152 (2MB)

nfs.ifc.rcv.high 3145728 (1.5 times of the tcp.recvwindowsize)

nfs.ifc.xmt.high 64

However, TCP must be preferred over WAN connections or in other high-loss networks. If you use

TCP in an environment that has high packet loss, you could adjust the

net.ipv4.tcp_syn_retries parameter. The net.ipv4.tcp_syn_retries parameter

specifies the maximum number of SYN packets to send to try to establish a TCP connection. The

default is 5; the maximum is 255. The default value corresponds to a connection time of
approximately 180 seconds.

6.2 Memory Tuning
pdblush and bdflush are two daemons that are responsible for flushing the dirty buffers from the

RHEL client. pdflush kicks in when the number of free buffers hits a threshold and bdflush starts

when the dirty buffers reach a threshold. Using the default values the writes are normally bursty in

nature. The following parameters can be adequately tuned to alleviate the bursty nature of the writes.

Caution: These tunables should be verified in a test environment before applying them in production.

vm.dirty_ratio = 40 – The default value is set to 40%. If the value is lower than the default , then

 pagecache gets less dirty and it is primarily for small I /O streams. When

 the values are higher than the default, then the pagecache is dirtier and it

 is for larger I/O streams.

vm.dirty_background_ratio = 10 – The default value is 10%. If the value is lower, pdflush

30 Using Red Hat Client with NetApp Storage over NFS

 starts early when the pagecache is less dirty and there are smaller I /O

 streams. When this value is higher than the default, then pdflush starts

 later and the pagecache gets more dirty with large I/O streams.

vm.swappiness=60 - The default value is 60%. This controls how the Linux system reclaims

 mapped memory of mainly three kinds:

 Anonymous memory—Swapping

 Mapped fi le pages—Writing if dirty and freeing

 System V shared memory—Swapping

 Decreasing this value provides more aggressive reclaiming of unmapped

 memory; increasing this value leads to aggressive swapping of mapped

 memory; avoid swapping mapped memory; in today’s world, in which client

 platforms have more than 4GB of system memory, it may be worthwhile to

 test reducing the value to 40 to reclaim clean pages instead of using swap

 space unnecessarily

The above options can be tried in scenarios in which the application has concurrent writers to the
same file or multiple fi les generating continuous or bursty writes. These options may help to smooth

the writes on the NetApp storage.

For more on virtual memory and slab cache tuning, refer to the following link from Red Hat:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html -

single/Performance_Tuning_Guide/index.html.

6.3 Network Tuning
In today’s environment, almost all NFS client and server communication happens over 10GBe.

NetApp recommends the following tuning for most work workloads to improve the 10GBe

performance. The following setting is usually the default for common GbE hardware.

 The TCP transfer window size on the network depends on the number of RPC slots times the

rsize/wzise value. In pre-RHEL6.4 environments the sunrpc.tcp_slot_table_entries

value is set to 16 by default. NetApp recommends manually increasing this value to 128. If a fi le

system is mounted with the rsize/wsize value set to 32k and with the default value of 16, the TCP

transfer window size equals (16 * 32). But with a 64k rsize/wsize and 128 RPC slots the TCP

window size increases to (64k * 128), thus having a better payload on the wire. To make this

parameter persistent across reboots, edit /etc/init.d/netfs to call /sbin/sysctl -p in

the first l ine of the script so that sunrpc.tcp_slot_table_entries is set before NFS

mounts any fi le systems. If NFS mounts the fi le systems before this parameter is set, the default

value of 16 will be in force.

However in RHEL6.4 this behavior has changed, as discussed in section 2.4. There is no RPC

slot l imit in RHEL6.4. A TCP transfer window size will be dynamically set based on the 64k

rsize/wsize (recommended) value set on the mount options. In some LAN scenarios it has been

noted that with a dynamic number of RPC slots in RHEL6.4 , the NetApp storage may have its
network buffers depleted by a flood of RPC requests from Linux clients. This only happens with

fi le systems mounted over NFSv3.

The following settings do not apply to fi le systems mounted over NFSv4.1. If this is not a WAN

scenario, NetApp recommends explicitly setting the sunrpc.tcp_slot_table_entries value

to 128 instead of allowing this parameter to take a dynamic value. The following change does not

apply to a WAN setup. To make this change persistent on the RHEL6.4 client across reboots:

 Create the fi le /etc/modprobe.d/sunrpc-local.conf.

 Add the following entry:

 options sunrpc tcp_max_slot_table_entries=128

 In recently produced platforms with multicore, enabling CPU frequency scaling helps to improve

the 10Gbe performance. By default you are not able to util ize the complete frequency of each

core.

[root@ibmx3650-svl28 ~]# cat /proc/cpuinfo|grep MHz

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html

31 Using Red Hat Client with NetApp Storage over NFS

cpu MHz : 1596.000

cpu MHz : 1596.000

cpu MHz : 1596.000

cpu MHz : 1596.000

cpu MHz : 1596.000

cpu MHz : 1596.000

cpu MHz : 1596.000

cpu MHz : 1596.000

Once the governor is set to performance in the /etc/sysconfig/cpuspeed fi le, then the CPU frequency

scaling has to be restarted.

[root@ibmx3650-svl28 ~]# service cpuspeed restart

Disabling performance cpu frequency scaling: [OK]

Enabling performance cpu frequency scaling: [OK]

[root@ibmx3650-svl28 ~]# cat /proc/cpuinfo|grep MHz

cpu MHz : 2261.000

cpu MHz : 2261.000

cpu MHz : 2261.000

cpu MHz : 2261.000

cpu MHz : 2261.000

cpu MHz : 2261.000

cpu MHz : 2261.000

cpu MHz : 2261.000

 The Linux kernel I/O schedulers play an important role in controll ing disk access to NetApp
storage. By default the I/O scheduler is the Completely Fair Scheduler (cfq), but, depending on

the workload type, No Operation (noop) or Deadline (deadline) I/O schedulers also help improve

performance.

[root@ibmx3650-svl28 ~]# cat /sys/block/sda/queue/scheduler

noop anticipatory deadline [cfq]

 The scheduler can be changed on the fly while the client is up and running. However, modifying

the /boot/grub/menu.lst fi le and rebooting the Linux client make the change permanent. In

the following example the I/O scheduler is now changed to noop.

[root@ibmx3650-svl28 ~]# echo noop > /sys/block/sda/queue/scheduler

[root@ibmx3650-svl28 ~]# cat /sys/block/sda/queue/scheduler

[noop] anticipatory deadline cfq

 In a 10Gbe or larger network pipe scenario, NetApp recommends setting the

net.core.netdev_max_backlog value to 300000. This helps the packets to be queued in the

buffer rather than dropping them and then requesting retransmission.

 The other tuning options that may help to improve the Linux client performance over 10Gbe

connections are:

a. Enable windows scaling - sysctl -w net.ipv4.tcp_window_scaling=1

b. Disable irqbalance – service irqbalance stop
chkconfig irqbalance off

6.4 Controlling File Read-Ahead in Linux
Read-ahead occurs when Linux predicts that an application may soon require fi le data that it has not

yet requested. Such a prediction is not always accurate, so tuning read -ahead behavior can have

some benefit. Certain workloads benefit from more aggressive read-ahead, while other workloads

perform better with l ittle or no read-ahead.

32 Using Red Hat Client with NetApp Storage over NFS

The 2.6 Linux kernel does not support adjusting read-ahead behavior via a sysctl parameter.

However, the read-aheads adapt more easily to automatically detecting the size of the I/O request.

This change eliminates the need for treating large random I/O as sequential and all of the averaging

code that exists just to support this. Tests have indicated that multithreaded sequential reads using

the new read-ahead code in the 2.6.9 kernel and later is always faster (20–30%). The read-aheads in

RHEL5.7 and later are set to 256, which works very well for random reads and is as much as 50%

faster. blockdev –getra <device_name> and blockdev –setra <device_name> 256 help

to get and appropriately set the read-ahead.

As always, test your workload with these new settings before making changes to your production

systems.

6.5 How to Enable Trace Messages
Sometimes it is useful to enable trace messages in the NFS or RPC client to see what it does when

handling (or mishandling) an application workload. Normally you should use this only when asked by

an expert for more information about a problem. You can do this by issuing the following commands:

 Become root on your client

 sysctl –w sunrpc.nfs_debug=1

 sysctl –w sunrpc.rpc_debug=1

The sysrq key is one of the best (and sometimes the only) way to determine what a machine is really

doing. It is useful when a system appears to be hung or for diagnosing elusive, transient, kernel-

related problems.

 sysctl -w kernel/sysrq=1; echo t > /proc/sysrq-trigger kernel.sysrq = 1

 To turn this off, after the problem occurs:

 sysctl -w kernel/sysrq=0 echo t > /proc/sysrq-trigger kernel.sysrq = 0

Trace messages appear in your system log, usually /var/log/messages. To disable them, echo a

zero into the same files. This can generate an enormous amount of system log traffic, so it can slow

down the client and cause timing-sensitive problems to disappear or change in behavior. You should

use this when you have a simple, narrow test case that reproduces the symptom you are trying to

resolve. To disable debugging, simply echo a zero into the same files.

To help the syslogger keep up with the log traffic, you can disable synchronous l ogging by editing

/etc/syslog.conf and appending a hyphen in front of /var/log/messages. Restart the syslog

daemon to pick up the updated configuration.

6.6 Reporting and Monitoring Tools

The following monitoring and reporting tools can be used to collect data about CPU util ization,

memory, and network statistics.

 SAR util ity can provide information on CPU, iowait, and idle time.

 MPIO can provide more granular information for each core on the Linux platform.

[root@ibmx3650-svl42 ~]# sar 1 3

Linux 2.6.18-308.24.1.el5 (ibmx3650-svl42.iop.eng.netapp.com) 02/02/2013

06:11:27 PM CPU %user %nice %system %iowait %steal %idle

06:11:28 PM all 0.00 0.00 0.00 0.00 0.00 100.00

06:11:29 PM all 0.00 0.00 0.00 0.00 0.00 100.00

06:11:30 PM all 0.00 0.00 0.00 0.00 0.00 100.00

Average: all 0.00 0.00 0.00 0.00 0.00 100.00

33 Using Red Hat Client with NetApp Storage over NFS

 TOP provides information on the different processes and the CPU util ization of each of those.

This also provides information on memory and swap usage.

 VMSTAT provides memory and swap information.

 DSTAT and IPTRAF provide detailed information on network traffic.

[root@ibmx3650-svl42 ~]# mpstat -P ALL

Linux 2.6.18-308.24.1.el5 (ibmx3650-svl42.iop.eng.netapp.com) 02/02/2013

06:12:38 PM CPU %user %nice %sys %iowait %irq %soft %steal %idle intr/s

06:12:38 PM all 0.01 0.03 0.02 0.05 0.00 0.01 0.00 99.88 1073.56

06:12:38 PM 0 0.01 0.04 0.01 0.12 0.00 0.00 0.00 99.82 1000.74

06:12:38 PM 1 0.03 0.04 0.02 0.01 0.01 0.00 0.00 99.88 11.07

06:12:38 PM 2 0.02 0.04 0.02 0.03 0.01 0.00 0.00 99.89 10.32

06:12:38 PM 3 0.01 0.05 0.02 0.01 0.01 0.00 0.00 99.91 10.37

06:12:38 PM 4 0.00 0.00 0.01 0.01 0.00 0.00 0.00 99.97 0.08

06:12:38 PM 5 0.02 0.00 0.01 0.01 0.00 0.00 0.00 99.95 0.04

06:12:38 PM 6 0.01 0.03 0.04 0.18 0.00 0.03 0.00 99.70 22.61

06:12:38 PM 7 0.01 0.01 0.02 0.04 0.00 0.01 0.00 99.91 18.33

[root@ibmx3650-svl42 ~]# top

top - 18:11:36 up 22 days, 8:27, 2 users, load average: 0.00, 0.00, 0.00

Tasks: 217 total, 1 running, 215 sleeping, 0 stopped, 1 zombie

Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.9%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 16377260k total, 9028592k used, 7348668k free, 211608k buffers

Swap: 18415608k total, 0k used, 18415608k free, 7258488k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 1 root 15 0 10364 692 580 S 0.0 0.0 0:00.91 init

 2 root RT -5 0 0 0 S 0.0 0.0 0:00.22 migration/0

 3 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0

 4 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

[root@ibmx3650-svl42 ~]# vmstat

procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------

 r b swpd free buff cache si so bi bo in cs us sy id wa st

 0 0 0 7347976 211620 7259064 0 0 0 1 1 2 0 0 100 0 0

[root@ibmx3650-svl42 ~]# dstat

----total-cpu-usage---- -dsk/total- -net/total- ---paging-- ---system--

usr sys idl wai hiq siq| read writ| recv send| in out | int csw

 0 0 100 0 0 0|2933B 12k| 0 0 | 0 0 |1074 1059

 0 0 100 0 0 0| 0 0 | 408B 1192B| 0 0 |1012 960

 0 0 100 0 0 0| 0 0 | 345B 436B| 0 0 |1034 976

 0 0 100 0 0 0| 0 0 | 204B 436B| 0 0 |1010 963

34 Using Red Hat Client with NetApp Storage over NFS

NetApp provides no representations or warranties regarding the accuracy, reliability, or serviceability of any
information or recommendati ons provided in this publication, or with respect to any results that may be

obtained by the use of the information or observance of any recommendations provided herein. The
information in this document is distributed AS IS, and the use of this information or the implementati on of

any recommendations or techniques herein is a customer’s responsibility and depends on the customer’s

ability to evaluate and integrate them into the customer’s operational environment. This document and the
information contained herein may be used solely in connection with the NetApp products discussed in this

document.

© 2013 NetApp, Inc. All rights reserved. No portions of this document may be reproduced without prior written consent of NetApp,
Inc. Specifications are subject to change without notice. NetApp, the NetApp logo, Go further, faster, Data ONTAP, and Flash Cache
are trademarks or registered trademarks of NetApp, Inc. in the United States and/or other countries. Linux is a registered trademark
of Linus Torvalds. UNIX is a registered trademark of The Open Group. Oracle is a registered tra demark of Oracle Corporation. Intel
is a registered trademark of Intel Corporation. Cisco is a registered trademark of Cisco Systems, Inc. All other brands or products are

trademarks or registered trademarks of their respective holders and should be treated as such. TR-XXX-MMYR

Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product

and feature versions described in this document are supported for your specific environment . The NetApp
IMT defines the product components and versions that can be used to construct configurations that are

supported by NetApp. Specific results depend on each customer's installation in accordance with published

specifications.

http://now.netapp.com/matrix/mtx/login.do

